/*************************************************************************** * Copyright (C) 2007 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "lpc3180_nand_controller.h" #include "replacements.h" #include "log.h" #include #include #include "nand.h" #include "target.h" int lpc3180_nand_device_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct nand_device_s *device); int lpc3180_register_commands(struct command_context_s *cmd_ctx); int lpc3180_init(struct nand_device_s *device); int lpc3180_reset(struct nand_device_s *device); int lpc3180_command(struct nand_device_s *device, u8 command); int lpc3180_address(struct nand_device_s *device, u8 address); int lpc3180_write_data(struct nand_device_s *device, u16 data); int lpc3180_read_data(struct nand_device_s *device, void *data); int lpc3180_write_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size); int lpc3180_read_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size); int lpc3180_controller_ready(struct nand_device_s *device, int timeout); int lpc3180_nand_ready(struct nand_device_s *device, int timeout); int handle_lpc3180_select_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); nand_flash_controller_t lpc3180_nand_controller = { .name = "lpc3180", .nand_device_command = lpc3180_nand_device_command, .register_commands = lpc3180_register_commands, .init = lpc3180_init, .reset = lpc3180_reset, .command = lpc3180_command, .address = lpc3180_address, .write_data = lpc3180_write_data, .read_data = lpc3180_read_data, .write_page = lpc3180_write_page, .read_page = lpc3180_read_page, .controller_ready = lpc3180_controller_ready, .nand_ready = lpc3180_nand_ready, }; /* nand device lpc3180 */ int lpc3180_nand_device_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct nand_device_s *device) { lpc3180_nand_controller_t *lpc3180_info; if (argc < 3) { WARNING("incomplete 'lpc3180' nand flash configuration"); return ERROR_FLASH_BANK_INVALID; } lpc3180_info = malloc(sizeof(lpc3180_nand_controller_t)); device->controller_priv = lpc3180_info; lpc3180_info->target = get_target_by_num(strtoul(args[1], NULL, 0)); if (!lpc3180_info->target) { ERROR("no target '%s' configured", args[1]); return ERROR_NAND_DEVICE_INVALID; } lpc3180_info->osc_freq = strtoul(args[2], NULL, 0); if ((lpc3180_info->osc_freq < 1000) || (lpc3180_info->osc_freq > 20000)) { WARNING("LPC3180 oscillator frequency should be between 1000 and 20000 kHz, was %i", lpc3180_info->osc_freq); } lpc3180_info->selected_controller = LPC3180_NO_CONTROLLER; lpc3180_info->sw_write_protection = 0; lpc3180_info->sw_wp_lower_bound = 0x0; lpc3180_info->sw_wp_upper_bound = 0x0; return ERROR_OK; } int lpc3180_register_commands(struct command_context_s *cmd_ctx) { command_t *lpc3180_cmd = register_command(cmd_ctx, NULL, "lpc3180", NULL, COMMAND_ANY, "commands specific to the LPC3180 NAND flash controllers"); register_command(cmd_ctx, lpc3180_cmd, "select", handle_lpc3180_select_command, COMMAND_EXEC, "select <'mlc'|'slc'> controller (default is mlc)"); return ERROR_OK; } int lpc3180_pll(int fclkin, u32 pll_ctrl) { int bypass = (pll_ctrl & 0x8000) >> 15; int direct = (pll_ctrl & 0x4000) >> 14; int feedback = (pll_ctrl & 0x2000) >> 13; int p = (1 << ((pll_ctrl & 0x1800) >> 11) * 2); int n = ((pll_ctrl & 0x0600) >> 9) + 1; int m = ((pll_ctrl & 0x01fe) >> 1) + 1; int lock = (pll_ctrl & 0x1); if (!lock) WARNING("PLL is not locked"); if (!bypass && direct) /* direct mode */ return (m * fclkin) / n; if (bypass && !direct) /* bypass mode */ return fclkin / (2 * p); if (bypass & direct) /* direct bypass mode */ return fclkin; if (feedback) /* integer mode */ return m * (fclkin / n); else /* non-integer mode */ return (m / (2 * p)) * (fclkin / n); } float lpc3180_cycle_time(lpc3180_nand_controller_t *lpc3180_info) { target_t *target = lpc3180_info->target; u32 sysclk_ctrl, pwr_ctrl, hclkdiv_ctrl, hclkpll_ctrl; int sysclk; int hclk; int hclk_pll; float cycle; /* calculate timings */ /* determine current SYSCLK (13'MHz or main oscillator) */ target_read_u32(target, 0x40004050, &sysclk_ctrl); if ((sysclk_ctrl & 1) == 0) sysclk = lpc3180_info->osc_freq; else sysclk = 13000; /* determine selected HCLK source */ target_read_u32(target, 0x40004044, &pwr_ctrl); if ((pwr_ctrl & (1 << 2)) == 0) /* DIRECT RUN mode */ { hclk = sysclk; } else { target_read_u32(target, 0x40004058, &hclkpll_ctrl); hclk_pll = lpc3180_pll(sysclk, hclkpll_ctrl); target_read_u32(target, 0x40004040, &hclkdiv_ctrl); if (pwr_ctrl & (1 << 10)) /* ARM_CLK and HCLK use PERIPH_CLK */ { hclk = hclk_pll / (((hclkdiv_ctrl & 0x7c) >> 2) + 1); } else /* HCLK uses HCLK_PLL */ { hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3)); } } DEBUG("LPC3180 HCLK currently clocked at %i kHz", hclk); cycle = (1.0 / hclk) * 1000000.0; return cycle; } int lpc3180_init(struct nand_device_s *device) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; int bus_width = (device->bus_width) ? (device->bus_width) : 8; int address_cycles = (device->address_cycles) ? (device->address_cycles) : 3; int page_size = (device->page_size) ? (device->page_size) : 512; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } /* sanitize arguments */ if ((bus_width != 8) && (bus_width != 16)) { ERROR("LPC3180 only supports 8 or 16 bit bus width, not %i", bus_width); return ERROR_NAND_OPERATION_NOT_SUPPORTED; } /* The LPC3180 only brings out 8 bit NAND data bus, but the controller * would support 16 bit, too, so we just warn about this for now */ if (bus_width == 16) { WARNING("LPC3180 only supports 8 bit bus width"); } /* inform calling code about selected bus width */ device->bus_width = bus_width; if ((address_cycles != 3) && (address_cycles != 4)) { ERROR("LPC3180 only supports 3 or 4 address cycles, not %i", address_cycles); return ERROR_NAND_OPERATION_NOT_SUPPORTED; } if ((page_size != 512) && (page_size != 2048)) { ERROR("LPC3180 only supports 512 or 2048 byte pages, not %i", page_size); return ERROR_NAND_OPERATION_NOT_SUPPORTED; } /* select MLC controller if none is currently selected */ if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) { DEBUG("no LPC3180 NAND flash controller selected, using default 'mlc'"); lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER; } if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { u32 mlc_icr_value = 0x0; float cycle; int twp, twh, trp, treh, trhz, trbwb, tcea; /* FLASHCLK_CTRL = 0x22 (enable clock for MLC flash controller) */ target_write_u32(target, 0x400040c8, 0x22); /* MLC_CEH = 0x0 (Force nCE assert) */ target_write_u32(target, 0x200b804c, 0x0); /* MLC_LOCK = 0xa25e (unlock protected registers) */ target_write_u32(target, 0x200b8044, 0xa25e); /* MLC_ICR = configuration */ if (lpc3180_info->sw_write_protection) mlc_icr_value |= 0x8; if (page_size == 2048) mlc_icr_value |= 0x4; if (address_cycles == 4) mlc_icr_value |= 0x2; if (bus_width == 16) mlc_icr_value |= 0x1; target_write_u32(target, 0x200b8030, mlc_icr_value); /* calculate NAND controller timings */ cycle = lpc3180_cycle_time(lpc3180_info); twp = ((40 / cycle) + 1); twh = ((20 / cycle) + 1); trp = ((30 / cycle) + 1); treh = ((15 / cycle) + 1); trhz = ((30 / cycle) + 1); trbwb = ((100 / cycle) + 1); tcea = ((45 / cycle) + 1); /* MLC_LOCK = 0xa25e (unlock protected registers) */ target_write_u32(target, 0x200b8044, 0xa25e); /* MLC_TIME_REG */ target_write_u32(target, 0x200b8034, (twp & 0xf) | ((twh & 0xf) << 4) | ((trp & 0xf) << 8) | ((treh & 0xf) << 12) | ((trhz & 0x7) << 16) | ((trbwb & 0x1f) << 19) | ((tcea & 0x3) << 24)); lpc3180_reset(device); } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { float cycle; int r_setup, r_hold, r_width, r_rdy; int w_setup, w_hold, w_width, w_rdy; /* FLASHCLK_CTRL = 0x05 (enable clock for SLC flash controller) */ target_write_u32(target, 0x400040c8, 0x05); /* SLC_CFG = 0x (Force nCE assert, ECC enabled, WIDTH = bus_width) */ target_write_u32(target, 0x20020014, 0x28 | (bus_width == 16) ? 1 : 0); /* calculate NAND controller timings */ cycle = lpc3180_cycle_time(lpc3180_info); r_setup = w_setup = 0; r_hold = w_hold = 10 / cycle; r_width = 30 / cycle; w_width = 40 / cycle; r_rdy = w_rdy = 100 / cycle; /* SLC_TAC: SLC timing arcs register */ target_write_u32(target, 0x2002002c, (r_setup & 0xf) | ((r_hold & 0xf) << 4) | ((r_width & 0xf) << 8) | ((r_rdy & 0xf) << 12) | ((w_setup & 0xf) << 16) | ((w_hold & 0xf) << 20) | ((w_width & 0xf) << 24) | ((w_rdy & 0xf) << 28)); lpc3180_reset(device); } return ERROR_OK; } int lpc3180_reset(struct nand_device_s *device) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) { ERROR("BUG: no LPC3180 NAND flash controller selected"); return ERROR_NAND_OPERATION_FAILED; } else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { /* MLC_CMD = 0xff (reset controller and NAND device) */ target_write_u32(target, 0x200b8000, 0xff); if (!lpc3180_controller_ready(device, 100)) { ERROR("LPC3180 NAND controller timed out after reset"); return ERROR_NAND_OPERATION_TIMEOUT; } } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { /* SLC_CTRL = 0x6 (ECC_CLEAR, SW_RESET) */ target_write_u32(target, 0x20020010, 0x6); if (!lpc3180_controller_ready(device, 100)) { ERROR("LPC3180 NAND controller timed out after reset"); return ERROR_NAND_OPERATION_TIMEOUT; } } return ERROR_OK; } int lpc3180_command(struct nand_device_s *device, u8 command) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) { ERROR("BUG: no LPC3180 NAND flash controller selected"); return ERROR_NAND_OPERATION_FAILED; } else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { /* MLC_CMD = command */ target_write_u32(target, 0x200b8000, command); } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { /* SLC_CMD = command */ target_write_u32(target, 0x20020008, command); } return ERROR_OK; } int lpc3180_address(struct nand_device_s *device, u8 address) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) { ERROR("BUG: no LPC3180 NAND flash controller selected"); return ERROR_NAND_OPERATION_FAILED; } else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { /* MLC_ADDR = address */ target_write_u32(target, 0x200b8004, address); } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { /* SLC_ADDR = address */ target_write_u32(target, 0x20020004, address); } return ERROR_OK; } int lpc3180_write_data(struct nand_device_s *device, u16 data) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) { ERROR("BUG: no LPC3180 NAND flash controller selected"); return ERROR_NAND_OPERATION_FAILED; } else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { /* MLC_DATA = data */ target_write_u32(target, 0x200b0000, data); } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { /* SLC_DATA = data */ target_write_u32(target, 0x20020000, data); } return ERROR_OK; } int lpc3180_read_data(struct nand_device_s *device, void *data) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) { ERROR("BUG: no LPC3180 NAND flash controller selected"); return ERROR_NAND_OPERATION_FAILED; } else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { /* data = MLC_DATA, use sized access */ if (device->bus_width == 8) { u8 *data8 = data; target_read_u8(target, 0x200b0000, data8); } else if (device->bus_width == 16) { u16 *data16 = data; target_read_u16(target, 0x200b0000, data16); } else { ERROR("BUG: bus_width neither 8 nor 16 bit"); return ERROR_NAND_OPERATION_FAILED; } } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { u32 data32; /* data = SLC_DATA, must use 32-bit access */ target_read_u32(target, 0x20020000, &data32); if (device->bus_width == 8) { u8 *data8 = data; *data8 = data32 & 0xff; } else if (device->bus_width == 16) { u16 *data16 = data; *data16 = data32 & 0xffff; } else { ERROR("BUG: bus_width neither 8 nor 16 bit"); return ERROR_NAND_OPERATION_FAILED; } } return ERROR_OK; } int lpc3180_write_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; int retval; u8 status; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) { ERROR("BUG: no LPC3180 NAND flash controller selected"); return ERROR_NAND_OPERATION_FAILED; } else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { u8 *page_buffer; u8 *oob_buffer; int quarter, num_quarters; if (!data && oob) { ERROR("LPC3180 MLC controller can't write OOB data only"); return ERROR_NAND_OPERATION_NOT_SUPPORTED; } if (oob && (oob_size > 6)) { ERROR("LPC3180 MLC controller can't write more than 6 bytes of OOB data"); return ERROR_NAND_OPERATION_NOT_SUPPORTED; } if (data_size > device->page_size) { ERROR("data size exceeds page size"); return ERROR_NAND_OPERATION_NOT_SUPPORTED; } /* MLC_CMD = sequential input */ target_write_u32(target, 0x200b8000, NAND_CMD_SEQIN); page_buffer = malloc(512); oob_buffer = malloc(6); if (device->page_size == 512) { /* MLC_ADDR = 0x0 (one column cycle) */ target_write_u32(target, 0x200b8004, 0x0); /* MLC_ADDR = row */ target_write_u32(target, 0x200b8004, page & 0xff); target_write_u32(target, 0x200b8004, (page >> 8) & 0xff); if (device->address_cycles == 4) target_write_u32(target, 0x200b8004, (page >> 16) & 0xff); } else { /* MLC_ADDR = 0x0 (two column cycles) */ target_write_u32(target, 0x200b8004, 0x0); target_write_u32(target, 0x200b8004, 0x0); /* MLC_ADDR = row */ target_write_u32(target, 0x200b8004, page & 0xff); target_write_u32(target, 0x200b8004, (page >> 8) & 0xff); } /* when using the MLC controller, we have to treat a large page device * as being made out of four quarters, each the size of a small page device */ num_quarters = (device->page_size == 2048) ? 4 : 1; for (quarter = 0; quarter < num_quarters; quarter++) { int thisrun_data_size = (data_size > 512) ? 512 : data_size; int thisrun_oob_size = (oob_size > 6) ? 6 : oob_size; memset(page_buffer, 0xff, 512); if (data) { memcpy(page_buffer, data, thisrun_data_size); data_size -= thisrun_data_size; data += thisrun_data_size; } memset(oob_buffer, 0xff, (device->page_size == 512) ? 6 : 24); if (oob) { memcpy(page_buffer, oob, thisrun_oob_size); oob_size -= thisrun_oob_size; oob += thisrun_oob_size; } /* write MLC_ECC_ENC_REG to start encode cycle */ target_write_u32(target, 0x200b8008, 0x0); target->type->write_memory(target, 0x200a8000, 4, 128, page_buffer + (quarter * 512)); target->type->write_memory(target, 0x200a8000, 1, 6, oob_buffer + (quarter * 6)); /* write MLC_ECC_AUTO_ENC_REG to start auto encode */ target_write_u32(target, 0x200b8010, 0x0); if (!lpc3180_controller_ready(device, 1000)) { ERROR("timeout while waiting for completion of auto encode cycle"); return ERROR_NAND_OPERATION_FAILED; } } /* MLC_CMD = auto program command */ target_write_u32(target, 0x200b8000, NAND_CMD_PAGEPROG); if ((retval = nand_read_status(device, &status)) != ERROR_OK) { ERROR("couldn't read status"); return ERROR_NAND_OPERATION_FAILED; } if (status & NAND_STATUS_FAIL) { ERROR("write operation didn't pass, status: 0x%2.2x", status); return ERROR_NAND_OPERATION_FAILED; } free(page_buffer); free(oob_buffer); } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { return nand_write_page_raw(device, page, data, data_size, oob, oob_size); } return ERROR_OK; } int lpc3180_read_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) { ERROR("BUG: no LPC3180 NAND flash controller selected"); return ERROR_NAND_OPERATION_FAILED; } else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { u8 *page_buffer; u8 *oob_buffer; u32 page_bytes_done = 0; u32 oob_bytes_done = 0; u32 mlc_isr; #if 0 if (oob && (oob_size > 6)) { ERROR("LPC3180 MLC controller can't read more than 6 bytes of OOB data"); return ERROR_NAND_OPERATION_NOT_SUPPORTED; } #endif if (data_size > device->page_size) { ERROR("data size exceeds page size"); return ERROR_NAND_OPERATION_NOT_SUPPORTED; } if (device->page_size == 2048) { page_buffer = malloc(2048); oob_buffer = malloc(64); } else { page_buffer = malloc(512); oob_buffer = malloc(16); } if (!data && oob) { /* MLC_CMD = Read OOB * we can use the READOOB command on both small and large page devices, * as the controller translates the 0x50 command to a 0x0 with appropriate * positioning of the serial buffer read pointer */ target_write_u32(target, 0x200b8000, NAND_CMD_READOOB); } else { /* MLC_CMD = Read0 */ target_write_u32(target, 0x200b8000, NAND_CMD_READ0); } if (device->page_size == 512) { /* small page device */ /* MLC_ADDR = 0x0 (one column cycle) */ target_write_u32(target, 0x200b8004, 0x0); /* MLC_ADDR = row */ target_write_u32(target, 0x200b8004, page & 0xff); target_write_u32(target, 0x200b8004, (page >> 8) & 0xff); if (device->address_cycles == 4) target_write_u32(target, 0x200b8004, (page >> 16) & 0xff); } else { /* large page device */ /* MLC_ADDR = 0x0 (two column cycles) */ target_write_u32(target, 0x200b8004, 0x0); target_write_u32(target, 0x200b8004, 0x0); /* MLC_ADDR = row */ target_write_u32(target, 0x200b8004, page & 0xff); target_write_u32(target, 0x200b8004, (page >> 8) & 0xff); /* MLC_CMD = Read Start */ target_write_u32(target, 0x200b8000, NAND_CMD_READSTART); } while (page_bytes_done < device->page_size) { /* MLC_ECC_AUTO_DEC_REG = dummy */ target_write_u32(target, 0x200b8014, 0xaa55aa55); if (!lpc3180_controller_ready(device, 1000)) { ERROR("timeout while waiting for completion of auto decode cycle"); return ERROR_NAND_OPERATION_FAILED; } target_read_u32(target, 0x200b8048, &mlc_isr); if (mlc_isr & 0x8) { if (mlc_isr & 0x40) { ERROR("uncorrectable error detected: 0x%2.2x", mlc_isr); return ERROR_NAND_OPERATION_FAILED; } WARNING("%i symbol error detected and corrected", ((mlc_isr & 0x30) >> 4) + 1); } if (data) { target->type->read_memory(target, 0x200a8000, 4, 128, page_buffer + page_bytes_done); } if (oob) { target->type->read_memory(target, 0x200a8000, 4, 4, oob_buffer + oob_bytes_done); } page_bytes_done += 512; oob_bytes_done += 16; } if (data) memcpy(data, page_buffer, data_size); if (oob) memcpy(oob, oob_buffer, oob_size); free(page_buffer); free(oob_buffer); } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { return nand_read_page_raw(device, page, data, data_size, oob, oob_size); } return ERROR_OK; } int lpc3180_controller_ready(struct nand_device_s *device, int timeout) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; u8 status = 0x0; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } do { if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { /* Read MLC_ISR, wait for controller to become ready */ target_read_u8(target, 0x200b8048, &status); if (status & 2) return 1; } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { /* we pretend that the SLC controller is always ready */ return 1; } usleep(1000); } while (timeout-- > 0); return 0; } int lpc3180_nand_ready(struct nand_device_s *device, int timeout) { lpc3180_nand_controller_t *lpc3180_info = device->controller_priv; target_t *target = lpc3180_info->target; if (target->state != TARGET_HALTED) { ERROR("target must be halted to use LPC3180 NAND flash controller"); return ERROR_NAND_OPERATION_FAILED; } do { if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) { u8 status = 0x0; /* Read MLC_ISR, wait for NAND flash device to become ready */ target_read_u8(target, 0x200b8048, &status); if (status & 1) return 1; } else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) { u32 status = 0x0; /* Read SLC_STAT and check READY bit */ target_read_u32(target, 0x20020018, &status); if (status & 1) return 1; } usleep(1000); } while (timeout-- > 0); return 0; } int handle_lpc3180_select_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { nand_device_t *device = NULL; lpc3180_nand_controller_t *lpc3180_info = NULL; char *selected[] = { "no", "mlc", "slc" }; if ((argc < 1) || (argc > 2)) { return ERROR_COMMAND_SYNTAX_ERROR; } device = get_nand_device_by_num(strtoul(args[0], NULL, 0)); if (!device) { command_print(cmd_ctx, "nand device '#%s' is out of bounds", args[0]); return ERROR_OK; } lpc3180_info = device->controller_priv; if (argc == 2) { if (strcmp(args[1], "mlc") == 0) { lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER; } else if (strcmp(args[1], "slc") == 0) { lpc3180_info->selected_controller = LPC3180_SLC_CONTROLLER; } else { return ERROR_COMMAND_SYNTAX_ERROR; } } command_print(cmd_ctx, "%s controller selected", selected[lpc3180_info->selected_controller]); return ERROR_OK; }