target: Add 64-bit target address support
[openocd.git] / src / target / x86_32_common.c
1 /*
2 * Copyright(c) 2013 Intel Corporation.
3 *
4 * Adrian Burns (adrian.burns@intel.com)
5 * Thomas Faust (thomas.faust@intel.com)
6 * Ivan De Cesaris (ivan.de.cesaris@intel.com)
7 * Julien Carreno (julien.carreno@intel.com)
8 * Jeffrey Maxwell (jeffrey.r.maxwell@intel.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 *
23 * Contact Information:
24 * Intel Corporation
25 */
26
27 /*
28 * @file
29 * This implements generic x86 32 bit memory and breakpoint operations.
30 */
31
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/log.h>
37
38 #include "target.h"
39 #include "target_type.h"
40 #include "register.h"
41 #include "breakpoints.h"
42 #include "x86_32_common.h"
43
44 static int set_debug_regs(struct target *t, uint32_t address,
45 uint8_t bp_num, uint8_t bp_type, uint8_t bp_length);
46 static int unset_debug_regs(struct target *t, uint8_t bp_num);
47 static int read_mem(struct target *t, uint32_t size,
48 uint32_t addr, uint8_t *buf);
49 static int write_mem(struct target *t, uint32_t size,
50 uint32_t addr, const uint8_t *buf);
51 static int calcaddr_physfromlin(struct target *t, target_addr_t addr,
52 target_addr_t *physaddr);
53 static int read_phys_mem(struct target *t, uint32_t phys_address,
54 uint32_t size, uint32_t count, uint8_t *buffer);
55 static int write_phys_mem(struct target *t, uint32_t phys_address,
56 uint32_t size, uint32_t count, const uint8_t *buffer);
57 static int set_breakpoint(struct target *target,
58 struct breakpoint *breakpoint);
59 static int unset_breakpoint(struct target *target,
60 struct breakpoint *breakpoint);
61 static int set_watchpoint(struct target *target,
62 struct watchpoint *watchpoint);
63 static int unset_watchpoint(struct target *target,
64 struct watchpoint *watchpoint);
65 static int read_hw_reg_to_cache(struct target *t, int num);
66 static int write_hw_reg_from_cache(struct target *t, int num);
67
68 int x86_32_get_gdb_reg_list(struct target *t,
69 struct reg **reg_list[], int *reg_list_size,
70 enum target_register_class reg_class)
71 {
72
73 struct x86_32_common *x86_32 = target_to_x86_32(t);
74 int i;
75 *reg_list_size = x86_32->cache->num_regs;
76 LOG_DEBUG("num_regs=%d, reg_class=%d", (*reg_list_size), reg_class);
77 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
78 if (*reg_list == NULL) {
79 LOG_ERROR("%s out of memory", __func__);
80 return ERROR_FAIL;
81 }
82 /* this will copy the values from our reg list to gdbs */
83 for (i = 0; i < (*reg_list_size); i++) {
84 (*reg_list)[i] = &x86_32->cache->reg_list[i];
85 LOG_DEBUG("value %s = %08" PRIx32, x86_32->cache->reg_list[i].name,
86 buf_get_u32(x86_32->cache->reg_list[i].value, 0, 32));
87 }
88 return ERROR_OK;
89 }
90
91 int x86_32_common_init_arch_info(struct target *t, struct x86_32_common *x86_32)
92 {
93 t->arch_info = x86_32;
94 x86_32->common_magic = X86_32_COMMON_MAGIC;
95 x86_32->num_hw_bpoints = MAX_DEBUG_REGS;
96 x86_32->hw_break_list = calloc(x86_32->num_hw_bpoints,
97 sizeof(struct x86_32_dbg_reg));
98 if (x86_32->hw_break_list == NULL) {
99 LOG_ERROR("%s out of memory", __func__);
100 return ERROR_FAIL;
101 }
102 x86_32->curr_tap = t->tap;
103 x86_32->fast_data_area = NULL;
104 x86_32->flush = 1;
105 x86_32->read_hw_reg_to_cache = read_hw_reg_to_cache;
106 x86_32->write_hw_reg_from_cache = write_hw_reg_from_cache;
107 return ERROR_OK;
108 }
109
110 int x86_32_common_mmu(struct target *t, int *enabled)
111 {
112 *enabled = true;
113 return ERROR_OK;
114 }
115
116 int x86_32_common_virt2phys(struct target *t, target_addr_t address, target_addr_t *physical)
117 {
118 struct x86_32_common *x86_32 = target_to_x86_32(t);
119
120 /*
121 * We need to ignore 'segmentation' for now, as OpenOCD can't handle
122 * segmented addresses.
123 * In protected mode that is almost OK, as (almost) any known OS is using
124 * flat segmentation. In real mode we use use the base of the DS segment,
125 * as we don't know better ...
126 */
127
128 uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
129 if (!(cr0 & CR0_PG)) {
130 /* target halted in real mode */
131 /* TODO: needs validation !!! */
132 uint32_t dsb = buf_get_u32(x86_32->cache->reg_list[DSB].value, 0, 32);
133 *physical = dsb + address;
134
135 } else {
136 /* target halted in protected mode */
137 if (calcaddr_physfromlin(t, address, physical) != ERROR_OK) {
138 LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
139 __func__, address);
140 return ERROR_FAIL;
141 }
142 }
143 return ERROR_OK;
144 }
145
146 int x86_32_common_read_phys_mem(struct target *t, target_addr_t phys_address,
147 uint32_t size, uint32_t count, uint8_t *buffer)
148 {
149 struct x86_32_common *x86_32 = target_to_x86_32(t);
150 int error;
151
152 error = read_phys_mem(t, phys_address, size, count, buffer);
153 if (error != ERROR_OK)
154 return error;
155
156 /* After reading memory from target, we must replace software breakpoints
157 * with the original instructions again.
158 */
159 struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
160 while (iter != NULL) {
161 if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) {
162 uint32_t offset = iter->physaddr - phys_address;
163 buffer[offset] = iter->orig_byte;
164 }
165 iter = iter->next;
166 }
167 return ERROR_OK;
168 }
169
170 static int read_phys_mem(struct target *t, uint32_t phys_address,
171 uint32_t size, uint32_t count, uint8_t *buffer)
172 {
173 int retval = ERROR_OK;
174 bool pg_disabled = false;
175 LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
176 phys_address, size, count, buffer);
177 struct x86_32_common *x86_32 = target_to_x86_32(t);
178
179 if (check_not_halted(t))
180 return ERROR_TARGET_NOT_HALTED;
181 if (!count || !buffer || !phys_address) {
182 LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=0x%08" PRIx32,
183 __func__, count, buffer, phys_address);
184 return ERROR_COMMAND_ARGUMENT_INVALID;
185 }
186
187 /* to access physical memory, switch off the CR0.PG bit */
188 if (x86_32->is_paging_enabled(t)) {
189 retval = x86_32->disable_paging(t);
190 if (retval != ERROR_OK) {
191 LOG_ERROR("%s could not disable paging", __func__);
192 return retval;
193 }
194 pg_disabled = true;
195 }
196
197 for (uint32_t i = 0; i < count; i++) {
198 switch (size) {
199 case BYTE:
200 retval = read_mem(t, size, phys_address + i, buffer + i);
201 break;
202 case WORD:
203 retval = read_mem(t, size, phys_address + i * 2, buffer + i * 2);
204 break;
205 case DWORD:
206 retval = read_mem(t, size, phys_address + i * 4, buffer + i * 4);
207 break;
208 default:
209 LOG_ERROR("%s invalid read size", __func__);
210 break;
211 }
212 }
213 /* restore CR0.PG bit if needed (regardless of retval) */
214 if (pg_disabled) {
215 retval = x86_32->enable_paging(t);
216 if (retval != ERROR_OK) {
217 LOG_ERROR("%s could not enable paging", __func__);
218 return retval;
219 }
220 pg_disabled = true;
221 }
222 /* TODO: After reading memory from target, we must replace
223 * software breakpoints with the original instructions again.
224 * Solve this with the breakpoint fix
225 */
226 return retval;
227 }
228
229 int x86_32_common_write_phys_mem(struct target *t, target_addr_t phys_address,
230 uint32_t size, uint32_t count, const uint8_t *buffer)
231 {
232 struct x86_32_common *x86_32 = target_to_x86_32(t);
233 int error = ERROR_OK;
234 uint8_t *newbuffer = NULL;
235
236 check_not_halted(t);
237 if (!count || !buffer || !phys_address) {
238 LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
239 __func__, count, buffer, phys_address);
240 return ERROR_COMMAND_ARGUMENT_INVALID;
241 }
242 /* Before writing memory to target, we must update software breakpoints
243 * with the new instructions and patch the memory buffer with the
244 * breakpoint instruction.
245 */
246 newbuffer = malloc(size*count);
247 if (newbuffer == NULL) {
248 LOG_ERROR("%s out of memory", __func__);
249 return ERROR_FAIL;
250 }
251 memcpy(newbuffer, buffer, size*count);
252 struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
253 while (iter != NULL) {
254 if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) {
255 uint32_t offset = iter->physaddr - phys_address;
256 newbuffer[offset] = SW_BP_OPCODE;
257
258 /* update the breakpoint */
259 struct breakpoint *pbiter = t->breakpoints;
260 while (pbiter != NULL && pbiter->unique_id != iter->swbp_unique_id)
261 pbiter = pbiter->next;
262 if (pbiter)
263 pbiter->orig_instr[0] = buffer[offset];
264 }
265 iter = iter->next;
266 }
267
268 error = write_phys_mem(t, phys_address, size, count, newbuffer);
269 free(newbuffer);
270 return error;
271 }
272
273 static int write_phys_mem(struct target *t, uint32_t phys_address,
274 uint32_t size, uint32_t count, const uint8_t *buffer)
275 {
276 int retval = ERROR_OK;
277 bool pg_disabled = false;
278 struct x86_32_common *x86_32 = target_to_x86_32(t);
279 LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
280 phys_address, size, count, buffer);
281
282 check_not_halted(t);
283 if (!count || !buffer || !phys_address) {
284 LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=0x%08" PRIx32,
285 __func__, count, buffer, phys_address);
286 return ERROR_COMMAND_ARGUMENT_INVALID;
287 }
288 /* TODO: Before writing memory to target, we must update
289 * software breakpoints with the new instructions and
290 * patch the memory buffer with the breakpoint instruction.
291 * Solve this with the breakpoint fix
292 */
293
294 /* to access physical memory, switch off the CR0.PG bit */
295 if (x86_32->is_paging_enabled(t)) {
296 retval = x86_32->disable_paging(t);
297 if (retval != ERROR_OK) {
298 LOG_ERROR("%s could not disable paging", __func__);
299 return retval;
300 }
301 pg_disabled = true;
302 }
303 for (uint32_t i = 0; i < count; i++) {
304 switch (size) {
305 case BYTE:
306 retval = write_mem(t, size, phys_address + i, buffer + i);
307 break;
308 case WORD:
309 retval = write_mem(t, size, phys_address + i * 2, buffer + i * 2);
310 break;
311 case DWORD:
312 retval = write_mem(t, size, phys_address + i * 4, buffer + i * 4);
313 break;
314 default:
315 LOG_DEBUG("invalid read size");
316 break;
317 }
318 }
319 /* restore CR0.PG bit if needed (regardless of retval) */
320 if (pg_disabled) {
321 retval = x86_32->enable_paging(t);
322 if (retval != ERROR_OK) {
323 LOG_ERROR("%s could not enable paging", __func__);
324 return retval;
325 }
326 }
327 return retval;
328 }
329
330 static int read_mem(struct target *t, uint32_t size,
331 uint32_t addr, uint8_t *buf)
332 {
333 struct x86_32_common *x86_32 = target_to_x86_32(t);
334
335 /* if CS.D bit=1 then its a 32 bit code segment, else 16 */
336 bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
337 int retval = x86_32->write_hw_reg(t, EAX, addr, 0);
338 if (retval != ERROR_OK) {
339 LOG_ERROR("%s error write EAX", __func__);
340 return retval;
341 }
342
343 switch (size) {
344 case BYTE:
345 if (use32)
346 retval = x86_32->submit_instruction(t, MEMRDB32);
347 else
348 retval = x86_32->submit_instruction(t, MEMRDB16);
349 break;
350 case WORD:
351 if (use32)
352 retval = x86_32->submit_instruction(t, MEMRDH32);
353 else
354 retval = x86_32->submit_instruction(t, MEMRDH16);
355 break;
356 case DWORD:
357 if (use32)
358 retval = x86_32->submit_instruction(t, MEMRDW32);
359 else
360 retval = x86_32->submit_instruction(t, MEMRDW16);
361 break;
362 default:
363 LOG_ERROR("%s invalid read mem size", __func__);
364 break;
365 }
366
367 /* read_hw_reg() will write to 4 bytes (uint32_t)
368 * Watch out, the buffer passed into read_mem() might be 1 or 2 bytes.
369 */
370 uint32_t regval;
371 retval = x86_32->read_hw_reg(t, EDX, &regval, 0);
372
373 if (retval != ERROR_OK) {
374 LOG_ERROR("%s error read EDX", __func__);
375 return retval;
376 }
377 for (uint8_t i = 0; i < size; i++)
378 buf[i] = (regval >> (i*8)) & 0x000000FF;
379
380 retval = x86_32->transaction_status(t);
381 if (retval != ERROR_OK) {
382 LOG_ERROR("%s error on mem read", __func__);
383 return retval;
384 }
385 return retval;
386 }
387
388 static int write_mem(struct target *t, uint32_t size,
389 uint32_t addr, const uint8_t *buf)
390 {
391 uint32_t i = 0;
392 uint32_t buf4bytes = 0;
393 int retval = ERROR_OK;
394 struct x86_32_common *x86_32 = target_to_x86_32(t);
395
396 for (i = 0; i < size; ++i) {
397 buf4bytes = buf4bytes << 8; /* first time we only shift 0s */
398 buf4bytes += buf[(size-1)-i]; /* it was hard to write, should be hard to read! */
399 }
400 /* if CS.D bit=1 then its a 32 bit code segment, else 16 */
401 bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
402 retval = x86_32->write_hw_reg(t, EAX, addr, 0);
403 if (retval != ERROR_OK) {
404 LOG_ERROR("%s error write EAX", __func__);
405 return retval;
406 }
407
408 /* write_hw_reg() will write to 4 bytes (uint32_t)
409 * Watch out, the buffer passed into write_mem() might be 1 or 2 bytes.
410 */
411 retval = x86_32->write_hw_reg(t, EDX, buf4bytes, 0);
412 if (retval != ERROR_OK) {
413 LOG_ERROR("%s error write EDX", __func__);
414 return retval;
415 }
416 switch (size) {
417 case BYTE:
418 if (use32)
419 retval = x86_32->submit_instruction(t, MEMWRB32);
420 else
421 retval = x86_32->submit_instruction(t, MEMWRB16);
422 break;
423 case WORD:
424 if (use32)
425 retval = x86_32->submit_instruction(t, MEMWRH32);
426 else
427 retval = x86_32->submit_instruction(t, MEMWRH16);
428 break;
429 case DWORD:
430 if (use32)
431 retval = x86_32->submit_instruction(t, MEMWRW32);
432 else
433 retval = x86_32->submit_instruction(t, MEMWRW16);
434 break;
435 default:
436 LOG_ERROR("%s invalid write mem size", __func__);
437 return ERROR_FAIL;
438 }
439 retval = x86_32->transaction_status(t);
440 if (retval != ERROR_OK) {
441 LOG_ERROR("%s error on mem write", __func__);
442 return retval;
443 }
444 return retval;
445 }
446
447 int calcaddr_physfromlin(struct target *t, target_addr_t addr, target_addr_t *physaddr)
448 {
449 uint8_t entry_buffer[8];
450
451 if (physaddr == NULL || t == NULL)
452 return ERROR_FAIL;
453
454 struct x86_32_common *x86_32 = target_to_x86_32(t);
455
456 /* The 'user-visible' CR0.PG should be set - otherwise the function shouldn't be called
457 * (Don't check the CR0.PG on the target, this might be temporally disabled at this point)
458 */
459 uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
460 if (!(cr0 & CR0_PG)) {
461 /* you are wrong in this function, never mind */
462 *physaddr = addr;
463 return ERROR_OK;
464 }
465
466 uint32_t cr4 = buf_get_u32(x86_32->cache->reg_list[CR4].value, 0, 32);
467 bool isPAE = cr4 & 0x00000020; /* PAE - Physical Address Extension */
468
469 uint32_t cr3 = buf_get_u32(x86_32->cache->reg_list[CR3].value, 0, 32);
470 if (isPAE) {
471 uint32_t pdpt_base = cr3 & 0xFFFFF000; /* lower 12 bits of CR3 must always be 0 */
472 uint32_t pdpt_index = (addr & 0xC0000000) >> 30; /* A[31:30] index to PDPT */
473 uint32_t pdpt_addr = pdpt_base + (8 * pdpt_index);
474 if (x86_32_common_read_phys_mem(t, pdpt_addr, 4, 2, entry_buffer) != ERROR_OK) {
475 LOG_ERROR("%s couldn't read page directory pointer table entry at 0x%08" PRIx32,
476 __func__, pdpt_addr);
477 return ERROR_FAIL;
478 }
479 uint64_t pdpt_entry = target_buffer_get_u64(t, entry_buffer);
480 if (!(pdpt_entry & 0x0000000000000001)) {
481 LOG_ERROR("%s page directory pointer table entry at 0x%08" PRIx32 " is not present",
482 __func__, pdpt_addr);
483 return ERROR_FAIL;
484 }
485
486 uint32_t pd_base = pdpt_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
487 uint32_t pd_index = (addr & 0x3FE00000) >> 21; /* A[29:21] index to PD entry with PAE */
488 uint32_t pd_addr = pd_base + (8 * pd_index);
489 if (x86_32_common_read_phys_mem(t, pd_addr, 4, 2, entry_buffer) != ERROR_OK) {
490 LOG_ERROR("%s couldn't read page directory entry at 0x%08" PRIx32,
491 __func__, pd_addr);
492 return ERROR_FAIL;
493 }
494 uint64_t pd_entry = target_buffer_get_u64(t, entry_buffer);
495 if (!(pd_entry & 0x0000000000000001)) {
496 LOG_ERROR("%s page directory entry at 0x%08" PRIx32 " is not present",
497 __func__, pd_addr);
498 return ERROR_FAIL;
499 }
500
501 /* PS bit in PD entry is indicating 4KB or 2MB page size */
502 if (pd_entry & 0x0000000000000080) {
503
504 uint32_t page_base = (uint32_t)(pd_entry & 0x00000000FFE00000); /* [31:21] */
505 uint32_t offset = addr & 0x001FFFFF; /* [20:0] */
506 *physaddr = page_base + offset;
507 return ERROR_OK;
508
509 } else {
510
511 uint32_t pt_base = (uint32_t)(pd_entry & 0x00000000FFFFF000); /*[31:12]*/
512 uint32_t pt_index = (addr & 0x001FF000) >> 12; /*[20:12]*/
513 uint32_t pt_addr = pt_base + (8 * pt_index);
514 if (x86_32_common_read_phys_mem(t, pt_addr, 4, 2, entry_buffer) != ERROR_OK) {
515 LOG_ERROR("%s couldn't read page table entry at 0x%08" PRIx32, __func__, pt_addr);
516 return ERROR_FAIL;
517 }
518 uint64_t pt_entry = target_buffer_get_u64(t, entry_buffer);
519 if (!(pt_entry & 0x0000000000000001)) {
520 LOG_ERROR("%s page table entry at 0x%08" PRIx32 " is not present", __func__, pt_addr);
521 return ERROR_FAIL;
522 }
523
524 uint32_t page_base = (uint32_t)(pt_entry & 0x00000000FFFFF000); /*[31:12]*/
525 uint32_t offset = addr & 0x00000FFF; /*[11:0]*/
526 *physaddr = page_base + offset;
527 return ERROR_OK;
528 }
529 } else {
530 uint32_t pd_base = cr3 & 0xFFFFF000; /* lower 12 bits of CR3 must always be 0 */
531 uint32_t pd_index = (addr & 0xFFC00000) >> 22; /* A[31:22] index to PD entry */
532 uint32_t pd_addr = pd_base + (4 * pd_index);
533 if (x86_32_common_read_phys_mem(t, pd_addr, 4, 1, entry_buffer) != ERROR_OK) {
534 LOG_ERROR("%s couldn't read page directory entry at 0x%08" PRIx32, __func__, pd_addr);
535 return ERROR_FAIL;
536 }
537 uint32_t pd_entry = target_buffer_get_u32(t, entry_buffer);
538 if (!(pd_entry & 0x00000001)) {
539 LOG_ERROR("%s page directory entry at 0x%08" PRIx32 " is not present", __func__, pd_addr);
540 return ERROR_FAIL;
541 }
542
543 /* Bit 7 in page directory entry is page size.
544 */
545 if (pd_entry & 0x00000080) {
546 /* 4MB pages */
547 uint32_t page_base = pd_entry & 0xFFC00000;
548 *physaddr = page_base + (addr & 0x003FFFFF);
549
550 } else {
551 /* 4KB pages */
552 uint32_t pt_base = pd_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
553 uint32_t pt_index = (addr & 0x003FF000) >> 12; /* A[21:12] index to page table entry */
554 uint32_t pt_addr = pt_base + (4 * pt_index);
555 if (x86_32_common_read_phys_mem(t, pt_addr, 4, 1, entry_buffer) != ERROR_OK) {
556 LOG_ERROR("%s couldn't read page table entry at 0x%08" PRIx32, __func__, pt_addr);
557 return ERROR_FAIL;
558 }
559 uint32_t pt_entry = target_buffer_get_u32(t, entry_buffer);
560 if (!(pt_entry & 0x00000001)) {
561 LOG_ERROR("%s page table entry at 0x%08" PRIx32 " is not present", __func__, pt_addr);
562 return ERROR_FAIL;
563 }
564 uint32_t page_base = pt_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
565 *physaddr = page_base + (addr & 0x00000FFF); /* A[11:0] offset to 4KB page in linear address */
566 }
567 }
568 return ERROR_OK;
569 }
570
571 int x86_32_common_read_memory(struct target *t, target_addr_t addr,
572 uint32_t size, uint32_t count, uint8_t *buf)
573 {
574 int retval = ERROR_OK;
575 struct x86_32_common *x86_32 = target_to_x86_32(t);
576 LOG_DEBUG("addr=" TARGET_ADDR_FMT ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
577 addr, size, count, buf);
578 check_not_halted(t);
579 if (!count || !buf || !addr) {
580 LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
581 __func__, count, buf, addr);
582 return ERROR_COMMAND_ARGUMENT_INVALID;
583 }
584
585 if (x86_32->is_paging_enabled(t)) {
586 /* all memory accesses from debugger must be physical (CR0.PG == 0)
587 * conversion to physical address space needed
588 */
589 retval = x86_32->disable_paging(t);
590 if (retval != ERROR_OK) {
591 LOG_ERROR("%s could not disable paging", __func__);
592 return retval;
593 }
594 target_addr_t physaddr = 0;
595 if (calcaddr_physfromlin(t, addr, &physaddr) != ERROR_OK) {
596 LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
597 __func__, addr);
598 retval = ERROR_FAIL;
599 }
600 /* TODO: !!! Watch out for page boundaries
601 * for every 4kB, the physical address has to be re-calculated
602 * This should be fixed together with bulk memory reads
603 */
604
605 if (retval == ERROR_OK
606 && x86_32_common_read_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) {
607 LOG_ERROR("%s failed to read memory from physical address " TARGET_ADDR_FMT,
608 __func__, physaddr);
609 retval = ERROR_FAIL;
610 }
611 /* restore PG bit if it was cleared prior (regardless of retval) */
612 retval = x86_32->enable_paging(t);
613 if (retval != ERROR_OK) {
614 LOG_ERROR("%s could not enable paging", __func__);
615 return retval;
616 }
617 } else {
618 /* paging is off - linear address is physical address */
619 if (x86_32_common_read_phys_mem(t, addr, size, count, buf) != ERROR_OK) {
620 LOG_ERROR("%s failed to read memory from address " TARGET_ADDR_FMT,
621 __func__, addr);
622 retval = ERROR_FAIL;
623 }
624 }
625
626 return retval;
627 }
628
629 int x86_32_common_write_memory(struct target *t, target_addr_t addr,
630 uint32_t size, uint32_t count, const uint8_t *buf)
631 {
632 int retval = ERROR_OK;
633 struct x86_32_common *x86_32 = target_to_x86_32(t);
634 LOG_DEBUG("addr=" TARGET_ADDR_FMT ", size=%" PRIu32 ", count=0x%" PRIx32 ", buf=%p",
635 addr, size, count, buf);
636 check_not_halted(t);
637 if (!count || !buf || !addr) {
638 LOG_ERROR("%s invalid params count=0x%" PRIx32 ", buf=%p, addr=" TARGET_ADDR_FMT,
639 __func__, count, buf, addr);
640 return ERROR_COMMAND_ARGUMENT_INVALID;
641 }
642 if (x86_32->is_paging_enabled(t)) {
643 /* all memory accesses from debugger must be physical (CR0.PG == 0)
644 * conversion to physical address space needed
645 */
646 retval = x86_32->disable_paging(t);
647 if (retval != ERROR_OK) {
648 LOG_ERROR("%s could not disable paging", __func__);
649 return retval;
650 }
651 target_addr_t physaddr = 0;
652 if (calcaddr_physfromlin(t, addr, &physaddr) != ERROR_OK) {
653 LOG_ERROR("%s failed to calculate physical address from " TARGET_ADDR_FMT,
654 __func__, addr);
655 retval = ERROR_FAIL;
656 }
657 /* TODO: !!! Watch out for page boundaries
658 * for every 4kB, the physical address has to be re-calculated
659 * This should be fixed together with bulk memory reads
660 */
661 if (retval == ERROR_OK
662 && x86_32_common_write_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) {
663 LOG_ERROR("%s failed to write memory to physical address " TARGET_ADDR_FMT,
664 __func__, physaddr);
665 retval = ERROR_FAIL;
666 }
667 /* restore PG bit if it was cleared prior (regardless of retval) */
668 retval = x86_32->enable_paging(t);
669 if (retval != ERROR_OK) {
670 LOG_ERROR("%s could not enable paging", __func__);
671 return retval;
672 }
673 } else {
674
675 /* paging is off - linear address is physical address */
676 if (x86_32_common_write_phys_mem(t, addr, size, count, buf) != ERROR_OK) {
677 LOG_ERROR("%s failed to write memory to address " TARGET_ADDR_FMT,
678 __func__, addr);
679 retval = ERROR_FAIL;
680 }
681 }
682 return retval;
683 }
684
685 int x86_32_common_read_io(struct target *t, uint32_t addr,
686 uint32_t size, uint8_t *buf)
687 {
688 struct x86_32_common *x86_32 = target_to_x86_32(t);
689 /* if CS.D bit=1 then its a 32 bit code segment, else 16 */
690 bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
691 int retval = ERROR_FAIL;
692 bool pg_disabled = false;
693 LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", buf=%p", addr, size, buf);
694 check_not_halted(t);
695 if (!buf || !addr) {
696 LOG_ERROR("%s invalid params buf=%p, addr=%08" PRIx32, __func__, buf, addr);
697 return retval;
698 }
699 retval = x86_32->write_hw_reg(t, EDX, addr, 0);
700 if (retval != ERROR_OK) {
701 LOG_ERROR("%s error EDX write", __func__);
702 return retval;
703 }
704 /* to access physical memory, switch off the CR0.PG bit */
705 if (x86_32->is_paging_enabled(t)) {
706 retval = x86_32->disable_paging(t);
707 if (retval != ERROR_OK) {
708 LOG_ERROR("%s could not disable paging", __func__);
709 return retval;
710 }
711 pg_disabled = true;
712 }
713 switch (size) {
714 case BYTE:
715 if (use32)
716 retval = x86_32->submit_instruction(t, IORDB32);
717 else
718 retval = x86_32->submit_instruction(t, IORDB16);
719 break;
720 case WORD:
721 if (use32)
722 retval = x86_32->submit_instruction(t, IORDH32);
723 else
724 retval = x86_32->submit_instruction(t, IORDH16);
725 break;
726 case DWORD:
727 if (use32)
728 retval = x86_32->submit_instruction(t, IORDW32);
729 else
730 retval = x86_32->submit_instruction(t, IORDW16);
731 break;
732 default:
733 LOG_ERROR("%s invalid read io size", __func__);
734 return ERROR_FAIL;
735 }
736 /* restore CR0.PG bit if needed */
737 if (pg_disabled) {
738 retval = x86_32->enable_paging(t);
739 if (retval != ERROR_OK) {
740 LOG_ERROR("%s could not enable paging", __func__);
741 return retval;
742 }
743 pg_disabled = false;
744 }
745 uint32_t regval = 0;
746 retval = x86_32->read_hw_reg(t, EAX, &regval, 0);
747 if (retval != ERROR_OK) {
748 LOG_ERROR("%s error on read EAX", __func__);
749 return retval;
750 }
751 for (uint8_t i = 0; i < size; i++)
752 buf[i] = (regval >> (i*8)) & 0x000000FF;
753 retval = x86_32->transaction_status(t);
754 if (retval != ERROR_OK) {
755 LOG_ERROR("%s error on io read", __func__);
756 return retval;
757 }
758 return retval;
759 }
760
761 int x86_32_common_write_io(struct target *t, uint32_t addr,
762 uint32_t size, const uint8_t *buf)
763 {
764 struct x86_32_common *x86_32 = target_to_x86_32(t);
765 /* if CS.D bit=1 then its a 32 bit code segment, else 16 */
766 bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
767 LOG_DEBUG("addr=0x%08" PRIx32 ", size=%" PRIu32 ", buf=%p", addr, size, buf);
768 check_not_halted(t);
769 int retval = ERROR_FAIL;
770 bool pg_disabled = false;
771 if (!buf || !addr) {
772 LOG_ERROR("%s invalid params buf=%p, addr=0x%08" PRIx32, __func__, buf, addr);
773 return retval;
774 }
775 /* no do the write */
776 retval = x86_32->write_hw_reg(t, EDX, addr, 0);
777 if (retval != ERROR_OK) {
778 LOG_ERROR("%s error on EDX write", __func__);
779 return retval;
780 }
781 uint32_t regval = 0;
782 for (uint8_t i = 0; i < size; i++)
783 regval += (buf[i] << (i*8));
784 retval = x86_32->write_hw_reg(t, EAX, regval, 0);
785 if (retval != ERROR_OK) {
786 LOG_ERROR("%s error on EAX write", __func__);
787 return retval;
788 }
789 /* to access physical memory, switch off the CR0.PG bit */
790 if (x86_32->is_paging_enabled(t)) {
791 retval = x86_32->disable_paging(t);
792 if (retval != ERROR_OK) {
793 LOG_ERROR("%s could not disable paging", __func__);
794 return retval;
795 }
796 pg_disabled = true;
797 }
798 switch (size) {
799 case BYTE:
800 if (use32)
801 retval = x86_32->submit_instruction(t, IOWRB32);
802 else
803 retval = x86_32->submit_instruction(t, IOWRB16);
804 break;
805 case WORD:
806 if (use32)
807 retval = x86_32->submit_instruction(t, IOWRH32);
808 else
809 retval = x86_32->submit_instruction(t, IOWRH16);
810 break;
811 case DWORD:
812 if (use32)
813 retval = x86_32->submit_instruction(t, IOWRW32);
814 else
815 retval = x86_32->submit_instruction(t, IOWRW16);
816 break;
817 default:
818 LOG_ERROR("%s invalid write io size", __func__);
819 return ERROR_FAIL;
820 }
821 /* restore CR0.PG bit if needed */
822 if (pg_disabled) {
823 retval = x86_32->enable_paging(t);
824 if (retval != ERROR_OK) {
825 LOG_ERROR("%s could not enable paging", __func__);
826 return retval;
827 }
828 pg_disabled = false;
829 }
830 retval = x86_32->transaction_status(t);
831 if (retval != ERROR_OK) {
832 LOG_ERROR("%s error on io write", __func__);
833 return retval;
834 }
835 return retval;
836 }
837
838 int x86_32_common_add_watchpoint(struct target *t, struct watchpoint *wp)
839 {
840 check_not_halted(t);
841 /* set_watchpoint() will return ERROR_TARGET_RESOURCE_NOT_AVAILABLE if all
842 * hardware registers are gone
843 */
844 return set_watchpoint(t, wp);
845 }
846
847 int x86_32_common_remove_watchpoint(struct target *t, struct watchpoint *wp)
848 {
849 if (check_not_halted(t))
850 return ERROR_TARGET_NOT_HALTED;
851 if (wp->set)
852 unset_watchpoint(t, wp);
853 return ERROR_OK;
854 }
855
856 int x86_32_common_add_breakpoint(struct target *t, struct breakpoint *bp)
857 {
858 LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
859 if (check_not_halted(t))
860 return ERROR_TARGET_NOT_HALTED;
861 /* set_breakpoint() will return ERROR_TARGET_RESOURCE_NOT_AVAILABLE if all
862 * hardware registers are gone (for hardware breakpoints)
863 */
864 return set_breakpoint(t, bp);
865 }
866
867 int x86_32_common_remove_breakpoint(struct target *t, struct breakpoint *bp)
868 {
869 LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
870 if (check_not_halted(t))
871 return ERROR_TARGET_NOT_HALTED;
872 if (bp->set)
873 unset_breakpoint(t, bp);
874
875 return ERROR_OK;
876 }
877
878 static int set_debug_regs(struct target *t, uint32_t address,
879 uint8_t bp_num, uint8_t bp_type, uint8_t bp_length)
880 {
881 struct x86_32_common *x86_32 = target_to_x86_32(t);
882 LOG_DEBUG("addr=0x%08" PRIx32 ", bp_num=%" PRIu8 ", bp_type=%" PRIu8 ", pb_length=%" PRIu8,
883 address, bp_num, bp_type, bp_length);
884
885 /* DR7 - set global enable */
886 uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
887
888 if (bp_length != 1 && bp_length != 2 && bp_length != 4)
889 return ERROR_FAIL;
890
891 if (DR7_BP_FREE(dr7, bp_num))
892 DR7_GLOBAL_ENABLE(dr7, bp_num);
893 else {
894 LOG_ERROR("%s dr7 error, already enabled, val=%08" PRIx32, __func__, dr7);
895 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
896 }
897
898 switch (bp_type) {
899 case 0:
900 /* 00 - only on instruction execution */
901 DR7_SET_EXE(dr7, bp_num);
902 DR7_SET_LENGTH(dr7, bp_num, bp_length);
903 break;
904 case 1:
905 /* 01 - only on data writes */
906 DR7_SET_WRITE(dr7, bp_num);
907 DR7_SET_LENGTH(dr7, bp_num, bp_length);
908 break;
909 case 2:
910 /* 10 UNSUPPORTED - an I/O read and I/O write */
911 LOG_ERROR("%s unsupported feature bp_type=%d", __func__, bp_type);
912 return ERROR_FAIL;
913 break;
914 case 3:
915 /* on data read or data write */
916 DR7_SET_ACCESS(dr7, bp_num);
917 DR7_SET_LENGTH(dr7, bp_num, bp_length);
918 break;
919 default:
920 LOG_ERROR("%s invalid request [only 0-3] bp_type=%d", __func__, bp_type);
921 return ERROR_FAIL;
922 }
923
924 /* update regs in the reg cache ready to be written to hardware
925 * when we exit PM
926 */
927 buf_set_u32(x86_32->cache->reg_list[bp_num+DR0].value, 0, 32, address);
928 x86_32->cache->reg_list[bp_num+DR0].dirty = 1;
929 x86_32->cache->reg_list[bp_num+DR0].valid = 1;
930 buf_set_u32(x86_32->cache->reg_list[DR6].value, 0, 32, PM_DR6);
931 x86_32->cache->reg_list[DR6].dirty = 1;
932 x86_32->cache->reg_list[DR6].valid = 1;
933 buf_set_u32(x86_32->cache->reg_list[DR7].value, 0, 32, dr7);
934 x86_32->cache->reg_list[DR7].dirty = 1;
935 x86_32->cache->reg_list[DR7].valid = 1;
936 return ERROR_OK;
937 }
938
939 static int unset_debug_regs(struct target *t, uint8_t bp_num)
940 {
941 struct x86_32_common *x86_32 = target_to_x86_32(t);
942 LOG_DEBUG("bp_num=%" PRIu8, bp_num);
943
944 uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
945
946 if (!(DR7_BP_FREE(dr7, bp_num))) {
947 DR7_GLOBAL_DISABLE(dr7, bp_num);
948 } else {
949 LOG_ERROR("%s dr7 error, not enabled, val=0x%08" PRIx32, __func__, dr7);
950 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
951 }
952 /* this will clear rw and len bits */
953 DR7_RESET_RWLEN_BITS(dr7, bp_num);
954
955 /* update regs in the reg cache ready to be written to hardware
956 * when we exit PM
957 */
958 buf_set_u32(x86_32->cache->reg_list[bp_num+DR0].value, 0, 32, 0);
959 x86_32->cache->reg_list[bp_num+DR0].dirty = 1;
960 x86_32->cache->reg_list[bp_num+DR0].valid = 1;
961 buf_set_u32(x86_32->cache->reg_list[DR6].value, 0, 32, PM_DR6);
962 x86_32->cache->reg_list[DR6].dirty = 1;
963 x86_32->cache->reg_list[DR6].valid = 1;
964 buf_set_u32(x86_32->cache->reg_list[DR7].value, 0, 32, dr7);
965 x86_32->cache->reg_list[DR7].dirty = 1;
966 x86_32->cache->reg_list[DR7].valid = 1;
967 return ERROR_OK;
968 }
969
970 static int set_hwbp(struct target *t, struct breakpoint *bp)
971 {
972 struct x86_32_common *x86_32 = target_to_x86_32(t);
973 struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
974 uint8_t hwbp_num = 0;
975
976 while (debug_reg_list[hwbp_num].used && (hwbp_num < x86_32->num_hw_bpoints))
977 hwbp_num++;
978 if (hwbp_num >= x86_32->num_hw_bpoints) {
979 LOG_ERROR("%s no free hw breakpoint bpid=0x%" PRIx32, __func__, bp->unique_id);
980 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
981 }
982 if (set_debug_regs(t, bp->address, hwbp_num, DR7_BP_EXECUTE, 1) != ERROR_OK)
983 return ERROR_FAIL;
984 bp->set = hwbp_num + 1;
985 debug_reg_list[hwbp_num].used = 1;
986 debug_reg_list[hwbp_num].bp_value = bp->address;
987 LOG_USER("%s hardware breakpoint %" PRIu32 " set at 0x%08" PRIx32 " (hwreg=%" PRIu8 ")", __func__,
988 bp->unique_id, debug_reg_list[hwbp_num].bp_value, hwbp_num);
989 return ERROR_OK;
990 }
991
992 static int unset_hwbp(struct target *t, struct breakpoint *bp)
993 {
994 struct x86_32_common *x86_32 = target_to_x86_32(t);
995 struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
996 int hwbp_num = bp->set - 1;
997
998 if ((hwbp_num < 0) || (hwbp_num >= x86_32->num_hw_bpoints)) {
999 LOG_ERROR("%s invalid breakpoint number=%d, bpid=%" PRIu32,
1000 __func__, hwbp_num, bp->unique_id);
1001 return ERROR_OK;
1002 }
1003
1004 if (unset_debug_regs(t, hwbp_num) != ERROR_OK)
1005 return ERROR_FAIL;
1006 debug_reg_list[hwbp_num].used = 0;
1007 debug_reg_list[hwbp_num].bp_value = 0;
1008
1009 LOG_USER("%s hardware breakpoint %" PRIu32 " removed from " TARGET_ADDR_FMT " (hwreg=%d)",
1010 __func__, bp->unique_id, bp->address, hwbp_num);
1011 return ERROR_OK;
1012 }
1013
1014 static int set_swbp(struct target *t, struct breakpoint *bp)
1015 {
1016 struct x86_32_common *x86_32 = target_to_x86_32(t);
1017 LOG_DEBUG("id %" PRIx32, bp->unique_id);
1018 target_addr_t physaddr;
1019 uint8_t opcode = SW_BP_OPCODE;
1020 uint8_t readback;
1021
1022 if (calcaddr_physfromlin(t, bp->address, &physaddr) != ERROR_OK)
1023 return ERROR_FAIL;
1024 if (read_phys_mem(t, physaddr, 1, 1, bp->orig_instr))
1025 return ERROR_FAIL;
1026
1027 LOG_DEBUG("set software breakpoint - orig byte=0x%02" PRIx8 "", *bp->orig_instr);
1028
1029 /* just write the instruction trap byte */
1030 if (write_phys_mem(t, physaddr, 1, 1, &opcode))
1031 return ERROR_FAIL;
1032
1033 /* verify that this is not invalid/read-only memory */
1034 if (read_phys_mem(t, physaddr, 1, 1, &readback))
1035 return ERROR_FAIL;
1036
1037 if (readback != SW_BP_OPCODE) {
1038 LOG_ERROR("%s software breakpoint error at " TARGET_ADDR_FMT ", check memory",
1039 __func__, bp->address);
1040 LOG_ERROR("%s readback=0x%02" PRIx8 " orig=0x%02" PRIx8 "",
1041 __func__, readback, *bp->orig_instr);
1042 return ERROR_FAIL;
1043 }
1044 bp->set = SW_BP_OPCODE; /* just non 0 */
1045
1046 /* add the memory patch */
1047 struct swbp_mem_patch *new_patch = malloc(sizeof(struct swbp_mem_patch));
1048 if (new_patch == NULL) {
1049 LOG_ERROR("%s out of memory", __func__);
1050 return ERROR_FAIL;
1051 }
1052 new_patch->next = NULL;
1053 new_patch->orig_byte = *bp->orig_instr;
1054 new_patch->physaddr = physaddr;
1055 new_patch->swbp_unique_id = bp->unique_id;
1056
1057 struct swbp_mem_patch *addto = x86_32->swbbp_mem_patch_list;
1058 if (addto == NULL)
1059 x86_32->swbbp_mem_patch_list = new_patch;
1060 else {
1061 while (addto->next != NULL)
1062 addto = addto->next;
1063 addto->next = new_patch;
1064 }
1065 LOG_USER("%s software breakpoint %" PRIu32 " set at " TARGET_ADDR_FMT,
1066 __func__, bp->unique_id, bp->address);
1067 return ERROR_OK;
1068 }
1069
1070 static int unset_swbp(struct target *t, struct breakpoint *bp)
1071 {
1072 struct x86_32_common *x86_32 = target_to_x86_32(t);
1073 LOG_DEBUG("id %" PRIx32, bp->unique_id);
1074 target_addr_t physaddr;
1075 uint8_t current_instr;
1076
1077 /* check that user program has not modified breakpoint instruction */
1078 if (calcaddr_physfromlin(t, bp->address, &physaddr) != ERROR_OK)
1079 return ERROR_FAIL;
1080 if (read_phys_mem(t, physaddr, 1, 1, &current_instr))
1081 return ERROR_FAIL;
1082
1083 if (current_instr == SW_BP_OPCODE) {
1084 if (write_phys_mem(t, physaddr, 1, 1, bp->orig_instr))
1085 return ERROR_FAIL;
1086 } else {
1087 LOG_ERROR("%s software breakpoint remove error at " TARGET_ADDR_FMT ", check memory",
1088 __func__, bp->address);
1089 LOG_ERROR("%s current=0x%02" PRIx8 " orig=0x%02" PRIx8 "",
1090 __func__, current_instr, *bp->orig_instr);
1091 return ERROR_FAIL;
1092 }
1093
1094 /* remove from patch */
1095 struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
1096 if (iter != NULL) {
1097 if (iter->swbp_unique_id == bp->unique_id) {
1098 /* it's the first item */
1099 x86_32->swbbp_mem_patch_list = iter->next;
1100 free(iter);
1101 } else {
1102 while (iter->next != NULL && iter->next->swbp_unique_id != bp->unique_id)
1103 iter = iter->next;
1104 if (iter->next != NULL) {
1105 /* it's the next one */
1106 struct swbp_mem_patch *freeme = iter->next;
1107 iter->next = iter->next->next;
1108 free(freeme);
1109 }
1110 }
1111 }
1112
1113 LOG_USER("%s software breakpoint %" PRIu32 " removed from " TARGET_ADDR_FMT,
1114 __func__, bp->unique_id, bp->address);
1115 return ERROR_OK;
1116 }
1117
1118 static int set_breakpoint(struct target *t, struct breakpoint *bp)
1119 {
1120 int error = ERROR_OK;
1121 struct x86_32_common *x86_32 = target_to_x86_32(t);
1122 LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
1123 if (bp->set) {
1124 LOG_ERROR("breakpoint already set");
1125 return error;
1126 }
1127 if (bp->type == BKPT_HARD) {
1128 error = set_hwbp(t, bp);
1129 if (error != ERROR_OK) {
1130 LOG_ERROR("%s error setting hardware breakpoint at " TARGET_ADDR_FMT,
1131 __func__, bp->address);
1132 return error;
1133 }
1134 } else {
1135 if (x86_32->sw_bpts_supported(t)) {
1136 error = set_swbp(t, bp);
1137 if (error != ERROR_OK) {
1138 LOG_ERROR("%s error setting software breakpoint at " TARGET_ADDR_FMT,
1139 __func__, bp->address);
1140 return error;
1141 }
1142 } else {
1143 LOG_ERROR("%s core doesn't support SW breakpoints", __func__);
1144 error = ERROR_FAIL;
1145 return ERROR_FAIL;
1146 }
1147 }
1148 return error;
1149 }
1150
1151 static int unset_breakpoint(struct target *t, struct breakpoint *bp)
1152 {
1153 LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, bp->type, bp->address);
1154 if (!bp->set) {
1155 LOG_WARNING("breakpoint not set");
1156 return ERROR_OK;
1157 }
1158
1159 if (bp->type == BKPT_HARD) {
1160 if (unset_hwbp(t, bp) != ERROR_OK) {
1161 LOG_ERROR("%s error removing hardware breakpoint at " TARGET_ADDR_FMT,
1162 __func__, bp->address);
1163 return ERROR_FAIL;
1164 }
1165 } else {
1166 if (unset_swbp(t, bp) != ERROR_OK) {
1167 LOG_ERROR("%s error removing software breakpoint at " TARGET_ADDR_FMT,
1168 __func__, bp->address);
1169 return ERROR_FAIL;
1170 }
1171 }
1172 bp->set = 0;
1173 return ERROR_OK;
1174 }
1175
1176 static int set_watchpoint(struct target *t, struct watchpoint *wp)
1177 {
1178 struct x86_32_common *x86_32 = target_to_x86_32(t);
1179 struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
1180 int wp_num = 0;
1181 LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, wp->rw, wp->address);
1182
1183 if (wp->set) {
1184 LOG_ERROR("%s watchpoint already set", __func__);
1185 return ERROR_OK;
1186 }
1187
1188 if (wp->rw == WPT_READ) {
1189 LOG_ERROR("%s no support for 'read' watchpoints, use 'access' or 'write'"
1190 , __func__);
1191 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1192 }
1193
1194 while (debug_reg_list[wp_num].used && (wp_num < x86_32->num_hw_bpoints))
1195 wp_num++;
1196 if (wp_num >= x86_32->num_hw_bpoints) {
1197 LOG_ERROR("%s no debug registers left", __func__);
1198 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1199 }
1200
1201 if (wp->length != 4 && wp->length != 2 && wp->length != 1) {
1202 LOG_ERROR("%s only watchpoints of length 1, 2 or 4 are supported", __func__);
1203 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1204 }
1205
1206 switch (wp->rw) {
1207 case WPT_WRITE:
1208 if (set_debug_regs(t, wp->address, wp_num,
1209 DR7_BP_WRITE, wp->length) != ERROR_OK) {
1210 return ERROR_FAIL;
1211 }
1212 break;
1213 case WPT_ACCESS:
1214 if (set_debug_regs(t, wp->address, wp_num, DR7_BP_READWRITE,
1215 wp->length) != ERROR_OK) {
1216 return ERROR_FAIL;
1217 }
1218 break;
1219 default:
1220 LOG_ERROR("%s only 'access' or 'write' watchpoints are supported", __func__);
1221 break;
1222 }
1223 wp->set = wp_num + 1;
1224 debug_reg_list[wp_num].used = 1;
1225 debug_reg_list[wp_num].bp_value = wp->address;
1226 LOG_USER("'%s' watchpoint %d set at " TARGET_ADDR_FMT " with length %" PRIu32 " (hwreg=%d)",
1227 wp->rw == WPT_READ ? "read" : wp->rw == WPT_WRITE ?
1228 "write" : wp->rw == WPT_ACCESS ? "access" : "?",
1229 wp->unique_id, wp->address, wp->length, wp_num);
1230 return ERROR_OK;
1231 }
1232
1233 static int unset_watchpoint(struct target *t, struct watchpoint *wp)
1234 {
1235 struct x86_32_common *x86_32 = target_to_x86_32(t);
1236 struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
1237 LOG_DEBUG("type=%d, addr=" TARGET_ADDR_FMT, wp->rw, wp->address);
1238 if (!wp->set) {
1239 LOG_WARNING("watchpoint not set");
1240 return ERROR_OK;
1241 }
1242
1243 int wp_num = wp->set - 1;
1244 if ((wp_num < 0) || (wp_num >= x86_32->num_hw_bpoints)) {
1245 LOG_DEBUG("Invalid FP Comparator number in watchpoint");
1246 return ERROR_OK;
1247 }
1248 if (unset_debug_regs(t, wp_num) != ERROR_OK)
1249 return ERROR_FAIL;
1250
1251 debug_reg_list[wp_num].used = 0;
1252 debug_reg_list[wp_num].bp_value = 0;
1253 wp->set = 0;
1254
1255 LOG_USER("'%s' watchpoint %d removed from " TARGET_ADDR_FMT " with length %" PRIu32 " (hwreg=%d)",
1256 wp->rw == WPT_READ ? "read" : wp->rw == WPT_WRITE ?
1257 "write" : wp->rw == WPT_ACCESS ? "access" : "?",
1258 wp->unique_id, wp->address, wp->length, wp_num);
1259
1260 return ERROR_OK;
1261 }
1262
1263 static int read_hw_reg_to_cache(struct target *t, int num)
1264 {
1265 uint32_t reg_value;
1266 struct x86_32_common *x86_32 = target_to_x86_32(t);
1267
1268 if (check_not_halted(t))
1269 return ERROR_TARGET_NOT_HALTED;
1270 if ((num < 0) || (num >= x86_32->get_num_user_regs(t)))
1271 return ERROR_COMMAND_SYNTAX_ERROR;
1272 if (x86_32->read_hw_reg(t, num, &reg_value, 1) != ERROR_OK) {
1273 LOG_ERROR("%s fail for %s", x86_32->cache->reg_list[num].name, __func__);
1274 return ERROR_FAIL;
1275 }
1276 LOG_DEBUG("reg %s value 0x%08" PRIx32,
1277 x86_32->cache->reg_list[num].name, reg_value);
1278 return ERROR_OK;
1279 }
1280
1281 static int write_hw_reg_from_cache(struct target *t, int num)
1282 {
1283 struct x86_32_common *x86_32 = target_to_x86_32(t);
1284 if (check_not_halted(t))
1285 return ERROR_TARGET_NOT_HALTED;
1286 if ((num < 0) || (num >= x86_32->get_num_user_regs(t)))
1287 return ERROR_COMMAND_SYNTAX_ERROR;
1288 if (x86_32->write_hw_reg(t, num, 0, 1) != ERROR_OK) {
1289 LOG_ERROR("%s fail for %s", x86_32->cache->reg_list[num].name, __func__);
1290 return ERROR_FAIL;
1291 }
1292 LOG_DEBUG("reg %s value 0x%08" PRIx32, x86_32->cache->reg_list[num].name,
1293 buf_get_u32(x86_32->cache->reg_list[num].value, 0, 32));
1294 return ERROR_OK;
1295 }
1296
1297 /* x86 32 commands */
1298 static void handle_iod_output(struct command_context *cmd_ctx,
1299 struct target *target, uint32_t address, unsigned size,
1300 unsigned count, const uint8_t *buffer)
1301 {
1302 const unsigned line_bytecnt = 32;
1303 unsigned line_modulo = line_bytecnt / size;
1304
1305 char output[line_bytecnt * 4 + 1];
1306 unsigned output_len = 0;
1307
1308 const char *value_fmt;
1309 switch (size) {
1310 case 4:
1311 value_fmt = "%8.8x ";
1312 break;
1313 case 2:
1314 value_fmt = "%4.4x ";
1315 break;
1316 case 1:
1317 value_fmt = "%2.2x ";
1318 break;
1319 default:
1320 /* "can't happen", caller checked */
1321 LOG_ERROR("%s invalid memory read size: %u", __func__, size);
1322 return;
1323 }
1324
1325 for (unsigned i = 0; i < count; i++) {
1326 if (i % line_modulo == 0) {
1327 output_len += snprintf(output + output_len,
1328 sizeof(output) - output_len,
1329 "0x%8.8x: ",
1330 (unsigned)(address + (i*size)));
1331 }
1332
1333 uint32_t value = 0;
1334 const uint8_t *value_ptr = buffer + i * size;
1335 switch (size) {
1336 case 4:
1337 value = target_buffer_get_u32(target, value_ptr);
1338 break;
1339 case 2:
1340 value = target_buffer_get_u16(target, value_ptr);
1341 break;
1342 case 1:
1343 value = *value_ptr;
1344 }
1345 output_len += snprintf(output + output_len,
1346 sizeof(output) - output_len,
1347 value_fmt, value);
1348
1349 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
1350 command_print(cmd_ctx, "%s", output);
1351 output_len = 0;
1352 }
1353 }
1354 }
1355
1356 COMMAND_HANDLER(handle_iod_command)
1357 {
1358 if (CMD_ARGC != 1)
1359 return ERROR_COMMAND_SYNTAX_ERROR;
1360
1361 uint32_t address;
1362 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1363 if (address > 0xffff) {
1364 LOG_ERROR("%s IA-32 I/O space is 2^16, 0x%08" PRIx32 " exceeds max", __func__, address);
1365 return ERROR_COMMAND_SYNTAX_ERROR;
1366 }
1367
1368 unsigned size = 0;
1369 switch (CMD_NAME[2]) {
1370 case 'w':
1371 size = 4;
1372 break;
1373 case 'h':
1374 size = 2;
1375 break;
1376 case 'b':
1377 size = 1;
1378 break;
1379 default:
1380 return ERROR_COMMAND_SYNTAX_ERROR;
1381 }
1382 unsigned count = 1;
1383 uint8_t *buffer = calloc(count, size);
1384 struct target *target = get_current_target(CMD_CTX);
1385 int retval = x86_32_common_read_io(target, address, size, buffer);
1386 if (ERROR_OK == retval)
1387 handle_iod_output(CMD_CTX, target, address, size, count, buffer);
1388 free(buffer);
1389 return retval;
1390 }
1391
1392 static int target_fill_io(struct target *target,
1393 uint32_t address,
1394 unsigned data_size,
1395 /* value */
1396 uint32_t b)
1397 {
1398 LOG_DEBUG("address=0x%08" PRIx32 ", data_size=%u, b=0x%08" PRIx32,
1399 address, data_size, b);
1400 uint8_t target_buf[data_size];
1401 switch (data_size) {
1402 case 4:
1403 target_buffer_set_u32(target, target_buf, b);
1404 break;
1405 case 2:
1406 target_buffer_set_u16(target, target_buf, b);
1407 break;
1408 case 1:
1409 target_buf[0] = (b & 0x0ff);
1410 break;
1411 default:
1412 exit(-1);
1413 }
1414 return x86_32_common_write_io(target, address, data_size, target_buf);
1415 }
1416
1417 COMMAND_HANDLER(handle_iow_command)
1418 {
1419 if (CMD_ARGC != 2)
1420 return ERROR_COMMAND_SYNTAX_ERROR;
1421 uint32_t address;
1422 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1423 uint32_t value;
1424 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1425 struct target *target = get_current_target(CMD_CTX);
1426
1427 unsigned wordsize;
1428 switch (CMD_NAME[2]) {
1429 case 'w':
1430 wordsize = 4;
1431 break;
1432 case 'h':
1433 wordsize = 2;
1434 break;
1435 case 'b':
1436 wordsize = 1;
1437 break;
1438 default:
1439 return ERROR_COMMAND_SYNTAX_ERROR;
1440 }
1441 return target_fill_io(target, address, wordsize, value);
1442 }
1443
1444 static const struct command_registration x86_32_exec_command_handlers[] = {
1445 {
1446 .name = "iww",
1447 .mode = COMMAND_EXEC,
1448 .handler = handle_iow_command,
1449 .help = "write I/O port word",
1450 .usage = "port data[word]",
1451 },
1452 {
1453 .name = "iwh",
1454 .mode = COMMAND_EXEC,
1455 .handler = handle_iow_command,
1456 .help = "write I/O port halfword",
1457 .usage = "port data[halfword]",
1458 },
1459 {
1460 .name = "iwb",
1461 .mode = COMMAND_EXEC,
1462 .handler = handle_iow_command,
1463 .help = "write I/O port byte",
1464 .usage = "port data[byte]",
1465 },
1466 {
1467 .name = "idw",
1468 .mode = COMMAND_EXEC,
1469 .handler = handle_iod_command,
1470 .help = "display I/O port word",
1471 .usage = "port",
1472 },
1473 {
1474 .name = "idh",
1475 .mode = COMMAND_EXEC,
1476 .handler = handle_iod_command,
1477 .help = "display I/O port halfword",
1478 .usage = "port",
1479 },
1480 {
1481 .name = "idb",
1482 .mode = COMMAND_EXEC,
1483 .handler = handle_iod_command,
1484 .help = "display I/O port byte",
1485 .usage = "port",
1486 },
1487
1488 COMMAND_REGISTRATION_DONE
1489 };
1490
1491 const struct command_registration x86_32_command_handlers[] = {
1492 {
1493 .name = "x86_32",
1494 .mode = COMMAND_ANY,
1495 .help = "x86_32 target commands",
1496 .usage = "",
1497 .chain = x86_32_exec_command_handlers,
1498 },
1499 COMMAND_REGISTRATION_DONE
1500 };