mcr/mrc interface work. Implemented for arm926ejs and arm720t. mcr/mrc commands added.
[openocd.git] / src / target / target.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008,2009 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifndef TARGET_H
27 #define TARGET_H
28
29 #include "breakpoints.h"
30 #include "algorithm.h"
31 #include "command.h"
32
33 struct reg_s;
34 struct trace_s;
35 struct command_context_s;
36
37 /*
38 * TARGET_UNKNOWN = 0: we don't know anything about the target yet
39 * TARGET_RUNNING = 1: the target is executing user code
40 * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
41 * debugger. on an xscale it means that the debug handler is executing
42 * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
43 * not sure how this is used with all the recent changes)
44 * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
45 * behalf of the debugger (e.g. algorithm for flashing)
46 *
47 * also see: target_state_name();
48 */
49
50
51 enum target_state
52 {
53 TARGET_UNKNOWN = 0,
54 TARGET_RUNNING = 1,
55 TARGET_HALTED = 2,
56 TARGET_RESET = 3,
57 TARGET_DEBUG_RUNNING = 4,
58 };
59
60 extern const Jim_Nvp nvp_target_state[];
61
62 enum nvp_assert {
63 NVP_DEASSERT,
64 NVP_ASSERT,
65 };
66
67 extern const Jim_Nvp nvp_assert[];
68
69 enum target_reset_mode
70 {
71 RESET_UNKNOWN = 0,
72 RESET_RUN = 1, /* reset and let target run */
73 RESET_HALT = 2, /* reset and halt target out of reset */
74 RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
75 };
76
77 extern const Jim_Nvp nvp_reset_mode[];
78
79 enum target_debug_reason
80 {
81 DBG_REASON_DBGRQ = 0,
82 DBG_REASON_BREAKPOINT = 1,
83 DBG_REASON_WATCHPOINT = 2,
84 DBG_REASON_WPTANDBKPT = 3,
85 DBG_REASON_SINGLESTEP = 4,
86 DBG_REASON_NOTHALTED = 5,
87 DBG_REASON_UNDEFINED = 6
88 };
89
90 extern const Jim_Nvp nvp_target_debug_reason[];
91
92 enum target_endianess
93 {
94 TARGET_ENDIAN_UNKNOWN = 0,
95 TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
96 };
97
98 extern const Jim_Nvp nvp_target_endian[];
99
100 struct target_s;
101
102 typedef struct working_area_s
103 {
104 uint32_t address;
105 uint32_t size;
106 int free;
107 uint8_t *backup;
108 struct working_area_s **user;
109 struct working_area_s *next;
110 } working_area_t;
111
112 // target_type.h contains the full definitionof struct target_type_s
113 struct target_type_s;
114 typedef struct target_type_s target_type_t;
115
116 /* forward decloration */
117 typedef struct target_event_action_s target_event_action_t;
118
119 typedef struct target_s
120 {
121 target_type_t *type; /* target type definition (name, access functions) */
122 const char *cmd_name; /* tcl Name of target */
123 int target_number; /* DO NOT USE! field to be removed in 2010 */
124 jtag_tap_t *tap; /* where on the jtag chain is this */
125 const char *variant; /* what varient of this chip is it? */
126 target_event_action_t *event_action;
127
128 int reset_halt; /* attempt resetting the CPU into the halted mode? */
129 uint32_t working_area; /* working area (initialized RAM). Evaluated
130 * upon first allocation from virtual/physical address. */
131 uint32_t working_area_virt; /* virtual address */
132 uint32_t working_area_phys; /* physical address */
133 uint32_t working_area_size; /* size in bytes */
134 uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
135 struct working_area_s *working_areas;/* list of allocated working areas */
136 enum target_debug_reason debug_reason;/* reason why the target entered debug state */
137 enum target_endianess endianness; /* target endianess */
138 // also see: target_state_name()
139 enum target_state state; /* the current backend-state (running, halted, ...) */
140 struct reg_cache_s *reg_cache; /* the first register cache of the target (core regs) */
141 struct breakpoint_s *breakpoints; /* list of breakpoints */
142 struct watchpoint_s *watchpoints; /* list of watchpoints */
143 struct trace_s *trace_info; /* generic trace information */
144 struct debug_msg_receiver_s *dbgmsg;/* list of debug message receivers */
145 uint32_t dbg_msg_enabled; /* debug message status */
146 void *arch_info; /* architecture specific information */
147 struct target_s *next; /* next target in list */
148
149 int display; /* display async info in telnet session. Do not display
150 * lots of halted/resumed info when stepping in debugger. */
151 bool halt_issued; /* did we transition to halted state? */
152 long long halt_issued_time; /* Note time when halt was issued */
153 } target_t;
154
155 enum target_event
156 {
157 /* LD historical names
158 * - Prior to the great TCL change
159 * - June/July/Aug 2008
160 * - Duane Ellis */
161 TARGET_EVENT_OLD_gdb_program_config,
162 TARGET_EVENT_OLD_pre_reset,
163 TARGET_EVENT_OLD_post_reset,
164 TARGET_EVENT_OLD_pre_resume,
165
166 /* allow GDB to do stuff before others handle the halted event,
167 * this is in lieu of defining ordering of invocation of events,
168 * which would be more complicated
169 *
170 * Telling GDB to halt does not mean that the target stopped running,
171 * simply that we're dropping out of GDB's waiting for step or continue.
172 *
173 * This can be useful when e.g. detecting power dropout.
174 */
175 TARGET_EVENT_GDB_HALT,
176 TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
177 TARGET_EVENT_RESUMED, /* target resumed to normal execution */
178 TARGET_EVENT_RESUME_START,
179 TARGET_EVENT_RESUME_END,
180
181 TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
182 TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
183
184 TARGET_EVENT_RESET_START,
185 TARGET_EVENT_RESET_ASSERT_PRE,
186 TARGET_EVENT_RESET_ASSERT_POST,
187 TARGET_EVENT_RESET_DEASSERT_PRE,
188 TARGET_EVENT_RESET_DEASSERT_POST,
189 TARGET_EVENT_RESET_HALT_PRE,
190 TARGET_EVENT_RESET_HALT_POST,
191 TARGET_EVENT_RESET_WAIT_PRE,
192 TARGET_EVENT_RESET_WAIT_POST,
193 TARGET_EVENT_RESET_INIT,
194 TARGET_EVENT_RESET_END,
195
196 TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
197 TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
198
199 TARGET_EVENT_EXAMINE_START,
200 TARGET_EVENT_EXAMINE_END,
201
202 TARGET_EVENT_GDB_ATTACH,
203 TARGET_EVENT_GDB_DETACH,
204
205 TARGET_EVENT_GDB_FLASH_ERASE_START,
206 TARGET_EVENT_GDB_FLASH_ERASE_END,
207 TARGET_EVENT_GDB_FLASH_WRITE_START,
208 TARGET_EVENT_GDB_FLASH_WRITE_END,
209 };
210
211 struct target_event_action_s {
212 enum target_event event;
213 Jim_Obj *body;
214 int has_percent;
215 target_event_action_t *next;
216 };
217
218 typedef struct target_event_callback_s
219 {
220 int (*callback)(struct target_s *target, enum target_event event, void *priv);
221 void *priv;
222 struct target_event_callback_s *next;
223 } target_event_callback_t;
224
225 typedef struct target_timer_callback_s
226 {
227 int (*callback)(void *priv);
228 int time_ms;
229 int periodic;
230 struct timeval when;
231 void *priv;
232 struct target_timer_callback_s *next;
233 } target_timer_callback_t;
234
235 extern int target_register_commands(struct command_context_s *cmd_ctx);
236 extern int target_register_user_commands(struct command_context_s *cmd_ctx);
237 extern int target_init(struct command_context_s *cmd_ctx);
238 extern int target_examine(void);
239 extern int handle_target(void *priv);
240 extern int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode);
241
242 extern int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv);
243 extern int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv);
244 extern int target_poll(target_t *target);
245 extern int target_resume(target_t *target, int current, uint32_t address, int handle_breakpoints, int debug_execution);
246 extern int target_halt(target_t *target);
247 extern int target_call_event_callbacks(target_t *target, enum target_event event);
248
249 /* The period is very approximate, the callback can happen much more often
250 * or much more rarely than specified
251 */
252 extern int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv);
253 extern int target_unregister_timer_callback(int (*callback)(void *priv), void *priv);
254 extern int target_call_timer_callbacks(void);
255 /* invoke this to ensure that e.g. polling timer callbacks happen before
256 * a syncrhonous command completes.
257 */
258 extern int target_call_timer_callbacks_now(void);
259
260 extern target_t* get_current_target(struct command_context_s *cmd_ctx);
261 extern target_t *get_target(const char *id);
262
263 /**
264 * Get the target name.
265 *
266 * This routine is a wrapper for the target->type->name field.
267 */
268 extern const char *target_get_name(struct target_s *target);
269
270 /**
271 * Examine the specified @a target.
272 *
273 * This routine is a wrapper for target->type->examine.
274 */
275 extern int target_examine_one(struct target_s *target);
276 /// @returns @c true if the target has been examined.
277 extern bool target_was_examined(struct target_s *target);
278 /// Sets the @c examined flag for the given target.
279 extern void target_set_examined(struct target_s *target);
280 /// Reset the @c examined flag for the given target.
281 extern void target_reset_examined(struct target_s *target);
282
283
284 /**
285 * Add the @a breakpoint for @a target.
286 *
287 * This routine is a wrapper for target->type->add_breakpoint.
288 */
289 extern int target_add_breakpoint(struct target_s *target,
290 struct breakpoint_s *breakpoint);
291 /**
292 * Remove the @a breakpoint for @a target.
293 *
294 * This routine is a wrapper for target->type->remove_breakpoint.
295 */
296 extern int target_remove_breakpoint(struct target_s *target,
297 struct breakpoint_s *breakpoint);
298 /**
299 * Add the @a watchpoint for @a target.
300 *
301 * This routine is a wrapper for target->type->add_watchpoint.
302 */
303 extern int target_add_watchpoint(struct target_s *target,
304 struct watchpoint_s *watchpoint);
305 /**
306 * Remove the @a watchpoint for @a target.
307 *
308 * This routine is a wrapper for target->type->remove_watchpoint.
309 */
310 extern int target_remove_watchpoint(struct target_s *target,
311 struct watchpoint_s *watchpoint);
312
313 /**
314 * Obtain the registers for GDB.
315 *
316 * This routine is a wrapper for target->type->get_gdb_reg_list.
317 */
318 extern int target_get_gdb_reg_list(struct target_s *target,
319 struct reg_s **reg_list[], int *reg_list_size);
320
321 /**
322 * Step the target.
323 *
324 * This routine is a wrapper for target->type->step.
325 */
326 int target_step(struct target_s *target,
327 int current, uint32_t address, int handle_breakpoints);
328 /**
329 * Run an algorithm on the @a target given.
330 *
331 * This routine is a wrapper for target->type->run_algorithm.
332 */
333 extern int target_run_algorithm(struct target_s *target,
334 int num_mem_params, mem_param_t *mem_params,
335 int num_reg_params, reg_param_t *reg_param,
336 uint32_t entry_point, uint32_t exit_point,
337 int timeout_ms, void *arch_info);
338
339 /**
340 * Read @a count items of @a size bytes from the memory of @a target at
341 * the @a address given.
342 *
343 * This routine is a wrapper for target->type->read_memory.
344 */
345 extern int target_read_memory(struct target_s *target,
346 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
347 /**
348 * Write @a count items of @a size bytes to the memory of @a target at
349 * the @a address given.
350 *
351 * This routine is wrapper for target->type->write_memory.
352 */
353 extern int target_write_memory(struct target_s *target,
354 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
355
356 /**
357 * Write @a count items of 4 bytes to the memory of @a target at
358 * the @a address given. Because it operates only on whole words,
359 * this should be faster than target_write_memory().
360 *
361 * This routine is wrapper for target->type->bulk_write_memory.
362 */
363 extern int target_bulk_write_memory(struct target_s *target,
364 uint32_t address, uint32_t count, uint8_t *buffer);
365
366 /*
367 * Write to target memory using the virtual address.
368 *
369 * Note that this fn is used to implement software breakpoints. Targets
370 * can implement support for software breakpoints to memory marked as read
371 * only by making this fn write to ram even if it is read only(MMU or
372 * MPUs).
373 *
374 * It is sufficient to implement for writing a single word(16 or 32 in
375 * ARM32/16 bit case) to write the breakpoint to ram.
376 *
377 * The target should also take care of "other things" to make sure that
378 * software breakpoints can be written using this function. E.g.
379 * when there is a separate instruction and data cache, this fn must
380 * make sure that the instruction cache is synced up to the potential
381 * code change that can happen as a result of the memory write(typically
382 * by invalidating the cache).
383 *
384 * The high level wrapper fn in target.c will break down this memory write
385 * request to multiple write requests to the target driver to e.g. guarantee
386 * that writing 4 bytes to an aligned address happens with a single 32 bit
387 * write operation, thus making this fn suitable to e.g. write to special
388 * peripheral registers which do not support byte operations.
389 */
390 extern int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer);
391 extern int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer);
392 extern int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc);
393 extern int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank);
394 extern int target_wait_state(target_t *target, enum target_state state, int ms);
395
396 /** Return the *name* of this targets current state */
397 const char *target_state_name( target_t *target );
398
399 /* DANGER!!!!!
400 *
401 * if "area" passed in to target_alloc_working_area() points to a memory
402 * location that goes out of scope (e.g. a pointer on the stack), then
403 * the caller of target_alloc_working_area() is responsible for invoking
404 * target_free_working_area() before "area" goes out of scope.
405 *
406 * target_free_all_working_areas() will NULL out the "area" pointer
407 * upon resuming or resetting the CPU.
408 *
409 */
410 extern int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area);
411 extern int target_free_working_area(struct target_s *target, working_area_t *area);
412 extern int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore);
413 extern void target_free_all_working_areas(struct target_s *target);
414 extern void target_free_all_working_areas_restore(struct target_s *target, int restore);
415
416 extern target_t *all_targets;
417
418 extern target_event_callback_t *target_event_callbacks;
419 extern target_timer_callback_t *target_timer_callbacks;
420
421 extern uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer);
422 extern uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer);
423 extern uint8_t target_buffer_get_u8 (target_t *target, const uint8_t *buffer);
424 extern void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value);
425 extern void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value);
426 extern void target_buffer_set_u8 (target_t *target, uint8_t *buffer, uint8_t value);
427
428 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value);
429 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value);
430 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value);
431 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value);
432 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value);
433 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value);
434
435 /* Issues USER() statements with target state information */
436 int target_arch_state(struct target_s *target);
437
438 void target_handle_event(target_t *t, enum target_event e);
439 void target_all_handle_event(enum target_event e);
440
441 #define ERROR_TARGET_INVALID (-300)
442 #define ERROR_TARGET_INIT_FAILED (-301)
443 #define ERROR_TARGET_TIMEOUT (-302)
444 #define ERROR_TARGET_NOT_HALTED (-304)
445 #define ERROR_TARGET_FAILURE (-305)
446 #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
447 #define ERROR_TARGET_DATA_ABORT (-307)
448 #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
449 #define ERROR_TARGET_TRANSLATION_FAULT (-309)
450 #define ERROR_TARGET_NOT_RUNNING (-310)
451 #define ERROR_TARGET_NOT_EXAMINED (-311)
452
453 extern const Jim_Nvp nvp_error_target[];
454 extern const char *target_strerror_safe(int err);
455
456 #endif /* TARGET_H */