gdb_server: support gdb target description
[openocd.git] / src / target / target.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2011 by Broadcom Corporation *
12 * Evan Hunter - ehunter@broadcom.com *
13 * *
14 * Copyright (C) ST-Ericsson SA 2011 *
15 * michel.jaouen@stericsson.com : smp minimum support *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
31 ***************************************************************************/
32
33 #ifndef TARGET_H
34 #define TARGET_H
35
36 struct reg;
37 struct trace;
38 struct command_context;
39 struct breakpoint;
40 struct watchpoint;
41 struct mem_param;
42 struct reg_param;
43 struct target_list;
44
45 /*
46 * TARGET_UNKNOWN = 0: we don't know anything about the target yet
47 * TARGET_RUNNING = 1: the target is executing user code
48 * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
49 * debugger. on an xscale it means that the debug handler is executing
50 * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
51 * not sure how this is used with all the recent changes)
52 * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
53 * behalf of the debugger (e.g. algorithm for flashing)
54 *
55 * also see: target_state_name();
56 */
57
58 enum target_state {
59 TARGET_UNKNOWN = 0,
60 TARGET_RUNNING = 1,
61 TARGET_HALTED = 2,
62 TARGET_RESET = 3,
63 TARGET_DEBUG_RUNNING = 4,
64 };
65
66 enum nvp_assert {
67 NVP_DEASSERT,
68 NVP_ASSERT,
69 };
70
71 enum target_reset_mode {
72 RESET_UNKNOWN = 0,
73 RESET_RUN = 1, /* reset and let target run */
74 RESET_HALT = 2, /* reset and halt target out of reset */
75 RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
76 };
77
78 enum target_debug_reason {
79 DBG_REASON_DBGRQ = 0,
80 DBG_REASON_BREAKPOINT = 1,
81 DBG_REASON_WATCHPOINT = 2,
82 DBG_REASON_WPTANDBKPT = 3,
83 DBG_REASON_SINGLESTEP = 4,
84 DBG_REASON_NOTHALTED = 5,
85 DBG_REASON_UNDEFINED = 6
86 };
87
88 enum target_endianness {
89 TARGET_ENDIAN_UNKNOWN = 0,
90 TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
91 };
92
93 struct working_area {
94 uint32_t address;
95 uint32_t size;
96 bool free;
97 uint8_t *backup;
98 struct working_area **user;
99 struct working_area *next;
100 };
101
102 struct gdb_service {
103 struct target *target;
104 /* field for smp display */
105 /* element 0 coreid currently displayed ( 1 till n) */
106 /* element 1 coreid to be displayed at next resume 1 till n 0 means resume
107 * all cores core displayed */
108 int32_t core[2];
109 };
110
111 /* target back off timer */
112 struct backoff_timer {
113 int times;
114 int count;
115 };
116
117 /* split target registers into multiple class */
118 enum target_register_class {
119 REG_CLASS_ALL,
120 REG_CLASS_GENERAL,
121 };
122
123 /* target_type.h contains the full definition of struct target_type */
124 struct target {
125 struct target_type *type; /* target type definition (name, access functions) */
126 const char *cmd_name; /* tcl Name of target */
127 int target_number; /* DO NOT USE! field to be removed in 2010 */
128 struct jtag_tap *tap; /* where on the jtag chain is this */
129 int32_t coreid; /* which device on the TAP? */
130 const char *variant; /* what variant of this chip is it? */
131
132 /**
133 * Indicates whether this target has been examined.
134 *
135 * Do @b not access this field directly, use target_was_examined()
136 * or target_set_examined().
137 */
138 bool examined;
139
140 /**
141 * true if the target is currently running a downloaded
142 * "algorithm" instead of arbitrary user code. OpenOCD code
143 * invoking algorithms is trusted to maintain correctness of
144 * any cached state (e.g. for flash status), which arbitrary
145 * code will have no reason to know about.
146 */
147 bool running_alg;
148
149 struct target_event_action *event_action;
150
151 int reset_halt; /* attempt resetting the CPU into the halted mode? */
152 uint32_t working_area; /* working area (initialised RAM). Evaluated
153 * upon first allocation from virtual/physical address. */
154 bool working_area_virt_spec; /* virtual address specified? */
155 uint32_t working_area_virt; /* virtual address */
156 bool working_area_phys_spec; /* virtual address specified? */
157 uint32_t working_area_phys; /* physical address */
158 uint32_t working_area_size; /* size in bytes */
159 uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
160 struct working_area *working_areas;/* list of allocated working areas */
161 enum target_debug_reason debug_reason;/* reason why the target entered debug state */
162 enum target_endianness endianness; /* target endianness */
163 /* also see: target_state_name() */
164 enum target_state state; /* the current backend-state (running, halted, ...) */
165 struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
166 struct breakpoint *breakpoints; /* list of breakpoints */
167 struct watchpoint *watchpoints; /* list of watchpoints */
168 struct trace *trace_info; /* generic trace information */
169 struct debug_msg_receiver *dbgmsg; /* list of debug message receivers */
170 uint32_t dbg_msg_enabled; /* debug message status */
171 void *arch_info; /* architecture specific information */
172 struct target *next; /* next target in list */
173
174 int display; /* display async info in telnet session. Do not display
175 * lots of halted/resumed info when stepping in debugger. */
176 bool halt_issued; /* did we transition to halted state? */
177 long long halt_issued_time; /* Note time when halt was issued */
178
179 bool dbgbase_set; /* By default the debug base is not set */
180 uint32_t dbgbase; /* Really a Cortex-A specific option, but there is no
181 * system in place to support target specific options
182 * currently. */
183 struct rtos *rtos; /* Instance of Real Time Operating System support */
184 bool rtos_auto_detect; /* A flag that indicates that the RTOS has been specified as "auto"
185 * and must be detected when symbols are offered */
186 struct backoff_timer backoff;
187 int smp; /* add some target attributes for smp support */
188 struct target_list *head;
189 /* the gdb service is there in case of smp, we have only one gdb server
190 * for all smp target
191 * the target attached to the gdb is changing dynamically by changing
192 * gdb_service->target pointer */
193 struct gdb_service *gdb_service;
194 };
195
196 struct target_list {
197 struct target *target;
198 struct target_list *next;
199 };
200
201 /** Returns the instance-specific name of the specified target. */
202 static inline const char *target_name(struct target *target)
203 {
204 return target->cmd_name;
205 }
206
207 const char *debug_reason_name(struct target *t);
208
209 enum target_event {
210
211 /* allow GDB to do stuff before others handle the halted event,
212 * this is in lieu of defining ordering of invocation of events,
213 * which would be more complicated
214 *
215 * Telling GDB to halt does not mean that the target stopped running,
216 * simply that we're dropping out of GDB's waiting for step or continue.
217 *
218 * This can be useful when e.g. detecting power dropout.
219 */
220 TARGET_EVENT_GDB_HALT,
221 TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
222 TARGET_EVENT_RESUMED, /* target resumed to normal execution */
223 TARGET_EVENT_RESUME_START,
224 TARGET_EVENT_RESUME_END,
225
226 TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
227 TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
228
229 TARGET_EVENT_RESET_START,
230 TARGET_EVENT_RESET_ASSERT_PRE,
231 TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
232 TARGET_EVENT_RESET_ASSERT_POST,
233 TARGET_EVENT_RESET_DEASSERT_PRE,
234 TARGET_EVENT_RESET_DEASSERT_POST,
235 TARGET_EVENT_RESET_HALT_PRE,
236 TARGET_EVENT_RESET_HALT_POST,
237 TARGET_EVENT_RESET_WAIT_PRE,
238 TARGET_EVENT_RESET_WAIT_POST,
239 TARGET_EVENT_RESET_INIT,
240 TARGET_EVENT_RESET_END,
241
242 TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
243 TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
244
245 TARGET_EVENT_EXAMINE_START,
246 TARGET_EVENT_EXAMINE_END,
247
248 TARGET_EVENT_GDB_ATTACH,
249 TARGET_EVENT_GDB_DETACH,
250
251 TARGET_EVENT_GDB_FLASH_ERASE_START,
252 TARGET_EVENT_GDB_FLASH_ERASE_END,
253 TARGET_EVENT_GDB_FLASH_WRITE_START,
254 TARGET_EVENT_GDB_FLASH_WRITE_END,
255 };
256
257 struct target_event_action {
258 enum target_event event;
259 struct Jim_Interp *interp;
260 struct Jim_Obj *body;
261 int has_percent;
262 struct target_event_action *next;
263 };
264
265 bool target_has_event_action(struct target *target, enum target_event event);
266
267 struct target_event_callback {
268 int (*callback)(struct target *target, enum target_event event, void *priv);
269 void *priv;
270 struct target_event_callback *next;
271 };
272
273 struct target_timer_callback {
274 int (*callback)(void *priv);
275 int time_ms;
276 int periodic;
277 struct timeval when;
278 void *priv;
279 struct target_timer_callback *next;
280 };
281
282 int target_register_commands(struct command_context *cmd_ctx);
283 int target_examine(void);
284
285 int target_register_event_callback(
286 int (*callback)(struct target *target,
287 enum target_event event, void *priv),
288 void *priv);
289 int target_unregister_event_callback(
290 int (*callback)(struct target *target,
291 enum target_event event, void *priv),
292 void *priv);
293
294 /* Poll the status of the target, detect any error conditions and report them.
295 *
296 * Also note that this fn will clear such error conditions, so a subsequent
297 * invocation will then succeed.
298 *
299 * These error conditions can be "sticky" error conditions. E.g. writing
300 * to memory could be implemented as an open loop and if memory writes
301 * fails, then a note is made of it, the error is sticky, but the memory
302 * write loop still runs to completion. This improves performance in the
303 * normal case as there is no need to verify that every single write succeed,
304 * yet it is possible to detect error conditions.
305 */
306 int target_poll(struct target *target);
307 int target_resume(struct target *target, int current, uint32_t address,
308 int handle_breakpoints, int debug_execution);
309 int target_halt(struct target *target);
310 int target_call_event_callbacks(struct target *target, enum target_event event);
311
312 /**
313 * The period is very approximate, the callback can happen much more often
314 * or much more rarely than specified
315 */
316 int target_register_timer_callback(int (*callback)(void *priv),
317 int time_ms, int periodic, void *priv);
318
319 int target_call_timer_callbacks(void);
320 /**
321 * Invoke this to ensure that e.g. polling timer callbacks happen before
322 * a synchronous command completes.
323 */
324 int target_call_timer_callbacks_now(void);
325
326 struct target *get_current_target(struct command_context *cmd_ctx);
327 struct target *get_target(const char *id);
328
329 /**
330 * Get the target type name.
331 *
332 * This routine is a wrapper for the target->type->name field.
333 * Note that this is not an instance-specific name for his target.
334 */
335 const char *target_type_name(struct target *target);
336
337 /**
338 * Examine the specified @a target, letting it perform any
339 * Initialisation that requires JTAG access.
340 *
341 * This routine is a wrapper for target->type->examine.
342 */
343 int target_examine_one(struct target *target);
344
345 /** @returns @c true if target_set_examined() has been called. */
346 static inline bool target_was_examined(struct target *target)
347 {
348 return target->examined;
349 }
350
351 /** Sets the @c examined flag for the given target. */
352 /** Use in target->type->examine() after one-time setup is done. */
353 static inline void target_set_examined(struct target *target)
354 {
355 target->examined = true;
356 }
357
358 /**
359 * Add the @a breakpoint for @a target.
360 *
361 * This routine is a wrapper for target->type->add_breakpoint.
362 */
363 int target_add_breakpoint(struct target *target,
364 struct breakpoint *breakpoint);
365 /**
366 * Add the @a ContextID breakpoint for @a target.
367 *
368 * This routine is a wrapper for target->type->add_context_breakpoint.
369 */
370 int target_add_context_breakpoint(struct target *target,
371 struct breakpoint *breakpoint);
372 /**
373 * Add the @a ContextID & IVA breakpoint for @a target.
374 *
375 * This routine is a wrapper for target->type->add_hybrid_breakpoint.
376 */
377 int target_add_hybrid_breakpoint(struct target *target,
378 struct breakpoint *breakpoint);
379 /**
380 * Remove the @a breakpoint for @a target.
381 *
382 * This routine is a wrapper for target->type->remove_breakpoint.
383 */
384
385 int target_remove_breakpoint(struct target *target,
386 struct breakpoint *breakpoint);
387 /**
388 * Add the @a watchpoint for @a target.
389 *
390 * This routine is a wrapper for target->type->add_watchpoint.
391 */
392 int target_add_watchpoint(struct target *target,
393 struct watchpoint *watchpoint);
394 /**
395 * Remove the @a watchpoint for @a target.
396 *
397 * This routine is a wrapper for target->type->remove_watchpoint.
398 */
399 int target_remove_watchpoint(struct target *target,
400 struct watchpoint *watchpoint);
401
402 /**
403 * Obtain the registers for GDB.
404 *
405 * This routine is a wrapper for target->type->get_gdb_reg_list.
406 */
407 int target_get_gdb_reg_list(struct target *target,
408 struct reg **reg_list[], int *reg_list_size,
409 enum target_register_class reg_class);
410
411 /**
412 * Step the target.
413 *
414 * This routine is a wrapper for target->type->step.
415 */
416 int target_step(struct target *target,
417 int current, uint32_t address, int handle_breakpoints);
418 /**
419 * Run an algorithm on the @a target given.
420 *
421 * This routine is a wrapper for target->type->run_algorithm.
422 */
423 int target_run_algorithm(struct target *target,
424 int num_mem_params, struct mem_param *mem_params,
425 int num_reg_params, struct reg_param *reg_param,
426 uint32_t entry_point, uint32_t exit_point,
427 int timeout_ms, void *arch_info);
428
429 /**
430 * Starts an algorithm in the background on the @a target given.
431 *
432 * This routine is a wrapper for target->type->start_algorithm.
433 */
434 int target_start_algorithm(struct target *target,
435 int num_mem_params, struct mem_param *mem_params,
436 int num_reg_params, struct reg_param *reg_params,
437 uint32_t entry_point, uint32_t exit_point,
438 void *arch_info);
439
440 /**
441 * Wait for an algorithm on the @a target given.
442 *
443 * This routine is a wrapper for target->type->wait_algorithm.
444 */
445 int target_wait_algorithm(struct target *target,
446 int num_mem_params, struct mem_param *mem_params,
447 int num_reg_params, struct reg_param *reg_params,
448 uint32_t exit_point, int timeout_ms,
449 void *arch_info);
450
451 /**
452 * This routine is a wrapper for asynchronous algorithms.
453 *
454 */
455 int target_run_flash_async_algorithm(struct target *target,
456 uint8_t *buffer, uint32_t count, int block_size,
457 int num_mem_params, struct mem_param *mem_params,
458 int num_reg_params, struct reg_param *reg_params,
459 uint32_t buffer_start, uint32_t buffer_size,
460 uint32_t entry_point, uint32_t exit_point,
461 void *arch_info);
462
463 /**
464 * Read @a count items of @a size bytes from the memory of @a target at
465 * the @a address given.
466 *
467 * This routine is a wrapper for target->type->read_memory.
468 */
469 int target_read_memory(struct target *target,
470 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
471 int target_read_phys_memory(struct target *target,
472 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
473 /**
474 * Write @a count items of @a size bytes to the memory of @a target at
475 * the @a address given. @a address must be aligned to @a size
476 * in target memory.
477 *
478 * The endianness is the same in the host and target memory for this
479 * function.
480 *
481 * \todo TODO:
482 * Really @a buffer should have been defined as "const void *" and
483 * @a buffer should have been aligned to @a size in the host memory.
484 *
485 * This is not enforced via e.g. assert's today and e.g. the
486 * target_write_buffer fn breaks this assumption.
487 *
488 * This routine is wrapper for target->type->write_memory.
489 */
490 int target_write_memory(struct target *target,
491 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
492 int target_write_phys_memory(struct target *target,
493 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
494
495 /*
496 * Write to target memory using the virtual address.
497 *
498 * Note that this fn is used to implement software breakpoints. Targets
499 * can implement support for software breakpoints to memory marked as read
500 * only by making this fn write to ram even if it is read only(MMU or
501 * MPUs).
502 *
503 * It is sufficient to implement for writing a single word(16 or 32 in
504 * ARM32/16 bit case) to write the breakpoint to ram.
505 *
506 * The target should also take care of "other things" to make sure that
507 * software breakpoints can be written using this function. E.g.
508 * when there is a separate instruction and data cache, this fn must
509 * make sure that the instruction cache is synced up to the potential
510 * code change that can happen as a result of the memory write(typically
511 * by invalidating the cache).
512 *
513 * The high level wrapper fn in target.c will break down this memory write
514 * request to multiple write requests to the target driver to e.g. guarantee
515 * that writing 4 bytes to an aligned address happens with a single 32 bit
516 * write operation, thus making this fn suitable to e.g. write to special
517 * peripheral registers which do not support byte operations.
518 */
519 int target_write_buffer(struct target *target,
520 uint32_t address, uint32_t size, const uint8_t *buffer);
521 int target_read_buffer(struct target *target,
522 uint32_t address, uint32_t size, uint8_t *buffer);
523 int target_checksum_memory(struct target *target,
524 uint32_t address, uint32_t size, uint32_t *crc);
525 int target_blank_check_memory(struct target *target,
526 uint32_t address, uint32_t size, uint32_t *blank);
527 int target_wait_state(struct target *target, enum target_state state, int ms);
528
529 /** Return the *name* of this targets current state */
530 const char *target_state_name(struct target *target);
531
532 /* DANGER!!!!!
533 *
534 * if "area" passed in to target_alloc_working_area() points to a memory
535 * location that goes out of scope (e.g. a pointer on the stack), then
536 * the caller of target_alloc_working_area() is responsible for invoking
537 * target_free_working_area() before "area" goes out of scope.
538 *
539 * target_free_all_working_areas() will NULL out the "area" pointer
540 * upon resuming or resetting the CPU.
541 *
542 */
543 int target_alloc_working_area(struct target *target,
544 uint32_t size, struct working_area **area);
545 /* Same as target_alloc_working_area, except that no error is logged
546 * when ERROR_TARGET_RESOURCE_NOT_AVAILABLE is returned.
547 *
548 * This allows the calling code to *try* to allocate target memory
549 * and have a fallback to another behaviour(slower?).
550 */
551 int target_alloc_working_area_try(struct target *target,
552 uint32_t size, struct working_area **area);
553 int target_free_working_area(struct target *target, struct working_area *area);
554 void target_free_all_working_areas(struct target *target);
555 uint32_t target_get_working_area_avail(struct target *target);
556
557 extern struct target *all_targets;
558
559 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
560 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer);
561 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
562 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
563 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value);
564 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
565
566 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf);
567 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf);
568 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf);
569 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf);
570
571 int target_read_u32(struct target *target, uint32_t address, uint32_t *value);
572 int target_read_u16(struct target *target, uint32_t address, uint16_t *value);
573 int target_read_u8(struct target *target, uint32_t address, uint8_t *value);
574 int target_write_u32(struct target *target, uint32_t address, uint32_t value);
575 int target_write_u16(struct target *target, uint32_t address, uint16_t value);
576 int target_write_u8(struct target *target, uint32_t address, uint8_t value);
577
578 /* Issues USER() statements with target state information */
579 int target_arch_state(struct target *target);
580
581 void target_handle_event(struct target *t, enum target_event e);
582
583 #define ERROR_TARGET_INVALID (-300)
584 #define ERROR_TARGET_INIT_FAILED (-301)
585 #define ERROR_TARGET_TIMEOUT (-302)
586 #define ERROR_TARGET_NOT_HALTED (-304)
587 #define ERROR_TARGET_FAILURE (-305)
588 #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
589 #define ERROR_TARGET_DATA_ABORT (-307)
590 #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
591 #define ERROR_TARGET_TRANSLATION_FAULT (-309)
592 #define ERROR_TARGET_NOT_RUNNING (-310)
593 #define ERROR_TARGET_NOT_EXAMINED (-311)
594
595 extern bool get_target_reset_nag(void);
596
597 #endif /* TARGET_H */