Improve handle_profile_command argument parsing:
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95 &arm7tdmi_target,
96 &arm9tdmi_target,
97 &arm920t_target,
98 &arm720t_target,
99 &arm966e_target,
100 &arm926ejs_target,
101 &feroceon_target,
102 &xscale_target,
103 &cortexm3_target,
104 &cortexa8_target,
105 &arm11_target,
106 &mips_m4k_target,
107 &avr_target,
108 NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116 { .name = "assert", NVP_ASSERT },
117 { .name = "deassert", NVP_DEASSERT },
118 { .name = "T", NVP_ASSERT },
119 { .name = "F", NVP_DEASSERT },
120 { .name = "t", NVP_ASSERT },
121 { .name = "f", NVP_DEASSERT },
122 { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
132 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
135 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137 { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142 const Jim_Nvp *n;
143
144 n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145 if( n->name == NULL ){
146 return "unknown";
147 } else {
148 return n->name;
149 }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
155
156 { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157 { .value = TARGET_EVENT_HALTED, .name = "halted" },
158 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165 /* historical name */
166
167 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
170 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
171 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
172 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
174 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
175 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
176 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
177 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
191
192 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
194
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
197 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
198
199 { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203 { .name = "unknown", .value = TARGET_UNKNOWN },
204 { .name = "running", .value = TARGET_RUNNING },
205 { .name = "halted", .value = TARGET_HALTED },
206 { .name = "reset", .value = TARGET_RESET },
207 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208 { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
213 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
214 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
215 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
217 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
218 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
219 { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223 { .name = "big", .value = TARGET_BIG_ENDIAN },
224 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225 { .name = "be", .value = TARGET_BIG_ENDIAN },
226 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
227 { .name = NULL, .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231 { .name = "unknown", .value = RESET_UNKNOWN },
232 { .name = "run" , .value = RESET_RUN },
233 { .name = "halt" , .value = RESET_HALT },
234 { .name = "init" , .value = RESET_INIT },
235 { .name = NULL , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240 target_t *t;
241 int x;
242
243 x = -1;
244 t = all_targets;
245 while( t ){
246 if( x < t->target_number ){
247 x = (t->target_number)+1;
248 }
249 t = t->next;
250 }
251 return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257 target_t *t;
258 int x;
259
260 /* number is 0 based */
261 x = -1;
262 t = all_targets;
263 while(t){
264 if( x < t->target_number ){
265 x = t->target_number;
266 }
267 t = t->next;
268 }
269 return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277 if (target->endianness == TARGET_LITTLE_ENDIAN)
278 return le_to_h_u32(buffer);
279 else
280 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286 if (target->endianness == TARGET_LITTLE_ENDIAN)
287 return le_to_h_u16(buffer);
288 else
289 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295 return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301 if (target->endianness == TARGET_LITTLE_ENDIAN)
302 h_u32_to_le(buffer, value);
303 else
304 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310 if (target->endianness == TARGET_LITTLE_ENDIAN)
311 h_u16_to_le(buffer, value);
312 else
313 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319 *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325 target_t *target;
326
327 /* try as tcltarget name */
328 for (target = all_targets; target; target = target->next) {
329 if (target->cmd_name == NULL)
330 continue;
331 if (strcmp(id, target->cmd_name) == 0)
332 return target;
333 }
334
335 /* no match, try as number */
336 unsigned num;
337 if (parse_uint(id, &num) != ERROR_OK)
338 return NULL;
339
340 for (target = all_targets; target; target = target->next) {
341 if (target->target_number == (int)num)
342 return target;
343 }
344
345 return NULL;
346 }
347
348 /* returns a pointer to the n-th configured target */
349 static target_t *get_target_by_num(int num)
350 {
351 target_t *target = all_targets;
352
353 while (target){
354 if( target->target_number == num ){
355 return target;
356 }
357 target = target->next;
358 }
359
360 return NULL;
361 }
362
363 int get_num_by_target(target_t *query_target)
364 {
365 return query_target->target_number;
366 }
367
368 target_t* get_current_target(command_context_t *cmd_ctx)
369 {
370 target_t *target = get_target_by_num(cmd_ctx->current_target);
371
372 if (target == NULL)
373 {
374 LOG_ERROR("BUG: current_target out of bounds");
375 exit(-1);
376 }
377
378 return target;
379 }
380
381 int target_poll(struct target_s *target)
382 {
383 /* We can't poll until after examine */
384 if (!target_was_examined(target))
385 {
386 /* Fail silently lest we pollute the log */
387 return ERROR_FAIL;
388 }
389 return target->type->poll(target);
390 }
391
392 int target_halt(struct target_s *target)
393 {
394 /* We can't poll until after examine */
395 if (!target_was_examined(target))
396 {
397 LOG_ERROR("Target not examined yet");
398 return ERROR_FAIL;
399 }
400 return target->type->halt(target);
401 }
402
403 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
404 {
405 int retval;
406
407 /* We can't poll until after examine */
408 if (!target_was_examined(target))
409 {
410 LOG_ERROR("Target not examined yet");
411 return ERROR_FAIL;
412 }
413
414 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
415 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
416 * the application.
417 */
418 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
419 return retval;
420
421 return retval;
422 }
423
424 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
425 {
426 char buf[100];
427 int retval;
428 Jim_Nvp *n;
429 n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
430 if( n->name == NULL ){
431 LOG_ERROR("invalid reset mode");
432 return ERROR_FAIL;
433 }
434
435 /* disable polling during reset to make reset event scripts
436 * more predictable, i.e. dr/irscan & pathmove in events will
437 * not have JTAG operations injected into the middle of a sequence.
438 */
439 int save_poll = target_continous_poll;
440 target_continous_poll = 0;
441
442 sprintf( buf, "ocd_process_reset %s", n->name );
443 retval = Jim_Eval( interp, buf );
444
445 target_continous_poll = save_poll;
446
447 if(retval != JIM_OK) {
448 Jim_PrintErrorMessage(interp);
449 return ERROR_FAIL;
450 }
451
452 /* We want any events to be processed before the prompt */
453 retval = target_call_timer_callbacks_now();
454
455 return retval;
456 }
457
458 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
459 {
460 *physical = virtual;
461 return ERROR_OK;
462 }
463
464 static int default_mmu(struct target_s *target, int *enabled)
465 {
466 *enabled = 0;
467 return ERROR_OK;
468 }
469
470 static int default_examine(struct target_s *target)
471 {
472 target_set_examined(target);
473 return ERROR_OK;
474 }
475
476 int target_examine_one(struct target_s *target)
477 {
478 return target->type->examine(target);
479 }
480
481 /* Targets that correctly implement init+examine, i.e.
482 * no communication with target during init:
483 *
484 * XScale
485 */
486 int target_examine(void)
487 {
488 int retval = ERROR_OK;
489 target_t *target;
490
491 for (target = all_targets; target; target = target->next)
492 {
493 if (!target->tap->enabled)
494 continue;
495 if ((retval = target_examine_one(target)) != ERROR_OK)
496 return retval;
497 }
498 return retval;
499 }
500 const char *target_get_name(struct target_s *target)
501 {
502 return target->type->name;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507 if (!target_was_examined(target))
508 {
509 LOG_ERROR("Target not examined yet");
510 return ERROR_FAIL;
511 }
512 return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517 if (!target_was_examined(target))
518 {
519 LOG_ERROR("Target not examined yet");
520 return ERROR_FAIL;
521 }
522 return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527 if (!target_was_examined(target))
528 {
529 LOG_ERROR("Target not examined yet");
530 return ERROR_FAIL;
531 }
532 return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537 if (!target_was_examined(target))
538 {
539 LOG_ERROR("Target not examined yet");
540 return ERROR_FAIL;
541 }
542 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_read_memory(struct target_s *target,
546 u32 address, u32 size, u32 count, u8 *buffer)
547 {
548 return target->type->read_memory(target, address, size, count, buffer);
549 }
550
551 int target_write_memory(struct target_s *target,
552 u32 address, u32 size, u32 count, u8 *buffer)
553 {
554 return target->type->write_memory(target, address, size, count, buffer);
555 }
556 int target_bulk_write_memory(struct target_s *target,
557 u32 address, u32 count, u8 *buffer)
558 {
559 return target->type->bulk_write_memory(target, address, count, buffer);
560 }
561
562 int target_add_breakpoint(struct target_s *target,
563 struct breakpoint_s *breakpoint)
564 {
565 return target->type->add_breakpoint(target, breakpoint);
566 }
567 int target_remove_breakpoint(struct target_s *target,
568 struct breakpoint_s *breakpoint)
569 {
570 return target->type->remove_breakpoint(target, breakpoint);
571 }
572
573 int target_add_watchpoint(struct target_s *target,
574 struct watchpoint_s *watchpoint)
575 {
576 return target->type->add_watchpoint(target, watchpoint);
577 }
578 int target_remove_watchpoint(struct target_s *target,
579 struct watchpoint_s *watchpoint)
580 {
581 return target->type->remove_watchpoint(target, watchpoint);
582 }
583
584 int target_get_gdb_reg_list(struct target_s *target,
585 struct reg_s **reg_list[], int *reg_list_size)
586 {
587 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
588 }
589 int target_step(struct target_s *target,
590 int current, u32 address, int handle_breakpoints)
591 {
592 return target->type->step(target, current, address, handle_breakpoints);
593 }
594
595
596 int target_run_algorithm(struct target_s *target,
597 int num_mem_params, mem_param_t *mem_params,
598 int num_reg_params, reg_param_t *reg_param,
599 u32 entry_point, u32 exit_point,
600 int timeout_ms, void *arch_info)
601 {
602 return target->type->run_algorithm(target,
603 num_mem_params, mem_params, num_reg_params, reg_param,
604 entry_point, exit_point, timeout_ms, arch_info);
605 }
606
607 /// @returns @c true if the target has been examined.
608 bool target_was_examined(struct target_s *target)
609 {
610 return target->type->examined;
611 }
612 /// Sets the @c examined flag for the given target.
613 void target_set_examined(struct target_s *target)
614 {
615 target->type->examined = true;
616 }
617 // Reset the @c examined flag for the given target.
618 void target_reset_examined(struct target_s *target)
619 {
620 target->type->examined = false;
621 }
622
623
624 int target_init(struct command_context_s *cmd_ctx)
625 {
626 target_t *target = all_targets;
627 int retval;
628
629 while (target)
630 {
631 target_reset_examined(target);
632 if (target->type->examine == NULL)
633 {
634 target->type->examine = default_examine;
635 }
636
637 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
638 {
639 LOG_ERROR("target '%s' init failed", target_get_name(target));
640 return retval;
641 }
642
643 /* Set up default functions if none are provided by target */
644 if (target->type->virt2phys == NULL)
645 {
646 target->type->virt2phys = default_virt2phys;
647 }
648 target->type->virt2phys = default_virt2phys;
649 /* a non-invasive way(in terms of patches) to add some code that
650 * runs before the type->write/read_memory implementation
651 */
652 target->type->write_memory_imp = target->type->write_memory;
653 target->type->write_memory = target_write_memory_imp;
654 target->type->read_memory_imp = target->type->read_memory;
655 target->type->read_memory = target_read_memory_imp;
656 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
657 target->type->soft_reset_halt = target_soft_reset_halt_imp;
658 target->type->run_algorithm_imp = target->type->run_algorithm;
659 target->type->run_algorithm = target_run_algorithm_imp;
660
661 if (target->type->mmu == NULL)
662 {
663 target->type->mmu = default_mmu;
664 }
665 target = target->next;
666 }
667
668 if (all_targets)
669 {
670 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
671 return retval;
672 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
673 return retval;
674 }
675
676 return ERROR_OK;
677 }
678
679 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
680 {
681 target_event_callback_t **callbacks_p = &target_event_callbacks;
682
683 if (callback == NULL)
684 {
685 return ERROR_INVALID_ARGUMENTS;
686 }
687
688 if (*callbacks_p)
689 {
690 while ((*callbacks_p)->next)
691 callbacks_p = &((*callbacks_p)->next);
692 callbacks_p = &((*callbacks_p)->next);
693 }
694
695 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
696 (*callbacks_p)->callback = callback;
697 (*callbacks_p)->priv = priv;
698 (*callbacks_p)->next = NULL;
699
700 return ERROR_OK;
701 }
702
703 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
704 {
705 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
706 struct timeval now;
707
708 if (callback == NULL)
709 {
710 return ERROR_INVALID_ARGUMENTS;
711 }
712
713 if (*callbacks_p)
714 {
715 while ((*callbacks_p)->next)
716 callbacks_p = &((*callbacks_p)->next);
717 callbacks_p = &((*callbacks_p)->next);
718 }
719
720 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
721 (*callbacks_p)->callback = callback;
722 (*callbacks_p)->periodic = periodic;
723 (*callbacks_p)->time_ms = time_ms;
724
725 gettimeofday(&now, NULL);
726 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
727 time_ms -= (time_ms % 1000);
728 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
729 if ((*callbacks_p)->when.tv_usec > 1000000)
730 {
731 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
732 (*callbacks_p)->when.tv_sec += 1;
733 }
734
735 (*callbacks_p)->priv = priv;
736 (*callbacks_p)->next = NULL;
737
738 return ERROR_OK;
739 }
740
741 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
742 {
743 target_event_callback_t **p = &target_event_callbacks;
744 target_event_callback_t *c = target_event_callbacks;
745
746 if (callback == NULL)
747 {
748 return ERROR_INVALID_ARGUMENTS;
749 }
750
751 while (c)
752 {
753 target_event_callback_t *next = c->next;
754 if ((c->callback == callback) && (c->priv == priv))
755 {
756 *p = next;
757 free(c);
758 return ERROR_OK;
759 }
760 else
761 p = &(c->next);
762 c = next;
763 }
764
765 return ERROR_OK;
766 }
767
768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
769 {
770 target_timer_callback_t **p = &target_timer_callbacks;
771 target_timer_callback_t *c = target_timer_callbacks;
772
773 if (callback == NULL)
774 {
775 return ERROR_INVALID_ARGUMENTS;
776 }
777
778 while (c)
779 {
780 target_timer_callback_t *next = c->next;
781 if ((c->callback == callback) && (c->priv == priv))
782 {
783 *p = next;
784 free(c);
785 return ERROR_OK;
786 }
787 else
788 p = &(c->next);
789 c = next;
790 }
791
792 return ERROR_OK;
793 }
794
795 int target_call_event_callbacks(target_t *target, enum target_event event)
796 {
797 target_event_callback_t *callback = target_event_callbacks;
798 target_event_callback_t *next_callback;
799
800 if (event == TARGET_EVENT_HALTED)
801 {
802 /* execute early halted first */
803 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
804 }
805
806 LOG_DEBUG("target event %i (%s)",
807 event,
808 Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
809
810 target_handle_event( target, event );
811
812 while (callback)
813 {
814 next_callback = callback->next;
815 callback->callback(target, event, callback->priv);
816 callback = next_callback;
817 }
818
819 return ERROR_OK;
820 }
821
822 static int target_timer_callback_periodic_restart(
823 target_timer_callback_t *cb, struct timeval *now)
824 {
825 int time_ms = cb->time_ms;
826 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
827 time_ms -= (time_ms % 1000);
828 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
829 if (cb->when.tv_usec > 1000000)
830 {
831 cb->when.tv_usec = cb->when.tv_usec - 1000000;
832 cb->when.tv_sec += 1;
833 }
834 return ERROR_OK;
835 }
836
837 static int target_call_timer_callback(target_timer_callback_t *cb,
838 struct timeval *now)
839 {
840 cb->callback(cb->priv);
841
842 if (cb->periodic)
843 return target_timer_callback_periodic_restart(cb, now);
844
845 return target_unregister_timer_callback(cb->callback, cb->priv);
846 }
847
848 static int target_call_timer_callbacks_check_time(int checktime)
849 {
850 keep_alive();
851
852 struct timeval now;
853 gettimeofday(&now, NULL);
854
855 target_timer_callback_t *callback = target_timer_callbacks;
856 while (callback)
857 {
858 // cleaning up may unregister and free this callback
859 target_timer_callback_t *next_callback = callback->next;
860
861 bool call_it = callback->callback &&
862 ((!checktime && callback->periodic) ||
863 now.tv_sec > callback->when.tv_sec ||
864 (now.tv_sec == callback->when.tv_sec &&
865 now.tv_usec >= callback->when.tv_usec));
866
867 if (call_it)
868 {
869 int retval = target_call_timer_callback(callback, &now);
870 if (retval != ERROR_OK)
871 return retval;
872 }
873
874 callback = next_callback;
875 }
876
877 return ERROR_OK;
878 }
879
880 int target_call_timer_callbacks(void)
881 {
882 return target_call_timer_callbacks_check_time(1);
883 }
884
885 /* invoke periodic callbacks immediately */
886 int target_call_timer_callbacks_now(void)
887 {
888 return target_call_timer_callbacks_check_time(0);
889 }
890
891 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
892 {
893 working_area_t *c = target->working_areas;
894 working_area_t *new_wa = NULL;
895
896 /* Reevaluate working area address based on MMU state*/
897 if (target->working_areas == NULL)
898 {
899 int retval;
900 int enabled;
901 retval = target->type->mmu(target, &enabled);
902 if (retval != ERROR_OK)
903 {
904 return retval;
905 }
906 if (enabled)
907 {
908 target->working_area = target->working_area_virt;
909 }
910 else
911 {
912 target->working_area = target->working_area_phys;
913 }
914 }
915
916 /* only allocate multiples of 4 byte */
917 if (size % 4)
918 {
919 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
920 size = CEIL(size, 4);
921 }
922
923 /* see if there's already a matching working area */
924 while (c)
925 {
926 if ((c->free) && (c->size == size))
927 {
928 new_wa = c;
929 break;
930 }
931 c = c->next;
932 }
933
934 /* if not, allocate a new one */
935 if (!new_wa)
936 {
937 working_area_t **p = &target->working_areas;
938 u32 first_free = target->working_area;
939 u32 free_size = target->working_area_size;
940
941 LOG_DEBUG("allocating new working area");
942
943 c = target->working_areas;
944 while (c)
945 {
946 first_free += c->size;
947 free_size -= c->size;
948 p = &c->next;
949 c = c->next;
950 }
951
952 if (free_size < size)
953 {
954 LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
955 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
956 }
957
958 new_wa = malloc(sizeof(working_area_t));
959 new_wa->next = NULL;
960 new_wa->size = size;
961 new_wa->address = first_free;
962
963 if (target->backup_working_area)
964 {
965 int retval;
966 new_wa->backup = malloc(new_wa->size);
967 if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
968 {
969 free(new_wa->backup);
970 free(new_wa);
971 return retval;
972 }
973 }
974 else
975 {
976 new_wa->backup = NULL;
977 }
978
979 /* put new entry in list */
980 *p = new_wa;
981 }
982
983 /* mark as used, and return the new (reused) area */
984 new_wa->free = 0;
985 *area = new_wa;
986
987 /* user pointer */
988 new_wa->user = area;
989
990 return ERROR_OK;
991 }
992
993 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
994 {
995 if (area->free)
996 return ERROR_OK;
997
998 if (restore&&target->backup_working_area)
999 {
1000 int retval;
1001 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1002 return retval;
1003 }
1004
1005 area->free = 1;
1006
1007 /* mark user pointer invalid */
1008 *area->user = NULL;
1009 area->user = NULL;
1010
1011 return ERROR_OK;
1012 }
1013
1014 int target_free_working_area(struct target_s *target, working_area_t *area)
1015 {
1016 return target_free_working_area_restore(target, area, 1);
1017 }
1018
1019 /* free resources and restore memory, if restoring memory fails,
1020 * free up resources anyway
1021 */
1022 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1023 {
1024 working_area_t *c = target->working_areas;
1025
1026 while (c)
1027 {
1028 working_area_t *next = c->next;
1029 target_free_working_area_restore(target, c, restore);
1030
1031 if (c->backup)
1032 free(c->backup);
1033
1034 free(c);
1035
1036 c = next;
1037 }
1038
1039 target->working_areas = NULL;
1040 }
1041
1042 void target_free_all_working_areas(struct target_s *target)
1043 {
1044 target_free_all_working_areas_restore(target, 1);
1045 }
1046
1047 int target_register_commands(struct command_context_s *cmd_ctx)
1048 {
1049
1050 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1051
1052
1053
1054
1055 register_jim(cmd_ctx, "target", jim_target, "configure target" );
1056
1057 return ERROR_OK;
1058 }
1059
1060 int target_arch_state(struct target_s *target)
1061 {
1062 int retval;
1063 if (target==NULL)
1064 {
1065 LOG_USER("No target has been configured");
1066 return ERROR_OK;
1067 }
1068
1069 LOG_USER("target state: %s",
1070 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1071
1072 if (target->state!=TARGET_HALTED)
1073 return ERROR_OK;
1074
1075 retval=target->type->arch_state(target);
1076 return retval;
1077 }
1078
1079 /* Single aligned words are guaranteed to use 16 or 32 bit access
1080 * mode respectively, otherwise data is handled as quickly as
1081 * possible
1082 */
1083 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1084 {
1085 int retval;
1086 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1087
1088 if (!target_was_examined(target))
1089 {
1090 LOG_ERROR("Target not examined yet");
1091 return ERROR_FAIL;
1092 }
1093
1094 if (size == 0) {
1095 return ERROR_OK;
1096 }
1097
1098 if ((address + size - 1) < address)
1099 {
1100 /* GDB can request this when e.g. PC is 0xfffffffc*/
1101 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1102 return ERROR_FAIL;
1103 }
1104
1105 if (((address % 2) == 0) && (size == 2))
1106 {
1107 return target_write_memory(target, address, 2, 1, buffer);
1108 }
1109
1110 /* handle unaligned head bytes */
1111 if (address % 4)
1112 {
1113 u32 unaligned = 4 - (address % 4);
1114
1115 if (unaligned > size)
1116 unaligned = size;
1117
1118 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1119 return retval;
1120
1121 buffer += unaligned;
1122 address += unaligned;
1123 size -= unaligned;
1124 }
1125
1126 /* handle aligned words */
1127 if (size >= 4)
1128 {
1129 int aligned = size - (size % 4);
1130
1131 /* use bulk writes above a certain limit. This may have to be changed */
1132 if (aligned > 128)
1133 {
1134 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1135 return retval;
1136 }
1137 else
1138 {
1139 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1140 return retval;
1141 }
1142
1143 buffer += aligned;
1144 address += aligned;
1145 size -= aligned;
1146 }
1147
1148 /* handle tail writes of less than 4 bytes */
1149 if (size > 0)
1150 {
1151 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1152 return retval;
1153 }
1154
1155 return ERROR_OK;
1156 }
1157
1158 /* Single aligned words are guaranteed to use 16 or 32 bit access
1159 * mode respectively, otherwise data is handled as quickly as
1160 * possible
1161 */
1162 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1163 {
1164 int retval;
1165 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1166
1167 if (!target_was_examined(target))
1168 {
1169 LOG_ERROR("Target not examined yet");
1170 return ERROR_FAIL;
1171 }
1172
1173 if (size == 0) {
1174 return ERROR_OK;
1175 }
1176
1177 if ((address + size - 1) < address)
1178 {
1179 /* GDB can request this when e.g. PC is 0xfffffffc*/
1180 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1181 return ERROR_FAIL;
1182 }
1183
1184 if (((address % 2) == 0) && (size == 2))
1185 {
1186 return target_read_memory(target, address, 2, 1, buffer);
1187 }
1188
1189 /* handle unaligned head bytes */
1190 if (address % 4)
1191 {
1192 u32 unaligned = 4 - (address % 4);
1193
1194 if (unaligned > size)
1195 unaligned = size;
1196
1197 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1198 return retval;
1199
1200 buffer += unaligned;
1201 address += unaligned;
1202 size -= unaligned;
1203 }
1204
1205 /* handle aligned words */
1206 if (size >= 4)
1207 {
1208 int aligned = size - (size % 4);
1209
1210 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1211 return retval;
1212
1213 buffer += aligned;
1214 address += aligned;
1215 size -= aligned;
1216 }
1217
1218 /* handle tail writes of less than 4 bytes */
1219 if (size > 0)
1220 {
1221 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1222 return retval;
1223 }
1224
1225 return ERROR_OK;
1226 }
1227
1228 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1229 {
1230 u8 *buffer;
1231 int retval;
1232 u32 i;
1233 u32 checksum = 0;
1234 if (!target_was_examined(target))
1235 {
1236 LOG_ERROR("Target not examined yet");
1237 return ERROR_FAIL;
1238 }
1239
1240 if ((retval = target->type->checksum_memory(target, address,
1241 size, &checksum)) != ERROR_OK)
1242 {
1243 buffer = malloc(size);
1244 if (buffer == NULL)
1245 {
1246 LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1247 return ERROR_INVALID_ARGUMENTS;
1248 }
1249 retval = target_read_buffer(target, address, size, buffer);
1250 if (retval != ERROR_OK)
1251 {
1252 free(buffer);
1253 return retval;
1254 }
1255
1256 /* convert to target endianess */
1257 for (i = 0; i < (size/sizeof(u32)); i++)
1258 {
1259 u32 target_data;
1260 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1261 target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1262 }
1263
1264 retval = image_calculate_checksum( buffer, size, &checksum );
1265 free(buffer);
1266 }
1267
1268 *crc = checksum;
1269
1270 return retval;
1271 }
1272
1273 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1274 {
1275 int retval;
1276 if (!target_was_examined(target))
1277 {
1278 LOG_ERROR("Target not examined yet");
1279 return ERROR_FAIL;
1280 }
1281
1282 if (target->type->blank_check_memory == 0)
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284
1285 retval = target->type->blank_check_memory(target, address, size, blank);
1286
1287 return retval;
1288 }
1289
1290 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1291 {
1292 u8 value_buf[4];
1293 if (!target_was_examined(target))
1294 {
1295 LOG_ERROR("Target not examined yet");
1296 return ERROR_FAIL;
1297 }
1298
1299 int retval = target_read_memory(target, address, 4, 1, value_buf);
1300
1301 if (retval == ERROR_OK)
1302 {
1303 *value = target_buffer_get_u32(target, value_buf);
1304 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1305 }
1306 else
1307 {
1308 *value = 0x0;
1309 LOG_DEBUG("address: 0x%8.8x failed", address);
1310 }
1311
1312 return retval;
1313 }
1314
1315 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1316 {
1317 u8 value_buf[2];
1318 if (!target_was_examined(target))
1319 {
1320 LOG_ERROR("Target not examined yet");
1321 return ERROR_FAIL;
1322 }
1323
1324 int retval = target_read_memory(target, address, 2, 1, value_buf);
1325
1326 if (retval == ERROR_OK)
1327 {
1328 *value = target_buffer_get_u16(target, value_buf);
1329 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1330 }
1331 else
1332 {
1333 *value = 0x0;
1334 LOG_DEBUG("address: 0x%8.8x failed", address);
1335 }
1336
1337 return retval;
1338 }
1339
1340 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1341 {
1342 int retval = target_read_memory(target, address, 1, 1, value);
1343 if (!target_was_examined(target))
1344 {
1345 LOG_ERROR("Target not examined yet");
1346 return ERROR_FAIL;
1347 }
1348
1349 if (retval == ERROR_OK)
1350 {
1351 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1352 }
1353 else
1354 {
1355 *value = 0x0;
1356 LOG_DEBUG("address: 0x%8.8x failed", address);
1357 }
1358
1359 return retval;
1360 }
1361
1362 int target_write_u32(struct target_s *target, u32 address, u32 value)
1363 {
1364 int retval;
1365 u8 value_buf[4];
1366 if (!target_was_examined(target))
1367 {
1368 LOG_ERROR("Target not examined yet");
1369 return ERROR_FAIL;
1370 }
1371
1372 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1373
1374 target_buffer_set_u32(target, value_buf, value);
1375 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1376 {
1377 LOG_DEBUG("failed: %i", retval);
1378 }
1379
1380 return retval;
1381 }
1382
1383 int target_write_u16(struct target_s *target, u32 address, u16 value)
1384 {
1385 int retval;
1386 u8 value_buf[2];
1387 if (!target_was_examined(target))
1388 {
1389 LOG_ERROR("Target not examined yet");
1390 return ERROR_FAIL;
1391 }
1392
1393 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1394
1395 target_buffer_set_u16(target, value_buf, value);
1396 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1397 {
1398 LOG_DEBUG("failed: %i", retval);
1399 }
1400
1401 return retval;
1402 }
1403
1404 int target_write_u8(struct target_s *target, u32 address, u8 value)
1405 {
1406 int retval;
1407 if (!target_was_examined(target))
1408 {
1409 LOG_ERROR("Target not examined yet");
1410 return ERROR_FAIL;
1411 }
1412
1413 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1414
1415 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1416 {
1417 LOG_DEBUG("failed: %i", retval);
1418 }
1419
1420 return retval;
1421 }
1422
1423 int target_register_user_commands(struct command_context_s *cmd_ctx)
1424 {
1425 int retval = ERROR_OK;
1426
1427
1428 /* script procedures */
1429 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1430 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1431 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1432
1433 register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1434 "same args as load_image, image stored in memory - mainly for profiling purposes");
1435
1436 register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1437 "loads active fast load image to current target - mainly for profiling purposes");
1438
1439
1440 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1441 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1442 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1443 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1444 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1445 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1446 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1447 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1448 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1449
1450 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1451 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1452 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1453
1454 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1455 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1456 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1457
1458 register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1459 register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1460 register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1461 register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1462
1463 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1464 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1465 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1466 register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1467
1468 if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1469 return retval;
1470 if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1471 return retval;
1472
1473 return retval;
1474 }
1475
1476 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478 target_t *target = all_targets;
1479
1480 if (argc == 1)
1481 {
1482 target = get_target(args[0]);
1483 if (target == NULL) {
1484 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1485 goto DumpTargets;
1486 }
1487 if (!target->tap->enabled) {
1488 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1489 "can't be the current target\n",
1490 target->tap->dotted_name);
1491 return ERROR_FAIL;
1492 }
1493
1494 cmd_ctx->current_target = target->target_number;
1495 return ERROR_OK;
1496 }
1497 DumpTargets:
1498
1499 target = all_targets;
1500 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1501 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1502 while (target)
1503 {
1504 const char *state;
1505 char marker = ' ';
1506
1507 if (target->tap->enabled)
1508 state = Jim_Nvp_value2name_simple(nvp_target_state,
1509 target->state)->name;
1510 else
1511 state = "tap-disabled";
1512
1513 if (cmd_ctx->current_target == target->target_number)
1514 marker = '*';
1515
1516 /* keep columns lined up to match the headers above */
1517 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1518 target->target_number,
1519 marker,
1520 target->cmd_name,
1521 target_get_name(target),
1522 Jim_Nvp_value2name_simple(nvp_target_endian,
1523 target->endianness)->name,
1524 target->tap->dotted_name,
1525 state);
1526 target = target->next;
1527 }
1528
1529 return ERROR_OK;
1530 }
1531
1532 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1533
1534 static int powerDropout;
1535 static int srstAsserted;
1536
1537 static int runPowerRestore;
1538 static int runPowerDropout;
1539 static int runSrstAsserted;
1540 static int runSrstDeasserted;
1541
1542 static int sense_handler(void)
1543 {
1544 static int prevSrstAsserted = 0;
1545 static int prevPowerdropout = 0;
1546
1547 int retval;
1548 if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1549 return retval;
1550
1551 int powerRestored;
1552 powerRestored = prevPowerdropout && !powerDropout;
1553 if (powerRestored)
1554 {
1555 runPowerRestore = 1;
1556 }
1557
1558 long long current = timeval_ms();
1559 static long long lastPower = 0;
1560 int waitMore = lastPower + 2000 > current;
1561 if (powerDropout && !waitMore)
1562 {
1563 runPowerDropout = 1;
1564 lastPower = current;
1565 }
1566
1567 if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1568 return retval;
1569
1570 int srstDeasserted;
1571 srstDeasserted = prevSrstAsserted && !srstAsserted;
1572
1573 static long long lastSrst = 0;
1574 waitMore = lastSrst + 2000 > current;
1575 if (srstDeasserted && !waitMore)
1576 {
1577 runSrstDeasserted = 1;
1578 lastSrst = current;
1579 }
1580
1581 if (!prevSrstAsserted && srstAsserted)
1582 {
1583 runSrstAsserted = 1;
1584 }
1585
1586 prevSrstAsserted = srstAsserted;
1587 prevPowerdropout = powerDropout;
1588
1589 if (srstDeasserted || powerRestored)
1590 {
1591 /* Other than logging the event we can't do anything here.
1592 * Issuing a reset is a particularly bad idea as we might
1593 * be inside a reset already.
1594 */
1595 }
1596
1597 return ERROR_OK;
1598 }
1599
1600 /* process target state changes */
1601 int handle_target(void *priv)
1602 {
1603 int retval = ERROR_OK;
1604
1605 /* we do not want to recurse here... */
1606 static int recursive = 0;
1607 if (! recursive)
1608 {
1609 recursive = 1;
1610 sense_handler();
1611 /* danger! running these procedures can trigger srst assertions and power dropouts.
1612 * We need to avoid an infinite loop/recursion here and we do that by
1613 * clearing the flags after running these events.
1614 */
1615 int did_something = 0;
1616 if (runSrstAsserted)
1617 {
1618 Jim_Eval( interp, "srst_asserted");
1619 did_something = 1;
1620 }
1621 if (runSrstDeasserted)
1622 {
1623 Jim_Eval( interp, "srst_deasserted");
1624 did_something = 1;
1625 }
1626 if (runPowerDropout)
1627 {
1628 Jim_Eval( interp, "power_dropout");
1629 did_something = 1;
1630 }
1631 if (runPowerRestore)
1632 {
1633 Jim_Eval( interp, "power_restore");
1634 did_something = 1;
1635 }
1636
1637 if (did_something)
1638 {
1639 /* clear detect flags */
1640 sense_handler();
1641 }
1642
1643 /* clear action flags */
1644
1645 runSrstAsserted=0;
1646 runSrstDeasserted=0;
1647 runPowerRestore=0;
1648 runPowerDropout=0;
1649
1650 recursive = 0;
1651 }
1652
1653 target_t *target = all_targets;
1654
1655 while (target)
1656 {
1657
1658 /* only poll target if we've got power and srst isn't asserted */
1659 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1660 {
1661 /* polling may fail silently until the target has been examined */
1662 if((retval = target_poll(target)) != ERROR_OK)
1663 return retval;
1664 }
1665
1666 target = target->next;
1667 }
1668
1669 return retval;
1670 }
1671
1672 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1673 {
1674 target_t *target;
1675 reg_t *reg = NULL;
1676 int count = 0;
1677 char *value;
1678
1679 LOG_DEBUG("-");
1680
1681 target = get_current_target(cmd_ctx);
1682
1683 /* list all available registers for the current target */
1684 if (argc == 0)
1685 {
1686 reg_cache_t *cache = target->reg_cache;
1687
1688 count = 0;
1689 while(cache)
1690 {
1691 int i;
1692 for (i = 0; i < cache->num_regs; i++)
1693 {
1694 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1695 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1696 free(value);
1697 }
1698 cache = cache->next;
1699 }
1700
1701 return ERROR_OK;
1702 }
1703
1704 /* access a single register by its ordinal number */
1705 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1706 {
1707 unsigned num;
1708 int retval = parse_uint(args[0], &num);
1709 if (ERROR_OK != retval)
1710 return ERROR_COMMAND_SYNTAX_ERROR;
1711
1712 reg_cache_t *cache = target->reg_cache;
1713 count = 0;
1714 while(cache)
1715 {
1716 int i;
1717 for (i = 0; i < cache->num_regs; i++)
1718 {
1719 if (count++ == (int)num)
1720 {
1721 reg = &cache->reg_list[i];
1722 break;
1723 }
1724 }
1725 if (reg)
1726 break;
1727 cache = cache->next;
1728 }
1729
1730 if (!reg)
1731 {
1732 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1733 return ERROR_OK;
1734 }
1735 } else /* access a single register by its name */
1736 {
1737 reg = register_get_by_name(target->reg_cache, args[0], 1);
1738
1739 if (!reg)
1740 {
1741 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1742 return ERROR_OK;
1743 }
1744 }
1745
1746 /* display a register */
1747 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1748 {
1749 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1750 reg->valid = 0;
1751
1752 if (reg->valid == 0)
1753 {
1754 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1755 arch_type->get(reg);
1756 }
1757 value = buf_to_str(reg->value, reg->size, 16);
1758 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1759 free(value);
1760 return ERROR_OK;
1761 }
1762
1763 /* set register value */
1764 if (argc == 2)
1765 {
1766 u8 *buf = malloc(CEIL(reg->size, 8));
1767 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1768
1769 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1770 arch_type->set(reg, buf);
1771
1772 value = buf_to_str(reg->value, reg->size, 16);
1773 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1774 free(value);
1775
1776 free(buf);
1777
1778 return ERROR_OK;
1779 }
1780
1781 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1782
1783 return ERROR_OK;
1784 }
1785
1786 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788 int retval = ERROR_OK;
1789 target_t *target = get_current_target(cmd_ctx);
1790
1791 if (argc == 0)
1792 {
1793 command_print(cmd_ctx, "background polling: %s",
1794 target_continous_poll ? "on" : "off");
1795 if ((retval = target_poll(target)) != ERROR_OK)
1796 return retval;
1797 if ((retval = target_arch_state(target)) != ERROR_OK)
1798 return retval;
1799
1800 }
1801 else if (argc==1)
1802 {
1803 if (strcmp(args[0], "on") == 0)
1804 {
1805 target_continous_poll = 1;
1806 }
1807 else if (strcmp(args[0], "off") == 0)
1808 {
1809 target_continous_poll = 0;
1810 }
1811 else
1812 {
1813 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1814 }
1815 } else
1816 {
1817 return ERROR_COMMAND_SYNTAX_ERROR;
1818 }
1819
1820 return retval;
1821 }
1822
1823 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1824 {
1825 if (argc > 1)
1826 return ERROR_COMMAND_SYNTAX_ERROR;
1827
1828 unsigned ms = 5000;
1829 if (1 == argc)
1830 {
1831 int retval = parse_uint(args[0], &ms);
1832 if (ERROR_OK != retval)
1833 {
1834 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1835 return ERROR_COMMAND_SYNTAX_ERROR;
1836 }
1837 // convert seconds (given) to milliseconds (needed)
1838 ms *= 1000;
1839 }
1840
1841 target_t *target = get_current_target(cmd_ctx);
1842 return target_wait_state(target, TARGET_HALTED, ms);
1843 }
1844
1845 /* wait for target state to change. The trick here is to have a low
1846 * latency for short waits and not to suck up all the CPU time
1847 * on longer waits.
1848 *
1849 * After 500ms, keep_alive() is invoked
1850 */
1851 int target_wait_state(target_t *target, enum target_state state, int ms)
1852 {
1853 int retval;
1854 long long then=0, cur;
1855 int once=1;
1856
1857 for (;;)
1858 {
1859 if ((retval=target_poll(target))!=ERROR_OK)
1860 return retval;
1861 if (target->state == state)
1862 {
1863 break;
1864 }
1865 cur = timeval_ms();
1866 if (once)
1867 {
1868 once=0;
1869 then = timeval_ms();
1870 LOG_DEBUG("waiting for target %s...",
1871 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1872 }
1873
1874 if (cur-then>500)
1875 {
1876 keep_alive();
1877 }
1878
1879 if ((cur-then)>ms)
1880 {
1881 LOG_ERROR("timed out while waiting for target %s",
1882 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1883 return ERROR_FAIL;
1884 }
1885 }
1886
1887 return ERROR_OK;
1888 }
1889
1890 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1891 {
1892 LOG_DEBUG("-");
1893
1894 target_t *target = get_current_target(cmd_ctx);
1895 int retval = target_halt(target);
1896 if (ERROR_OK != retval)
1897 return retval;
1898
1899 if (argc == 1)
1900 {
1901 unsigned wait;
1902 retval = parse_uint(args[0], &wait);
1903 if (ERROR_OK != retval)
1904 return ERROR_COMMAND_SYNTAX_ERROR;
1905 if (!wait)
1906 return ERROR_OK;
1907 }
1908
1909 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1910 }
1911
1912 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1913 {
1914 target_t *target = get_current_target(cmd_ctx);
1915
1916 LOG_USER("requesting target halt and executing a soft reset");
1917
1918 target->type->soft_reset_halt(target);
1919
1920 return ERROR_OK;
1921 }
1922
1923 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925 if (argc > 1)
1926 return ERROR_COMMAND_SYNTAX_ERROR;
1927
1928 enum target_reset_mode reset_mode = RESET_RUN;
1929 if (argc == 1)
1930 {
1931 const Jim_Nvp *n;
1932 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1933 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1934 return ERROR_COMMAND_SYNTAX_ERROR;
1935 }
1936 reset_mode = n->value;
1937 }
1938
1939 /* reset *all* targets */
1940 return target_process_reset(cmd_ctx, reset_mode);
1941 }
1942
1943
1944 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1945 {
1946 if (argc > 1)
1947 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949 target_t *target = get_current_target(cmd_ctx);
1950 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1951
1952 /* with no args, resume from current pc, addr = 0,
1953 * with one arguments, addr = args[0],
1954 * handle breakpoints, not debugging */
1955 u32 addr = 0;
1956 if (argc == 1)
1957 {
1958 int retval = parse_u32(args[0], &addr);
1959 if (ERROR_OK != retval)
1960 return retval;
1961 }
1962
1963 return target_resume(target, 0, addr, 1, 0);
1964 }
1965
1966 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1967 {
1968 if (argc > 1)
1969 return ERROR_COMMAND_SYNTAX_ERROR;
1970
1971 LOG_DEBUG("-");
1972
1973 /* with no args, step from current pc, addr = 0,
1974 * with one argument addr = args[0],
1975 * handle breakpoints, debugging */
1976 u32 addr = 0;
1977 if (argc == 1)
1978 {
1979 int retval = parse_u32(args[0], &addr);
1980 if (ERROR_OK != retval)
1981 return retval;
1982 }
1983
1984 target_t *target = get_current_target(cmd_ctx);
1985 return target->type->step(target, 0, addr, 1);
1986 }
1987
1988 static void handle_md_output(struct command_context_s *cmd_ctx,
1989 struct target_s *target, u32 address, unsigned size,
1990 unsigned count, const u8 *buffer)
1991 {
1992 const unsigned line_bytecnt = 32;
1993 unsigned line_modulo = line_bytecnt / size;
1994
1995 char output[line_bytecnt * 4 + 1];
1996 unsigned output_len = 0;
1997
1998 const char *value_fmt;
1999 switch (size) {
2000 case 4: value_fmt = "%8.8x "; break;
2001 case 2: value_fmt = "%4.2x "; break;
2002 case 1: value_fmt = "%2.2x "; break;
2003 default:
2004 LOG_ERROR("invalid memory read size: %u", size);
2005 exit(-1);
2006 }
2007
2008 for (unsigned i = 0; i < count; i++)
2009 {
2010 if (i % line_modulo == 0)
2011 {
2012 output_len += snprintf(output + output_len,
2013 sizeof(output) - output_len,
2014 "0x%8.8x: ", address + (i*size));
2015 }
2016
2017 u32 value=0;
2018 const u8 *value_ptr = buffer + i * size;
2019 switch (size) {
2020 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2021 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2022 case 1: value = *value_ptr;
2023 }
2024 output_len += snprintf(output + output_len,
2025 sizeof(output) - output_len,
2026 value_fmt, value);
2027
2028 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2029 {
2030 command_print(cmd_ctx, "%s", output);
2031 output_len = 0;
2032 }
2033 }
2034 }
2035
2036 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2037 {
2038 if (argc < 1)
2039 return ERROR_COMMAND_SYNTAX_ERROR;
2040
2041 unsigned size = 0;
2042 switch (cmd[2]) {
2043 case 'w': size = 4; break;
2044 case 'h': size = 2; break;
2045 case 'b': size = 1; break;
2046 default: return ERROR_COMMAND_SYNTAX_ERROR;
2047 }
2048
2049 u32 address;
2050 int retval = parse_u32(args[0], &address);
2051 if (ERROR_OK != retval)
2052 return retval;
2053
2054 unsigned count = 1;
2055 if (argc == 2)
2056 {
2057 retval = parse_uint(args[1], &count);
2058 if (ERROR_OK != retval)
2059 return retval;
2060 }
2061
2062 u8 *buffer = calloc(count, size);
2063
2064 target_t *target = get_current_target(cmd_ctx);
2065 retval = target_read_memory(target,
2066 address, size, count, buffer);
2067 if (ERROR_OK == retval)
2068 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2069
2070 free(buffer);
2071
2072 return retval;
2073 }
2074
2075 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2076 {
2077 if ((argc < 2) || (argc > 3))
2078 return ERROR_COMMAND_SYNTAX_ERROR;
2079
2080 u32 address;
2081 int retval = parse_u32(args[0], &address);
2082 if (ERROR_OK != retval)
2083 return retval;
2084
2085 u32 value;
2086 retval = parse_u32(args[1], &value);
2087 if (ERROR_OK != retval)
2088 return retval;
2089
2090 unsigned count = 1;
2091 if (argc == 3)
2092 {
2093 retval = parse_uint(args[2], &count);
2094 if (ERROR_OK != retval)
2095 return retval;
2096 }
2097
2098 target_t *target = get_current_target(cmd_ctx);
2099 unsigned wordsize;
2100 u8 value_buf[4];
2101 switch (cmd[2])
2102 {
2103 case 'w':
2104 wordsize = 4;
2105 target_buffer_set_u32(target, value_buf, value);
2106 break;
2107 case 'h':
2108 wordsize = 2;
2109 target_buffer_set_u16(target, value_buf, value);
2110 break;
2111 case 'b':
2112 wordsize = 1;
2113 value_buf[0] = value;
2114 break;
2115 default:
2116 return ERROR_COMMAND_SYNTAX_ERROR;
2117 }
2118 for (unsigned i = 0; i < count; i++)
2119 {
2120 retval = target_write_memory(target,
2121 address + i * wordsize, wordsize, 1, value_buf);
2122 if (ERROR_OK != retval)
2123 return retval;
2124 keep_alive();
2125 }
2126
2127 return ERROR_OK;
2128
2129 }
2130
2131 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2132 {
2133 u8 *buffer;
2134 u32 buf_cnt;
2135 u32 image_size;
2136 u32 min_address=0;
2137 u32 max_address=0xffffffff;
2138 int i;
2139 int retval, retvaltemp;
2140
2141 image_t image;
2142
2143 duration_t duration;
2144 char *duration_text;
2145
2146 target_t *target = get_current_target(cmd_ctx);
2147
2148 if ((argc < 1)||(argc > 5))
2149 {
2150 return ERROR_COMMAND_SYNTAX_ERROR;
2151 }
2152
2153 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2154 if (argc >= 2)
2155 {
2156 u32 addr;
2157 retval = parse_u32(args[1], &addr);
2158 if (ERROR_OK != retval)
2159 return ERROR_COMMAND_SYNTAX_ERROR;
2160 image.base_address = addr;
2161 image.base_address_set = 1;
2162 }
2163 else
2164 {
2165 image.base_address_set = 0;
2166 }
2167
2168
2169 image.start_address_set = 0;
2170
2171 if (argc>=4)
2172 {
2173 retval = parse_u32(args[3], &min_address);
2174 if (ERROR_OK != retval)
2175 return ERROR_COMMAND_SYNTAX_ERROR;
2176 }
2177 if (argc>=5)
2178 {
2179 retval = parse_u32(args[4], &max_address);
2180 if (ERROR_OK != retval)
2181 return ERROR_COMMAND_SYNTAX_ERROR;
2182 // use size (given) to find max (required)
2183 max_address += min_address;
2184 }
2185
2186 if (min_address>max_address)
2187 {
2188 return ERROR_COMMAND_SYNTAX_ERROR;
2189 }
2190
2191 duration_start_measure(&duration);
2192
2193 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2194 {
2195 return ERROR_OK;
2196 }
2197
2198 image_size = 0x0;
2199 retval = ERROR_OK;
2200 for (i = 0; i < image.num_sections; i++)
2201 {
2202 buffer = malloc(image.sections[i].size);
2203 if (buffer == NULL)
2204 {
2205 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2206 break;
2207 }
2208
2209 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2210 {
2211 free(buffer);
2212 break;
2213 }
2214
2215 u32 offset=0;
2216 u32 length=buf_cnt;
2217
2218 /* DANGER!!! beware of unsigned comparision here!!! */
2219
2220 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2221 (image.sections[i].base_address<max_address))
2222 {
2223 if (image.sections[i].base_address<min_address)
2224 {
2225 /* clip addresses below */
2226 offset+=min_address-image.sections[i].base_address;
2227 length-=offset;
2228 }
2229
2230 if (image.sections[i].base_address+buf_cnt>max_address)
2231 {
2232 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2233 }
2234
2235 if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2236 {
2237 free(buffer);
2238 break;
2239 }
2240 image_size += length;
2241 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2242 }
2243
2244 free(buffer);
2245 }
2246
2247 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2248 {
2249 image_close(&image);
2250 return retvaltemp;
2251 }
2252
2253 if (retval==ERROR_OK)
2254 {
2255 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2256 }
2257 free(duration_text);
2258
2259 image_close(&image);
2260
2261 return retval;
2262
2263 }
2264
2265 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2266 {
2267 fileio_t fileio;
2268
2269 u8 buffer[560];
2270 int retvaltemp;
2271
2272 duration_t duration;
2273 char *duration_text;
2274
2275 target_t *target = get_current_target(cmd_ctx);
2276
2277 if (argc != 3)
2278 {
2279 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2280 return ERROR_OK;
2281 }
2282
2283 u32 address;
2284 int retval = parse_u32(args[1], &address);
2285 if (ERROR_OK != retval)
2286 return retval;
2287
2288 u32 size;
2289 retval = parse_u32(args[2], &size);
2290 if (ERROR_OK != retval)
2291 return retval;
2292
2293 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2294 {
2295 return ERROR_OK;
2296 }
2297
2298 duration_start_measure(&duration);
2299
2300 while (size > 0)
2301 {
2302 u32 size_written;
2303 u32 this_run_size = (size > 560) ? 560 : size;
2304
2305 retval = target_read_buffer(target, address, this_run_size, buffer);
2306 if (retval != ERROR_OK)
2307 {
2308 break;
2309 }
2310
2311 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2312 if (retval != ERROR_OK)
2313 {
2314 break;
2315 }
2316
2317 size -= this_run_size;
2318 address += this_run_size;
2319 }
2320
2321 if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2322 return retvaltemp;
2323
2324 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2325 return retvaltemp;
2326
2327 if (retval==ERROR_OK)
2328 {
2329 command_print(cmd_ctx, "dumped %lld byte in %s",
2330 fileio.size, duration_text);
2331 free(duration_text);
2332 }
2333
2334 return retval;
2335 }
2336
2337 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2338 {
2339 u8 *buffer;
2340 u32 buf_cnt;
2341 u32 image_size;
2342 int i;
2343 int retval, retvaltemp;
2344 u32 checksum = 0;
2345 u32 mem_checksum = 0;
2346
2347 image_t image;
2348
2349 duration_t duration;
2350 char *duration_text;
2351
2352 target_t *target = get_current_target(cmd_ctx);
2353
2354 if (argc < 1)
2355 {
2356 return ERROR_COMMAND_SYNTAX_ERROR;
2357 }
2358
2359 if (!target)
2360 {
2361 LOG_ERROR("no target selected");
2362 return ERROR_FAIL;
2363 }
2364
2365 duration_start_measure(&duration);
2366
2367 if (argc >= 2)
2368 {
2369 u32 addr;
2370 retval = parse_u32(args[1], &addr);
2371 if (ERROR_OK != retval)
2372 return ERROR_COMMAND_SYNTAX_ERROR;
2373 image.base_address = addr;
2374 image.base_address_set = 1;
2375 }
2376 else
2377 {
2378 image.base_address_set = 0;
2379 image.base_address = 0x0;
2380 }
2381
2382 image.start_address_set = 0;
2383
2384 if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2385 {
2386 return retval;
2387 }
2388
2389 image_size = 0x0;
2390 retval=ERROR_OK;
2391 for (i = 0; i < image.num_sections; i++)
2392 {
2393 buffer = malloc(image.sections[i].size);
2394 if (buffer == NULL)
2395 {
2396 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2397 break;
2398 }
2399 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2400 {
2401 free(buffer);
2402 break;
2403 }
2404
2405 if (verify)
2406 {
2407 /* calculate checksum of image */
2408 image_calculate_checksum( buffer, buf_cnt, &checksum );
2409
2410 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2411 if( retval != ERROR_OK )
2412 {
2413 free(buffer);
2414 break;
2415 }
2416
2417 if( checksum != mem_checksum )
2418 {
2419 /* failed crc checksum, fall back to a binary compare */
2420 u8 *data;
2421
2422 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2423
2424 data = (u8*)malloc(buf_cnt);
2425
2426 /* Can we use 32bit word accesses? */
2427 int size = 1;
2428 int count = buf_cnt;
2429 if ((count % 4) == 0)
2430 {
2431 size *= 4;
2432 count /= 4;
2433 }
2434 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2435 if (retval == ERROR_OK)
2436 {
2437 u32 t;
2438 for (t = 0; t < buf_cnt; t++)
2439 {
2440 if (data[t] != buffer[t])
2441 {
2442 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2443 free(data);
2444 free(buffer);
2445 retval=ERROR_FAIL;
2446 goto done;
2447 }
2448 if ((t%16384)==0)
2449 {
2450 keep_alive();
2451 }
2452 }
2453 }
2454
2455 free(data);
2456 }
2457 } else
2458 {
2459 command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2460 }
2461
2462 free(buffer);
2463 image_size += buf_cnt;
2464 }
2465 done:
2466
2467 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2468 {
2469 image_close(&image);
2470 return retvaltemp;
2471 }
2472
2473 if (retval==ERROR_OK)
2474 {
2475 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2476 }
2477 free(duration_text);
2478
2479 image_close(&image);
2480
2481 return retval;
2482 }
2483
2484 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2485 {
2486 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2487 }
2488
2489 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2490 {
2491 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2492 }
2493
2494 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2495 {
2496 target_t *target = get_current_target(cmd_ctx);
2497 breakpoint_t *breakpoint = target->breakpoints;
2498 while (breakpoint)
2499 {
2500 if (breakpoint->type == BKPT_SOFT)
2501 {
2502 char* buf = buf_to_str(breakpoint->orig_instr,
2503 breakpoint->length, 16);
2504 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2505 breakpoint->address, breakpoint->length,
2506 breakpoint->set, buf);
2507 free(buf);
2508 }
2509 else
2510 {
2511 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2512 breakpoint->address, breakpoint->length, breakpoint->set);
2513 }
2514
2515 breakpoint = breakpoint->next;
2516 }
2517 return ERROR_OK;
2518 }
2519
2520 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2521 u32 addr, u32 length, int hw)
2522 {
2523 target_t *target = get_current_target(cmd_ctx);
2524 int retval = breakpoint_add(target, addr, length, hw);
2525 if (ERROR_OK == retval)
2526 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2527 else
2528 LOG_ERROR("Failure setting breakpoint");
2529 return retval;
2530 }
2531
2532 static int handle_bp_command(struct command_context_s *cmd_ctx,
2533 char *cmd, char **args, int argc)
2534 {
2535 if (argc == 0)
2536 return handle_bp_command_list(cmd_ctx);
2537
2538 if (argc < 2 || argc > 3)
2539 {
2540 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2541 return ERROR_COMMAND_SYNTAX_ERROR;
2542 }
2543
2544 u32 addr;
2545 int retval = parse_u32(args[0], &addr);
2546 if (ERROR_OK != retval)
2547 return retval;
2548
2549 u32 length;
2550 retval = parse_u32(args[1], &length);
2551 if (ERROR_OK != retval)
2552 return retval;
2553
2554 int hw = BKPT_SOFT;
2555 if (argc == 3)
2556 {
2557 if (strcmp(args[2], "hw") == 0)
2558 hw = BKPT_HARD;
2559 else
2560 return ERROR_COMMAND_SYNTAX_ERROR;
2561 }
2562
2563 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2564 }
2565
2566 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2567 {
2568 if (argc != 1)
2569 return ERROR_COMMAND_SYNTAX_ERROR;
2570
2571 u32 addr;
2572 int retval = parse_u32(args[0], &addr);
2573 if (ERROR_OK != retval)
2574 return retval;
2575
2576 target_t *target = get_current_target(cmd_ctx);
2577 breakpoint_remove(target, addr);
2578
2579 return ERROR_OK;
2580 }
2581
2582 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2583 {
2584 target_t *target = get_current_target(cmd_ctx);
2585
2586 if (argc == 0)
2587 {
2588 watchpoint_t *watchpoint = target->watchpoints;
2589
2590 while (watchpoint)
2591 {
2592 command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2593 watchpoint = watchpoint->next;
2594 }
2595 return ERROR_OK;
2596 }
2597
2598 enum watchpoint_rw type = WPT_ACCESS;
2599 u32 addr = 0;
2600 u32 length = 0;
2601 u32 data_value = 0x0;
2602 u32 data_mask = 0xffffffff;
2603 int retval;
2604
2605 switch (argc)
2606 {
2607 case 5:
2608 retval = parse_u32(args[4], &data_mask);
2609 if (ERROR_OK != retval)
2610 return retval;
2611 // fall through
2612 case 4:
2613 retval = parse_u32(args[3], &data_value);
2614 if (ERROR_OK != retval)
2615 return retval;
2616 // fall through
2617 case 3:
2618 switch(args[2][0])
2619 {
2620 case 'r':
2621 type = WPT_READ;
2622 break;
2623 case 'w':
2624 type = WPT_WRITE;
2625 break;
2626 case 'a':
2627 type = WPT_ACCESS;
2628 break;
2629 default:
2630 LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2631 return ERROR_COMMAND_SYNTAX_ERROR;
2632 }
2633 // fall through
2634 case 2:
2635 retval = parse_u32(args[1], &length);
2636 if (ERROR_OK != retval)
2637 return retval;
2638 retval = parse_u32(args[0], &addr);
2639 if (ERROR_OK != retval)
2640 return retval;
2641 break;
2642
2643 default:
2644 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2645 return ERROR_COMMAND_SYNTAX_ERROR;
2646 }
2647
2648 retval = watchpoint_add(target, addr, length, type,
2649 data_value, data_mask);
2650 if (ERROR_OK != retval)
2651 LOG_ERROR("Failure setting watchpoints");
2652
2653 return retval;
2654 }
2655
2656 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2657 {
2658 if (argc != 1)
2659 return ERROR_COMMAND_SYNTAX_ERROR;
2660
2661 u32 addr;
2662 int retval = parse_u32(args[0], &addr);
2663 if (ERROR_OK != retval)
2664 return retval;
2665
2666 target_t *target = get_current_target(cmd_ctx);
2667 watchpoint_remove(target, addr);
2668
2669 return ERROR_OK;
2670 }
2671
2672
2673 /**
2674 * Translate a virtual address to a physical address.
2675 *
2676 * The low-level target implementation must have logged a detailed error
2677 * which is forwarded to telnet/GDB session.
2678 */
2679 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2680 char *cmd, char **args, int argc)
2681 {
2682 if (argc != 1)
2683 return ERROR_COMMAND_SYNTAX_ERROR;
2684
2685 u32 va;
2686 int retval = parse_u32(args[0], &va);
2687 if (ERROR_OK != retval)
2688 return retval;
2689 u32 pa;
2690
2691 target_t *target = get_current_target(cmd_ctx);
2692 retval = target->type->virt2phys(target, va, &pa);
2693 if (retval == ERROR_OK)
2694 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2695
2696 return retval;
2697 }
2698
2699 static void writeData(FILE *f, const void *data, size_t len)
2700 {
2701 size_t written = fwrite(data, 1, len, f);
2702 if (written != len)
2703 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2704 }
2705
2706 static void writeLong(FILE *f, int l)
2707 {
2708 int i;
2709 for (i=0; i<4; i++)
2710 {
2711 char c=(l>>(i*8))&0xff;
2712 writeData(f, &c, 1);
2713 }
2714
2715 }
2716
2717 static void writeString(FILE *f, char *s)
2718 {
2719 writeData(f, s, strlen(s));
2720 }
2721
2722 /* Dump a gmon.out histogram file. */
2723 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2724 {
2725 u32 i;
2726 FILE *f=fopen(filename, "w");
2727 if (f==NULL)
2728 return;
2729 writeString(f, "gmon");
2730 writeLong(f, 0x00000001); /* Version */
2731 writeLong(f, 0); /* padding */
2732 writeLong(f, 0); /* padding */
2733 writeLong(f, 0); /* padding */
2734
2735 u8 zero = 0; /* GMON_TAG_TIME_HIST */
2736 writeData(f, &zero, 1);
2737
2738 /* figure out bucket size */
2739 u32 min=samples[0];
2740 u32 max=samples[0];
2741 for (i=0; i<sampleNum; i++)
2742 {
2743 if (min>samples[i])
2744 {
2745 min=samples[i];
2746 }
2747 if (max<samples[i])
2748 {
2749 max=samples[i];
2750 }
2751 }
2752
2753 int addressSpace=(max-min+1);
2754
2755 static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2756 u32 length = addressSpace;
2757 if (length > maxBuckets)
2758 {
2759 length=maxBuckets;
2760 }
2761 int *buckets=malloc(sizeof(int)*length);
2762 if (buckets==NULL)
2763 {
2764 fclose(f);
2765 return;
2766 }
2767 memset(buckets, 0, sizeof(int)*length);
2768 for (i=0; i<sampleNum;i++)
2769 {
2770 u32 address=samples[i];
2771 long long a=address-min;
2772 long long b=length-1;
2773 long long c=addressSpace-1;
2774 int index=(a*b)/c; /* danger!!!! int32 overflows */
2775 buckets[index]++;
2776 }
2777
2778 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2779 writeLong(f, min); /* low_pc */
2780 writeLong(f, max); /* high_pc */
2781 writeLong(f, length); /* # of samples */
2782 writeLong(f, 64000000); /* 64MHz */
2783 writeString(f, "seconds");
2784 for (i=0; i<(15-strlen("seconds")); i++)
2785 writeData(f, &zero, 1);
2786 writeString(f, "s");
2787
2788 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2789
2790 char *data=malloc(2*length);
2791 if (data!=NULL)
2792 {
2793 for (i=0; i<length;i++)
2794 {
2795 int val;
2796 val=buckets[i];
2797 if (val>65535)
2798 {
2799 val=65535;
2800 }
2801 data[i*2]=val&0xff;
2802 data[i*2+1]=(val>>8)&0xff;
2803 }
2804 free(buckets);
2805 writeData(f, data, length * 2);
2806 free(data);
2807 } else
2808 {
2809 free(buckets);
2810 }
2811
2812 fclose(f);
2813 }
2814
2815 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2816 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2817 {
2818 target_t *target = get_current_target(cmd_ctx);
2819 struct timeval timeout, now;
2820
2821 gettimeofday(&timeout, NULL);
2822 if (argc!=2)
2823 {
2824 return ERROR_COMMAND_SYNTAX_ERROR;
2825 }
2826 unsigned offset;
2827 int retval = parse_uint(args[0], &offset);
2828 if (ERROR_OK != retval)
2829 return retval;
2830
2831 timeval_add_time(&timeout, offset, 0);
2832
2833 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2834
2835 static const int maxSample=10000;
2836 u32 *samples=malloc(sizeof(u32)*maxSample);
2837 if (samples==NULL)
2838 return ERROR_OK;
2839
2840 int numSamples=0;
2841 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2842 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2843
2844 for (;;)
2845 {
2846 target_poll(target);
2847 if (target->state == TARGET_HALTED)
2848 {
2849 u32 t=*((u32 *)reg->value);
2850 samples[numSamples++]=t;
2851 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2852 target_poll(target);
2853 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2854 } else if (target->state == TARGET_RUNNING)
2855 {
2856 /* We want to quickly sample the PC. */
2857 if((retval = target_halt(target)) != ERROR_OK)
2858 {
2859 free(samples);
2860 return retval;
2861 }
2862 } else
2863 {
2864 command_print(cmd_ctx, "Target not halted or running");
2865 retval=ERROR_OK;
2866 break;
2867 }
2868 if (retval!=ERROR_OK)
2869 {
2870 break;
2871 }
2872
2873 gettimeofday(&now, NULL);
2874 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2875 {
2876 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2877 if((retval = target_poll(target)) != ERROR_OK)
2878 {
2879 free(samples);
2880 return retval;
2881 }
2882 if (target->state == TARGET_HALTED)
2883 {
2884 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2885 }
2886 if((retval = target_poll(target)) != ERROR_OK)
2887 {
2888 free(samples);
2889 return retval;
2890 }
2891 writeGmon(samples, numSamples, args[1]);
2892 command_print(cmd_ctx, "Wrote %s", args[1]);
2893 break;
2894 }
2895 }
2896 free(samples);
2897
2898 return ERROR_OK;
2899 }
2900
2901 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2902 {
2903 char *namebuf;
2904 Jim_Obj *nameObjPtr, *valObjPtr;
2905 int result;
2906
2907 namebuf = alloc_printf("%s(%d)", varname, idx);
2908 if (!namebuf)
2909 return JIM_ERR;
2910
2911 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2912 valObjPtr = Jim_NewIntObj(interp, val);
2913 if (!nameObjPtr || !valObjPtr)
2914 {
2915 free(namebuf);
2916 return JIM_ERR;
2917 }
2918
2919 Jim_IncrRefCount(nameObjPtr);
2920 Jim_IncrRefCount(valObjPtr);
2921 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2922 Jim_DecrRefCount(interp, nameObjPtr);
2923 Jim_DecrRefCount(interp, valObjPtr);
2924 free(namebuf);
2925 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2926 return result;
2927 }
2928
2929 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2930 {
2931 command_context_t *context;
2932 target_t *target;
2933
2934 context = Jim_GetAssocData(interp, "context");
2935 if (context == NULL)
2936 {
2937 LOG_ERROR("mem2array: no command context");
2938 return JIM_ERR;
2939 }
2940 target = get_current_target(context);
2941 if (target == NULL)
2942 {
2943 LOG_ERROR("mem2array: no current target");
2944 return JIM_ERR;
2945 }
2946
2947 return target_mem2array(interp, target, argc-1, argv+1);
2948 }
2949
2950 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2951 {
2952 long l;
2953 u32 width;
2954 int len;
2955 u32 addr;
2956 u32 count;
2957 u32 v;
2958 const char *varname;
2959 u8 buffer[4096];
2960 int n, e, retval;
2961 u32 i;
2962
2963 /* argv[1] = name of array to receive the data
2964 * argv[2] = desired width
2965 * argv[3] = memory address
2966 * argv[4] = count of times to read
2967 */
2968 if (argc != 4) {
2969 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2970 return JIM_ERR;
2971 }
2972 varname = Jim_GetString(argv[0], &len);
2973 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2974
2975 e = Jim_GetLong(interp, argv[1], &l);
2976 width = l;
2977 if (e != JIM_OK) {
2978 return e;
2979 }
2980
2981 e = Jim_GetLong(interp, argv[2], &l);
2982 addr = l;
2983 if (e != JIM_OK) {
2984 return e;
2985 }
2986 e = Jim_GetLong(interp, argv[3], &l);
2987 len = l;
2988 if (e != JIM_OK) {
2989 return e;
2990 }
2991 switch (width) {
2992 case 8:
2993 width = 1;
2994 break;
2995 case 16:
2996 width = 2;
2997 break;
2998 case 32:
2999 width = 4;
3000 break;
3001 default:
3002 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3003 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3004 return JIM_ERR;
3005 }
3006 if (len == 0) {
3007 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3008 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3009 return JIM_ERR;
3010 }
3011 if ((addr + (len * width)) < addr) {
3012 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3013 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3014 return JIM_ERR;
3015 }
3016 /* absurd transfer size? */
3017 if (len > 65536) {
3018 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3019 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3020 return JIM_ERR;
3021 }
3022
3023 if ((width == 1) ||
3024 ((width == 2) && ((addr & 1) == 0)) ||
3025 ((width == 4) && ((addr & 3) == 0))) {
3026 /* all is well */
3027 } else {
3028 char buf[100];
3029 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3030 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
3031 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3032 return JIM_ERR;
3033 }
3034
3035 /* Transfer loop */
3036
3037 /* index counter */
3038 n = 0;
3039 /* assume ok */
3040 e = JIM_OK;
3041 while (len) {
3042 /* Slurp... in buffer size chunks */
3043
3044 count = len; /* in objects.. */
3045 if (count > (sizeof(buffer)/width)) {
3046 count = (sizeof(buffer)/width);
3047 }
3048
3049 retval = target_read_memory( target, addr, width, count, buffer );
3050 if (retval != ERROR_OK) {
3051 /* BOO !*/
3052 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3053 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3054 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3055 e = JIM_ERR;
3056 len = 0;
3057 } else {
3058 v = 0; /* shut up gcc */
3059 for (i = 0 ;i < count ;i++, n++) {
3060 switch (width) {
3061 case 4:
3062 v = target_buffer_get_u32(target, &buffer[i*width]);
3063 break;
3064 case 2:
3065 v = target_buffer_get_u16(target, &buffer[i*width]);
3066 break;
3067 case 1:
3068 v = buffer[i] & 0x0ff;
3069 break;
3070 }
3071 new_int_array_element(interp, varname, n, v);
3072 }
3073 len -= count;
3074 }
3075 }
3076
3077 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3078
3079 return JIM_OK;
3080 }
3081
3082 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3083 {
3084 char *namebuf;
3085 Jim_Obj *nameObjPtr, *valObjPtr;
3086 int result;
3087 long l;
3088
3089 namebuf = alloc_printf("%s(%d)", varname, idx);
3090 if (!namebuf)
3091 return JIM_ERR;
3092
3093 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3094 if (!nameObjPtr)
3095 {
3096 free(namebuf);
3097 return JIM_ERR;
3098 }
3099
3100 Jim_IncrRefCount(nameObjPtr);
3101 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3102 Jim_DecrRefCount(interp, nameObjPtr);
3103 free(namebuf);
3104 if (valObjPtr == NULL)
3105 return JIM_ERR;
3106
3107 result = Jim_GetLong(interp, valObjPtr, &l);
3108 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3109 *val = l;
3110 return result;
3111 }
3112
3113 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3114 {
3115 command_context_t *context;
3116 target_t *target;
3117
3118 context = Jim_GetAssocData(interp, "context");
3119 if (context == NULL){
3120 LOG_ERROR("array2mem: no command context");
3121 return JIM_ERR;
3122 }
3123 target = get_current_target(context);
3124 if (target == NULL){
3125 LOG_ERROR("array2mem: no current target");
3126 return JIM_ERR;
3127 }
3128
3129 return target_array2mem( interp,target, argc-1, argv+1 );
3130 }
3131
3132 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3133 {
3134 long l;
3135 u32 width;
3136 int len;
3137 u32 addr;
3138 u32 count;
3139 u32 v;
3140 const char *varname;
3141 u8 buffer[4096];
3142 int n, e, retval;
3143 u32 i;
3144
3145 /* argv[1] = name of array to get the data
3146 * argv[2] = desired width
3147 * argv[3] = memory address
3148 * argv[4] = count to write
3149 */
3150 if (argc != 4) {
3151 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3152 return JIM_ERR;
3153 }
3154 varname = Jim_GetString(argv[0], &len);
3155 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3156
3157 e = Jim_GetLong(interp, argv[1], &l);
3158 width = l;
3159 if (e != JIM_OK) {
3160 return e;
3161 }
3162
3163 e = Jim_GetLong(interp, argv[2], &l);
3164 addr = l;
3165 if (e != JIM_OK) {
3166 return e;
3167 }
3168 e = Jim_GetLong(interp, argv[3], &l);
3169 len = l;
3170 if (e != JIM_OK) {
3171 return e;
3172 }
3173 switch (width) {
3174 case 8:
3175 width = 1;
3176 break;
3177 case 16:
3178 width = 2;
3179 break;
3180 case 32:
3181 width = 4;
3182 break;
3183 default:
3184 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3185 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3186 return JIM_ERR;
3187 }
3188 if (len == 0) {
3189 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3190 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3191 return JIM_ERR;
3192 }
3193 if ((addr + (len * width)) < addr) {
3194 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3195 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3196 return JIM_ERR;
3197 }
3198 /* absurd transfer size? */
3199 if (len > 65536) {
3200 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3201 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3202 return JIM_ERR;
3203 }
3204
3205 if ((width == 1) ||
3206 ((width == 2) && ((addr & 1) == 0)) ||
3207 ((width == 4) && ((addr & 3) == 0))) {
3208 /* all is well */
3209 } else {
3210 char buf[100];
3211 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3212 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3213 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3214 return JIM_ERR;
3215 }
3216
3217 /* Transfer loop */
3218
3219 /* index counter */
3220 n = 0;
3221 /* assume ok */
3222 e = JIM_OK;
3223 while (len) {
3224 /* Slurp... in buffer size chunks */
3225
3226 count = len; /* in objects.. */
3227 if (count > (sizeof(buffer)/width)) {
3228 count = (sizeof(buffer)/width);
3229 }
3230
3231 v = 0; /* shut up gcc */
3232 for (i = 0 ;i < count ;i++, n++) {
3233 get_int_array_element(interp, varname, n, &v);
3234 switch (width) {
3235 case 4:
3236 target_buffer_set_u32(target, &buffer[i*width], v);
3237 break;
3238 case 2:
3239 target_buffer_set_u16(target, &buffer[i*width], v);
3240 break;
3241 case 1:
3242 buffer[i] = v & 0x0ff;
3243 break;
3244 }
3245 }
3246 len -= count;
3247
3248 retval = target_write_memory(target, addr, width, count, buffer);
3249 if (retval != ERROR_OK) {
3250 /* BOO !*/
3251 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3252 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3253 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3254 e = JIM_ERR;
3255 len = 0;
3256 }
3257 }
3258
3259 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3260
3261 return JIM_OK;
3262 }
3263
3264 void target_all_handle_event( enum target_event e )
3265 {
3266 target_t *target;
3267
3268 LOG_DEBUG( "**all*targets: event: %d, %s",
3269 e,
3270 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3271
3272 target = all_targets;
3273 while (target){
3274 target_handle_event( target, e );
3275 target = target->next;
3276 }
3277 }
3278
3279 void target_handle_event( target_t *target, enum target_event e )
3280 {
3281 target_event_action_t *teap;
3282 int done;
3283
3284 teap = target->event_action;
3285
3286 done = 0;
3287 while( teap ){
3288 if( teap->event == e ){
3289 done = 1;
3290 LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3291 target->target_number,
3292 target->cmd_name,
3293 target_get_name(target),
3294 e,
3295 Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3296 Jim_GetString( teap->body, NULL ) );
3297 if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3298 {
3299 Jim_PrintErrorMessage(interp);
3300 }
3301 }
3302 teap = teap->next;
3303 }
3304 if( !done ){
3305 LOG_DEBUG( "event: %d %s - no action",
3306 e,
3307 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3308 }
3309 }
3310
3311 enum target_cfg_param {
3312 TCFG_TYPE,
3313 TCFG_EVENT,
3314 TCFG_WORK_AREA_VIRT,
3315 TCFG_WORK_AREA_PHYS,
3316 TCFG_WORK_AREA_SIZE,
3317 TCFG_WORK_AREA_BACKUP,
3318 TCFG_ENDIAN,
3319 TCFG_VARIANT,
3320 TCFG_CHAIN_POSITION,
3321 };
3322
3323 static Jim_Nvp nvp_config_opts[] = {
3324 { .name = "-type", .value = TCFG_TYPE },
3325 { .name = "-event", .value = TCFG_EVENT },
3326 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3327 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3328 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3329 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3330 { .name = "-endian" , .value = TCFG_ENDIAN },
3331 { .name = "-variant", .value = TCFG_VARIANT },
3332 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3333
3334 { .name = NULL, .value = -1 }
3335 };
3336
3337 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3338 {
3339 Jim_Nvp *n;
3340 Jim_Obj *o;
3341 jim_wide w;
3342 char *cp;
3343 int e;
3344
3345 /* parse config or cget options ... */
3346 while( goi->argc > 0 ){
3347 Jim_SetEmptyResult( goi->interp );
3348 /* Jim_GetOpt_Debug( goi ); */
3349
3350 if( target->type->target_jim_configure ){
3351 /* target defines a configure function */
3352 /* target gets first dibs on parameters */
3353 e = (*(target->type->target_jim_configure))( target, goi );
3354 if( e == JIM_OK ){
3355 /* more? */
3356 continue;
3357 }
3358 if( e == JIM_ERR ){
3359 /* An error */
3360 return e;
3361 }
3362 /* otherwise we 'continue' below */
3363 }
3364 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3365 if( e != JIM_OK ){
3366 Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3367 return e;
3368 }
3369 switch( n->value ){
3370 case TCFG_TYPE:
3371 /* not setable */
3372 if( goi->isconfigure ){
3373 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3374 return JIM_ERR;
3375 } else {
3376 no_params:
3377 if( goi->argc != 0 ){
3378 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3379 return JIM_ERR;
3380 }
3381 }
3382 Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3383 /* loop for more */
3384 break;
3385 case TCFG_EVENT:
3386 if( goi->argc == 0 ){
3387 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3388 return JIM_ERR;
3389 }
3390
3391 e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3392 if( e != JIM_OK ){
3393 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3394 return e;
3395 }
3396
3397 if( goi->isconfigure ){
3398 if( goi->argc != 1 ){
3399 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3400 return JIM_ERR;
3401 }
3402 } else {
3403 if( goi->argc != 0 ){
3404 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3405 return JIM_ERR;
3406 }
3407 }
3408
3409 {
3410 target_event_action_t *teap;
3411
3412 teap = target->event_action;
3413 /* replace existing? */
3414 while( teap ){
3415 if( teap->event == (enum target_event)n->value ){
3416 break;
3417 }
3418 teap = teap->next;
3419 }
3420
3421 if( goi->isconfigure ){
3422 if( teap == NULL ){
3423 /* create new */
3424 teap = calloc( 1, sizeof(*teap) );
3425 }
3426 teap->event = n->value;
3427 Jim_GetOpt_Obj( goi, &o );
3428 if( teap->body ){
3429 Jim_DecrRefCount( interp, teap->body );
3430 }
3431 teap->body = Jim_DuplicateObj( goi->interp, o );
3432 /*
3433 * FIXME:
3434 * Tcl/TK - "tk events" have a nice feature.
3435 * See the "BIND" command.
3436 * We should support that here.
3437 * You can specify %X and %Y in the event code.
3438 * The idea is: %T - target name.
3439 * The idea is: %N - target number
3440 * The idea is: %E - event name.
3441 */
3442 Jim_IncrRefCount( teap->body );
3443
3444 /* add to head of event list */
3445 teap->next = target->event_action;
3446 target->event_action = teap;
3447 Jim_SetEmptyResult(goi->interp);
3448 } else {
3449 /* get */
3450 if( teap == NULL ){
3451 Jim_SetEmptyResult( goi->interp );
3452 } else {
3453 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3454 }
3455 }
3456 }
3457 /* loop for more */
3458 break;
3459
3460 case TCFG_WORK_AREA_VIRT:
3461 if( goi->isconfigure ){
3462 target_free_all_working_areas(target);
3463 e = Jim_GetOpt_Wide( goi, &w );
3464 if( e != JIM_OK ){
3465 return e;
3466 }
3467 target->working_area_virt = w;
3468 } else {
3469 if( goi->argc != 0 ){
3470 goto no_params;
3471 }
3472 }
3473 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3474 /* loop for more */
3475 break;
3476
3477 case TCFG_WORK_AREA_PHYS:
3478 if( goi->isconfigure ){
3479 target_free_all_working_areas(target);
3480 e = Jim_GetOpt_Wide( goi, &w );
3481 if( e != JIM_OK ){
3482 return e;
3483 }
3484 target->working_area_phys = w;
3485 } else {
3486 if( goi->argc != 0 ){
3487 goto no_params;
3488 }
3489 }
3490 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3491 /* loop for more */
3492 break;
3493
3494 case TCFG_WORK_AREA_SIZE:
3495 if( goi->isconfigure ){
3496 target_free_all_working_areas(target);
3497 e = Jim_GetOpt_Wide( goi, &w );
3498 if( e != JIM_OK ){
3499 return e;
3500 }
3501 target->working_area_size = w;
3502 } else {
3503 if( goi->argc != 0 ){
3504 goto no_params;
3505 }
3506 }
3507 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3508 /* loop for more */
3509 break;
3510
3511 case TCFG_WORK_AREA_BACKUP:
3512 if( goi->isconfigure ){
3513 target_free_all_working_areas(target);
3514 e = Jim_GetOpt_Wide( goi, &w );
3515 if( e != JIM_OK ){
3516 return e;
3517 }
3518 /* make this exactly 1 or 0 */
3519 target->backup_working_area = (!!w);
3520 } else {
3521 if( goi->argc != 0 ){
3522 goto no_params;
3523 }
3524 }
3525 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3526 /* loop for more e*/
3527 break;
3528
3529 case TCFG_ENDIAN:
3530 if( goi->isconfigure ){
3531 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3532 if( e != JIM_OK ){
3533 Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3534 return e;
3535 }
3536 target->endianness = n->value;
3537 } else {
3538 if( goi->argc != 0 ){
3539 goto no_params;
3540 }
3541 }
3542 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3543 if( n->name == NULL ){
3544 target->endianness = TARGET_LITTLE_ENDIAN;
3545 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3546 }
3547 Jim_SetResultString( goi->interp, n->name, -1 );
3548 /* loop for more */
3549 break;
3550
3551 case TCFG_VARIANT:
3552 if( goi->isconfigure ){
3553 if( goi->argc < 1 ){
3554 Jim_SetResult_sprintf( goi->interp,
3555 "%s ?STRING?",
3556 n->name );
3557 return JIM_ERR;
3558 }
3559 if( target->variant ){
3560 free((void *)(target->variant));
3561 }
3562 e = Jim_GetOpt_String( goi, &cp, NULL );
3563 target->variant = strdup(cp);
3564 } else {
3565 if( goi->argc != 0 ){
3566 goto no_params;
3567 }
3568 }
3569 Jim_SetResultString( goi->interp, target->variant,-1 );
3570 /* loop for more */
3571 break;
3572 case TCFG_CHAIN_POSITION:
3573 if( goi->isconfigure ){
3574 Jim_Obj *o;
3575 jtag_tap_t *tap;
3576 target_free_all_working_areas(target);
3577 e = Jim_GetOpt_Obj( goi, &o );
3578 if( e != JIM_OK ){
3579 return e;
3580 }
3581 tap = jtag_tap_by_jim_obj( goi->interp, o );
3582 if( tap == NULL ){
3583 return JIM_ERR;
3584 }
3585 /* make this exactly 1 or 0 */
3586 target->tap = tap;
3587 } else {
3588 if( goi->argc != 0 ){
3589 goto no_params;
3590 }
3591 }
3592 Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3593 /* loop for more e*/
3594 break;
3595 }
3596 } /* while( goi->argc ) */
3597
3598
3599 /* done - we return */
3600 return JIM_OK;
3601 }
3602
3603 /** this is the 'tcl' handler for the target specific command */
3604 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3605 {
3606 Jim_GetOptInfo goi;
3607 jim_wide a,b,c;
3608 int x,y,z;
3609 u8 target_buf[32];
3610 Jim_Nvp *n;
3611 target_t *target;
3612 struct command_context_s *cmd_ctx;
3613 int e;
3614
3615 enum {
3616 TS_CMD_CONFIGURE,
3617 TS_CMD_CGET,
3618
3619 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3620 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3621 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3622 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3623 TS_CMD_EXAMINE,
3624 TS_CMD_POLL,
3625 TS_CMD_RESET,
3626 TS_CMD_HALT,
3627 TS_CMD_WAITSTATE,
3628 TS_CMD_EVENTLIST,
3629 TS_CMD_CURSTATE,
3630 TS_CMD_INVOKE_EVENT,
3631 };
3632
3633 static const Jim_Nvp target_options[] = {
3634 { .name = "configure", .value = TS_CMD_CONFIGURE },
3635 { .name = "cget", .value = TS_CMD_CGET },
3636 { .name = "mww", .value = TS_CMD_MWW },
3637 { .name = "mwh", .value = TS_CMD_MWH },
3638 { .name = "mwb", .value = TS_CMD_MWB },
3639 { .name = "mdw", .value = TS_CMD_MDW },
3640 { .name = "mdh", .value = TS_CMD_MDH },
3641 { .name = "mdb", .value = TS_CMD_MDB },
3642 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3643 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3644 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3645 { .name = "curstate", .value = TS_CMD_CURSTATE },
3646
3647 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3648 { .name = "arp_poll", .value = TS_CMD_POLL },
3649 { .name = "arp_reset", .value = TS_CMD_RESET },
3650 { .name = "arp_halt", .value = TS_CMD_HALT },
3651 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3652 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3653
3654 { .name = NULL, .value = -1 },
3655 };
3656
3657 /* go past the "command" */
3658 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3659
3660 target = Jim_CmdPrivData( goi.interp );
3661 cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3662
3663 /* commands here are in an NVP table */
3664 e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3665 if( e != JIM_OK ){
3666 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3667 return e;
3668 }
3669 /* Assume blank result */
3670 Jim_SetEmptyResult( goi.interp );
3671
3672 switch( n->value ){
3673 case TS_CMD_CONFIGURE:
3674 if( goi.argc < 2 ){
3675 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3676 return JIM_ERR;
3677 }
3678 goi.isconfigure = 1;
3679 return target_configure( &goi, target );
3680 case TS_CMD_CGET:
3681 // some things take params
3682 if( goi.argc < 1 ){
3683 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3684 return JIM_ERR;
3685 }
3686 goi.isconfigure = 0;
3687 return target_configure( &goi, target );
3688 break;
3689 case TS_CMD_MWW:
3690 case TS_CMD_MWH:
3691 case TS_CMD_MWB:
3692 /* argv[0] = cmd
3693 * argv[1] = address
3694 * argv[2] = data
3695 * argv[3] = optional count.
3696 */
3697
3698 if( (goi.argc == 3) || (goi.argc == 4) ){
3699 /* all is well */
3700 } else {
3701 mwx_error:
3702 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3703 return JIM_ERR;
3704 }
3705
3706 e = Jim_GetOpt_Wide( &goi, &a );
3707 if( e != JIM_OK ){
3708 goto mwx_error;
3709 }
3710
3711 e = Jim_GetOpt_Wide( &goi, &b );
3712 if( e != JIM_OK ){
3713 goto mwx_error;
3714 }
3715 if( goi.argc ){
3716 e = Jim_GetOpt_Wide( &goi, &c );
3717 if( e != JIM_OK ){
3718 goto mwx_error;
3719 }
3720 } else {
3721 c = 1;
3722 }
3723
3724 switch( n->value ){
3725 case TS_CMD_MWW:
3726 target_buffer_set_u32( target, target_buf, b );
3727 b = 4;
3728 break;
3729 case TS_CMD_MWH:
3730 target_buffer_set_u16( target, target_buf, b );
3731 b = 2;
3732 break;
3733 case TS_CMD_MWB:
3734 target_buffer_set_u8( target, target_buf, b );
3735 b = 1;
3736 break;
3737 }
3738 for( x = 0 ; x < c ; x++ ){
3739 e = target_write_memory( target, a, b, 1, target_buf );
3740 if( e != ERROR_OK ){
3741 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3742 return JIM_ERR;
3743 }
3744 /* b = width */
3745 a = a + b;
3746 }
3747 return JIM_OK;
3748 break;
3749
3750 /* display */
3751 case TS_CMD_MDW:
3752 case TS_CMD_MDH:
3753 case TS_CMD_MDB:
3754 /* argv[0] = command
3755 * argv[1] = address
3756 * argv[2] = optional count
3757 */
3758 if( (goi.argc == 2) || (goi.argc == 3) ){
3759 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3760 return JIM_ERR;
3761 }
3762 e = Jim_GetOpt_Wide( &goi, &a );
3763 if( e != JIM_OK ){
3764 return JIM_ERR;
3765 }
3766 if( goi.argc ){
3767 e = Jim_GetOpt_Wide( &goi, &c );
3768 if( e != JIM_OK ){
3769 return JIM_ERR;
3770 }
3771 } else {
3772 c = 1;
3773 }
3774 b = 1; /* shut up gcc */
3775 switch( n->value ){
3776 case TS_CMD_MDW:
3777 b = 4;
3778 break;
3779 case TS_CMD_MDH:
3780 b = 2;
3781 break;
3782 case TS_CMD_MDB:
3783 b = 1;
3784 break;
3785 }
3786
3787 /* convert to "bytes" */
3788 c = c * b;
3789 /* count is now in 'BYTES' */
3790 while( c > 0 ){
3791 y = c;
3792 if( y > 16 ){
3793 y = 16;
3794 }
3795 e = target_read_memory( target, a, b, y / b, target_buf );
3796 if( e != ERROR_OK ){
3797 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3798 return JIM_ERR;
3799 }
3800
3801 Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3802 switch( b ){
3803 case 4:
3804 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3805 z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3806 Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3807 }
3808 for( ; (x < 16) ; x += 4 ){
3809 Jim_fprintf( interp, interp->cookie_stdout, " " );
3810 }
3811 break;
3812 case 2:
3813 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3814 z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3815 Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3816 }
3817 for( ; (x < 16) ; x += 2 ){
3818 Jim_fprintf( interp, interp->cookie_stdout, " " );
3819 }
3820 break;
3821 case 1:
3822 default:
3823 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3824 z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3825 Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3826 }
3827 for( ; (x < 16) ; x += 1 ){
3828 Jim_fprintf( interp, interp->cookie_stdout, " " );
3829 }
3830 break;
3831 }
3832 /* ascii-ify the bytes */
3833 for( x = 0 ; x < y ; x++ ){
3834 if( (target_buf[x] >= 0x20) &&
3835 (target_buf[x] <= 0x7e) ){
3836 /* good */
3837 } else {
3838 /* smack it */
3839 target_buf[x] = '.';
3840 }
3841 }
3842 /* space pad */
3843 while( x < 16 ){
3844 target_buf[x] = ' ';
3845 x++;
3846 }
3847 /* terminate */
3848 target_buf[16] = 0;
3849 /* print - with a newline */
3850 Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3851 /* NEXT... */
3852 c -= 16;
3853 a += 16;
3854 }
3855 return JIM_OK;
3856 case TS_CMD_MEM2ARRAY:
3857 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3858 break;
3859 case TS_CMD_ARRAY2MEM:
3860 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3861 break;
3862 case TS_CMD_EXAMINE:
3863 if( goi.argc ){
3864 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3865 return JIM_ERR;
3866 }
3867 if (!target->tap->enabled)
3868 goto err_tap_disabled;
3869 e = target->type->examine( target );
3870 if( e != ERROR_OK ){
3871 Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3872 return JIM_ERR;
3873 }
3874 return JIM_OK;
3875 case TS_CMD_POLL:
3876 if( goi.argc ){
3877 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3878 return JIM_ERR;
3879 }
3880 if (!target->tap->enabled)
3881 goto err_tap_disabled;
3882 if( !(target_was_examined(target)) ){
3883 e = ERROR_TARGET_NOT_EXAMINED;
3884 } else {
3885 e = target->type->poll( target );
3886 }
3887 if( e != ERROR_OK ){
3888 Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3889 return JIM_ERR;
3890 } else {
3891 return JIM_OK;
3892 }
3893 break;
3894 case TS_CMD_RESET:
3895 if( goi.argc != 2 ){
3896 Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3897 return JIM_ERR;
3898 }
3899 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3900 if( e != JIM_OK ){
3901 Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3902 return e;
3903 }
3904 /* the halt or not param */
3905 e = Jim_GetOpt_Wide( &goi, &a);
3906 if( e != JIM_OK ){
3907 return e;
3908 }
3909 if (!target->tap->enabled)
3910 goto err_tap_disabled;
3911 /* determine if we should halt or not. */
3912 target->reset_halt = !!a;
3913 /* When this happens - all workareas are invalid. */
3914 target_free_all_working_areas_restore(target, 0);
3915
3916 /* do the assert */
3917 if( n->value == NVP_ASSERT ){
3918 target->type->assert_reset( target );
3919 } else {
3920 target->type->deassert_reset( target );
3921 }
3922 return JIM_OK;
3923 case TS_CMD_HALT:
3924 if( goi.argc ){
3925 Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3926 return JIM_ERR;
3927 }
3928 if (!target->tap->enabled)
3929 goto err_tap_disabled;
3930 target->type->halt( target );
3931 return JIM_OK;
3932 case TS_CMD_WAITSTATE:
3933 /* params: <name> statename timeoutmsecs */
3934 if( goi.argc != 2 ){
3935 Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3936 return JIM_ERR;
3937 }
3938 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3939 if( e != JIM_OK ){
3940 Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3941 return e;
3942 }
3943 e = Jim_GetOpt_Wide( &goi, &a );
3944 if( e != JIM_OK ){
3945 return e;
3946 }
3947 if (!target->tap->enabled)
3948 goto err_tap_disabled;
3949 e = target_wait_state( target, n->value, a );
3950 if( e != ERROR_OK ){
3951 Jim_SetResult_sprintf( goi.interp,
3952 "target: %s wait %s fails (%d) %s",
3953 target->cmd_name,
3954 n->name,
3955 e, target_strerror_safe(e) );
3956 return JIM_ERR;
3957 } else {
3958 return JIM_OK;
3959 }
3960 case TS_CMD_EVENTLIST:
3961 /* List for human, Events defined for this target.
3962 * scripts/programs should use 'name cget -event NAME'
3963 */
3964 {
3965 target_event_action_t *teap;
3966 teap = target->event_action;
3967 command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3968 target->target_number,
3969 target->cmd_name );
3970 command_print( cmd_ctx, "%-25s | Body", "Event");
3971 command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3972 while( teap ){
3973 command_print( cmd_ctx,
3974 "%-25s | %s",
3975 Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3976 Jim_GetString( teap->body, NULL ) );
3977 teap = teap->next;
3978 }
3979 command_print( cmd_ctx, "***END***");
3980 return JIM_OK;
3981 }
3982 case TS_CMD_CURSTATE:
3983 if( goi.argc != 0 ){
3984 Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3985 return JIM_ERR;
3986 }
3987 Jim_SetResultString( goi.interp,
3988 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3989 return JIM_OK;
3990 case TS_CMD_INVOKE_EVENT:
3991 if( goi.argc != 1 ){
3992 Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3993 return JIM_ERR;
3994 }
3995 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3996 if( e != JIM_OK ){
3997 Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3998 return e;
3999 }
4000 target_handle_event( target, n->value );
4001 return JIM_OK;
4002 }
4003 return JIM_ERR;
4004
4005 err_tap_disabled:
4006 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4007 return JIM_ERR;
4008 }
4009
4010 static int target_create( Jim_GetOptInfo *goi )
4011 {
4012 Jim_Obj *new_cmd;
4013 Jim_Cmd *cmd;
4014 const char *cp;
4015 char *cp2;
4016 int e;
4017 int x;
4018 target_t *target;
4019 struct command_context_s *cmd_ctx;
4020
4021 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4022 if( goi->argc < 3 ){
4023 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4024 return JIM_ERR;
4025 }
4026
4027 /* COMMAND */
4028 Jim_GetOpt_Obj( goi, &new_cmd );
4029 /* does this command exist? */
4030 cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
4031 if( cmd ){
4032 cp = Jim_GetString( new_cmd, NULL );
4033 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4034 return JIM_ERR;
4035 }
4036
4037 /* TYPE */
4038 e = Jim_GetOpt_String( goi, &cp2, NULL );
4039 cp = cp2;
4040 /* now does target type exist */
4041 for( x = 0 ; target_types[x] ; x++ ){
4042 if( 0 == strcmp( cp, target_types[x]->name ) ){
4043 /* found */
4044 break;
4045 }
4046 }
4047 if( target_types[x] == NULL ){
4048 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
4049 for( x = 0 ; target_types[x] ; x++ ){
4050 if( target_types[x+1] ){
4051 Jim_AppendStrings( goi->interp,
4052 Jim_GetResult(goi->interp),
4053 target_types[x]->name,
4054 ", ", NULL);
4055 } else {
4056 Jim_AppendStrings( goi->interp,
4057 Jim_GetResult(goi->interp),
4058 " or ",
4059 target_types[x]->name,NULL );
4060 }
4061 }
4062 return JIM_ERR;
4063 }
4064
4065 /* Create it */
4066 target = calloc(1,sizeof(target_t));
4067 /* set target number */
4068 target->target_number = new_target_number();
4069
4070 /* allocate memory for each unique target type */
4071 target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4072
4073 memcpy( target->type, target_types[x], sizeof(target_type_t));
4074
4075 /* will be set by "-endian" */
4076 target->endianness = TARGET_ENDIAN_UNKNOWN;
4077
4078 target->working_area = 0x0;
4079 target->working_area_size = 0x0;
4080 target->working_areas = NULL;
4081 target->backup_working_area = 0;
4082
4083 target->state = TARGET_UNKNOWN;
4084 target->debug_reason = DBG_REASON_UNDEFINED;
4085 target->reg_cache = NULL;
4086 target->breakpoints = NULL;
4087 target->watchpoints = NULL;
4088 target->next = NULL;
4089 target->arch_info = NULL;
4090
4091 target->display = 1;
4092
4093 /* initialize trace information */
4094 target->trace_info = malloc(sizeof(trace_t));
4095 target->trace_info->num_trace_points = 0;
4096 target->trace_info->trace_points_size = 0;
4097 target->trace_info->trace_points = NULL;
4098 target->trace_info->trace_history_size = 0;
4099 target->trace_info->trace_history = NULL;
4100 target->trace_info->trace_history_pos = 0;
4101 target->trace_info->trace_history_overflowed = 0;
4102
4103 target->dbgmsg = NULL;
4104 target->dbg_msg_enabled = 0;
4105
4106 target->endianness = TARGET_ENDIAN_UNKNOWN;
4107
4108 /* Do the rest as "configure" options */
4109 goi->isconfigure = 1;
4110 e = target_configure( goi, target);
4111
4112 if (target->tap == NULL)
4113 {
4114 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4115 e=JIM_ERR;
4116 }
4117
4118 if( e != JIM_OK ){
4119 free( target->type );
4120 free( target );
4121 return e;
4122 }
4123
4124 if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4125 /* default endian to little if not specified */
4126 target->endianness = TARGET_LITTLE_ENDIAN;
4127 }
4128
4129 /* incase variant is not set */
4130 if (!target->variant)
4131 target->variant = strdup("");
4132
4133 /* create the target specific commands */
4134 if( target->type->register_commands ){
4135 (*(target->type->register_commands))( cmd_ctx );
4136 }
4137 if( target->type->target_create ){
4138 (*(target->type->target_create))( target, goi->interp );
4139 }
4140
4141 /* append to end of list */
4142 {
4143 target_t **tpp;
4144 tpp = &(all_targets);
4145 while( *tpp ){
4146 tpp = &( (*tpp)->next );
4147 }
4148 *tpp = target;
4149 }
4150
4151 cp = Jim_GetString( new_cmd, NULL );
4152 target->cmd_name = strdup(cp);
4153
4154 /* now - create the new target name command */
4155 e = Jim_CreateCommand( goi->interp,
4156 /* name */
4157 cp,
4158 tcl_target_func, /* C function */
4159 target, /* private data */
4160 NULL ); /* no del proc */
4161
4162 return e;
4163 }
4164
4165 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4166 {
4167 int x,r,e;
4168 jim_wide w;
4169 struct command_context_s *cmd_ctx;
4170 target_t *target;
4171 Jim_GetOptInfo goi;
4172 enum tcmd {
4173 /* TG = target generic */
4174 TG_CMD_CREATE,
4175 TG_CMD_TYPES,
4176 TG_CMD_NAMES,
4177 TG_CMD_CURRENT,
4178 TG_CMD_NUMBER,
4179 TG_CMD_COUNT,
4180 };
4181 const char *target_cmds[] = {
4182 "create", "types", "names", "current", "number",
4183 "count",
4184 NULL /* terminate */
4185 };
4186
4187 LOG_DEBUG("Target command params:");
4188 LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4189
4190 cmd_ctx = Jim_GetAssocData( interp, "context" );
4191
4192 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4193
4194 if( goi.argc == 0 ){
4195 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4196 return JIM_ERR;
4197 }
4198
4199 /* Jim_GetOpt_Debug( &goi ); */
4200 r = Jim_GetOpt_Enum( &goi, target_cmds, &x );
4201 if( r != JIM_OK ){
4202 return r;
4203 }
4204
4205 switch(x){
4206 default:
4207 Jim_Panic(goi.interp,"Why am I here?");
4208 return JIM_ERR;
4209 case TG_CMD_CURRENT:
4210 if( goi.argc != 0 ){
4211 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4212 return JIM_ERR;
4213 }
4214 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4215 return JIM_OK;
4216 case TG_CMD_TYPES:
4217 if( goi.argc != 0 ){
4218 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4219 return JIM_ERR;
4220 }
4221 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4222 for( x = 0 ; target_types[x] ; x++ ){
4223 Jim_ListAppendElement( goi.interp,
4224 Jim_GetResult(goi.interp),
4225 Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4226 }
4227 return JIM_OK;
4228 case TG_CMD_NAMES:
4229 if( goi.argc != 0 ){
4230 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4231 return JIM_ERR;
4232 }
4233 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4234 target = all_targets;
4235 while( target ){
4236 Jim_ListAppendElement( goi.interp,
4237 Jim_GetResult(goi.interp),
4238 Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4239 target = target->next;
4240 }
4241 return JIM_OK;
4242 case TG_CMD_CREATE:
4243 if( goi.argc < 3 ){
4244 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name ... config options ...");
4245 return JIM_ERR;
4246 }
4247 return target_create( &goi );
4248 break;
4249 case TG_CMD_NUMBER:
4250 if( goi.argc != 1 ){
4251 Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4252 return JIM_ERR;
4253 }
4254 e = Jim_GetOpt_Wide( &goi, &w );
4255 if( e != JIM_OK ){
4256 return JIM_ERR;
4257 }
4258 {
4259 target_t *t;
4260 t = get_target_by_num(w);
4261 if( t == NULL ){
4262 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4263 return JIM_ERR;
4264 }
4265 Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4266 return JIM_OK;
4267 }
4268 case TG_CMD_COUNT:
4269 if( goi.argc != 0 ){
4270 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4271 return JIM_ERR;
4272 }
4273 Jim_SetResult( goi.interp,
4274 Jim_NewIntObj( goi.interp, max_target_number()));
4275 return JIM_OK;
4276 }
4277
4278 return JIM_ERR;
4279 }
4280
4281
4282 struct FastLoad
4283 {
4284 u32 address;
4285 u8 *data;
4286 int length;
4287
4288 };
4289
4290 static int fastload_num;
4291 static struct FastLoad *fastload;
4292
4293 static void free_fastload(void)
4294 {
4295 if (fastload!=NULL)
4296 {
4297 int i;
4298 for (i=0; i<fastload_num; i++)
4299 {
4300 if (fastload[i].data)
4301 free(fastload[i].data);
4302 }
4303 free(fastload);
4304 fastload=NULL;
4305 }
4306 }
4307
4308
4309
4310
4311 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4312 {
4313 u8 *buffer;
4314 u32 buf_cnt;
4315 u32 image_size;
4316 u32 min_address=0;
4317 u32 max_address=0xffffffff;
4318 int i;
4319 int retval;
4320
4321 image_t image;
4322
4323 duration_t duration;
4324 char *duration_text;
4325
4326 if ((argc < 1)||(argc > 5))
4327 {
4328 return ERROR_COMMAND_SYNTAX_ERROR;
4329 }
4330
4331 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4332 if (argc >= 2)
4333 {
4334 image.base_address_set = 1;
4335 image.base_address = strtoul(args[1], NULL, 0);
4336 }
4337 else
4338 {
4339 image.base_address_set = 0;
4340 }
4341
4342
4343 image.start_address_set = 0;
4344
4345 if (argc>=4)
4346 {
4347 min_address=strtoul(args[3], NULL, 0);
4348 }
4349 if (argc>=5)
4350 {
4351 max_address=strtoul(args[4], NULL, 0)+min_address;
4352 }
4353
4354 if (min_address>max_address)
4355 {
4356 return ERROR_COMMAND_SYNTAX_ERROR;
4357 }
4358
4359 duration_start_measure(&duration);
4360
4361 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4362 {
4363 return ERROR_OK;
4364 }
4365
4366 image_size = 0x0;
4367 retval = ERROR_OK;
4368 fastload_num=image.num_sections;
4369 fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4370 if (fastload==NULL)
4371 {
4372 image_close(&image);
4373 return ERROR_FAIL;
4374 }
4375 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4376 for (i = 0; i < image.num_sections; i++)
4377 {
4378 buffer = malloc(image.sections[i].size);
4379 if (buffer == NULL)
4380 {
4381 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4382 break;
4383 }
4384
4385 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4386 {
4387 free(buffer);
4388 break;
4389 }
4390
4391 u32 offset=0;
4392 u32 length=buf_cnt;
4393
4394
4395 /* DANGER!!! beware of unsigned comparision here!!! */
4396
4397 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4398 (image.sections[i].base_address<max_address))
4399 {
4400 if (image.sections[i].base_address<min_address)
4401 {
4402 /* clip addresses below */
4403 offset+=min_address-image.sections[i].base_address;
4404 length-=offset;
4405 }
4406
4407 if (image.sections[i].base_address+buf_cnt>max_address)
4408 {
4409 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4410 }
4411
4412 fastload[i].address=image.sections[i].base_address+offset;
4413 fastload[i].data=malloc(length);
4414 if (fastload[i].data==NULL)
4415 {
4416 free(buffer);
4417 break;
4418 }
4419 memcpy(fastload[i].data, buffer+offset, length);
4420 fastload[i].length=length;
4421
4422 image_size += length;
4423 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4424 }
4425
4426 free(buffer);
4427 }
4428
4429 duration_stop_measure(&duration, &duration_text);
4430 if (retval==ERROR_OK)
4431 {
4432 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4433 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4434 }
4435 free(duration_text);
4436
4437 image_close(&image);
4438
4439 if (retval!=ERROR_OK)
4440 {
4441 free_fastload();
4442 }
4443
4444 return retval;
4445 }
4446
4447 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4448 {
4449 if (argc>0)
4450 return ERROR_COMMAND_SYNTAX_ERROR;
4451 if (fastload==NULL)
4452 {
4453 LOG_ERROR("No image in memory");
4454 return ERROR_FAIL;
4455 }
4456 int i;
4457 int ms=timeval_ms();
4458 int size=0;
4459 int retval=ERROR_OK;
4460 for (i=0; i<fastload_num;i++)
4461 {
4462 target_t *target = get_current_target(cmd_ctx);
4463 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4464 if (retval==ERROR_OK)
4465 {
4466 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4467 }
4468 size+=fastload[i].length;
4469 }
4470 int after=timeval_ms();
4471 command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4472 return retval;
4473 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)