armv7m: add generic trace support (TPIU, ITM, etc.)
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
59
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
62
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107
108 static struct target_type *target_types[] = {
109 &arm7tdmi_target,
110 &arm9tdmi_target,
111 &arm920t_target,
112 &arm720t_target,
113 &arm966e_target,
114 &arm946e_target,
115 &arm926ejs_target,
116 &fa526_target,
117 &feroceon_target,
118 &dragonite_target,
119 &xscale_target,
120 &cortexm_target,
121 &cortexa_target,
122 &cortexr4_target,
123 &arm11_target,
124 &mips_m4k_target,
125 &avr_target,
126 &dsp563xx_target,
127 &dsp5680xx_target,
128 &testee_target,
129 &avr32_ap7k_target,
130 &hla_target,
131 &nds32_v2_target,
132 &nds32_v3_target,
133 &nds32_v3m_target,
134 &or1k_target,
135 &quark_x10xx_target,
136 NULL,
137 };
138
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 LIST_HEAD(target_reset_callback_list);
143 static const int polling_interval = 100;
144
145 static const Jim_Nvp nvp_assert[] = {
146 { .name = "assert", NVP_ASSERT },
147 { .name = "deassert", NVP_DEASSERT },
148 { .name = "T", NVP_ASSERT },
149 { .name = "F", NVP_DEASSERT },
150 { .name = "t", NVP_ASSERT },
151 { .name = "f", NVP_DEASSERT },
152 { .name = NULL, .value = -1 }
153 };
154
155 static const Jim_Nvp nvp_error_target[] = {
156 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
157 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
158 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
159 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
160 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
161 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
162 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
163 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
164 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
165 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
166 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
167 { .value = -1, .name = NULL }
168 };
169
170 static const char *target_strerror_safe(int err)
171 {
172 const Jim_Nvp *n;
173
174 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
175 if (n->name == NULL)
176 return "unknown";
177 else
178 return n->name;
179 }
180
181 static const Jim_Nvp nvp_target_event[] = {
182
183 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
184 { .value = TARGET_EVENT_HALTED, .name = "halted" },
185 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
186 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
187 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
188
189 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
190 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
191
192 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
193 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
194 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
195 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
196 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
197 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
198 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
199 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
200 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
201 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
202 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
203 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
204
205 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
206 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
207
208 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
209 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
210
211 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
212 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
213
214 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
215 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
216
217 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
218 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
219
220 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
221
222 { .name = NULL, .value = -1 }
223 };
224
225 static const Jim_Nvp nvp_target_state[] = {
226 { .name = "unknown", .value = TARGET_UNKNOWN },
227 { .name = "running", .value = TARGET_RUNNING },
228 { .name = "halted", .value = TARGET_HALTED },
229 { .name = "reset", .value = TARGET_RESET },
230 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
231 { .name = NULL, .value = -1 },
232 };
233
234 static const Jim_Nvp nvp_target_debug_reason[] = {
235 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
236 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
237 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
238 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
239 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
240 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
241 { .name = "program-exit" , .value = DBG_REASON_EXIT },
242 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
243 { .name = NULL, .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_target_endian[] = {
247 { .name = "big", .value = TARGET_BIG_ENDIAN },
248 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
249 { .name = "be", .value = TARGET_BIG_ENDIAN },
250 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
251 { .name = NULL, .value = -1 },
252 };
253
254 static const Jim_Nvp nvp_reset_modes[] = {
255 { .name = "unknown", .value = RESET_UNKNOWN },
256 { .name = "run" , .value = RESET_RUN },
257 { .name = "halt" , .value = RESET_HALT },
258 { .name = "init" , .value = RESET_INIT },
259 { .name = NULL , .value = -1 },
260 };
261
262 const char *debug_reason_name(struct target *t)
263 {
264 const char *cp;
265
266 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
267 t->debug_reason)->name;
268 if (!cp) {
269 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
270 cp = "(*BUG*unknown*BUG*)";
271 }
272 return cp;
273 }
274
275 const char *target_state_name(struct target *t)
276 {
277 const char *cp;
278 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
279 if (!cp) {
280 LOG_ERROR("Invalid target state: %d", (int)(t->state));
281 cp = "(*BUG*unknown*BUG*)";
282 }
283 return cp;
284 }
285
286 const char *target_event_name(enum target_event event)
287 {
288 const char *cp;
289 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
290 if (!cp) {
291 LOG_ERROR("Invalid target event: %d", (int)(event));
292 cp = "(*BUG*unknown*BUG*)";
293 }
294 return cp;
295 }
296
297 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
298 {
299 const char *cp;
300 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
301 if (!cp) {
302 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
303 cp = "(*BUG*unknown*BUG*)";
304 }
305 return cp;
306 }
307
308 /* determine the number of the new target */
309 static int new_target_number(void)
310 {
311 struct target *t;
312 int x;
313
314 /* number is 0 based */
315 x = -1;
316 t = all_targets;
317 while (t) {
318 if (x < t->target_number)
319 x = t->target_number;
320 t = t->next;
321 }
322 return x + 1;
323 }
324
325 /* read a uint64_t from a buffer in target memory endianness */
326 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
327 {
328 if (target->endianness == TARGET_LITTLE_ENDIAN)
329 return le_to_h_u64(buffer);
330 else
331 return be_to_h_u64(buffer);
332 }
333
334 /* read a uint32_t from a buffer in target memory endianness */
335 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
336 {
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u32(buffer);
339 else
340 return be_to_h_u32(buffer);
341 }
342
343 /* read a uint24_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
345 {
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u24(buffer);
348 else
349 return be_to_h_u24(buffer);
350 }
351
352 /* read a uint16_t from a buffer in target memory endianness */
353 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
354 {
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u16(buffer);
357 else
358 return be_to_h_u16(buffer);
359 }
360
361 /* read a uint8_t from a buffer in target memory endianness */
362 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
363 {
364 return *buffer & 0x0ff;
365 }
366
367 /* write a uint64_t to a buffer in target memory endianness */
368 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
369 {
370 if (target->endianness == TARGET_LITTLE_ENDIAN)
371 h_u64_to_le(buffer, value);
372 else
373 h_u64_to_be(buffer, value);
374 }
375
376 /* write a uint32_t to a buffer in target memory endianness */
377 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
378 {
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u32_to_le(buffer, value);
381 else
382 h_u32_to_be(buffer, value);
383 }
384
385 /* write a uint24_t to a buffer in target memory endianness */
386 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
387 {
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u24_to_le(buffer, value);
390 else
391 h_u24_to_be(buffer, value);
392 }
393
394 /* write a uint16_t to a buffer in target memory endianness */
395 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
396 {
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u16_to_le(buffer, value);
399 else
400 h_u16_to_be(buffer, value);
401 }
402
403 /* write a uint8_t to a buffer in target memory endianness */
404 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
405 {
406 *buffer = value;
407 }
408
409 /* write a uint64_t array to a buffer in target memory endianness */
410 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
411 {
412 uint32_t i;
413 for (i = 0; i < count; i++)
414 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
415 }
416
417 /* write a uint32_t array to a buffer in target memory endianness */
418 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
419 {
420 uint32_t i;
421 for (i = 0; i < count; i++)
422 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
423 }
424
425 /* write a uint16_t array to a buffer in target memory endianness */
426 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
427 {
428 uint32_t i;
429 for (i = 0; i < count; i++)
430 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
431 }
432
433 /* write a uint64_t array to a buffer in target memory endianness */
434 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
435 {
436 uint32_t i;
437 for (i = 0; i < count; i++)
438 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
439 }
440
441 /* write a uint32_t array to a buffer in target memory endianness */
442 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
443 {
444 uint32_t i;
445 for (i = 0; i < count; i++)
446 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
447 }
448
449 /* write a uint16_t array to a buffer in target memory endianness */
450 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
451 {
452 uint32_t i;
453 for (i = 0; i < count; i++)
454 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
455 }
456
457 /* return a pointer to a configured target; id is name or number */
458 struct target *get_target(const char *id)
459 {
460 struct target *target;
461
462 /* try as tcltarget name */
463 for (target = all_targets; target; target = target->next) {
464 if (target_name(target) == NULL)
465 continue;
466 if (strcmp(id, target_name(target)) == 0)
467 return target;
468 }
469
470 /* It's OK to remove this fallback sometime after August 2010 or so */
471
472 /* no match, try as number */
473 unsigned num;
474 if (parse_uint(id, &num) != ERROR_OK)
475 return NULL;
476
477 for (target = all_targets; target; target = target->next) {
478 if (target->target_number == (int)num) {
479 LOG_WARNING("use '%s' as target identifier, not '%u'",
480 target_name(target), num);
481 return target;
482 }
483 }
484
485 return NULL;
486 }
487
488 /* returns a pointer to the n-th configured target */
489 static struct target *get_target_by_num(int num)
490 {
491 struct target *target = all_targets;
492
493 while (target) {
494 if (target->target_number == num)
495 return target;
496 target = target->next;
497 }
498
499 return NULL;
500 }
501
502 struct target *get_current_target(struct command_context *cmd_ctx)
503 {
504 struct target *target = get_target_by_num(cmd_ctx->current_target);
505
506 if (target == NULL) {
507 LOG_ERROR("BUG: current_target out of bounds");
508 exit(-1);
509 }
510
511 return target;
512 }
513
514 int target_poll(struct target *target)
515 {
516 int retval;
517
518 /* We can't poll until after examine */
519 if (!target_was_examined(target)) {
520 /* Fail silently lest we pollute the log */
521 return ERROR_FAIL;
522 }
523
524 retval = target->type->poll(target);
525 if (retval != ERROR_OK)
526 return retval;
527
528 if (target->halt_issued) {
529 if (target->state == TARGET_HALTED)
530 target->halt_issued = false;
531 else {
532 long long t = timeval_ms() - target->halt_issued_time;
533 if (t > DEFAULT_HALT_TIMEOUT) {
534 target->halt_issued = false;
535 LOG_INFO("Halt timed out, wake up GDB.");
536 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
537 }
538 }
539 }
540
541 return ERROR_OK;
542 }
543
544 int target_halt(struct target *target)
545 {
546 int retval;
547 /* We can't poll until after examine */
548 if (!target_was_examined(target)) {
549 LOG_ERROR("Target not examined yet");
550 return ERROR_FAIL;
551 }
552
553 retval = target->type->halt(target);
554 if (retval != ERROR_OK)
555 return retval;
556
557 target->halt_issued = true;
558 target->halt_issued_time = timeval_ms();
559
560 return ERROR_OK;
561 }
562
563 /**
564 * Make the target (re)start executing using its saved execution
565 * context (possibly with some modifications).
566 *
567 * @param target Which target should start executing.
568 * @param current True to use the target's saved program counter instead
569 * of the address parameter
570 * @param address Optionally used as the program counter.
571 * @param handle_breakpoints True iff breakpoints at the resumption PC
572 * should be skipped. (For example, maybe execution was stopped by
573 * such a breakpoint, in which case it would be counterprodutive to
574 * let it re-trigger.
575 * @param debug_execution False if all working areas allocated by OpenOCD
576 * should be released and/or restored to their original contents.
577 * (This would for example be true to run some downloaded "helper"
578 * algorithm code, which resides in one such working buffer and uses
579 * another for data storage.)
580 *
581 * @todo Resolve the ambiguity about what the "debug_execution" flag
582 * signifies. For example, Target implementations don't agree on how
583 * it relates to invalidation of the register cache, or to whether
584 * breakpoints and watchpoints should be enabled. (It would seem wrong
585 * to enable breakpoints when running downloaded "helper" algorithms
586 * (debug_execution true), since the breakpoints would be set to match
587 * target firmware being debugged, not the helper algorithm.... and
588 * enabling them could cause such helpers to malfunction (for example,
589 * by overwriting data with a breakpoint instruction. On the other
590 * hand the infrastructure for running such helpers might use this
591 * procedure but rely on hardware breakpoint to detect termination.)
592 */
593 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
594 {
595 int retval;
596
597 /* We can't poll until after examine */
598 if (!target_was_examined(target)) {
599 LOG_ERROR("Target not examined yet");
600 return ERROR_FAIL;
601 }
602
603 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
604
605 /* note that resume *must* be asynchronous. The CPU can halt before
606 * we poll. The CPU can even halt at the current PC as a result of
607 * a software breakpoint being inserted by (a bug?) the application.
608 */
609 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
610 if (retval != ERROR_OK)
611 return retval;
612
613 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
614
615 return retval;
616 }
617
618 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
619 {
620 char buf[100];
621 int retval;
622 Jim_Nvp *n;
623 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
624 if (n->name == NULL) {
625 LOG_ERROR("invalid reset mode");
626 return ERROR_FAIL;
627 }
628
629 struct target *target;
630 for (target = all_targets; target; target = target->next)
631 target_call_reset_callbacks(target, reset_mode);
632
633 /* disable polling during reset to make reset event scripts
634 * more predictable, i.e. dr/irscan & pathmove in events will
635 * not have JTAG operations injected into the middle of a sequence.
636 */
637 bool save_poll = jtag_poll_get_enabled();
638
639 jtag_poll_set_enabled(false);
640
641 sprintf(buf, "ocd_process_reset %s", n->name);
642 retval = Jim_Eval(cmd_ctx->interp, buf);
643
644 jtag_poll_set_enabled(save_poll);
645
646 if (retval != JIM_OK) {
647 Jim_MakeErrorMessage(cmd_ctx->interp);
648 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
649 return ERROR_FAIL;
650 }
651
652 /* We want any events to be processed before the prompt */
653 retval = target_call_timer_callbacks_now();
654
655 for (target = all_targets; target; target = target->next) {
656 target->type->check_reset(target);
657 target->running_alg = false;
658 }
659
660 return retval;
661 }
662
663 static int identity_virt2phys(struct target *target,
664 uint32_t virtual, uint32_t *physical)
665 {
666 *physical = virtual;
667 return ERROR_OK;
668 }
669
670 static int no_mmu(struct target *target, int *enabled)
671 {
672 *enabled = 0;
673 return ERROR_OK;
674 }
675
676 static int default_examine(struct target *target)
677 {
678 target_set_examined(target);
679 return ERROR_OK;
680 }
681
682 /* no check by default */
683 static int default_check_reset(struct target *target)
684 {
685 return ERROR_OK;
686 }
687
688 int target_examine_one(struct target *target)
689 {
690 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
691
692 int retval = target->type->examine(target);
693 if (retval != ERROR_OK)
694 return retval;
695
696 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
697
698 return ERROR_OK;
699 }
700
701 static int jtag_enable_callback(enum jtag_event event, void *priv)
702 {
703 struct target *target = priv;
704
705 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
706 return ERROR_OK;
707
708 jtag_unregister_event_callback(jtag_enable_callback, target);
709
710 return target_examine_one(target);
711 }
712
713 /* Targets that correctly implement init + examine, i.e.
714 * no communication with target during init:
715 *
716 * XScale
717 */
718 int target_examine(void)
719 {
720 int retval = ERROR_OK;
721 struct target *target;
722
723 for (target = all_targets; target; target = target->next) {
724 /* defer examination, but don't skip it */
725 if (!target->tap->enabled) {
726 jtag_register_event_callback(jtag_enable_callback,
727 target);
728 continue;
729 }
730
731 retval = target_examine_one(target);
732 if (retval != ERROR_OK)
733 return retval;
734 }
735 return retval;
736 }
737
738 const char *target_type_name(struct target *target)
739 {
740 return target->type->name;
741 }
742
743 static int target_soft_reset_halt(struct target *target)
744 {
745 if (!target_was_examined(target)) {
746 LOG_ERROR("Target not examined yet");
747 return ERROR_FAIL;
748 }
749 if (!target->type->soft_reset_halt) {
750 LOG_ERROR("Target %s does not support soft_reset_halt",
751 target_name(target));
752 return ERROR_FAIL;
753 }
754 return target->type->soft_reset_halt(target);
755 }
756
757 /**
758 * Downloads a target-specific native code algorithm to the target,
759 * and executes it. * Note that some targets may need to set up, enable,
760 * and tear down a breakpoint (hard or * soft) to detect algorithm
761 * termination, while others may support lower overhead schemes where
762 * soft breakpoints embedded in the algorithm automatically terminate the
763 * algorithm.
764 *
765 * @param target used to run the algorithm
766 * @param arch_info target-specific description of the algorithm.
767 */
768 int target_run_algorithm(struct target *target,
769 int num_mem_params, struct mem_param *mem_params,
770 int num_reg_params, struct reg_param *reg_param,
771 uint32_t entry_point, uint32_t exit_point,
772 int timeout_ms, void *arch_info)
773 {
774 int retval = ERROR_FAIL;
775
776 if (!target_was_examined(target)) {
777 LOG_ERROR("Target not examined yet");
778 goto done;
779 }
780 if (!target->type->run_algorithm) {
781 LOG_ERROR("Target type '%s' does not support %s",
782 target_type_name(target), __func__);
783 goto done;
784 }
785
786 target->running_alg = true;
787 retval = target->type->run_algorithm(target,
788 num_mem_params, mem_params,
789 num_reg_params, reg_param,
790 entry_point, exit_point, timeout_ms, arch_info);
791 target->running_alg = false;
792
793 done:
794 return retval;
795 }
796
797 /**
798 * Downloads a target-specific native code algorithm to the target,
799 * executes and leaves it running.
800 *
801 * @param target used to run the algorithm
802 * @param arch_info target-specific description of the algorithm.
803 */
804 int target_start_algorithm(struct target *target,
805 int num_mem_params, struct mem_param *mem_params,
806 int num_reg_params, struct reg_param *reg_params,
807 uint32_t entry_point, uint32_t exit_point,
808 void *arch_info)
809 {
810 int retval = ERROR_FAIL;
811
812 if (!target_was_examined(target)) {
813 LOG_ERROR("Target not examined yet");
814 goto done;
815 }
816 if (!target->type->start_algorithm) {
817 LOG_ERROR("Target type '%s' does not support %s",
818 target_type_name(target), __func__);
819 goto done;
820 }
821 if (target->running_alg) {
822 LOG_ERROR("Target is already running an algorithm");
823 goto done;
824 }
825
826 target->running_alg = true;
827 retval = target->type->start_algorithm(target,
828 num_mem_params, mem_params,
829 num_reg_params, reg_params,
830 entry_point, exit_point, arch_info);
831
832 done:
833 return retval;
834 }
835
836 /**
837 * Waits for an algorithm started with target_start_algorithm() to complete.
838 *
839 * @param target used to run the algorithm
840 * @param arch_info target-specific description of the algorithm.
841 */
842 int target_wait_algorithm(struct target *target,
843 int num_mem_params, struct mem_param *mem_params,
844 int num_reg_params, struct reg_param *reg_params,
845 uint32_t exit_point, int timeout_ms,
846 void *arch_info)
847 {
848 int retval = ERROR_FAIL;
849
850 if (!target->type->wait_algorithm) {
851 LOG_ERROR("Target type '%s' does not support %s",
852 target_type_name(target), __func__);
853 goto done;
854 }
855 if (!target->running_alg) {
856 LOG_ERROR("Target is not running an algorithm");
857 goto done;
858 }
859
860 retval = target->type->wait_algorithm(target,
861 num_mem_params, mem_params,
862 num_reg_params, reg_params,
863 exit_point, timeout_ms, arch_info);
864 if (retval != ERROR_TARGET_TIMEOUT)
865 target->running_alg = false;
866
867 done:
868 return retval;
869 }
870
871 /**
872 * Executes a target-specific native code algorithm in the target.
873 * It differs from target_run_algorithm in that the algorithm is asynchronous.
874 * Because of this it requires an compliant algorithm:
875 * see contrib/loaders/flash/stm32f1x.S for example.
876 *
877 * @param target used to run the algorithm
878 */
879
880 int target_run_flash_async_algorithm(struct target *target,
881 const uint8_t *buffer, uint32_t count, int block_size,
882 int num_mem_params, struct mem_param *mem_params,
883 int num_reg_params, struct reg_param *reg_params,
884 uint32_t buffer_start, uint32_t buffer_size,
885 uint32_t entry_point, uint32_t exit_point, void *arch_info)
886 {
887 int retval;
888 int timeout = 0;
889
890 const uint8_t *buffer_orig = buffer;
891
892 /* Set up working area. First word is write pointer, second word is read pointer,
893 * rest is fifo data area. */
894 uint32_t wp_addr = buffer_start;
895 uint32_t rp_addr = buffer_start + 4;
896 uint32_t fifo_start_addr = buffer_start + 8;
897 uint32_t fifo_end_addr = buffer_start + buffer_size;
898
899 uint32_t wp = fifo_start_addr;
900 uint32_t rp = fifo_start_addr;
901
902 /* validate block_size is 2^n */
903 assert(!block_size || !(block_size & (block_size - 1)));
904
905 retval = target_write_u32(target, wp_addr, wp);
906 if (retval != ERROR_OK)
907 return retval;
908 retval = target_write_u32(target, rp_addr, rp);
909 if (retval != ERROR_OK)
910 return retval;
911
912 /* Start up algorithm on target and let it idle while writing the first chunk */
913 retval = target_start_algorithm(target, num_mem_params, mem_params,
914 num_reg_params, reg_params,
915 entry_point,
916 exit_point,
917 arch_info);
918
919 if (retval != ERROR_OK) {
920 LOG_ERROR("error starting target flash write algorithm");
921 return retval;
922 }
923
924 while (count > 0) {
925
926 retval = target_read_u32(target, rp_addr, &rp);
927 if (retval != ERROR_OK) {
928 LOG_ERROR("failed to get read pointer");
929 break;
930 }
931
932 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
933 (size_t) (buffer - buffer_orig), count, wp, rp);
934
935 if (rp == 0) {
936 LOG_ERROR("flash write algorithm aborted by target");
937 retval = ERROR_FLASH_OPERATION_FAILED;
938 break;
939 }
940
941 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
942 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
943 break;
944 }
945
946 /* Count the number of bytes available in the fifo without
947 * crossing the wrap around. Make sure to not fill it completely,
948 * because that would make wp == rp and that's the empty condition. */
949 uint32_t thisrun_bytes;
950 if (rp > wp)
951 thisrun_bytes = rp - wp - block_size;
952 else if (rp > fifo_start_addr)
953 thisrun_bytes = fifo_end_addr - wp;
954 else
955 thisrun_bytes = fifo_end_addr - wp - block_size;
956
957 if (thisrun_bytes == 0) {
958 /* Throttle polling a bit if transfer is (much) faster than flash
959 * programming. The exact delay shouldn't matter as long as it's
960 * less than buffer size / flash speed. This is very unlikely to
961 * run when using high latency connections such as USB. */
962 alive_sleep(10);
963
964 /* to stop an infinite loop on some targets check and increment a timeout
965 * this issue was observed on a stellaris using the new ICDI interface */
966 if (timeout++ >= 500) {
967 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
968 return ERROR_FLASH_OPERATION_FAILED;
969 }
970 continue;
971 }
972
973 /* reset our timeout */
974 timeout = 0;
975
976 /* Limit to the amount of data we actually want to write */
977 if (thisrun_bytes > count * block_size)
978 thisrun_bytes = count * block_size;
979
980 /* Write data to fifo */
981 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
982 if (retval != ERROR_OK)
983 break;
984
985 /* Update counters and wrap write pointer */
986 buffer += thisrun_bytes;
987 count -= thisrun_bytes / block_size;
988 wp += thisrun_bytes;
989 if (wp >= fifo_end_addr)
990 wp = fifo_start_addr;
991
992 /* Store updated write pointer to target */
993 retval = target_write_u32(target, wp_addr, wp);
994 if (retval != ERROR_OK)
995 break;
996 }
997
998 if (retval != ERROR_OK) {
999 /* abort flash write algorithm on target */
1000 target_write_u32(target, wp_addr, 0);
1001 }
1002
1003 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1004 num_reg_params, reg_params,
1005 exit_point,
1006 10000,
1007 arch_info);
1008
1009 if (retval2 != ERROR_OK) {
1010 LOG_ERROR("error waiting for target flash write algorithm");
1011 retval = retval2;
1012 }
1013
1014 return retval;
1015 }
1016
1017 int target_read_memory(struct target *target,
1018 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1019 {
1020 if (!target_was_examined(target)) {
1021 LOG_ERROR("Target not examined yet");
1022 return ERROR_FAIL;
1023 }
1024 return target->type->read_memory(target, address, size, count, buffer);
1025 }
1026
1027 int target_read_phys_memory(struct target *target,
1028 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1029 {
1030 if (!target_was_examined(target)) {
1031 LOG_ERROR("Target not examined yet");
1032 return ERROR_FAIL;
1033 }
1034 return target->type->read_phys_memory(target, address, size, count, buffer);
1035 }
1036
1037 int target_write_memory(struct target *target,
1038 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1039 {
1040 if (!target_was_examined(target)) {
1041 LOG_ERROR("Target not examined yet");
1042 return ERROR_FAIL;
1043 }
1044 return target->type->write_memory(target, address, size, count, buffer);
1045 }
1046
1047 int target_write_phys_memory(struct target *target,
1048 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1049 {
1050 if (!target_was_examined(target)) {
1051 LOG_ERROR("Target not examined yet");
1052 return ERROR_FAIL;
1053 }
1054 return target->type->write_phys_memory(target, address, size, count, buffer);
1055 }
1056
1057 int target_add_breakpoint(struct target *target,
1058 struct breakpoint *breakpoint)
1059 {
1060 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1061 LOG_WARNING("target %s is not halted", target_name(target));
1062 return ERROR_TARGET_NOT_HALTED;
1063 }
1064 return target->type->add_breakpoint(target, breakpoint);
1065 }
1066
1067 int target_add_context_breakpoint(struct target *target,
1068 struct breakpoint *breakpoint)
1069 {
1070 if (target->state != TARGET_HALTED) {
1071 LOG_WARNING("target %s is not halted", target_name(target));
1072 return ERROR_TARGET_NOT_HALTED;
1073 }
1074 return target->type->add_context_breakpoint(target, breakpoint);
1075 }
1076
1077 int target_add_hybrid_breakpoint(struct target *target,
1078 struct breakpoint *breakpoint)
1079 {
1080 if (target->state != TARGET_HALTED) {
1081 LOG_WARNING("target %s is not halted", target_name(target));
1082 return ERROR_TARGET_NOT_HALTED;
1083 }
1084 return target->type->add_hybrid_breakpoint(target, breakpoint);
1085 }
1086
1087 int target_remove_breakpoint(struct target *target,
1088 struct breakpoint *breakpoint)
1089 {
1090 return target->type->remove_breakpoint(target, breakpoint);
1091 }
1092
1093 int target_add_watchpoint(struct target *target,
1094 struct watchpoint *watchpoint)
1095 {
1096 if (target->state != TARGET_HALTED) {
1097 LOG_WARNING("target %s is not halted", target_name(target));
1098 return ERROR_TARGET_NOT_HALTED;
1099 }
1100 return target->type->add_watchpoint(target, watchpoint);
1101 }
1102 int target_remove_watchpoint(struct target *target,
1103 struct watchpoint *watchpoint)
1104 {
1105 return target->type->remove_watchpoint(target, watchpoint);
1106 }
1107 int target_hit_watchpoint(struct target *target,
1108 struct watchpoint **hit_watchpoint)
1109 {
1110 if (target->state != TARGET_HALTED) {
1111 LOG_WARNING("target %s is not halted", target->cmd_name);
1112 return ERROR_TARGET_NOT_HALTED;
1113 }
1114
1115 if (target->type->hit_watchpoint == NULL) {
1116 /* For backward compatible, if hit_watchpoint is not implemented,
1117 * return ERROR_FAIL such that gdb_server will not take the nonsense
1118 * information. */
1119 return ERROR_FAIL;
1120 }
1121
1122 return target->type->hit_watchpoint(target, hit_watchpoint);
1123 }
1124
1125 int target_get_gdb_reg_list(struct target *target,
1126 struct reg **reg_list[], int *reg_list_size,
1127 enum target_register_class reg_class)
1128 {
1129 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1130 }
1131 int target_step(struct target *target,
1132 int current, uint32_t address, int handle_breakpoints)
1133 {
1134 return target->type->step(target, current, address, handle_breakpoints);
1135 }
1136
1137 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1138 {
1139 if (target->state != TARGET_HALTED) {
1140 LOG_WARNING("target %s is not halted", target->cmd_name);
1141 return ERROR_TARGET_NOT_HALTED;
1142 }
1143 return target->type->get_gdb_fileio_info(target, fileio_info);
1144 }
1145
1146 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1147 {
1148 if (target->state != TARGET_HALTED) {
1149 LOG_WARNING("target %s is not halted", target->cmd_name);
1150 return ERROR_TARGET_NOT_HALTED;
1151 }
1152 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1153 }
1154
1155 int target_profiling(struct target *target, uint32_t *samples,
1156 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1157 {
1158 if (target->state != TARGET_HALTED) {
1159 LOG_WARNING("target %s is not halted", target->cmd_name);
1160 return ERROR_TARGET_NOT_HALTED;
1161 }
1162 return target->type->profiling(target, samples, max_num_samples,
1163 num_samples, seconds);
1164 }
1165
1166 /**
1167 * Reset the @c examined flag for the given target.
1168 * Pure paranoia -- targets are zeroed on allocation.
1169 */
1170 static void target_reset_examined(struct target *target)
1171 {
1172 target->examined = false;
1173 }
1174
1175 static int err_read_phys_memory(struct target *target, uint32_t address,
1176 uint32_t size, uint32_t count, uint8_t *buffer)
1177 {
1178 LOG_ERROR("Not implemented: %s", __func__);
1179 return ERROR_FAIL;
1180 }
1181
1182 static int err_write_phys_memory(struct target *target, uint32_t address,
1183 uint32_t size, uint32_t count, const uint8_t *buffer)
1184 {
1185 LOG_ERROR("Not implemented: %s", __func__);
1186 return ERROR_FAIL;
1187 }
1188
1189 static int handle_target(void *priv);
1190
1191 static int target_init_one(struct command_context *cmd_ctx,
1192 struct target *target)
1193 {
1194 target_reset_examined(target);
1195
1196 struct target_type *type = target->type;
1197 if (type->examine == NULL)
1198 type->examine = default_examine;
1199
1200 if (type->check_reset == NULL)
1201 type->check_reset = default_check_reset;
1202
1203 assert(type->init_target != NULL);
1204
1205 int retval = type->init_target(cmd_ctx, target);
1206 if (ERROR_OK != retval) {
1207 LOG_ERROR("target '%s' init failed", target_name(target));
1208 return retval;
1209 }
1210
1211 /* Sanity-check MMU support ... stub in what we must, to help
1212 * implement it in stages, but warn if we need to do so.
1213 */
1214 if (type->mmu) {
1215 if (type->write_phys_memory == NULL) {
1216 LOG_ERROR("type '%s' is missing write_phys_memory",
1217 type->name);
1218 type->write_phys_memory = err_write_phys_memory;
1219 }
1220 if (type->read_phys_memory == NULL) {
1221 LOG_ERROR("type '%s' is missing read_phys_memory",
1222 type->name);
1223 type->read_phys_memory = err_read_phys_memory;
1224 }
1225 if (type->virt2phys == NULL) {
1226 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1227 type->virt2phys = identity_virt2phys;
1228 }
1229 } else {
1230 /* Make sure no-MMU targets all behave the same: make no
1231 * distinction between physical and virtual addresses, and
1232 * ensure that virt2phys() is always an identity mapping.
1233 */
1234 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1235 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1236
1237 type->mmu = no_mmu;
1238 type->write_phys_memory = type->write_memory;
1239 type->read_phys_memory = type->read_memory;
1240 type->virt2phys = identity_virt2phys;
1241 }
1242
1243 if (target->type->read_buffer == NULL)
1244 target->type->read_buffer = target_read_buffer_default;
1245
1246 if (target->type->write_buffer == NULL)
1247 target->type->write_buffer = target_write_buffer_default;
1248
1249 if (target->type->get_gdb_fileio_info == NULL)
1250 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1251
1252 if (target->type->gdb_fileio_end == NULL)
1253 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1254
1255 if (target->type->profiling == NULL)
1256 target->type->profiling = target_profiling_default;
1257
1258 return ERROR_OK;
1259 }
1260
1261 static int target_init(struct command_context *cmd_ctx)
1262 {
1263 struct target *target;
1264 int retval;
1265
1266 for (target = all_targets; target; target = target->next) {
1267 retval = target_init_one(cmd_ctx, target);
1268 if (ERROR_OK != retval)
1269 return retval;
1270 }
1271
1272 if (!all_targets)
1273 return ERROR_OK;
1274
1275 retval = target_register_user_commands(cmd_ctx);
1276 if (ERROR_OK != retval)
1277 return retval;
1278
1279 retval = target_register_timer_callback(&handle_target,
1280 polling_interval, 1, cmd_ctx->interp);
1281 if (ERROR_OK != retval)
1282 return retval;
1283
1284 return ERROR_OK;
1285 }
1286
1287 COMMAND_HANDLER(handle_target_init_command)
1288 {
1289 int retval;
1290
1291 if (CMD_ARGC != 0)
1292 return ERROR_COMMAND_SYNTAX_ERROR;
1293
1294 static bool target_initialized;
1295 if (target_initialized) {
1296 LOG_INFO("'target init' has already been called");
1297 return ERROR_OK;
1298 }
1299 target_initialized = true;
1300
1301 retval = command_run_line(CMD_CTX, "init_targets");
1302 if (ERROR_OK != retval)
1303 return retval;
1304
1305 retval = command_run_line(CMD_CTX, "init_target_events");
1306 if (ERROR_OK != retval)
1307 return retval;
1308
1309 retval = command_run_line(CMD_CTX, "init_board");
1310 if (ERROR_OK != retval)
1311 return retval;
1312
1313 LOG_DEBUG("Initializing targets...");
1314 return target_init(CMD_CTX);
1315 }
1316
1317 int target_register_event_callback(int (*callback)(struct target *target,
1318 enum target_event event, void *priv), void *priv)
1319 {
1320 struct target_event_callback **callbacks_p = &target_event_callbacks;
1321
1322 if (callback == NULL)
1323 return ERROR_COMMAND_SYNTAX_ERROR;
1324
1325 if (*callbacks_p) {
1326 while ((*callbacks_p)->next)
1327 callbacks_p = &((*callbacks_p)->next);
1328 callbacks_p = &((*callbacks_p)->next);
1329 }
1330
1331 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1332 (*callbacks_p)->callback = callback;
1333 (*callbacks_p)->priv = priv;
1334 (*callbacks_p)->next = NULL;
1335
1336 return ERROR_OK;
1337 }
1338
1339 int target_register_reset_callback(int (*callback)(struct target *target,
1340 enum target_reset_mode reset_mode, void *priv), void *priv)
1341 {
1342 struct target_reset_callback *entry;
1343
1344 if (callback == NULL)
1345 return ERROR_COMMAND_SYNTAX_ERROR;
1346
1347 entry = malloc(sizeof(struct target_reset_callback));
1348 if (entry == NULL) {
1349 LOG_ERROR("error allocating buffer for reset callback entry");
1350 return ERROR_COMMAND_SYNTAX_ERROR;
1351 }
1352
1353 entry->callback = callback;
1354 entry->priv = priv;
1355 list_add(&entry->list, &target_reset_callback_list);
1356
1357
1358 return ERROR_OK;
1359 }
1360
1361 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1362 {
1363 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1364 struct timeval now;
1365
1366 if (callback == NULL)
1367 return ERROR_COMMAND_SYNTAX_ERROR;
1368
1369 if (*callbacks_p) {
1370 while ((*callbacks_p)->next)
1371 callbacks_p = &((*callbacks_p)->next);
1372 callbacks_p = &((*callbacks_p)->next);
1373 }
1374
1375 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1376 (*callbacks_p)->callback = callback;
1377 (*callbacks_p)->periodic = periodic;
1378 (*callbacks_p)->time_ms = time_ms;
1379 (*callbacks_p)->removed = false;
1380
1381 gettimeofday(&now, NULL);
1382 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1383 time_ms -= (time_ms % 1000);
1384 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1385 if ((*callbacks_p)->when.tv_usec > 1000000) {
1386 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1387 (*callbacks_p)->when.tv_sec += 1;
1388 }
1389
1390 (*callbacks_p)->priv = priv;
1391 (*callbacks_p)->next = NULL;
1392
1393 return ERROR_OK;
1394 }
1395
1396 int target_unregister_event_callback(int (*callback)(struct target *target,
1397 enum target_event event, void *priv), void *priv)
1398 {
1399 struct target_event_callback **p = &target_event_callbacks;
1400 struct target_event_callback *c = target_event_callbacks;
1401
1402 if (callback == NULL)
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404
1405 while (c) {
1406 struct target_event_callback *next = c->next;
1407 if ((c->callback == callback) && (c->priv == priv)) {
1408 *p = next;
1409 free(c);
1410 return ERROR_OK;
1411 } else
1412 p = &(c->next);
1413 c = next;
1414 }
1415
1416 return ERROR_OK;
1417 }
1418
1419 int target_unregister_reset_callback(int (*callback)(struct target *target,
1420 enum target_reset_mode reset_mode, void *priv), void *priv)
1421 {
1422 struct target_reset_callback *entry;
1423
1424 if (callback == NULL)
1425 return ERROR_COMMAND_SYNTAX_ERROR;
1426
1427 list_for_each_entry(entry, &target_reset_callback_list, list) {
1428 if (entry->callback == callback && entry->priv == priv) {
1429 list_del(&entry->list);
1430 free(entry);
1431 break;
1432 }
1433 }
1434
1435 return ERROR_OK;
1436 }
1437
1438 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1439 {
1440 if (callback == NULL)
1441 return ERROR_COMMAND_SYNTAX_ERROR;
1442
1443 for (struct target_timer_callback *c = target_timer_callbacks;
1444 c; c = c->next) {
1445 if ((c->callback == callback) && (c->priv == priv)) {
1446 c->removed = true;
1447 return ERROR_OK;
1448 }
1449 }
1450
1451 return ERROR_FAIL;
1452 }
1453
1454 int target_call_event_callbacks(struct target *target, enum target_event event)
1455 {
1456 struct target_event_callback *callback = target_event_callbacks;
1457 struct target_event_callback *next_callback;
1458
1459 if (event == TARGET_EVENT_HALTED) {
1460 /* execute early halted first */
1461 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1462 }
1463
1464 LOG_DEBUG("target event %i (%s)", event,
1465 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1466
1467 target_handle_event(target, event);
1468
1469 while (callback) {
1470 next_callback = callback->next;
1471 callback->callback(target, event, callback->priv);
1472 callback = next_callback;
1473 }
1474
1475 return ERROR_OK;
1476 }
1477
1478 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1479 {
1480 struct target_reset_callback *callback;
1481
1482 LOG_DEBUG("target reset %i (%s)", reset_mode,
1483 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1484
1485 list_for_each_entry(callback, &target_reset_callback_list, list)
1486 callback->callback(target, reset_mode, callback->priv);
1487
1488 return ERROR_OK;
1489 }
1490
1491 static int target_timer_callback_periodic_restart(
1492 struct target_timer_callback *cb, struct timeval *now)
1493 {
1494 int time_ms = cb->time_ms;
1495 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1496 time_ms -= (time_ms % 1000);
1497 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1498 if (cb->when.tv_usec > 1000000) {
1499 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1500 cb->when.tv_sec += 1;
1501 }
1502 return ERROR_OK;
1503 }
1504
1505 static int target_call_timer_callback(struct target_timer_callback *cb,
1506 struct timeval *now)
1507 {
1508 cb->callback(cb->priv);
1509
1510 if (cb->periodic)
1511 return target_timer_callback_periodic_restart(cb, now);
1512
1513 return target_unregister_timer_callback(cb->callback, cb->priv);
1514 }
1515
1516 static int target_call_timer_callbacks_check_time(int checktime)
1517 {
1518 static bool callback_processing;
1519
1520 /* Do not allow nesting */
1521 if (callback_processing)
1522 return ERROR_OK;
1523
1524 callback_processing = true;
1525
1526 keep_alive();
1527
1528 struct timeval now;
1529 gettimeofday(&now, NULL);
1530
1531 /* Store an address of the place containing a pointer to the
1532 * next item; initially, that's a standalone "root of the
1533 * list" variable. */
1534 struct target_timer_callback **callback = &target_timer_callbacks;
1535 while (*callback) {
1536 if ((*callback)->removed) {
1537 struct target_timer_callback *p = *callback;
1538 *callback = (*callback)->next;
1539 free(p);
1540 continue;
1541 }
1542
1543 bool call_it = (*callback)->callback &&
1544 ((!checktime && (*callback)->periodic) ||
1545 now.tv_sec > (*callback)->when.tv_sec ||
1546 (now.tv_sec == (*callback)->when.tv_sec &&
1547 now.tv_usec >= (*callback)->when.tv_usec));
1548
1549 if (call_it)
1550 target_call_timer_callback(*callback, &now);
1551
1552 callback = &(*callback)->next;
1553 }
1554
1555 callback_processing = false;
1556 return ERROR_OK;
1557 }
1558
1559 int target_call_timer_callbacks(void)
1560 {
1561 return target_call_timer_callbacks_check_time(1);
1562 }
1563
1564 /* invoke periodic callbacks immediately */
1565 int target_call_timer_callbacks_now(void)
1566 {
1567 return target_call_timer_callbacks_check_time(0);
1568 }
1569
1570 /* Prints the working area layout for debug purposes */
1571 static void print_wa_layout(struct target *target)
1572 {
1573 struct working_area *c = target->working_areas;
1574
1575 while (c) {
1576 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1577 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1578 c->address, c->address + c->size - 1, c->size);
1579 c = c->next;
1580 }
1581 }
1582
1583 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1584 static void target_split_working_area(struct working_area *area, uint32_t size)
1585 {
1586 assert(area->free); /* Shouldn't split an allocated area */
1587 assert(size <= area->size); /* Caller should guarantee this */
1588
1589 /* Split only if not already the right size */
1590 if (size < area->size) {
1591 struct working_area *new_wa = malloc(sizeof(*new_wa));
1592
1593 if (new_wa == NULL)
1594 return;
1595
1596 new_wa->next = area->next;
1597 new_wa->size = area->size - size;
1598 new_wa->address = area->address + size;
1599 new_wa->backup = NULL;
1600 new_wa->user = NULL;
1601 new_wa->free = true;
1602
1603 area->next = new_wa;
1604 area->size = size;
1605
1606 /* If backup memory was allocated to this area, it has the wrong size
1607 * now so free it and it will be reallocated if/when needed */
1608 if (area->backup) {
1609 free(area->backup);
1610 area->backup = NULL;
1611 }
1612 }
1613 }
1614
1615 /* Merge all adjacent free areas into one */
1616 static void target_merge_working_areas(struct target *target)
1617 {
1618 struct working_area *c = target->working_areas;
1619
1620 while (c && c->next) {
1621 assert(c->next->address == c->address + c->size); /* This is an invariant */
1622
1623 /* Find two adjacent free areas */
1624 if (c->free && c->next->free) {
1625 /* Merge the last into the first */
1626 c->size += c->next->size;
1627
1628 /* Remove the last */
1629 struct working_area *to_be_freed = c->next;
1630 c->next = c->next->next;
1631 if (to_be_freed->backup)
1632 free(to_be_freed->backup);
1633 free(to_be_freed);
1634
1635 /* If backup memory was allocated to the remaining area, it's has
1636 * the wrong size now */
1637 if (c->backup) {
1638 free(c->backup);
1639 c->backup = NULL;
1640 }
1641 } else {
1642 c = c->next;
1643 }
1644 }
1645 }
1646
1647 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1648 {
1649 /* Reevaluate working area address based on MMU state*/
1650 if (target->working_areas == NULL) {
1651 int retval;
1652 int enabled;
1653
1654 retval = target->type->mmu(target, &enabled);
1655 if (retval != ERROR_OK)
1656 return retval;
1657
1658 if (!enabled) {
1659 if (target->working_area_phys_spec) {
1660 LOG_DEBUG("MMU disabled, using physical "
1661 "address for working memory 0x%08"PRIx32,
1662 target->working_area_phys);
1663 target->working_area = target->working_area_phys;
1664 } else {
1665 LOG_ERROR("No working memory available. "
1666 "Specify -work-area-phys to target.");
1667 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1668 }
1669 } else {
1670 if (target->working_area_virt_spec) {
1671 LOG_DEBUG("MMU enabled, using virtual "
1672 "address for working memory 0x%08"PRIx32,
1673 target->working_area_virt);
1674 target->working_area = target->working_area_virt;
1675 } else {
1676 LOG_ERROR("No working memory available. "
1677 "Specify -work-area-virt to target.");
1678 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1679 }
1680 }
1681
1682 /* Set up initial working area on first call */
1683 struct working_area *new_wa = malloc(sizeof(*new_wa));
1684 if (new_wa) {
1685 new_wa->next = NULL;
1686 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1687 new_wa->address = target->working_area;
1688 new_wa->backup = NULL;
1689 new_wa->user = NULL;
1690 new_wa->free = true;
1691 }
1692
1693 target->working_areas = new_wa;
1694 }
1695
1696 /* only allocate multiples of 4 byte */
1697 if (size % 4)
1698 size = (size + 3) & (~3UL);
1699
1700 struct working_area *c = target->working_areas;
1701
1702 /* Find the first large enough working area */
1703 while (c) {
1704 if (c->free && c->size >= size)
1705 break;
1706 c = c->next;
1707 }
1708
1709 if (c == NULL)
1710 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1711
1712 /* Split the working area into the requested size */
1713 target_split_working_area(c, size);
1714
1715 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1716
1717 if (target->backup_working_area) {
1718 if (c->backup == NULL) {
1719 c->backup = malloc(c->size);
1720 if (c->backup == NULL)
1721 return ERROR_FAIL;
1722 }
1723
1724 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1725 if (retval != ERROR_OK)
1726 return retval;
1727 }
1728
1729 /* mark as used, and return the new (reused) area */
1730 c->free = false;
1731 *area = c;
1732
1733 /* user pointer */
1734 c->user = area;
1735
1736 print_wa_layout(target);
1737
1738 return ERROR_OK;
1739 }
1740
1741 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1742 {
1743 int retval;
1744
1745 retval = target_alloc_working_area_try(target, size, area);
1746 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1747 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1748 return retval;
1749
1750 }
1751
1752 static int target_restore_working_area(struct target *target, struct working_area *area)
1753 {
1754 int retval = ERROR_OK;
1755
1756 if (target->backup_working_area && area->backup != NULL) {
1757 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1758 if (retval != ERROR_OK)
1759 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1760 area->size, area->address);
1761 }
1762
1763 return retval;
1764 }
1765
1766 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1767 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1768 {
1769 int retval = ERROR_OK;
1770
1771 if (area->free)
1772 return retval;
1773
1774 if (restore) {
1775 retval = target_restore_working_area(target, area);
1776 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1777 if (retval != ERROR_OK)
1778 return retval;
1779 }
1780
1781 area->free = true;
1782
1783 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1784 area->size, area->address);
1785
1786 /* mark user pointer invalid */
1787 /* TODO: Is this really safe? It points to some previous caller's memory.
1788 * How could we know that the area pointer is still in that place and not
1789 * some other vital data? What's the purpose of this, anyway? */
1790 *area->user = NULL;
1791 area->user = NULL;
1792
1793 target_merge_working_areas(target);
1794
1795 print_wa_layout(target);
1796
1797 return retval;
1798 }
1799
1800 int target_free_working_area(struct target *target, struct working_area *area)
1801 {
1802 return target_free_working_area_restore(target, area, 1);
1803 }
1804
1805 void target_quit(void)
1806 {
1807 struct target_event_callback *pe = target_event_callbacks;
1808 while (pe) {
1809 struct target_event_callback *t = pe->next;
1810 free(pe);
1811 pe = t;
1812 }
1813 target_event_callbacks = NULL;
1814
1815 struct target_timer_callback *pt = target_timer_callbacks;
1816 while (pt) {
1817 struct target_timer_callback *t = pt->next;
1818 free(pt);
1819 pt = t;
1820 }
1821 target_timer_callbacks = NULL;
1822
1823 for (struct target *target = all_targets;
1824 target; target = target->next) {
1825 if (target->type->deinit_target)
1826 target->type->deinit_target(target);
1827 }
1828 }
1829
1830 /* free resources and restore memory, if restoring memory fails,
1831 * free up resources anyway
1832 */
1833 static void target_free_all_working_areas_restore(struct target *target, int restore)
1834 {
1835 struct working_area *c = target->working_areas;
1836
1837 LOG_DEBUG("freeing all working areas");
1838
1839 /* Loop through all areas, restoring the allocated ones and marking them as free */
1840 while (c) {
1841 if (!c->free) {
1842 if (restore)
1843 target_restore_working_area(target, c);
1844 c->free = true;
1845 *c->user = NULL; /* Same as above */
1846 c->user = NULL;
1847 }
1848 c = c->next;
1849 }
1850
1851 /* Run a merge pass to combine all areas into one */
1852 target_merge_working_areas(target);
1853
1854 print_wa_layout(target);
1855 }
1856
1857 void target_free_all_working_areas(struct target *target)
1858 {
1859 target_free_all_working_areas_restore(target, 1);
1860 }
1861
1862 /* Find the largest number of bytes that can be allocated */
1863 uint32_t target_get_working_area_avail(struct target *target)
1864 {
1865 struct working_area *c = target->working_areas;
1866 uint32_t max_size = 0;
1867
1868 if (c == NULL)
1869 return target->working_area_size;
1870
1871 while (c) {
1872 if (c->free && max_size < c->size)
1873 max_size = c->size;
1874
1875 c = c->next;
1876 }
1877
1878 return max_size;
1879 }
1880
1881 int target_arch_state(struct target *target)
1882 {
1883 int retval;
1884 if (target == NULL) {
1885 LOG_USER("No target has been configured");
1886 return ERROR_OK;
1887 }
1888
1889 LOG_USER("target state: %s", target_state_name(target));
1890
1891 if (target->state != TARGET_HALTED)
1892 return ERROR_OK;
1893
1894 retval = target->type->arch_state(target);
1895 return retval;
1896 }
1897
1898 static int target_get_gdb_fileio_info_default(struct target *target,
1899 struct gdb_fileio_info *fileio_info)
1900 {
1901 /* If target does not support semi-hosting function, target
1902 has no need to provide .get_gdb_fileio_info callback.
1903 It just return ERROR_FAIL and gdb_server will return "Txx"
1904 as target halted every time. */
1905 return ERROR_FAIL;
1906 }
1907
1908 static int target_gdb_fileio_end_default(struct target *target,
1909 int retcode, int fileio_errno, bool ctrl_c)
1910 {
1911 return ERROR_OK;
1912 }
1913
1914 static int target_profiling_default(struct target *target, uint32_t *samples,
1915 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1916 {
1917 struct timeval timeout, now;
1918
1919 gettimeofday(&timeout, NULL);
1920 timeval_add_time(&timeout, seconds, 0);
1921
1922 LOG_INFO("Starting profiling. Halting and resuming the"
1923 " target as often as we can...");
1924
1925 uint32_t sample_count = 0;
1926 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1927 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1928
1929 int retval = ERROR_OK;
1930 for (;;) {
1931 target_poll(target);
1932 if (target->state == TARGET_HALTED) {
1933 uint32_t t = buf_get_u32(reg->value, 0, 32);
1934 samples[sample_count++] = t;
1935 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1936 retval = target_resume(target, 1, 0, 0, 0);
1937 target_poll(target);
1938 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1939 } else if (target->state == TARGET_RUNNING) {
1940 /* We want to quickly sample the PC. */
1941 retval = target_halt(target);
1942 } else {
1943 LOG_INFO("Target not halted or running");
1944 retval = ERROR_OK;
1945 break;
1946 }
1947
1948 if (retval != ERROR_OK)
1949 break;
1950
1951 gettimeofday(&now, NULL);
1952 if ((sample_count >= max_num_samples) ||
1953 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1954 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1955 break;
1956 }
1957 }
1958
1959 *num_samples = sample_count;
1960 return retval;
1961 }
1962
1963 /* Single aligned words are guaranteed to use 16 or 32 bit access
1964 * mode respectively, otherwise data is handled as quickly as
1965 * possible
1966 */
1967 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1968 {
1969 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1970 (int)size, (unsigned)address);
1971
1972 if (!target_was_examined(target)) {
1973 LOG_ERROR("Target not examined yet");
1974 return ERROR_FAIL;
1975 }
1976
1977 if (size == 0)
1978 return ERROR_OK;
1979
1980 if ((address + size - 1) < address) {
1981 /* GDB can request this when e.g. PC is 0xfffffffc*/
1982 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1983 (unsigned)address,
1984 (unsigned)size);
1985 return ERROR_FAIL;
1986 }
1987
1988 return target->type->write_buffer(target, address, size, buffer);
1989 }
1990
1991 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1992 {
1993 uint32_t size;
1994
1995 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1996 * will have something to do with the size we leave to it. */
1997 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1998 if (address & size) {
1999 int retval = target_write_memory(target, address, size, 1, buffer);
2000 if (retval != ERROR_OK)
2001 return retval;
2002 address += size;
2003 count -= size;
2004 buffer += size;
2005 }
2006 }
2007
2008 /* Write the data with as large access size as possible. */
2009 for (; size > 0; size /= 2) {
2010 uint32_t aligned = count - count % size;
2011 if (aligned > 0) {
2012 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2013 if (retval != ERROR_OK)
2014 return retval;
2015 address += aligned;
2016 count -= aligned;
2017 buffer += aligned;
2018 }
2019 }
2020
2021 return ERROR_OK;
2022 }
2023
2024 /* Single aligned words are guaranteed to use 16 or 32 bit access
2025 * mode respectively, otherwise data is handled as quickly as
2026 * possible
2027 */
2028 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2029 {
2030 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2031 (int)size, (unsigned)address);
2032
2033 if (!target_was_examined(target)) {
2034 LOG_ERROR("Target not examined yet");
2035 return ERROR_FAIL;
2036 }
2037
2038 if (size == 0)
2039 return ERROR_OK;
2040
2041 if ((address + size - 1) < address) {
2042 /* GDB can request this when e.g. PC is 0xfffffffc*/
2043 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2044 address,
2045 size);
2046 return ERROR_FAIL;
2047 }
2048
2049 return target->type->read_buffer(target, address, size, buffer);
2050 }
2051
2052 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2053 {
2054 uint32_t size;
2055
2056 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2057 * will have something to do with the size we leave to it. */
2058 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2059 if (address & size) {
2060 int retval = target_read_memory(target, address, size, 1, buffer);
2061 if (retval != ERROR_OK)
2062 return retval;
2063 address += size;
2064 count -= size;
2065 buffer += size;
2066 }
2067 }
2068
2069 /* Read the data with as large access size as possible. */
2070 for (; size > 0; size /= 2) {
2071 uint32_t aligned = count - count % size;
2072 if (aligned > 0) {
2073 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2074 if (retval != ERROR_OK)
2075 return retval;
2076 address += aligned;
2077 count -= aligned;
2078 buffer += aligned;
2079 }
2080 }
2081
2082 return ERROR_OK;
2083 }
2084
2085 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2086 {
2087 uint8_t *buffer;
2088 int retval;
2089 uint32_t i;
2090 uint32_t checksum = 0;
2091 if (!target_was_examined(target)) {
2092 LOG_ERROR("Target not examined yet");
2093 return ERROR_FAIL;
2094 }
2095
2096 retval = target->type->checksum_memory(target, address, size, &checksum);
2097 if (retval != ERROR_OK) {
2098 buffer = malloc(size);
2099 if (buffer == NULL) {
2100 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
2101 return ERROR_COMMAND_SYNTAX_ERROR;
2102 }
2103 retval = target_read_buffer(target, address, size, buffer);
2104 if (retval != ERROR_OK) {
2105 free(buffer);
2106 return retval;
2107 }
2108
2109 /* convert to target endianness */
2110 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2111 uint32_t target_data;
2112 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2113 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2114 }
2115
2116 retval = image_calculate_checksum(buffer, size, &checksum);
2117 free(buffer);
2118 }
2119
2120 *crc = checksum;
2121
2122 return retval;
2123 }
2124
2125 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2126 {
2127 int retval;
2128 if (!target_was_examined(target)) {
2129 LOG_ERROR("Target not examined yet");
2130 return ERROR_FAIL;
2131 }
2132
2133 if (target->type->blank_check_memory == 0)
2134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2135
2136 retval = target->type->blank_check_memory(target, address, size, blank);
2137
2138 return retval;
2139 }
2140
2141 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2142 {
2143 uint8_t value_buf[8];
2144 if (!target_was_examined(target)) {
2145 LOG_ERROR("Target not examined yet");
2146 return ERROR_FAIL;
2147 }
2148
2149 int retval = target_read_memory(target, address, 8, 1, value_buf);
2150
2151 if (retval == ERROR_OK) {
2152 *value = target_buffer_get_u64(target, value_buf);
2153 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2154 address,
2155 *value);
2156 } else {
2157 *value = 0x0;
2158 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2159 address);
2160 }
2161
2162 return retval;
2163 }
2164
2165 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2166 {
2167 uint8_t value_buf[4];
2168 if (!target_was_examined(target)) {
2169 LOG_ERROR("Target not examined yet");
2170 return ERROR_FAIL;
2171 }
2172
2173 int retval = target_read_memory(target, address, 4, 1, value_buf);
2174
2175 if (retval == ERROR_OK) {
2176 *value = target_buffer_get_u32(target, value_buf);
2177 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2178 address,
2179 *value);
2180 } else {
2181 *value = 0x0;
2182 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2183 address);
2184 }
2185
2186 return retval;
2187 }
2188
2189 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2190 {
2191 uint8_t value_buf[2];
2192 if (!target_was_examined(target)) {
2193 LOG_ERROR("Target not examined yet");
2194 return ERROR_FAIL;
2195 }
2196
2197 int retval = target_read_memory(target, address, 2, 1, value_buf);
2198
2199 if (retval == ERROR_OK) {
2200 *value = target_buffer_get_u16(target, value_buf);
2201 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2202 address,
2203 *value);
2204 } else {
2205 *value = 0x0;
2206 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2207 address);
2208 }
2209
2210 return retval;
2211 }
2212
2213 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2214 {
2215 if (!target_was_examined(target)) {
2216 LOG_ERROR("Target not examined yet");
2217 return ERROR_FAIL;
2218 }
2219
2220 int retval = target_read_memory(target, address, 1, 1, value);
2221
2222 if (retval == ERROR_OK) {
2223 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2224 address,
2225 *value);
2226 } else {
2227 *value = 0x0;
2228 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2229 address);
2230 }
2231
2232 return retval;
2233 }
2234
2235 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2236 {
2237 int retval;
2238 uint8_t value_buf[8];
2239 if (!target_was_examined(target)) {
2240 LOG_ERROR("Target not examined yet");
2241 return ERROR_FAIL;
2242 }
2243
2244 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2245 address,
2246 value);
2247
2248 target_buffer_set_u64(target, value_buf, value);
2249 retval = target_write_memory(target, address, 8, 1, value_buf);
2250 if (retval != ERROR_OK)
2251 LOG_DEBUG("failed: %i", retval);
2252
2253 return retval;
2254 }
2255
2256 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2257 {
2258 int retval;
2259 uint8_t value_buf[4];
2260 if (!target_was_examined(target)) {
2261 LOG_ERROR("Target not examined yet");
2262 return ERROR_FAIL;
2263 }
2264
2265 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2266 address,
2267 value);
2268
2269 target_buffer_set_u32(target, value_buf, value);
2270 retval = target_write_memory(target, address, 4, 1, value_buf);
2271 if (retval != ERROR_OK)
2272 LOG_DEBUG("failed: %i", retval);
2273
2274 return retval;
2275 }
2276
2277 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2278 {
2279 int retval;
2280 uint8_t value_buf[2];
2281 if (!target_was_examined(target)) {
2282 LOG_ERROR("Target not examined yet");
2283 return ERROR_FAIL;
2284 }
2285
2286 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2287 address,
2288 value);
2289
2290 target_buffer_set_u16(target, value_buf, value);
2291 retval = target_write_memory(target, address, 2, 1, value_buf);
2292 if (retval != ERROR_OK)
2293 LOG_DEBUG("failed: %i", retval);
2294
2295 return retval;
2296 }
2297
2298 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2299 {
2300 int retval;
2301 if (!target_was_examined(target)) {
2302 LOG_ERROR("Target not examined yet");
2303 return ERROR_FAIL;
2304 }
2305
2306 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2307 address, value);
2308
2309 retval = target_write_memory(target, address, 1, 1, &value);
2310 if (retval != ERROR_OK)
2311 LOG_DEBUG("failed: %i", retval);
2312
2313 return retval;
2314 }
2315
2316 static int find_target(struct command_context *cmd_ctx, const char *name)
2317 {
2318 struct target *target = get_target(name);
2319 if (target == NULL) {
2320 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2321 return ERROR_FAIL;
2322 }
2323 if (!target->tap->enabled) {
2324 LOG_USER("Target: TAP %s is disabled, "
2325 "can't be the current target\n",
2326 target->tap->dotted_name);
2327 return ERROR_FAIL;
2328 }
2329
2330 cmd_ctx->current_target = target->target_number;
2331 return ERROR_OK;
2332 }
2333
2334
2335 COMMAND_HANDLER(handle_targets_command)
2336 {
2337 int retval = ERROR_OK;
2338 if (CMD_ARGC == 1) {
2339 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2340 if (retval == ERROR_OK) {
2341 /* we're done! */
2342 return retval;
2343 }
2344 }
2345
2346 struct target *target = all_targets;
2347 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2348 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2349 while (target) {
2350 const char *state;
2351 char marker = ' ';
2352
2353 if (target->tap->enabled)
2354 state = target_state_name(target);
2355 else
2356 state = "tap-disabled";
2357
2358 if (CMD_CTX->current_target == target->target_number)
2359 marker = '*';
2360
2361 /* keep columns lined up to match the headers above */
2362 command_print(CMD_CTX,
2363 "%2d%c %-18s %-10s %-6s %-18s %s",
2364 target->target_number,
2365 marker,
2366 target_name(target),
2367 target_type_name(target),
2368 Jim_Nvp_value2name_simple(nvp_target_endian,
2369 target->endianness)->name,
2370 target->tap->dotted_name,
2371 state);
2372 target = target->next;
2373 }
2374
2375 return retval;
2376 }
2377
2378 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2379
2380 static int powerDropout;
2381 static int srstAsserted;
2382
2383 static int runPowerRestore;
2384 static int runPowerDropout;
2385 static int runSrstAsserted;
2386 static int runSrstDeasserted;
2387
2388 static int sense_handler(void)
2389 {
2390 static int prevSrstAsserted;
2391 static int prevPowerdropout;
2392
2393 int retval = jtag_power_dropout(&powerDropout);
2394 if (retval != ERROR_OK)
2395 return retval;
2396
2397 int powerRestored;
2398 powerRestored = prevPowerdropout && !powerDropout;
2399 if (powerRestored)
2400 runPowerRestore = 1;
2401
2402 long long current = timeval_ms();
2403 static long long lastPower;
2404 int waitMore = lastPower + 2000 > current;
2405 if (powerDropout && !waitMore) {
2406 runPowerDropout = 1;
2407 lastPower = current;
2408 }
2409
2410 retval = jtag_srst_asserted(&srstAsserted);
2411 if (retval != ERROR_OK)
2412 return retval;
2413
2414 int srstDeasserted;
2415 srstDeasserted = prevSrstAsserted && !srstAsserted;
2416
2417 static long long lastSrst;
2418 waitMore = lastSrst + 2000 > current;
2419 if (srstDeasserted && !waitMore) {
2420 runSrstDeasserted = 1;
2421 lastSrst = current;
2422 }
2423
2424 if (!prevSrstAsserted && srstAsserted)
2425 runSrstAsserted = 1;
2426
2427 prevSrstAsserted = srstAsserted;
2428 prevPowerdropout = powerDropout;
2429
2430 if (srstDeasserted || powerRestored) {
2431 /* Other than logging the event we can't do anything here.
2432 * Issuing a reset is a particularly bad idea as we might
2433 * be inside a reset already.
2434 */
2435 }
2436
2437 return ERROR_OK;
2438 }
2439
2440 /* process target state changes */
2441 static int handle_target(void *priv)
2442 {
2443 Jim_Interp *interp = (Jim_Interp *)priv;
2444 int retval = ERROR_OK;
2445
2446 if (!is_jtag_poll_safe()) {
2447 /* polling is disabled currently */
2448 return ERROR_OK;
2449 }
2450
2451 /* we do not want to recurse here... */
2452 static int recursive;
2453 if (!recursive) {
2454 recursive = 1;
2455 sense_handler();
2456 /* danger! running these procedures can trigger srst assertions and power dropouts.
2457 * We need to avoid an infinite loop/recursion here and we do that by
2458 * clearing the flags after running these events.
2459 */
2460 int did_something = 0;
2461 if (runSrstAsserted) {
2462 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2463 Jim_Eval(interp, "srst_asserted");
2464 did_something = 1;
2465 }
2466 if (runSrstDeasserted) {
2467 Jim_Eval(interp, "srst_deasserted");
2468 did_something = 1;
2469 }
2470 if (runPowerDropout) {
2471 LOG_INFO("Power dropout detected, running power_dropout proc.");
2472 Jim_Eval(interp, "power_dropout");
2473 did_something = 1;
2474 }
2475 if (runPowerRestore) {
2476 Jim_Eval(interp, "power_restore");
2477 did_something = 1;
2478 }
2479
2480 if (did_something) {
2481 /* clear detect flags */
2482 sense_handler();
2483 }
2484
2485 /* clear action flags */
2486
2487 runSrstAsserted = 0;
2488 runSrstDeasserted = 0;
2489 runPowerRestore = 0;
2490 runPowerDropout = 0;
2491
2492 recursive = 0;
2493 }
2494
2495 /* Poll targets for state changes unless that's globally disabled.
2496 * Skip targets that are currently disabled.
2497 */
2498 for (struct target *target = all_targets;
2499 is_jtag_poll_safe() && target;
2500 target = target->next) {
2501
2502 if (!target_was_examined(target))
2503 continue;
2504
2505 if (!target->tap->enabled)
2506 continue;
2507
2508 if (target->backoff.times > target->backoff.count) {
2509 /* do not poll this time as we failed previously */
2510 target->backoff.count++;
2511 continue;
2512 }
2513 target->backoff.count = 0;
2514
2515 /* only poll target if we've got power and srst isn't asserted */
2516 if (!powerDropout && !srstAsserted) {
2517 /* polling may fail silently until the target has been examined */
2518 retval = target_poll(target);
2519 if (retval != ERROR_OK) {
2520 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2521 if (target->backoff.times * polling_interval < 5000) {
2522 target->backoff.times *= 2;
2523 target->backoff.times++;
2524 }
2525 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2526 target_name(target),
2527 target->backoff.times * polling_interval);
2528
2529 /* Tell GDB to halt the debugger. This allows the user to
2530 * run monitor commands to handle the situation.
2531 */
2532 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2533 return retval;
2534 }
2535 /* Since we succeeded, we reset backoff count */
2536 if (target->backoff.times > 0) {
2537 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2538 target_reset_examined(target);
2539 retval = target_examine_one(target);
2540 /* Target examination could have failed due to unstable connection,
2541 * but we set the examined flag anyway to repoll it later */
2542 if (retval != ERROR_OK) {
2543 target->examined = true;
2544 return retval;
2545 }
2546 }
2547
2548 target->backoff.times = 0;
2549 }
2550 }
2551
2552 return retval;
2553 }
2554
2555 COMMAND_HANDLER(handle_reg_command)
2556 {
2557 struct target *target;
2558 struct reg *reg = NULL;
2559 unsigned count = 0;
2560 char *value;
2561
2562 LOG_DEBUG("-");
2563
2564 target = get_current_target(CMD_CTX);
2565
2566 /* list all available registers for the current target */
2567 if (CMD_ARGC == 0) {
2568 struct reg_cache *cache = target->reg_cache;
2569
2570 count = 0;
2571 while (cache) {
2572 unsigned i;
2573
2574 command_print(CMD_CTX, "===== %s", cache->name);
2575
2576 for (i = 0, reg = cache->reg_list;
2577 i < cache->num_regs;
2578 i++, reg++, count++) {
2579 /* only print cached values if they are valid */
2580 if (reg->valid) {
2581 value = buf_to_str(reg->value,
2582 reg->size, 16);
2583 command_print(CMD_CTX,
2584 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2585 count, reg->name,
2586 reg->size, value,
2587 reg->dirty
2588 ? " (dirty)"
2589 : "");
2590 free(value);
2591 } else {
2592 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2593 count, reg->name,
2594 reg->size) ;
2595 }
2596 }
2597 cache = cache->next;
2598 }
2599
2600 return ERROR_OK;
2601 }
2602
2603 /* access a single register by its ordinal number */
2604 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2605 unsigned num;
2606 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2607
2608 struct reg_cache *cache = target->reg_cache;
2609 count = 0;
2610 while (cache) {
2611 unsigned i;
2612 for (i = 0; i < cache->num_regs; i++) {
2613 if (count++ == num) {
2614 reg = &cache->reg_list[i];
2615 break;
2616 }
2617 }
2618 if (reg)
2619 break;
2620 cache = cache->next;
2621 }
2622
2623 if (!reg) {
2624 command_print(CMD_CTX, "%i is out of bounds, the current target "
2625 "has only %i registers (0 - %i)", num, count, count - 1);
2626 return ERROR_OK;
2627 }
2628 } else {
2629 /* access a single register by its name */
2630 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2631
2632 if (!reg) {
2633 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2634 return ERROR_OK;
2635 }
2636 }
2637
2638 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2639
2640 /* display a register */
2641 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2642 && (CMD_ARGV[1][0] <= '9')))) {
2643 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2644 reg->valid = 0;
2645
2646 if (reg->valid == 0)
2647 reg->type->get(reg);
2648 value = buf_to_str(reg->value, reg->size, 16);
2649 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2650 free(value);
2651 return ERROR_OK;
2652 }
2653
2654 /* set register value */
2655 if (CMD_ARGC == 2) {
2656 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2657 if (buf == NULL)
2658 return ERROR_FAIL;
2659 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2660
2661 reg->type->set(reg, buf);
2662
2663 value = buf_to_str(reg->value, reg->size, 16);
2664 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2665 free(value);
2666
2667 free(buf);
2668
2669 return ERROR_OK;
2670 }
2671
2672 return ERROR_COMMAND_SYNTAX_ERROR;
2673 }
2674
2675 COMMAND_HANDLER(handle_poll_command)
2676 {
2677 int retval = ERROR_OK;
2678 struct target *target = get_current_target(CMD_CTX);
2679
2680 if (CMD_ARGC == 0) {
2681 command_print(CMD_CTX, "background polling: %s",
2682 jtag_poll_get_enabled() ? "on" : "off");
2683 command_print(CMD_CTX, "TAP: %s (%s)",
2684 target->tap->dotted_name,
2685 target->tap->enabled ? "enabled" : "disabled");
2686 if (!target->tap->enabled)
2687 return ERROR_OK;
2688 retval = target_poll(target);
2689 if (retval != ERROR_OK)
2690 return retval;
2691 retval = target_arch_state(target);
2692 if (retval != ERROR_OK)
2693 return retval;
2694 } else if (CMD_ARGC == 1) {
2695 bool enable;
2696 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2697 jtag_poll_set_enabled(enable);
2698 } else
2699 return ERROR_COMMAND_SYNTAX_ERROR;
2700
2701 return retval;
2702 }
2703
2704 COMMAND_HANDLER(handle_wait_halt_command)
2705 {
2706 if (CMD_ARGC > 1)
2707 return ERROR_COMMAND_SYNTAX_ERROR;
2708
2709 unsigned ms = DEFAULT_HALT_TIMEOUT;
2710 if (1 == CMD_ARGC) {
2711 int retval = parse_uint(CMD_ARGV[0], &ms);
2712 if (ERROR_OK != retval)
2713 return ERROR_COMMAND_SYNTAX_ERROR;
2714 }
2715
2716 struct target *target = get_current_target(CMD_CTX);
2717 return target_wait_state(target, TARGET_HALTED, ms);
2718 }
2719
2720 /* wait for target state to change. The trick here is to have a low
2721 * latency for short waits and not to suck up all the CPU time
2722 * on longer waits.
2723 *
2724 * After 500ms, keep_alive() is invoked
2725 */
2726 int target_wait_state(struct target *target, enum target_state state, int ms)
2727 {
2728 int retval;
2729 long long then = 0, cur;
2730 int once = 1;
2731
2732 for (;;) {
2733 retval = target_poll(target);
2734 if (retval != ERROR_OK)
2735 return retval;
2736 if (target->state == state)
2737 break;
2738 cur = timeval_ms();
2739 if (once) {
2740 once = 0;
2741 then = timeval_ms();
2742 LOG_DEBUG("waiting for target %s...",
2743 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2744 }
2745
2746 if (cur-then > 500)
2747 keep_alive();
2748
2749 if ((cur-then) > ms) {
2750 LOG_ERROR("timed out while waiting for target %s",
2751 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2752 return ERROR_FAIL;
2753 }
2754 }
2755
2756 return ERROR_OK;
2757 }
2758
2759 COMMAND_HANDLER(handle_halt_command)
2760 {
2761 LOG_DEBUG("-");
2762
2763 struct target *target = get_current_target(CMD_CTX);
2764 int retval = target_halt(target);
2765 if (ERROR_OK != retval)
2766 return retval;
2767
2768 if (CMD_ARGC == 1) {
2769 unsigned wait_local;
2770 retval = parse_uint(CMD_ARGV[0], &wait_local);
2771 if (ERROR_OK != retval)
2772 return ERROR_COMMAND_SYNTAX_ERROR;
2773 if (!wait_local)
2774 return ERROR_OK;
2775 }
2776
2777 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2778 }
2779
2780 COMMAND_HANDLER(handle_soft_reset_halt_command)
2781 {
2782 struct target *target = get_current_target(CMD_CTX);
2783
2784 LOG_USER("requesting target halt and executing a soft reset");
2785
2786 target_soft_reset_halt(target);
2787
2788 return ERROR_OK;
2789 }
2790
2791 COMMAND_HANDLER(handle_reset_command)
2792 {
2793 if (CMD_ARGC > 1)
2794 return ERROR_COMMAND_SYNTAX_ERROR;
2795
2796 enum target_reset_mode reset_mode = RESET_RUN;
2797 if (CMD_ARGC == 1) {
2798 const Jim_Nvp *n;
2799 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2800 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2801 return ERROR_COMMAND_SYNTAX_ERROR;
2802 reset_mode = n->value;
2803 }
2804
2805 /* reset *all* targets */
2806 return target_process_reset(CMD_CTX, reset_mode);
2807 }
2808
2809
2810 COMMAND_HANDLER(handle_resume_command)
2811 {
2812 int current = 1;
2813 if (CMD_ARGC > 1)
2814 return ERROR_COMMAND_SYNTAX_ERROR;
2815
2816 struct target *target = get_current_target(CMD_CTX);
2817
2818 /* with no CMD_ARGV, resume from current pc, addr = 0,
2819 * with one arguments, addr = CMD_ARGV[0],
2820 * handle breakpoints, not debugging */
2821 uint32_t addr = 0;
2822 if (CMD_ARGC == 1) {
2823 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2824 current = 0;
2825 }
2826
2827 return target_resume(target, current, addr, 1, 0);
2828 }
2829
2830 COMMAND_HANDLER(handle_step_command)
2831 {
2832 if (CMD_ARGC > 1)
2833 return ERROR_COMMAND_SYNTAX_ERROR;
2834
2835 LOG_DEBUG("-");
2836
2837 /* with no CMD_ARGV, step from current pc, addr = 0,
2838 * with one argument addr = CMD_ARGV[0],
2839 * handle breakpoints, debugging */
2840 uint32_t addr = 0;
2841 int current_pc = 1;
2842 if (CMD_ARGC == 1) {
2843 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2844 current_pc = 0;
2845 }
2846
2847 struct target *target = get_current_target(CMD_CTX);
2848
2849 return target->type->step(target, current_pc, addr, 1);
2850 }
2851
2852 static void handle_md_output(struct command_context *cmd_ctx,
2853 struct target *target, uint32_t address, unsigned size,
2854 unsigned count, const uint8_t *buffer)
2855 {
2856 const unsigned line_bytecnt = 32;
2857 unsigned line_modulo = line_bytecnt / size;
2858
2859 char output[line_bytecnt * 4 + 1];
2860 unsigned output_len = 0;
2861
2862 const char *value_fmt;
2863 switch (size) {
2864 case 4:
2865 value_fmt = "%8.8x ";
2866 break;
2867 case 2:
2868 value_fmt = "%4.4x ";
2869 break;
2870 case 1:
2871 value_fmt = "%2.2x ";
2872 break;
2873 default:
2874 /* "can't happen", caller checked */
2875 LOG_ERROR("invalid memory read size: %u", size);
2876 return;
2877 }
2878
2879 for (unsigned i = 0; i < count; i++) {
2880 if (i % line_modulo == 0) {
2881 output_len += snprintf(output + output_len,
2882 sizeof(output) - output_len,
2883 "0x%8.8x: ",
2884 (unsigned)(address + (i*size)));
2885 }
2886
2887 uint32_t value = 0;
2888 const uint8_t *value_ptr = buffer + i * size;
2889 switch (size) {
2890 case 4:
2891 value = target_buffer_get_u32(target, value_ptr);
2892 break;
2893 case 2:
2894 value = target_buffer_get_u16(target, value_ptr);
2895 break;
2896 case 1:
2897 value = *value_ptr;
2898 }
2899 output_len += snprintf(output + output_len,
2900 sizeof(output) - output_len,
2901 value_fmt, value);
2902
2903 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2904 command_print(cmd_ctx, "%s", output);
2905 output_len = 0;
2906 }
2907 }
2908 }
2909
2910 COMMAND_HANDLER(handle_md_command)
2911 {
2912 if (CMD_ARGC < 1)
2913 return ERROR_COMMAND_SYNTAX_ERROR;
2914
2915 unsigned size = 0;
2916 switch (CMD_NAME[2]) {
2917 case 'w':
2918 size = 4;
2919 break;
2920 case 'h':
2921 size = 2;
2922 break;
2923 case 'b':
2924 size = 1;
2925 break;
2926 default:
2927 return ERROR_COMMAND_SYNTAX_ERROR;
2928 }
2929
2930 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2931 int (*fn)(struct target *target,
2932 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2933 if (physical) {
2934 CMD_ARGC--;
2935 CMD_ARGV++;
2936 fn = target_read_phys_memory;
2937 } else
2938 fn = target_read_memory;
2939 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2940 return ERROR_COMMAND_SYNTAX_ERROR;
2941
2942 uint32_t address;
2943 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2944
2945 unsigned count = 1;
2946 if (CMD_ARGC == 2)
2947 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2948
2949 uint8_t *buffer = calloc(count, size);
2950
2951 struct target *target = get_current_target(CMD_CTX);
2952 int retval = fn(target, address, size, count, buffer);
2953 if (ERROR_OK == retval)
2954 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2955
2956 free(buffer);
2957
2958 return retval;
2959 }
2960
2961 typedef int (*target_write_fn)(struct target *target,
2962 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2963
2964 static int target_fill_mem(struct target *target,
2965 uint32_t address,
2966 target_write_fn fn,
2967 unsigned data_size,
2968 /* value */
2969 uint32_t b,
2970 /* count */
2971 unsigned c)
2972 {
2973 /* We have to write in reasonably large chunks to be able
2974 * to fill large memory areas with any sane speed */
2975 const unsigned chunk_size = 16384;
2976 uint8_t *target_buf = malloc(chunk_size * data_size);
2977 if (target_buf == NULL) {
2978 LOG_ERROR("Out of memory");
2979 return ERROR_FAIL;
2980 }
2981
2982 for (unsigned i = 0; i < chunk_size; i++) {
2983 switch (data_size) {
2984 case 4:
2985 target_buffer_set_u32(target, target_buf + i * data_size, b);
2986 break;
2987 case 2:
2988 target_buffer_set_u16(target, target_buf + i * data_size, b);
2989 break;
2990 case 1:
2991 target_buffer_set_u8(target, target_buf + i * data_size, b);
2992 break;
2993 default:
2994 exit(-1);
2995 }
2996 }
2997
2998 int retval = ERROR_OK;
2999
3000 for (unsigned x = 0; x < c; x += chunk_size) {
3001 unsigned current;
3002 current = c - x;
3003 if (current > chunk_size)
3004 current = chunk_size;
3005 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3006 if (retval != ERROR_OK)
3007 break;
3008 /* avoid GDB timeouts */
3009 keep_alive();
3010 }
3011 free(target_buf);
3012
3013 return retval;
3014 }
3015
3016
3017 COMMAND_HANDLER(handle_mw_command)
3018 {
3019 if (CMD_ARGC < 2)
3020 return ERROR_COMMAND_SYNTAX_ERROR;
3021 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3022 target_write_fn fn;
3023 if (physical) {
3024 CMD_ARGC--;
3025 CMD_ARGV++;
3026 fn = target_write_phys_memory;
3027 } else
3028 fn = target_write_memory;
3029 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3030 return ERROR_COMMAND_SYNTAX_ERROR;
3031
3032 uint32_t address;
3033 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3034
3035 uint32_t value;
3036 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3037
3038 unsigned count = 1;
3039 if (CMD_ARGC == 3)
3040 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3041
3042 struct target *target = get_current_target(CMD_CTX);
3043 unsigned wordsize;
3044 switch (CMD_NAME[2]) {
3045 case 'w':
3046 wordsize = 4;
3047 break;
3048 case 'h':
3049 wordsize = 2;
3050 break;
3051 case 'b':
3052 wordsize = 1;
3053 break;
3054 default:
3055 return ERROR_COMMAND_SYNTAX_ERROR;
3056 }
3057
3058 return target_fill_mem(target, address, fn, wordsize, value, count);
3059 }
3060
3061 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3062 uint32_t *min_address, uint32_t *max_address)
3063 {
3064 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3065 return ERROR_COMMAND_SYNTAX_ERROR;
3066
3067 /* a base address isn't always necessary,
3068 * default to 0x0 (i.e. don't relocate) */
3069 if (CMD_ARGC >= 2) {
3070 uint32_t addr;
3071 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3072 image->base_address = addr;
3073 image->base_address_set = 1;
3074 } else
3075 image->base_address_set = 0;
3076
3077 image->start_address_set = 0;
3078
3079 if (CMD_ARGC >= 4)
3080 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3081 if (CMD_ARGC == 5) {
3082 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3083 /* use size (given) to find max (required) */
3084 *max_address += *min_address;
3085 }
3086
3087 if (*min_address > *max_address)
3088 return ERROR_COMMAND_SYNTAX_ERROR;
3089
3090 return ERROR_OK;
3091 }
3092
3093 COMMAND_HANDLER(handle_load_image_command)
3094 {
3095 uint8_t *buffer;
3096 size_t buf_cnt;
3097 uint32_t image_size;
3098 uint32_t min_address = 0;
3099 uint32_t max_address = 0xffffffff;
3100 int i;
3101 struct image image;
3102
3103 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3104 &image, &min_address, &max_address);
3105 if (ERROR_OK != retval)
3106 return retval;
3107
3108 struct target *target = get_current_target(CMD_CTX);
3109
3110 struct duration bench;
3111 duration_start(&bench);
3112
3113 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3114 return ERROR_OK;
3115
3116 image_size = 0x0;
3117 retval = ERROR_OK;
3118 for (i = 0; i < image.num_sections; i++) {
3119 buffer = malloc(image.sections[i].size);
3120 if (buffer == NULL) {
3121 command_print(CMD_CTX,
3122 "error allocating buffer for section (%d bytes)",
3123 (int)(image.sections[i].size));
3124 break;
3125 }
3126
3127 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3128 if (retval != ERROR_OK) {
3129 free(buffer);
3130 break;
3131 }
3132
3133 uint32_t offset = 0;
3134 uint32_t length = buf_cnt;
3135
3136 /* DANGER!!! beware of unsigned comparision here!!! */
3137
3138 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3139 (image.sections[i].base_address < max_address)) {
3140
3141 if (image.sections[i].base_address < min_address) {
3142 /* clip addresses below */
3143 offset += min_address-image.sections[i].base_address;
3144 length -= offset;
3145 }
3146
3147 if (image.sections[i].base_address + buf_cnt > max_address)
3148 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3149
3150 retval = target_write_buffer(target,
3151 image.sections[i].base_address + offset, length, buffer + offset);
3152 if (retval != ERROR_OK) {
3153 free(buffer);
3154 break;
3155 }
3156 image_size += length;
3157 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3158 (unsigned int)length,
3159 image.sections[i].base_address + offset);
3160 }
3161
3162 free(buffer);
3163 }
3164
3165 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3166 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3167 "in %fs (%0.3f KiB/s)", image_size,
3168 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3169 }
3170
3171 image_close(&image);
3172
3173 return retval;
3174
3175 }
3176
3177 COMMAND_HANDLER(handle_dump_image_command)
3178 {
3179 struct fileio fileio;
3180 uint8_t *buffer;
3181 int retval, retvaltemp;
3182 uint32_t address, size;
3183 struct duration bench;
3184 struct target *target = get_current_target(CMD_CTX);
3185
3186 if (CMD_ARGC != 3)
3187 return ERROR_COMMAND_SYNTAX_ERROR;
3188
3189 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3190 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3191
3192 uint32_t buf_size = (size > 4096) ? 4096 : size;
3193 buffer = malloc(buf_size);
3194 if (!buffer)
3195 return ERROR_FAIL;
3196
3197 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3198 if (retval != ERROR_OK) {
3199 free(buffer);
3200 return retval;
3201 }
3202
3203 duration_start(&bench);
3204
3205 while (size > 0) {
3206 size_t size_written;
3207 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3208 retval = target_read_buffer(target, address, this_run_size, buffer);
3209 if (retval != ERROR_OK)
3210 break;
3211
3212 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3213 if (retval != ERROR_OK)
3214 break;
3215
3216 size -= this_run_size;
3217 address += this_run_size;
3218 }
3219
3220 free(buffer);
3221
3222 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3223 int filesize;
3224 retval = fileio_size(&fileio, &filesize);
3225 if (retval != ERROR_OK)
3226 return retval;
3227 command_print(CMD_CTX,
3228 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3229 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3230 }
3231
3232 retvaltemp = fileio_close(&fileio);
3233 if (retvaltemp != ERROR_OK)
3234 return retvaltemp;
3235
3236 return retval;
3237 }
3238
3239 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3240 {
3241 uint8_t *buffer;
3242 size_t buf_cnt;
3243 uint32_t image_size;
3244 int i;
3245 int retval;
3246 uint32_t checksum = 0;
3247 uint32_t mem_checksum = 0;
3248
3249 struct image image;
3250
3251 struct target *target = get_current_target(CMD_CTX);
3252
3253 if (CMD_ARGC < 1)
3254 return ERROR_COMMAND_SYNTAX_ERROR;
3255
3256 if (!target) {
3257 LOG_ERROR("no target selected");
3258 return ERROR_FAIL;
3259 }
3260
3261 struct duration bench;
3262 duration_start(&bench);
3263
3264 if (CMD_ARGC >= 2) {
3265 uint32_t addr;
3266 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3267 image.base_address = addr;
3268 image.base_address_set = 1;
3269 } else {
3270 image.base_address_set = 0;
3271 image.base_address = 0x0;
3272 }
3273
3274 image.start_address_set = 0;
3275
3276 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3277 if (retval != ERROR_OK)
3278 return retval;
3279
3280 image_size = 0x0;
3281 int diffs = 0;
3282 retval = ERROR_OK;
3283 for (i = 0; i < image.num_sections; i++) {
3284 buffer = malloc(image.sections[i].size);
3285 if (buffer == NULL) {
3286 command_print(CMD_CTX,
3287 "error allocating buffer for section (%d bytes)",
3288 (int)(image.sections[i].size));
3289 break;
3290 }
3291 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3292 if (retval != ERROR_OK) {
3293 free(buffer);
3294 break;
3295 }
3296
3297 if (verify) {
3298 /* calculate checksum of image */
3299 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3300 if (retval != ERROR_OK) {
3301 free(buffer);
3302 break;
3303 }
3304
3305 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3306 if (retval != ERROR_OK) {
3307 free(buffer);
3308 break;
3309 }
3310
3311 if (checksum != mem_checksum) {
3312 /* failed crc checksum, fall back to a binary compare */
3313 uint8_t *data;
3314
3315 if (diffs == 0)
3316 LOG_ERROR("checksum mismatch - attempting binary compare");
3317
3318 data = malloc(buf_cnt);
3319
3320 /* Can we use 32bit word accesses? */
3321 int size = 1;
3322 int count = buf_cnt;
3323 if ((count % 4) == 0) {
3324 size *= 4;
3325 count /= 4;
3326 }
3327 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3328 if (retval == ERROR_OK) {
3329 uint32_t t;
3330 for (t = 0; t < buf_cnt; t++) {
3331 if (data[t] != buffer[t]) {
3332 command_print(CMD_CTX,
3333 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3334 diffs,
3335 (unsigned)(t + image.sections[i].base_address),
3336 data[t],
3337 buffer[t]);
3338 if (diffs++ >= 127) {
3339 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3340 free(data);
3341 free(buffer);
3342 goto done;
3343 }
3344 }
3345 keep_alive();
3346 }
3347 }
3348 free(data);
3349 }
3350 } else {
3351 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3352 image.sections[i].base_address,
3353 buf_cnt);
3354 }
3355
3356 free(buffer);
3357 image_size += buf_cnt;
3358 }
3359 if (diffs > 0)
3360 command_print(CMD_CTX, "No more differences found.");
3361 done:
3362 if (diffs > 0)
3363 retval = ERROR_FAIL;
3364 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3365 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3366 "in %fs (%0.3f KiB/s)", image_size,
3367 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3368 }
3369
3370 image_close(&image);
3371
3372 return retval;
3373 }
3374
3375 COMMAND_HANDLER(handle_verify_image_command)
3376 {
3377 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3378 }
3379
3380 COMMAND_HANDLER(handle_test_image_command)
3381 {
3382 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3383 }
3384
3385 static int handle_bp_command_list(struct command_context *cmd_ctx)
3386 {
3387 struct target *target = get_current_target(cmd_ctx);
3388 struct breakpoint *breakpoint = target->breakpoints;
3389 while (breakpoint) {
3390 if (breakpoint->type == BKPT_SOFT) {
3391 char *buf = buf_to_str(breakpoint->orig_instr,
3392 breakpoint->length, 16);
3393 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3394 breakpoint->address,
3395 breakpoint->length,
3396 breakpoint->set, buf);
3397 free(buf);
3398 } else {
3399 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3400 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3401 breakpoint->asid,
3402 breakpoint->length, breakpoint->set);
3403 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3404 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3405 breakpoint->address,
3406 breakpoint->length, breakpoint->set);
3407 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3408 breakpoint->asid);
3409 } else
3410 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3411 breakpoint->address,
3412 breakpoint->length, breakpoint->set);
3413 }
3414
3415 breakpoint = breakpoint->next;
3416 }
3417 return ERROR_OK;
3418 }
3419
3420 static int handle_bp_command_set(struct command_context *cmd_ctx,
3421 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3422 {
3423 struct target *target = get_current_target(cmd_ctx);
3424 int retval;
3425
3426 if (asid == 0) {
3427 retval = breakpoint_add(target, addr, length, hw);
3428 if (ERROR_OK == retval)
3429 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3430 else {
3431 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3432 return retval;
3433 }
3434 } else if (addr == 0) {
3435 if (target->type->add_context_breakpoint == NULL) {
3436 LOG_WARNING("Context breakpoint not available");
3437 return ERROR_OK;
3438 }
3439 retval = context_breakpoint_add(target, asid, length, hw);
3440 if (ERROR_OK == retval)
3441 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3442 else {
3443 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3444 return retval;
3445 }
3446 } else {
3447 if (target->type->add_hybrid_breakpoint == NULL) {
3448 LOG_WARNING("Hybrid breakpoint not available");
3449 return ERROR_OK;
3450 }
3451 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3452 if (ERROR_OK == retval)
3453 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3454 else {
3455 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3456 return retval;
3457 }
3458 }
3459 return ERROR_OK;
3460 }
3461
3462 COMMAND_HANDLER(handle_bp_command)
3463 {
3464 uint32_t addr;
3465 uint32_t asid;
3466 uint32_t length;
3467 int hw = BKPT_SOFT;
3468
3469 switch (CMD_ARGC) {
3470 case 0:
3471 return handle_bp_command_list(CMD_CTX);
3472
3473 case 2:
3474 asid = 0;
3475 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3476 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3477 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3478
3479 case 3:
3480 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3481 hw = BKPT_HARD;
3482 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3483
3484 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3485
3486 asid = 0;
3487 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3488 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3489 hw = BKPT_HARD;
3490 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3491 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3492 addr = 0;
3493 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3494 }
3495
3496 case 4:
3497 hw = BKPT_HARD;
3498 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3499 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3500 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3501 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3502
3503 default:
3504 return ERROR_COMMAND_SYNTAX_ERROR;
3505 }
3506 }
3507
3508 COMMAND_HANDLER(handle_rbp_command)
3509 {
3510 if (CMD_ARGC != 1)
3511 return ERROR_COMMAND_SYNTAX_ERROR;
3512
3513 uint32_t addr;
3514 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3515
3516 struct target *target = get_current_target(CMD_CTX);
3517 breakpoint_remove(target, addr);
3518
3519 return ERROR_OK;
3520 }
3521
3522 COMMAND_HANDLER(handle_wp_command)
3523 {
3524 struct target *target = get_current_target(CMD_CTX);
3525
3526 if (CMD_ARGC == 0) {
3527 struct watchpoint *watchpoint = target->watchpoints;
3528
3529 while (watchpoint) {
3530 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3531 ", len: 0x%8.8" PRIx32
3532 ", r/w/a: %i, value: 0x%8.8" PRIx32
3533 ", mask: 0x%8.8" PRIx32,
3534 watchpoint->address,
3535 watchpoint->length,
3536 (int)watchpoint->rw,
3537 watchpoint->value,
3538 watchpoint->mask);
3539 watchpoint = watchpoint->next;
3540 }
3541 return ERROR_OK;
3542 }
3543
3544 enum watchpoint_rw type = WPT_ACCESS;
3545 uint32_t addr = 0;
3546 uint32_t length = 0;
3547 uint32_t data_value = 0x0;
3548 uint32_t data_mask = 0xffffffff;
3549
3550 switch (CMD_ARGC) {
3551 case 5:
3552 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3553 /* fall through */
3554 case 4:
3555 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3556 /* fall through */
3557 case 3:
3558 switch (CMD_ARGV[2][0]) {
3559 case 'r':
3560 type = WPT_READ;
3561 break;
3562 case 'w':
3563 type = WPT_WRITE;
3564 break;
3565 case 'a':
3566 type = WPT_ACCESS;
3567 break;
3568 default:
3569 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3570 return ERROR_COMMAND_SYNTAX_ERROR;
3571 }
3572 /* fall through */
3573 case 2:
3574 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3575 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3576 break;
3577
3578 default:
3579 return ERROR_COMMAND_SYNTAX_ERROR;
3580 }
3581
3582 int retval = watchpoint_add(target, addr, length, type,
3583 data_value, data_mask);
3584 if (ERROR_OK != retval)
3585 LOG_ERROR("Failure setting watchpoints");
3586
3587 return retval;
3588 }
3589
3590 COMMAND_HANDLER(handle_rwp_command)
3591 {
3592 if (CMD_ARGC != 1)
3593 return ERROR_COMMAND_SYNTAX_ERROR;
3594
3595 uint32_t addr;
3596 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3597
3598 struct target *target = get_current_target(CMD_CTX);
3599 watchpoint_remove(target, addr);
3600
3601 return ERROR_OK;
3602 }
3603
3604 /**
3605 * Translate a virtual address to a physical address.
3606 *
3607 * The low-level target implementation must have logged a detailed error
3608 * which is forwarded to telnet/GDB session.
3609 */
3610 COMMAND_HANDLER(handle_virt2phys_command)
3611 {
3612 if (CMD_ARGC != 1)
3613 return ERROR_COMMAND_SYNTAX_ERROR;
3614
3615 uint32_t va;
3616 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3617 uint32_t pa;
3618
3619 struct target *target = get_current_target(CMD_CTX);
3620 int retval = target->type->virt2phys(target, va, &pa);
3621 if (retval == ERROR_OK)
3622 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3623
3624 return retval;
3625 }
3626
3627 static void writeData(FILE *f, const void *data, size_t len)
3628 {
3629 size_t written = fwrite(data, 1, len, f);
3630 if (written != len)
3631 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3632 }
3633
3634 static void writeLong(FILE *f, int l, struct target *target)
3635 {
3636 uint8_t val[4];
3637
3638 target_buffer_set_u32(target, val, l);
3639 writeData(f, val, 4);
3640 }