flash: stop caching protection state
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73
74 static struct target_type *target_types[] =
75 {
76 &arm7tdmi_target,
77 &arm9tdmi_target,
78 &arm920t_target,
79 &arm720t_target,
80 &arm966e_target,
81 &arm926ejs_target,
82 &fa526_target,
83 &feroceon_target,
84 &dragonite_target,
85 &xscale_target,
86 &cortexm3_target,
87 &cortexa8_target,
88 &arm11_target,
89 &mips_m4k_target,
90 &avr_target,
91 &dsp563xx_target,
92 &testee_target,
93 NULL,
94 };
95
96 struct target *all_targets = NULL;
97 static struct target_event_callback *target_event_callbacks = NULL;
98 static struct target_timer_callback *target_timer_callbacks = NULL;
99
100 static const Jim_Nvp nvp_assert[] = {
101 { .name = "assert", NVP_ASSERT },
102 { .name = "deassert", NVP_DEASSERT },
103 { .name = "T", NVP_ASSERT },
104 { .name = "F", NVP_DEASSERT },
105 { .name = "t", NVP_ASSERT },
106 { .name = "f", NVP_DEASSERT },
107 { .name = NULL, .value = -1 }
108 };
109
110 static const Jim_Nvp nvp_error_target[] = {
111 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
112 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
113 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
114 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
115 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
116 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
117 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
118 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
119 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
120 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
121 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
122 { .value = -1, .name = NULL }
123 };
124
125 static const char *target_strerror_safe(int err)
126 {
127 const Jim_Nvp *n;
128
129 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
130 if (n->name == NULL) {
131 return "unknown";
132 } else {
133 return n->name;
134 }
135 }
136
137 static const Jim_Nvp nvp_target_event[] = {
138 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
139 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
140
141 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
142 { .value = TARGET_EVENT_HALTED, .name = "halted" },
143 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
144 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
145 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
146
147 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
148 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
149
150 /* historical name */
151
152 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
153
154 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
155 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
156 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
157 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
158 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
159 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
160 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
161 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
162 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
163 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
164 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
165
166 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
167 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
168
169 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
170 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
171
172 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
173 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
174
175 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
176 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
177
178 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
179 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
180
181 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
182 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
183 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
184
185 { .name = NULL, .value = -1 }
186 };
187
188 static const Jim_Nvp nvp_target_state[] = {
189 { .name = "unknown", .value = TARGET_UNKNOWN },
190 { .name = "running", .value = TARGET_RUNNING },
191 { .name = "halted", .value = TARGET_HALTED },
192 { .name = "reset", .value = TARGET_RESET },
193 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
194 { .name = NULL, .value = -1 },
195 };
196
197 static const Jim_Nvp nvp_target_debug_reason [] = {
198 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
199 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
200 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
201 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
202 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
203 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
204 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
205 { .name = NULL, .value = -1 },
206 };
207
208 static const Jim_Nvp nvp_target_endian[] = {
209 { .name = "big", .value = TARGET_BIG_ENDIAN },
210 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
211 { .name = "be", .value = TARGET_BIG_ENDIAN },
212 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
213 { .name = NULL, .value = -1 },
214 };
215
216 static const Jim_Nvp nvp_reset_modes[] = {
217 { .name = "unknown", .value = RESET_UNKNOWN },
218 { .name = "run" , .value = RESET_RUN },
219 { .name = "halt" , .value = RESET_HALT },
220 { .name = "init" , .value = RESET_INIT },
221 { .name = NULL , .value = -1 },
222 };
223
224 const char *debug_reason_name(struct target *t)
225 {
226 const char *cp;
227
228 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
229 t->debug_reason)->name;
230 if (!cp) {
231 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
232 cp = "(*BUG*unknown*BUG*)";
233 }
234 return cp;
235 }
236
237 const char *
238 target_state_name( struct target *t )
239 {
240 const char *cp;
241 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
242 if( !cp ){
243 LOG_ERROR("Invalid target state: %d", (int)(t->state));
244 cp = "(*BUG*unknown*BUG*)";
245 }
246 return cp;
247 }
248
249 /* determine the number of the new target */
250 static int new_target_number(void)
251 {
252 struct target *t;
253 int x;
254
255 /* number is 0 based */
256 x = -1;
257 t = all_targets;
258 while (t) {
259 if (x < t->target_number) {
260 x = t->target_number;
261 }
262 t = t->next;
263 }
264 return x + 1;
265 }
266
267 /* read a uint32_t from a buffer in target memory endianness */
268 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
269 {
270 if (target->endianness == TARGET_LITTLE_ENDIAN)
271 return le_to_h_u32(buffer);
272 else
273 return be_to_h_u32(buffer);
274 }
275
276 /* read a uint16_t from a buffer in target memory endianness */
277 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
278 {
279 if (target->endianness == TARGET_LITTLE_ENDIAN)
280 return le_to_h_u16(buffer);
281 else
282 return be_to_h_u16(buffer);
283 }
284
285 /* read a uint8_t from a buffer in target memory endianness */
286 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
287 {
288 return *buffer & 0x0ff;
289 }
290
291 /* write a uint32_t to a buffer in target memory endianness */
292 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
293 {
294 if (target->endianness == TARGET_LITTLE_ENDIAN)
295 h_u32_to_le(buffer, value);
296 else
297 h_u32_to_be(buffer, value);
298 }
299
300 /* write a uint16_t to a buffer in target memory endianness */
301 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
302 {
303 if (target->endianness == TARGET_LITTLE_ENDIAN)
304 h_u16_to_le(buffer, value);
305 else
306 h_u16_to_be(buffer, value);
307 }
308
309 /* write a uint8_t to a buffer in target memory endianness */
310 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
311 {
312 *buffer = value;
313 }
314
315 /* return a pointer to a configured target; id is name or number */
316 struct target *get_target(const char *id)
317 {
318 struct target *target;
319
320 /* try as tcltarget name */
321 for (target = all_targets; target; target = target->next) {
322 if (target->cmd_name == NULL)
323 continue;
324 if (strcmp(id, target->cmd_name) == 0)
325 return target;
326 }
327
328 /* It's OK to remove this fallback sometime after August 2010 or so */
329
330 /* no match, try as number */
331 unsigned num;
332 if (parse_uint(id, &num) != ERROR_OK)
333 return NULL;
334
335 for (target = all_targets; target; target = target->next) {
336 if (target->target_number == (int)num) {
337 LOG_WARNING("use '%s' as target identifier, not '%u'",
338 target->cmd_name, num);
339 return target;
340 }
341 }
342
343 return NULL;
344 }
345
346 /* returns a pointer to the n-th configured target */
347 static struct target *get_target_by_num(int num)
348 {
349 struct target *target = all_targets;
350
351 while (target) {
352 if (target->target_number == num) {
353 return target;
354 }
355 target = target->next;
356 }
357
358 return NULL;
359 }
360
361 struct target* get_current_target(struct command_context *cmd_ctx)
362 {
363 struct target *target = get_target_by_num(cmd_ctx->current_target);
364
365 if (target == NULL)
366 {
367 LOG_ERROR("BUG: current_target out of bounds");
368 exit(-1);
369 }
370
371 return target;
372 }
373
374 int target_poll(struct target *target)
375 {
376 int retval;
377
378 /* We can't poll until after examine */
379 if (!target_was_examined(target))
380 {
381 /* Fail silently lest we pollute the log */
382 return ERROR_FAIL;
383 }
384
385 retval = target->type->poll(target);
386 if (retval != ERROR_OK)
387 return retval;
388
389 if (target->halt_issued)
390 {
391 if (target->state == TARGET_HALTED)
392 {
393 target->halt_issued = false;
394 } else
395 {
396 long long t = timeval_ms() - target->halt_issued_time;
397 if (t>1000)
398 {
399 target->halt_issued = false;
400 LOG_INFO("Halt timed out, wake up GDB.");
401 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
402 }
403 }
404 }
405
406 return ERROR_OK;
407 }
408
409 int target_halt(struct target *target)
410 {
411 int retval;
412 /* We can't poll until after examine */
413 if (!target_was_examined(target))
414 {
415 LOG_ERROR("Target not examined yet");
416 return ERROR_FAIL;
417 }
418
419 retval = target->type->halt(target);
420 if (retval != ERROR_OK)
421 return retval;
422
423 target->halt_issued = true;
424 target->halt_issued_time = timeval_ms();
425
426 return ERROR_OK;
427 }
428
429 /**
430 * Make the target (re)start executing using its saved execution
431 * context (possibly with some modifications).
432 *
433 * @param target Which target should start executing.
434 * @param current True to use the target's saved program counter instead
435 * of the address parameter
436 * @param address Optionally used as the program counter.
437 * @param handle_breakpoints True iff breakpoints at the resumption PC
438 * should be skipped. (For example, maybe execution was stopped by
439 * such a breakpoint, in which case it would be counterprodutive to
440 * let it re-trigger.
441 * @param debug_execution False if all working areas allocated by OpenOCD
442 * should be released and/or restored to their original contents.
443 * (This would for example be true to run some downloaded "helper"
444 * algorithm code, which resides in one such working buffer and uses
445 * another for data storage.)
446 *
447 * @todo Resolve the ambiguity about what the "debug_execution" flag
448 * signifies. For example, Target implementations don't agree on how
449 * it relates to invalidation of the register cache, or to whether
450 * breakpoints and watchpoints should be enabled. (It would seem wrong
451 * to enable breakpoints when running downloaded "helper" algorithms
452 * (debug_execution true), since the breakpoints would be set to match
453 * target firmware being debugged, not the helper algorithm.... and
454 * enabling them could cause such helpers to malfunction (for example,
455 * by overwriting data with a breakpoint instruction. On the other
456 * hand the infrastructure for running such helpers might use this
457 * procedure but rely on hardware breakpoint to detect termination.)
458 */
459 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
460 {
461 int retval;
462
463 /* We can't poll until after examine */
464 if (!target_was_examined(target))
465 {
466 LOG_ERROR("Target not examined yet");
467 return ERROR_FAIL;
468 }
469
470 /* note that resume *must* be asynchronous. The CPU can halt before
471 * we poll. The CPU can even halt at the current PC as a result of
472 * a software breakpoint being inserted by (a bug?) the application.
473 */
474 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
475 return retval;
476
477 return retval;
478 }
479
480 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
481 {
482 char buf[100];
483 int retval;
484 Jim_Nvp *n;
485 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
486 if (n->name == NULL) {
487 LOG_ERROR("invalid reset mode");
488 return ERROR_FAIL;
489 }
490
491 /* disable polling during reset to make reset event scripts
492 * more predictable, i.e. dr/irscan & pathmove in events will
493 * not have JTAG operations injected into the middle of a sequence.
494 */
495 bool save_poll = jtag_poll_get_enabled();
496
497 jtag_poll_set_enabled(false);
498
499 sprintf(buf, "ocd_process_reset %s", n->name);
500 retval = Jim_Eval(cmd_ctx->interp, buf);
501
502 jtag_poll_set_enabled(save_poll);
503
504 if (retval != JIM_OK) {
505 Jim_PrintErrorMessage(cmd_ctx->interp);
506 return ERROR_FAIL;
507 }
508
509 /* We want any events to be processed before the prompt */
510 retval = target_call_timer_callbacks_now();
511
512 struct target *target;
513 for (target = all_targets; target; target = target->next) {
514 target->type->check_reset(target);
515 }
516
517 return retval;
518 }
519
520 static int identity_virt2phys(struct target *target,
521 uint32_t virtual, uint32_t *physical)
522 {
523 *physical = virtual;
524 return ERROR_OK;
525 }
526
527 static int no_mmu(struct target *target, int *enabled)
528 {
529 *enabled = 0;
530 return ERROR_OK;
531 }
532
533 static int default_examine(struct target *target)
534 {
535 target_set_examined(target);
536 return ERROR_OK;
537 }
538
539 /* no check by default */
540 static int default_check_reset(struct target *target)
541 {
542 return ERROR_OK;
543 }
544
545 int target_examine_one(struct target *target)
546 {
547 return target->type->examine(target);
548 }
549
550 static int jtag_enable_callback(enum jtag_event event, void *priv)
551 {
552 struct target *target = priv;
553
554 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
555 return ERROR_OK;
556
557 jtag_unregister_event_callback(jtag_enable_callback, target);
558 return target_examine_one(target);
559 }
560
561
562 /* Targets that correctly implement init + examine, i.e.
563 * no communication with target during init:
564 *
565 * XScale
566 */
567 int target_examine(void)
568 {
569 int retval = ERROR_OK;
570 struct target *target;
571
572 for (target = all_targets; target; target = target->next)
573 {
574 /* defer examination, but don't skip it */
575 if (!target->tap->enabled) {
576 jtag_register_event_callback(jtag_enable_callback,
577 target);
578 continue;
579 }
580 if ((retval = target_examine_one(target)) != ERROR_OK)
581 return retval;
582 }
583 return retval;
584 }
585 const char *target_type_name(struct target *target)
586 {
587 return target->type->name;
588 }
589
590 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
591 {
592 if (!target_was_examined(target))
593 {
594 LOG_ERROR("Target not examined yet");
595 return ERROR_FAIL;
596 }
597 return target->type->write_memory_imp(target, address, size, count, buffer);
598 }
599
600 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
601 {
602 if (!target_was_examined(target))
603 {
604 LOG_ERROR("Target not examined yet");
605 return ERROR_FAIL;
606 }
607 return target->type->read_memory_imp(target, address, size, count, buffer);
608 }
609
610 static int target_soft_reset_halt_imp(struct target *target)
611 {
612 if (!target_was_examined(target))
613 {
614 LOG_ERROR("Target not examined yet");
615 return ERROR_FAIL;
616 }
617 if (!target->type->soft_reset_halt_imp) {
618 LOG_ERROR("Target %s does not support soft_reset_halt",
619 target_name(target));
620 return ERROR_FAIL;
621 }
622 return target->type->soft_reset_halt_imp(target);
623 }
624
625 /**
626 * Downloads a target-specific native code algorithm to the target,
627 * and executes it. * Note that some targets may need to set up, enable,
628 * and tear down a breakpoint (hard or * soft) to detect algorithm
629 * termination, while others may support lower overhead schemes where
630 * soft breakpoints embedded in the algorithm automatically terminate the
631 * algorithm.
632 *
633 * @param target used to run the algorithm
634 * @param arch_info target-specific description of the algorithm.
635 */
636 int target_run_algorithm(struct target *target,
637 int num_mem_params, struct mem_param *mem_params,
638 int num_reg_params, struct reg_param *reg_param,
639 uint32_t entry_point, uint32_t exit_point,
640 int timeout_ms, void *arch_info)
641 {
642 int retval = ERROR_FAIL;
643
644 if (!target_was_examined(target))
645 {
646 LOG_ERROR("Target not examined yet");
647 goto done;
648 }
649 if (!target->type->run_algorithm) {
650 LOG_ERROR("Target type '%s' does not support %s",
651 target_type_name(target), __func__);
652 goto done;
653 }
654
655 target->running_alg = true;
656 retval = target->type->run_algorithm(target,
657 num_mem_params, mem_params,
658 num_reg_params, reg_param,
659 entry_point, exit_point, timeout_ms, arch_info);
660 target->running_alg = false;
661
662 done:
663 return retval;
664 }
665
666
667 int target_read_memory(struct target *target,
668 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
669 {
670 return target->type->read_memory(target, address, size, count, buffer);
671 }
672
673 static int target_read_phys_memory(struct target *target,
674 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
675 {
676 return target->type->read_phys_memory(target, address, size, count, buffer);
677 }
678
679 int target_write_memory(struct target *target,
680 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
681 {
682 return target->type->write_memory(target, address, size, count, buffer);
683 }
684
685 static int target_write_phys_memory(struct target *target,
686 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
687 {
688 return target->type->write_phys_memory(target, address, size, count, buffer);
689 }
690
691 int target_bulk_write_memory(struct target *target,
692 uint32_t address, uint32_t count, uint8_t *buffer)
693 {
694 return target->type->bulk_write_memory(target, address, count, buffer);
695 }
696
697 int target_add_breakpoint(struct target *target,
698 struct breakpoint *breakpoint)
699 {
700 if (target->state != TARGET_HALTED) {
701 LOG_WARNING("target %s is not halted", target->cmd_name);
702 return ERROR_TARGET_NOT_HALTED;
703 }
704 return target->type->add_breakpoint(target, breakpoint);
705 }
706 int target_remove_breakpoint(struct target *target,
707 struct breakpoint *breakpoint)
708 {
709 return target->type->remove_breakpoint(target, breakpoint);
710 }
711
712 int target_add_watchpoint(struct target *target,
713 struct watchpoint *watchpoint)
714 {
715 if (target->state != TARGET_HALTED) {
716 LOG_WARNING("target %s is not halted", target->cmd_name);
717 return ERROR_TARGET_NOT_HALTED;
718 }
719 return target->type->add_watchpoint(target, watchpoint);
720 }
721 int target_remove_watchpoint(struct target *target,
722 struct watchpoint *watchpoint)
723 {
724 return target->type->remove_watchpoint(target, watchpoint);
725 }
726
727 int target_get_gdb_reg_list(struct target *target,
728 struct reg **reg_list[], int *reg_list_size)
729 {
730 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
731 }
732 int target_step(struct target *target,
733 int current, uint32_t address, int handle_breakpoints)
734 {
735 return target->type->step(target, current, address, handle_breakpoints);
736 }
737
738
739 /**
740 * Reset the @c examined flag for the given target.
741 * Pure paranoia -- targets are zeroed on allocation.
742 */
743 static void target_reset_examined(struct target *target)
744 {
745 target->examined = false;
746 }
747
748 static int
749 err_read_phys_memory(struct target *target, uint32_t address,
750 uint32_t size, uint32_t count, uint8_t *buffer)
751 {
752 LOG_ERROR("Not implemented: %s", __func__);
753 return ERROR_FAIL;
754 }
755
756 static int
757 err_write_phys_memory(struct target *target, uint32_t address,
758 uint32_t size, uint32_t count, uint8_t *buffer)
759 {
760 LOG_ERROR("Not implemented: %s", __func__);
761 return ERROR_FAIL;
762 }
763
764 static int handle_target(void *priv);
765
766 static int target_init_one(struct command_context *cmd_ctx,
767 struct target *target)
768 {
769 target_reset_examined(target);
770
771 struct target_type *type = target->type;
772 if (type->examine == NULL)
773 type->examine = default_examine;
774
775 if (type->check_reset== NULL)
776 type->check_reset = default_check_reset;
777
778 int retval = type->init_target(cmd_ctx, target);
779 if (ERROR_OK != retval)
780 {
781 LOG_ERROR("target '%s' init failed", target_name(target));
782 return retval;
783 }
784
785 /**
786 * @todo get rid of those *memory_imp() methods, now that all
787 * callers are using target_*_memory() accessors ... and make
788 * sure the "physical" paths handle the same issues.
789 */
790 /* a non-invasive way(in terms of patches) to add some code that
791 * runs before the type->write/read_memory implementation
792 */
793 type->write_memory_imp = target->type->write_memory;
794 type->write_memory = target_write_memory_imp;
795
796 type->read_memory_imp = target->type->read_memory;
797 type->read_memory = target_read_memory_imp;
798
799 type->soft_reset_halt_imp = target->type->soft_reset_halt;
800 type->soft_reset_halt = target_soft_reset_halt_imp;
801
802 /* Sanity-check MMU support ... stub in what we must, to help
803 * implement it in stages, but warn if we need to do so.
804 */
805 if (type->mmu)
806 {
807 if (type->write_phys_memory == NULL)
808 {
809 LOG_ERROR("type '%s' is missing write_phys_memory",
810 type->name);
811 type->write_phys_memory = err_write_phys_memory;
812 }
813 if (type->read_phys_memory == NULL)
814 {
815 LOG_ERROR("type '%s' is missing read_phys_memory",
816 type->name);
817 type->read_phys_memory = err_read_phys_memory;
818 }
819 if (type->virt2phys == NULL)
820 {
821 LOG_ERROR("type '%s' is missing virt2phys", type->name);
822 type->virt2phys = identity_virt2phys;
823 }
824 }
825 else
826 {
827 /* Make sure no-MMU targets all behave the same: make no
828 * distinction between physical and virtual addresses, and
829 * ensure that virt2phys() is always an identity mapping.
830 */
831 if (type->write_phys_memory || type->read_phys_memory
832 || type->virt2phys)
833 {
834 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
835 }
836
837 type->mmu = no_mmu;
838 type->write_phys_memory = type->write_memory;
839 type->read_phys_memory = type->read_memory;
840 type->virt2phys = identity_virt2phys;
841 }
842 return ERROR_OK;
843 }
844
845 static int target_init(struct command_context *cmd_ctx)
846 {
847 struct target *target;
848 int retval;
849
850 for (target = all_targets; target; target = target->next)
851 {
852 retval = target_init_one(cmd_ctx, target);
853 if (ERROR_OK != retval)
854 return retval;
855 }
856
857 if (!all_targets)
858 return ERROR_OK;
859
860 retval = target_register_user_commands(cmd_ctx);
861 if (ERROR_OK != retval)
862 return retval;
863
864 retval = target_register_timer_callback(&handle_target,
865 100, 1, cmd_ctx->interp);
866 if (ERROR_OK != retval)
867 return retval;
868
869 return ERROR_OK;
870 }
871
872 COMMAND_HANDLER(handle_target_init_command)
873 {
874 if (CMD_ARGC != 0)
875 return ERROR_COMMAND_SYNTAX_ERROR;
876
877 static bool target_initialized = false;
878 if (target_initialized)
879 {
880 LOG_INFO("'target init' has already been called");
881 return ERROR_OK;
882 }
883 target_initialized = true;
884
885 LOG_DEBUG("Initializing targets...");
886 return target_init(CMD_CTX);
887 }
888
889 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
890 {
891 struct target_event_callback **callbacks_p = &target_event_callbacks;
892
893 if (callback == NULL)
894 {
895 return ERROR_INVALID_ARGUMENTS;
896 }
897
898 if (*callbacks_p)
899 {
900 while ((*callbacks_p)->next)
901 callbacks_p = &((*callbacks_p)->next);
902 callbacks_p = &((*callbacks_p)->next);
903 }
904
905 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
906 (*callbacks_p)->callback = callback;
907 (*callbacks_p)->priv = priv;
908 (*callbacks_p)->next = NULL;
909
910 return ERROR_OK;
911 }
912
913 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
914 {
915 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
916 struct timeval now;
917
918 if (callback == NULL)
919 {
920 return ERROR_INVALID_ARGUMENTS;
921 }
922
923 if (*callbacks_p)
924 {
925 while ((*callbacks_p)->next)
926 callbacks_p = &((*callbacks_p)->next);
927 callbacks_p = &((*callbacks_p)->next);
928 }
929
930 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
931 (*callbacks_p)->callback = callback;
932 (*callbacks_p)->periodic = periodic;
933 (*callbacks_p)->time_ms = time_ms;
934
935 gettimeofday(&now, NULL);
936 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
937 time_ms -= (time_ms % 1000);
938 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
939 if ((*callbacks_p)->when.tv_usec > 1000000)
940 {
941 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
942 (*callbacks_p)->when.tv_sec += 1;
943 }
944
945 (*callbacks_p)->priv = priv;
946 (*callbacks_p)->next = NULL;
947
948 return ERROR_OK;
949 }
950
951 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
952 {
953 struct target_event_callback **p = &target_event_callbacks;
954 struct target_event_callback *c = target_event_callbacks;
955
956 if (callback == NULL)
957 {
958 return ERROR_INVALID_ARGUMENTS;
959 }
960
961 while (c)
962 {
963 struct target_event_callback *next = c->next;
964 if ((c->callback == callback) && (c->priv == priv))
965 {
966 *p = next;
967 free(c);
968 return ERROR_OK;
969 }
970 else
971 p = &(c->next);
972 c = next;
973 }
974
975 return ERROR_OK;
976 }
977
978 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
979 {
980 struct target_timer_callback **p = &target_timer_callbacks;
981 struct target_timer_callback *c = target_timer_callbacks;
982
983 if (callback == NULL)
984 {
985 return ERROR_INVALID_ARGUMENTS;
986 }
987
988 while (c)
989 {
990 struct target_timer_callback *next = c->next;
991 if ((c->callback == callback) && (c->priv == priv))
992 {
993 *p = next;
994 free(c);
995 return ERROR_OK;
996 }
997 else
998 p = &(c->next);
999 c = next;
1000 }
1001
1002 return ERROR_OK;
1003 }
1004
1005 int target_call_event_callbacks(struct target *target, enum target_event event)
1006 {
1007 struct target_event_callback *callback = target_event_callbacks;
1008 struct target_event_callback *next_callback;
1009
1010 if (event == TARGET_EVENT_HALTED)
1011 {
1012 /* execute early halted first */
1013 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1014 }
1015
1016 LOG_DEBUG("target event %i (%s)",
1017 event,
1018 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1019
1020 target_handle_event(target, event);
1021
1022 while (callback)
1023 {
1024 next_callback = callback->next;
1025 callback->callback(target, event, callback->priv);
1026 callback = next_callback;
1027 }
1028
1029 return ERROR_OK;
1030 }
1031
1032 static int target_timer_callback_periodic_restart(
1033 struct target_timer_callback *cb, struct timeval *now)
1034 {
1035 int time_ms = cb->time_ms;
1036 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1037 time_ms -= (time_ms % 1000);
1038 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1039 if (cb->when.tv_usec > 1000000)
1040 {
1041 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1042 cb->when.tv_sec += 1;
1043 }
1044 return ERROR_OK;
1045 }
1046
1047 static int target_call_timer_callback(struct target_timer_callback *cb,
1048 struct timeval *now)
1049 {
1050 cb->callback(cb->priv);
1051
1052 if (cb->periodic)
1053 return target_timer_callback_periodic_restart(cb, now);
1054
1055 return target_unregister_timer_callback(cb->callback, cb->priv);
1056 }
1057
1058 static int target_call_timer_callbacks_check_time(int checktime)
1059 {
1060 keep_alive();
1061
1062 struct timeval now;
1063 gettimeofday(&now, NULL);
1064
1065 struct target_timer_callback *callback = target_timer_callbacks;
1066 while (callback)
1067 {
1068 // cleaning up may unregister and free this callback
1069 struct target_timer_callback *next_callback = callback->next;
1070
1071 bool call_it = callback->callback &&
1072 ((!checktime && callback->periodic) ||
1073 now.tv_sec > callback->when.tv_sec ||
1074 (now.tv_sec == callback->when.tv_sec &&
1075 now.tv_usec >= callback->when.tv_usec));
1076
1077 if (call_it)
1078 {
1079 int retval = target_call_timer_callback(callback, &now);
1080 if (retval != ERROR_OK)
1081 return retval;
1082 }
1083
1084 callback = next_callback;
1085 }
1086
1087 return ERROR_OK;
1088 }
1089
1090 int target_call_timer_callbacks(void)
1091 {
1092 return target_call_timer_callbacks_check_time(1);
1093 }
1094
1095 /* invoke periodic callbacks immediately */
1096 int target_call_timer_callbacks_now(void)
1097 {
1098 return target_call_timer_callbacks_check_time(0);
1099 }
1100
1101 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1102 {
1103 struct working_area *c = target->working_areas;
1104 struct working_area *new_wa = NULL;
1105
1106 /* Reevaluate working area address based on MMU state*/
1107 if (target->working_areas == NULL)
1108 {
1109 int retval;
1110 int enabled;
1111
1112 retval = target->type->mmu(target, &enabled);
1113 if (retval != ERROR_OK)
1114 {
1115 return retval;
1116 }
1117
1118 if (!enabled) {
1119 if (target->working_area_phys_spec) {
1120 LOG_DEBUG("MMU disabled, using physical "
1121 "address for working memory 0x%08x",
1122 (unsigned)target->working_area_phys);
1123 target->working_area = target->working_area_phys;
1124 } else {
1125 LOG_ERROR("No working memory available. "
1126 "Specify -work-area-phys to target.");
1127 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1128 }
1129 } else {
1130 if (target->working_area_virt_spec) {
1131 LOG_DEBUG("MMU enabled, using virtual "
1132 "address for working memory 0x%08x",
1133 (unsigned)target->working_area_virt);
1134 target->working_area = target->working_area_virt;
1135 } else {
1136 LOG_ERROR("No working memory available. "
1137 "Specify -work-area-virt to target.");
1138 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1139 }
1140 }
1141 }
1142
1143 /* only allocate multiples of 4 byte */
1144 if (size % 4)
1145 {
1146 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1147 size = (size + 3) & (~3);
1148 }
1149
1150 /* see if there's already a matching working area */
1151 while (c)
1152 {
1153 if ((c->free) && (c->size == size))
1154 {
1155 new_wa = c;
1156 break;
1157 }
1158 c = c->next;
1159 }
1160
1161 /* if not, allocate a new one */
1162 if (!new_wa)
1163 {
1164 struct working_area **p = &target->working_areas;
1165 uint32_t first_free = target->working_area;
1166 uint32_t free_size = target->working_area_size;
1167
1168 c = target->working_areas;
1169 while (c)
1170 {
1171 first_free += c->size;
1172 free_size -= c->size;
1173 p = &c->next;
1174 c = c->next;
1175 }
1176
1177 if (free_size < size)
1178 {
1179 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1180 }
1181
1182 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1183
1184 new_wa = malloc(sizeof(struct working_area));
1185 new_wa->next = NULL;
1186 new_wa->size = size;
1187 new_wa->address = first_free;
1188
1189 if (target->backup_working_area)
1190 {
1191 int retval;
1192 new_wa->backup = malloc(new_wa->size);
1193 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1194 {
1195 free(new_wa->backup);
1196 free(new_wa);
1197 return retval;
1198 }
1199 }
1200 else
1201 {
1202 new_wa->backup = NULL;
1203 }
1204
1205 /* put new entry in list */
1206 *p = new_wa;
1207 }
1208
1209 /* mark as used, and return the new (reused) area */
1210 new_wa->free = 0;
1211 *area = new_wa;
1212
1213 /* user pointer */
1214 new_wa->user = area;
1215
1216 return ERROR_OK;
1217 }
1218
1219 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1220 {
1221 int retval;
1222
1223 retval = target_alloc_working_area_try(target, size, area);
1224 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1225 {
1226 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1227 }
1228 return retval;
1229
1230 }
1231
1232 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1233 {
1234 if (area->free)
1235 return ERROR_OK;
1236
1237 if (restore && target->backup_working_area)
1238 {
1239 int retval;
1240 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1241 return retval;
1242 }
1243
1244 area->free = 1;
1245
1246 /* mark user pointer invalid */
1247 *area->user = NULL;
1248 area->user = NULL;
1249
1250 return ERROR_OK;
1251 }
1252
1253 int target_free_working_area(struct target *target, struct working_area *area)
1254 {
1255 return target_free_working_area_restore(target, area, 1);
1256 }
1257
1258 /* free resources and restore memory, if restoring memory fails,
1259 * free up resources anyway
1260 */
1261 static void target_free_all_working_areas_restore(struct target *target, int restore)
1262 {
1263 struct working_area *c = target->working_areas;
1264
1265 while (c)
1266 {
1267 struct working_area *next = c->next;
1268 target_free_working_area_restore(target, c, restore);
1269
1270 if (c->backup)
1271 free(c->backup);
1272
1273 free(c);
1274
1275 c = next;
1276 }
1277
1278 target->working_areas = NULL;
1279 }
1280
1281 void target_free_all_working_areas(struct target *target)
1282 {
1283 target_free_all_working_areas_restore(target, 1);
1284 }
1285
1286 int target_arch_state(struct target *target)
1287 {
1288 int retval;
1289 if (target == NULL)
1290 {
1291 LOG_USER("No target has been configured");
1292 return ERROR_OK;
1293 }
1294
1295 LOG_USER("target state: %s", target_state_name( target ));
1296
1297 if (target->state != TARGET_HALTED)
1298 return ERROR_OK;
1299
1300 retval = target->type->arch_state(target);
1301 return retval;
1302 }
1303
1304 /* Single aligned words are guaranteed to use 16 or 32 bit access
1305 * mode respectively, otherwise data is handled as quickly as
1306 * possible
1307 */
1308 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1309 {
1310 int retval;
1311 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1312 (int)size, (unsigned)address);
1313
1314 if (!target_was_examined(target))
1315 {
1316 LOG_ERROR("Target not examined yet");
1317 return ERROR_FAIL;
1318 }
1319
1320 if (size == 0) {
1321 return ERROR_OK;
1322 }
1323
1324 if ((address + size - 1) < address)
1325 {
1326 /* GDB can request this when e.g. PC is 0xfffffffc*/
1327 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1328 (unsigned)address,
1329 (unsigned)size);
1330 return ERROR_FAIL;
1331 }
1332
1333 if (((address % 2) == 0) && (size == 2))
1334 {
1335 return target_write_memory(target, address, 2, 1, buffer);
1336 }
1337
1338 /* handle unaligned head bytes */
1339 if (address % 4)
1340 {
1341 uint32_t unaligned = 4 - (address % 4);
1342
1343 if (unaligned > size)
1344 unaligned = size;
1345
1346 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1347 return retval;
1348
1349 buffer += unaligned;
1350 address += unaligned;
1351 size -= unaligned;
1352 }
1353
1354 /* handle aligned words */
1355 if (size >= 4)
1356 {
1357 int aligned = size - (size % 4);
1358
1359 /* use bulk writes above a certain limit. This may have to be changed */
1360 if (aligned > 128)
1361 {
1362 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1363 return retval;
1364 }
1365 else
1366 {
1367 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1368 return retval;
1369 }
1370
1371 buffer += aligned;
1372 address += aligned;
1373 size -= aligned;
1374 }
1375
1376 /* handle tail writes of less than 4 bytes */
1377 if (size > 0)
1378 {
1379 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1380 return retval;
1381 }
1382
1383 return ERROR_OK;
1384 }
1385
1386 /* Single aligned words are guaranteed to use 16 or 32 bit access
1387 * mode respectively, otherwise data is handled as quickly as
1388 * possible
1389 */
1390 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1391 {
1392 int retval;
1393 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1394 (int)size, (unsigned)address);
1395
1396 if (!target_was_examined(target))
1397 {
1398 LOG_ERROR("Target not examined yet");
1399 return ERROR_FAIL;
1400 }
1401
1402 if (size == 0) {
1403 return ERROR_OK;
1404 }
1405
1406 if ((address + size - 1) < address)
1407 {
1408 /* GDB can request this when e.g. PC is 0xfffffffc*/
1409 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1410 address,
1411 size);
1412 return ERROR_FAIL;
1413 }
1414
1415 if (((address % 2) == 0) && (size == 2))
1416 {
1417 return target_read_memory(target, address, 2, 1, buffer);
1418 }
1419
1420 /* handle unaligned head bytes */
1421 if (address % 4)
1422 {
1423 uint32_t unaligned = 4 - (address % 4);
1424
1425 if (unaligned > size)
1426 unaligned = size;
1427
1428 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1429 return retval;
1430
1431 buffer += unaligned;
1432 address += unaligned;
1433 size -= unaligned;
1434 }
1435
1436 /* handle aligned words */
1437 if (size >= 4)
1438 {
1439 int aligned = size - (size % 4);
1440
1441 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1442 return retval;
1443
1444 buffer += aligned;
1445 address += aligned;
1446 size -= aligned;
1447 }
1448
1449 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1450 if(size >=2)
1451 {
1452 int aligned = size - (size%2);
1453 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1454 if (retval != ERROR_OK)
1455 return retval;
1456
1457 buffer += aligned;
1458 address += aligned;
1459 size -= aligned;
1460 }
1461 /* handle tail writes of less than 4 bytes */
1462 if (size > 0)
1463 {
1464 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1465 return retval;
1466 }
1467
1468 return ERROR_OK;
1469 }
1470
1471 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1472 {
1473 uint8_t *buffer;
1474 int retval;
1475 uint32_t i;
1476 uint32_t checksum = 0;
1477 if (!target_was_examined(target))
1478 {
1479 LOG_ERROR("Target not examined yet");
1480 return ERROR_FAIL;
1481 }
1482
1483 if ((retval = target->type->checksum_memory(target, address,
1484 size, &checksum)) != ERROR_OK)
1485 {
1486 buffer = malloc(size);
1487 if (buffer == NULL)
1488 {
1489 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1490 return ERROR_INVALID_ARGUMENTS;
1491 }
1492 retval = target_read_buffer(target, address, size, buffer);
1493 if (retval != ERROR_OK)
1494 {
1495 free(buffer);
1496 return retval;
1497 }
1498
1499 /* convert to target endianess */
1500 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1501 {
1502 uint32_t target_data;
1503 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1504 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1505 }
1506
1507 retval = image_calculate_checksum(buffer, size, &checksum);
1508 free(buffer);
1509 }
1510
1511 *crc = checksum;
1512
1513 return retval;
1514 }
1515
1516 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1517 {
1518 int retval;
1519 if (!target_was_examined(target))
1520 {
1521 LOG_ERROR("Target not examined yet");
1522 return ERROR_FAIL;
1523 }
1524
1525 if (target->type->blank_check_memory == 0)
1526 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1527
1528 retval = target->type->blank_check_memory(target, address, size, blank);
1529
1530 return retval;
1531 }
1532
1533 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1534 {
1535 uint8_t value_buf[4];
1536 if (!target_was_examined(target))
1537 {
1538 LOG_ERROR("Target not examined yet");
1539 return ERROR_FAIL;
1540 }
1541
1542 int retval = target_read_memory(target, address, 4, 1, value_buf);
1543
1544 if (retval == ERROR_OK)
1545 {
1546 *value = target_buffer_get_u32(target, value_buf);
1547 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1548 address,
1549 *value);
1550 }
1551 else
1552 {
1553 *value = 0x0;
1554 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1555 address);
1556 }
1557
1558 return retval;
1559 }
1560
1561 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1562 {
1563 uint8_t value_buf[2];
1564 if (!target_was_examined(target))
1565 {
1566 LOG_ERROR("Target not examined yet");
1567 return ERROR_FAIL;
1568 }
1569
1570 int retval = target_read_memory(target, address, 2, 1, value_buf);
1571
1572 if (retval == ERROR_OK)
1573 {
1574 *value = target_buffer_get_u16(target, value_buf);
1575 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1576 address,
1577 *value);
1578 }
1579 else
1580 {
1581 *value = 0x0;
1582 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1583 address);
1584 }
1585
1586 return retval;
1587 }
1588
1589 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1590 {
1591 int retval = target_read_memory(target, address, 1, 1, value);
1592 if (!target_was_examined(target))
1593 {
1594 LOG_ERROR("Target not examined yet");
1595 return ERROR_FAIL;
1596 }
1597
1598 if (retval == ERROR_OK)
1599 {
1600 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1601 address,
1602 *value);
1603 }
1604 else
1605 {
1606 *value = 0x0;
1607 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1608 address);
1609 }
1610
1611 return retval;
1612 }
1613
1614 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1615 {
1616 int retval;
1617 uint8_t value_buf[4];
1618 if (!target_was_examined(target))
1619 {
1620 LOG_ERROR("Target not examined yet");
1621 return ERROR_FAIL;
1622 }
1623
1624 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1625 address,
1626 value);
1627
1628 target_buffer_set_u32(target, value_buf, value);
1629 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1630 {
1631 LOG_DEBUG("failed: %i", retval);
1632 }
1633
1634 return retval;
1635 }
1636
1637 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1638 {
1639 int retval;
1640 uint8_t value_buf[2];
1641 if (!target_was_examined(target))
1642 {
1643 LOG_ERROR("Target not examined yet");
1644 return ERROR_FAIL;
1645 }
1646
1647 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1648 address,
1649 value);
1650
1651 target_buffer_set_u16(target, value_buf, value);
1652 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1653 {
1654 LOG_DEBUG("failed: %i", retval);
1655 }
1656
1657 return retval;
1658 }
1659
1660 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1661 {
1662 int retval;
1663 if (!target_was_examined(target))
1664 {
1665 LOG_ERROR("Target not examined yet");
1666 return ERROR_FAIL;
1667 }
1668
1669 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1670 address, value);
1671
1672 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1673 {
1674 LOG_DEBUG("failed: %i", retval);
1675 }
1676
1677 return retval;
1678 }
1679
1680 COMMAND_HANDLER(handle_targets_command)
1681 {
1682 struct target *target = all_targets;
1683
1684 if (CMD_ARGC == 1)
1685 {
1686 target = get_target(CMD_ARGV[0]);
1687 if (target == NULL) {
1688 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1689 goto DumpTargets;
1690 }
1691 if (!target->tap->enabled) {
1692 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1693 "can't be the current target\n",
1694 target->tap->dotted_name);
1695 return ERROR_FAIL;
1696 }
1697
1698 CMD_CTX->current_target = target->target_number;
1699 return ERROR_OK;
1700 }
1701 DumpTargets:
1702
1703 target = all_targets;
1704 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1705 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1706 while (target)
1707 {
1708 const char *state;
1709 char marker = ' ';
1710
1711 if (target->tap->enabled)
1712 state = target_state_name( target );
1713 else
1714 state = "tap-disabled";
1715
1716 if (CMD_CTX->current_target == target->target_number)
1717 marker = '*';
1718
1719 /* keep columns lined up to match the headers above */
1720 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1721 target->target_number,
1722 marker,
1723 target_name(target),
1724 target_type_name(target),
1725 Jim_Nvp_value2name_simple(nvp_target_endian,
1726 target->endianness)->name,
1727 target->tap->dotted_name,
1728 state);
1729 target = target->next;
1730 }
1731
1732 return ERROR_OK;
1733 }
1734
1735 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1736
1737 static int powerDropout;
1738 static int srstAsserted;
1739
1740 static int runPowerRestore;
1741 static int runPowerDropout;
1742 static int runSrstAsserted;
1743 static int runSrstDeasserted;
1744
1745 static int sense_handler(void)
1746 {
1747 static int prevSrstAsserted = 0;
1748 static int prevPowerdropout = 0;
1749
1750 int retval;
1751 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1752 return retval;
1753
1754 int powerRestored;
1755 powerRestored = prevPowerdropout && !powerDropout;
1756 if (powerRestored)
1757 {
1758 runPowerRestore = 1;
1759 }
1760
1761 long long current = timeval_ms();
1762 static long long lastPower = 0;
1763 int waitMore = lastPower + 2000 > current;
1764 if (powerDropout && !waitMore)
1765 {
1766 runPowerDropout = 1;
1767 lastPower = current;
1768 }
1769
1770 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1771 return retval;
1772
1773 int srstDeasserted;
1774 srstDeasserted = prevSrstAsserted && !srstAsserted;
1775
1776 static long long lastSrst = 0;
1777 waitMore = lastSrst + 2000 > current;
1778 if (srstDeasserted && !waitMore)
1779 {
1780 runSrstDeasserted = 1;
1781 lastSrst = current;
1782 }
1783
1784 if (!prevSrstAsserted && srstAsserted)
1785 {
1786 runSrstAsserted = 1;
1787 }
1788
1789 prevSrstAsserted = srstAsserted;
1790 prevPowerdropout = powerDropout;
1791
1792 if (srstDeasserted || powerRestored)
1793 {
1794 /* Other than logging the event we can't do anything here.
1795 * Issuing a reset is a particularly bad idea as we might
1796 * be inside a reset already.
1797 */
1798 }
1799
1800 return ERROR_OK;
1801 }
1802
1803 /* process target state changes */
1804 static int handle_target(void *priv)
1805 {
1806 Jim_Interp *interp = (Jim_Interp *)priv;
1807 int retval = ERROR_OK;
1808
1809 if (!is_jtag_poll_safe())
1810 {
1811 /* polling is disabled currently */
1812 return ERROR_OK;
1813 }
1814
1815 /* we do not want to recurse here... */
1816 static int recursive = 0;
1817 if (! recursive)
1818 {
1819 recursive = 1;
1820 sense_handler();
1821 /* danger! running these procedures can trigger srst assertions and power dropouts.
1822 * We need to avoid an infinite loop/recursion here and we do that by
1823 * clearing the flags after running these events.
1824 */
1825 int did_something = 0;
1826 if (runSrstAsserted)
1827 {
1828 LOG_INFO("srst asserted detected, running srst_asserted proc.");
1829 Jim_Eval(interp, "srst_asserted");
1830 did_something = 1;
1831 }
1832 if (runSrstDeasserted)
1833 {
1834 Jim_Eval(interp, "srst_deasserted");
1835 did_something = 1;
1836 }
1837 if (runPowerDropout)
1838 {
1839 LOG_INFO("Power dropout detected, running power_dropout proc.");
1840 Jim_Eval(interp, "power_dropout");
1841 did_something = 1;
1842 }
1843 if (runPowerRestore)
1844 {
1845 Jim_Eval(interp, "power_restore");
1846 did_something = 1;
1847 }
1848
1849 if (did_something)
1850 {
1851 /* clear detect flags */
1852 sense_handler();
1853 }
1854
1855 /* clear action flags */
1856
1857 runSrstAsserted = 0;
1858 runSrstDeasserted = 0;
1859 runPowerRestore = 0;
1860 runPowerDropout = 0;
1861
1862 recursive = 0;
1863 }
1864
1865 /* Poll targets for state changes unless that's globally disabled.
1866 * Skip targets that are currently disabled.
1867 */
1868 for (struct target *target = all_targets;
1869 is_jtag_poll_safe() && target;
1870 target = target->next)
1871 {
1872 if (!target->tap->enabled)
1873 continue;
1874
1875 /* only poll target if we've got power and srst isn't asserted */
1876 if (!powerDropout && !srstAsserted)
1877 {
1878 /* polling may fail silently until the target has been examined */
1879 if ((retval = target_poll(target)) != ERROR_OK)
1880 {
1881 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1882 * *why* we are aborting GDB, then we'll spam telnet when the
1883 * poll is failing persistently.
1884 *
1885 * If we could implement an event that detected the
1886 * target going from non-pollable to pollable, we could issue
1887 * an error only upon the transition.
1888 */
1889 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1890 return retval;
1891 }
1892 }
1893 }
1894
1895 return retval;
1896 }
1897
1898 COMMAND_HANDLER(handle_reg_command)
1899 {
1900 struct target *target;
1901 struct reg *reg = NULL;
1902 unsigned count = 0;
1903 char *value;
1904
1905 LOG_DEBUG("-");
1906
1907 target = get_current_target(CMD_CTX);
1908
1909 /* list all available registers for the current target */
1910 if (CMD_ARGC == 0)
1911 {
1912 struct reg_cache *cache = target->reg_cache;
1913
1914 count = 0;
1915 while (cache)
1916 {
1917 unsigned i;
1918
1919 command_print(CMD_CTX, "===== %s", cache->name);
1920
1921 for (i = 0, reg = cache->reg_list;
1922 i < cache->num_regs;
1923 i++, reg++, count++)
1924 {
1925 /* only print cached values if they are valid */
1926 if (reg->valid) {
1927 value = buf_to_str(reg->value,
1928 reg->size, 16);
1929 command_print(CMD_CTX,
1930 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1931 count, reg->name,
1932 reg->size, value,
1933 reg->dirty
1934 ? " (dirty)"
1935 : "");
1936 free(value);
1937 } else {
1938 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1939 count, reg->name,
1940 reg->size) ;
1941 }
1942 }
1943 cache = cache->next;
1944 }
1945
1946 return ERROR_OK;
1947 }
1948
1949 /* access a single register by its ordinal number */
1950 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1951 {
1952 unsigned num;
1953 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1954
1955 struct reg_cache *cache = target->reg_cache;
1956 count = 0;
1957 while (cache)
1958 {
1959 unsigned i;
1960 for (i = 0; i < cache->num_regs; i++)
1961 {
1962 if (count++ == num)
1963 {
1964 reg = &cache->reg_list[i];
1965 break;
1966 }
1967 }
1968 if (reg)
1969 break;
1970 cache = cache->next;
1971 }
1972
1973 if (!reg)
1974 {
1975 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1976 return ERROR_OK;
1977 }
1978 } else /* access a single register by its name */
1979 {
1980 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1981
1982 if (!reg)
1983 {
1984 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1985 return ERROR_OK;
1986 }
1987 }
1988
1989 /* display a register */
1990 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1991 {
1992 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1993 reg->valid = 0;
1994
1995 if (reg->valid == 0)
1996 {
1997 reg->type->get(reg);
1998 }
1999 value = buf_to_str(reg->value, reg->size, 16);
2000 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2001 free(value);
2002 return ERROR_OK;
2003 }
2004
2005 /* set register value */
2006 if (CMD_ARGC == 2)
2007 {
2008 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2009 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2010
2011 reg->type->set(reg, buf);
2012
2013 value = buf_to_str(reg->value, reg->size, 16);
2014 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2015 free(value);
2016
2017 free(buf);
2018
2019 return ERROR_OK;
2020 }
2021
2022 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2023
2024 return ERROR_OK;
2025 }
2026
2027 COMMAND_HANDLER(handle_poll_command)
2028 {
2029 int retval = ERROR_OK;
2030 struct target *target = get_current_target(CMD_CTX);
2031
2032 if (CMD_ARGC == 0)
2033 {
2034 command_print(CMD_CTX, "background polling: %s",
2035 jtag_poll_get_enabled() ? "on" : "off");
2036 command_print(CMD_CTX, "TAP: %s (%s)",
2037 target->tap->dotted_name,
2038 target->tap->enabled ? "enabled" : "disabled");
2039 if (!target->tap->enabled)
2040 return ERROR_OK;
2041 if ((retval = target_poll(target)) != ERROR_OK)
2042 return retval;
2043 if ((retval = target_arch_state(target)) != ERROR_OK)
2044 return retval;
2045 }
2046 else if (CMD_ARGC == 1)
2047 {
2048 bool enable;
2049 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2050 jtag_poll_set_enabled(enable);
2051 }
2052 else
2053 {
2054 return ERROR_COMMAND_SYNTAX_ERROR;
2055 }
2056
2057 return retval;
2058 }
2059
2060 COMMAND_HANDLER(handle_wait_halt_command)
2061 {
2062 if (CMD_ARGC > 1)
2063 return ERROR_COMMAND_SYNTAX_ERROR;
2064
2065 unsigned ms = 5000;
2066 if (1 == CMD_ARGC)
2067 {
2068 int retval = parse_uint(CMD_ARGV[0], &ms);
2069 if (ERROR_OK != retval)
2070 {
2071 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2072 return ERROR_COMMAND_SYNTAX_ERROR;
2073 }
2074 // convert seconds (given) to milliseconds (needed)
2075 ms *= 1000;
2076 }
2077
2078 struct target *target = get_current_target(CMD_CTX);
2079 return target_wait_state(target, TARGET_HALTED, ms);
2080 }
2081
2082 /* wait for target state to change. The trick here is to have a low
2083 * latency for short waits and not to suck up all the CPU time
2084 * on longer waits.
2085 *
2086 * After 500ms, keep_alive() is invoked
2087 */
2088 int target_wait_state(struct target *target, enum target_state state, int ms)
2089 {
2090 int retval;
2091 long long then = 0, cur;
2092 int once = 1;
2093
2094 for (;;)
2095 {
2096 if ((retval = target_poll(target)) != ERROR_OK)
2097 return retval;
2098 if (target->state == state)
2099 {
2100 break;
2101 }
2102 cur = timeval_ms();
2103 if (once)
2104 {
2105 once = 0;
2106 then = timeval_ms();
2107 LOG_DEBUG("waiting for target %s...",
2108 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2109 }
2110
2111 if (cur-then > 500)
2112 {
2113 keep_alive();
2114 }
2115
2116 if ((cur-then) > ms)
2117 {
2118 LOG_ERROR("timed out while waiting for target %s",
2119 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2120 return ERROR_FAIL;
2121 }
2122 }
2123
2124 return ERROR_OK;
2125 }
2126
2127 COMMAND_HANDLER(handle_halt_command)
2128 {
2129 LOG_DEBUG("-");
2130
2131 struct target *target = get_current_target(CMD_CTX);
2132 int retval = target_halt(target);
2133 if (ERROR_OK != retval)
2134 return retval;
2135
2136 if (CMD_ARGC == 1)
2137 {
2138 unsigned wait;
2139 retval = parse_uint(CMD_ARGV[0], &wait);
2140 if (ERROR_OK != retval)
2141 return ERROR_COMMAND_SYNTAX_ERROR;
2142 if (!wait)
2143 return ERROR_OK;
2144 }
2145
2146 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2147 }
2148
2149 COMMAND_HANDLER(handle_soft_reset_halt_command)
2150 {
2151 struct target *target = get_current_target(CMD_CTX);
2152
2153 LOG_USER("requesting target halt and executing a soft reset");
2154
2155 target->type->soft_reset_halt(target);
2156
2157 return ERROR_OK;
2158 }
2159
2160 COMMAND_HANDLER(handle_reset_command)
2161 {
2162 if (CMD_ARGC > 1)
2163 return ERROR_COMMAND_SYNTAX_ERROR;
2164
2165 enum target_reset_mode reset_mode = RESET_RUN;
2166 if (CMD_ARGC == 1)
2167 {
2168 const Jim_Nvp *n;
2169 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2170 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2171 return ERROR_COMMAND_SYNTAX_ERROR;
2172 }
2173 reset_mode = n->value;
2174 }
2175
2176 /* reset *all* targets */
2177 return target_process_reset(CMD_CTX, reset_mode);
2178 }
2179
2180
2181 COMMAND_HANDLER(handle_resume_command)
2182 {
2183 int current = 1;
2184 if (CMD_ARGC > 1)
2185 return ERROR_COMMAND_SYNTAX_ERROR;
2186
2187 struct target *target = get_current_target(CMD_CTX);
2188 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2189
2190 /* with no CMD_ARGV, resume from current pc, addr = 0,
2191 * with one arguments, addr = CMD_ARGV[0],
2192 * handle breakpoints, not debugging */
2193 uint32_t addr = 0;
2194 if (CMD_ARGC == 1)
2195 {
2196 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2197 current = 0;
2198 }
2199
2200 return target_resume(target, current, addr, 1, 0);
2201 }
2202
2203 COMMAND_HANDLER(handle_step_command)
2204 {
2205 if (CMD_ARGC > 1)
2206 return ERROR_COMMAND_SYNTAX_ERROR;
2207
2208 LOG_DEBUG("-");
2209
2210 /* with no CMD_ARGV, step from current pc, addr = 0,
2211 * with one argument addr = CMD_ARGV[0],
2212 * handle breakpoints, debugging */
2213 uint32_t addr = 0;
2214 int current_pc = 1;
2215 if (CMD_ARGC == 1)
2216 {
2217 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2218 current_pc = 0;
2219 }
2220
2221 struct target *target = get_current_target(CMD_CTX);
2222
2223 return target->type->step(target, current_pc, addr, 1);
2224 }
2225
2226 static void handle_md_output(struct command_context *cmd_ctx,
2227 struct target *target, uint32_t address, unsigned size,
2228 unsigned count, const uint8_t *buffer)
2229 {
2230 const unsigned line_bytecnt = 32;
2231 unsigned line_modulo = line_bytecnt / size;
2232
2233 char output[line_bytecnt * 4 + 1];
2234 unsigned output_len = 0;
2235
2236 const char *value_fmt;
2237 switch (size) {
2238 case 4: value_fmt = "%8.8x "; break;
2239 case 2: value_fmt = "%4.4x "; break;
2240 case 1: value_fmt = "%2.2x "; break;
2241 default:
2242 /* "can't happen", caller checked */
2243 LOG_ERROR("invalid memory read size: %u", size);
2244 return;
2245 }
2246
2247 for (unsigned i = 0; i < count; i++)
2248 {
2249 if (i % line_modulo == 0)
2250 {
2251 output_len += snprintf(output + output_len,
2252 sizeof(output) - output_len,
2253 "0x%8.8x: ",
2254 (unsigned)(address + (i*size)));
2255 }
2256
2257 uint32_t value = 0;
2258 const uint8_t *value_ptr = buffer + i * size;
2259 switch (size) {
2260 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2261 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2262 case 1: value = *value_ptr;
2263 }
2264 output_len += snprintf(output + output_len,
2265 sizeof(output) - output_len,
2266 value_fmt, value);
2267
2268 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2269 {
2270 command_print(cmd_ctx, "%s", output);
2271 output_len = 0;
2272 }
2273 }
2274 }
2275
2276 COMMAND_HANDLER(handle_md_command)
2277 {
2278 if (CMD_ARGC < 1)
2279 return ERROR_COMMAND_SYNTAX_ERROR;
2280
2281 unsigned size = 0;
2282 switch (CMD_NAME[2]) {
2283 case 'w': size = 4; break;
2284 case 'h': size = 2; break;
2285 case 'b': size = 1; break;
2286 default: return ERROR_COMMAND_SYNTAX_ERROR;
2287 }
2288
2289 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2290 int (*fn)(struct target *target,
2291 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2292 if (physical)
2293 {
2294 CMD_ARGC--;
2295 CMD_ARGV++;
2296 fn=target_read_phys_memory;
2297 } else
2298 {
2299 fn=target_read_memory;
2300 }
2301 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2302 {
2303 return ERROR_COMMAND_SYNTAX_ERROR;
2304 }
2305
2306 uint32_t address;
2307 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2308
2309 unsigned count = 1;
2310 if (CMD_ARGC == 2)
2311 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2312
2313 uint8_t *buffer = calloc(count, size);
2314
2315 struct target *target = get_current_target(CMD_CTX);
2316 int retval = fn(target, address, size, count, buffer);
2317 if (ERROR_OK == retval)
2318 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2319
2320 free(buffer);
2321
2322 return retval;
2323 }
2324
2325 typedef int (*target_write_fn)(struct target *target,
2326 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2327
2328 static int target_write_memory_fast(struct target *target,
2329 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2330 {
2331 return target_write_buffer(target, address, size * count, buffer);
2332 }
2333
2334 static int target_fill_mem(struct target *target,
2335 uint32_t address,
2336 target_write_fn fn,
2337 unsigned data_size,
2338 /* value */
2339 uint32_t b,
2340 /* count */
2341 unsigned c)
2342 {
2343 /* We have to write in reasonably large chunks to be able
2344 * to fill large memory areas with any sane speed */
2345 const unsigned chunk_size = 16384;
2346 uint8_t *target_buf = malloc(chunk_size * data_size);
2347 if (target_buf == NULL)
2348 {
2349 LOG_ERROR("Out of memory");
2350 return ERROR_FAIL;
2351 }
2352
2353 for (unsigned i = 0; i < chunk_size; i ++)
2354 {
2355 switch (data_size)
2356 {
2357 case 4:
2358 target_buffer_set_u32(target, target_buf + i*data_size, b);
2359 break;
2360 case 2:
2361 target_buffer_set_u16(target, target_buf + i*data_size, b);
2362 break;
2363 case 1:
2364 target_buffer_set_u8(target, target_buf + i*data_size, b);
2365 break;
2366 default:
2367 exit(-1);
2368 }
2369 }
2370
2371 int retval = ERROR_OK;
2372
2373 for (unsigned x = 0; x < c; x += chunk_size)
2374 {
2375 unsigned current;
2376 current = c - x;
2377 if (current > chunk_size)
2378 {
2379 current = chunk_size;
2380 }
2381 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2382 if (retval != ERROR_OK)
2383 {
2384 break;
2385 }
2386 /* avoid GDB timeouts */
2387 keep_alive();
2388 }
2389 free(target_buf);
2390
2391 return retval;
2392 }
2393
2394
2395 COMMAND_HANDLER(handle_mw_command)
2396 {
2397 if (CMD_ARGC < 2)
2398 {
2399 return ERROR_COMMAND_SYNTAX_ERROR;
2400 }
2401 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2402 target_write_fn fn;
2403 if (physical)
2404 {
2405 CMD_ARGC--;
2406 CMD_ARGV++;
2407 fn=target_write_phys_memory;
2408 } else
2409 {
2410 fn = target_write_memory_fast;
2411 }
2412 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2413 return ERROR_COMMAND_SYNTAX_ERROR;
2414
2415 uint32_t address;
2416 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2417
2418 uint32_t value;
2419 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2420
2421 unsigned count = 1;
2422 if (CMD_ARGC == 3)
2423 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2424
2425 struct target *target = get_current_target(CMD_CTX);
2426 unsigned wordsize;
2427 switch (CMD_NAME[2])
2428 {
2429 case 'w':
2430 wordsize = 4;
2431 break;
2432 case 'h':
2433 wordsize = 2;
2434 break;
2435 case 'b':
2436 wordsize = 1;
2437 break;
2438 default:
2439 return ERROR_COMMAND_SYNTAX_ERROR;
2440 }
2441
2442 return target_fill_mem(target, address, fn, wordsize, value, count);
2443 }
2444
2445 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2446 uint32_t *min_address, uint32_t *max_address)
2447 {
2448 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2449 return ERROR_COMMAND_SYNTAX_ERROR;
2450
2451 /* a base address isn't always necessary,
2452 * default to 0x0 (i.e. don't relocate) */
2453 if (CMD_ARGC >= 2)
2454 {
2455 uint32_t addr;
2456 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2457 image->base_address = addr;
2458 image->base_address_set = 1;
2459 }
2460 else
2461 image->base_address_set = 0;
2462
2463 image->start_address_set = 0;
2464
2465 if (CMD_ARGC >= 4)
2466 {
2467 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2468 }
2469 if (CMD_ARGC == 5)
2470 {
2471 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2472 // use size (given) to find max (required)
2473 *max_address += *min_address;
2474 }
2475
2476 if (*min_address > *max_address)
2477 return ERROR_COMMAND_SYNTAX_ERROR;
2478
2479 return ERROR_OK;
2480 }
2481
2482 COMMAND_HANDLER(handle_load_image_command)
2483 {
2484 uint8_t *buffer;
2485 size_t buf_cnt;
2486 uint32_t image_size;
2487 uint32_t min_address = 0;
2488 uint32_t max_address = 0xffffffff;
2489 int i;
2490 struct image image;
2491
2492 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2493 &image, &min_address, &max_address);
2494 if (ERROR_OK != retval)
2495 return retval;
2496
2497 struct target *target = get_current_target(CMD_CTX);
2498
2499 struct duration bench;
2500 duration_start(&bench);
2501
2502 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2503 {
2504 return ERROR_OK;
2505 }
2506
2507 image_size = 0x0;
2508 retval = ERROR_OK;
2509 for (i = 0; i < image.num_sections; i++)
2510 {
2511 buffer = malloc(image.sections[i].size);
2512 if (buffer == NULL)
2513 {
2514 command_print(CMD_CTX,
2515 "error allocating buffer for section (%d bytes)",
2516 (int)(image.sections[i].size));
2517 break;
2518 }
2519
2520 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2521 {
2522 free(buffer);
2523 break;
2524 }
2525
2526 uint32_t offset = 0;
2527 uint32_t length = buf_cnt;
2528
2529 /* DANGER!!! beware of unsigned comparision here!!! */
2530
2531 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2532 (image.sections[i].base_address < max_address))
2533 {
2534 if (image.sections[i].base_address < min_address)
2535 {
2536 /* clip addresses below */
2537 offset += min_address-image.sections[i].base_address;
2538 length -= offset;
2539 }
2540
2541 if (image.sections[i].base_address + buf_cnt > max_address)
2542 {
2543 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2544 }
2545
2546 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2547 {
2548 free(buffer);
2549 break;
2550 }
2551 image_size += length;
2552 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2553 (unsigned int)length,
2554 image.sections[i].base_address + offset);
2555 }
2556
2557 free(buffer);
2558 }
2559
2560 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2561 {
2562 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2563 "in %fs (%0.3f kb/s)", image_size,
2564 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2565 }
2566
2567 image_close(&image);
2568
2569 return retval;
2570
2571 }
2572
2573 COMMAND_HANDLER(handle_dump_image_command)
2574 {
2575 struct fileio fileio;
2576
2577 uint8_t buffer[560];
2578 int retvaltemp;
2579
2580
2581 struct target *target = get_current_target(CMD_CTX);
2582
2583 if (CMD_ARGC != 3)
2584 {
2585 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2586 return ERROR_OK;
2587 }
2588
2589 uint32_t address;
2590 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2591 uint32_t size;
2592 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2593
2594 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2595 {
2596 return ERROR_OK;
2597 }
2598
2599 struct duration bench;
2600 duration_start(&bench);
2601
2602 int retval = ERROR_OK;
2603 while (size > 0)
2604 {
2605 size_t size_written;
2606 uint32_t this_run_size = (size > 560) ? 560 : size;
2607 retval = target_read_buffer(target, address, this_run_size, buffer);
2608 if (retval != ERROR_OK)
2609 {
2610 break;
2611 }
2612
2613 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2614 if (retval != ERROR_OK)
2615 {
2616 break;
2617 }
2618
2619 size -= this_run_size;
2620 address += this_run_size;
2621 }
2622
2623 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2624 return retvaltemp;
2625
2626 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2627 {
2628 command_print(CMD_CTX,
2629 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2630 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2631 }
2632
2633 return retval;
2634 }
2635
2636 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2637 {
2638 uint8_t *buffer;
2639 size_t buf_cnt;
2640 uint32_t image_size;
2641 int i;
2642 int retval;
2643 uint32_t checksum = 0;
2644 uint32_t mem_checksum = 0;
2645
2646 struct image image;
2647
2648 struct target *target = get_current_target(CMD_CTX);
2649
2650 if (CMD_ARGC < 1)
2651 {
2652 return ERROR_COMMAND_SYNTAX_ERROR;
2653 }
2654
2655 if (!target)
2656 {
2657 LOG_ERROR("no target selected");
2658 return ERROR_FAIL;
2659 }
2660
2661 struct duration bench;
2662 duration_start(&bench);
2663
2664 if (CMD_ARGC >= 2)
2665 {
2666 uint32_t addr;
2667 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2668 image.base_address = addr;
2669 image.base_address_set = 1;
2670 }
2671 else
2672 {
2673 image.base_address_set = 0;
2674 image.base_address = 0x0;
2675 }
2676
2677 image.start_address_set = 0;
2678
2679 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2680 {
2681 return retval;
2682 }
2683
2684 image_size = 0x0;
2685 retval = ERROR_OK;
2686 for (i = 0; i < image.num_sections; i++)
2687 {
2688 buffer = malloc(image.sections[i].size);
2689 if (buffer == NULL)
2690 {
2691 command_print(CMD_CTX,
2692 "error allocating buffer for section (%d bytes)",
2693 (int)(image.sections[i].size));
2694 break;
2695 }
2696 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2697 {
2698 free(buffer);
2699 break;
2700 }
2701
2702 if (verify)
2703 {
2704 /* calculate checksum of image */
2705 image_calculate_checksum(buffer, buf_cnt, &checksum);
2706
2707 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2708 if (retval != ERROR_OK)
2709 {
2710 free(buffer);
2711 break;
2712 }
2713
2714 if (checksum != mem_checksum)
2715 {
2716 /* failed crc checksum, fall back to a binary compare */
2717 uint8_t *data;
2718
2719 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2720
2721 data = (uint8_t*)malloc(buf_cnt);
2722
2723 /* Can we use 32bit word accesses? */
2724 int size = 1;
2725 int count = buf_cnt;
2726 if ((count % 4) == 0)
2727 {
2728 size *= 4;
2729 count /= 4;
2730 }
2731 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2732 if (retval == ERROR_OK)
2733 {
2734 uint32_t t;
2735 for (t = 0; t < buf_cnt; t++)
2736 {
2737 if (data[t] != buffer[t])
2738 {
2739 command_print(CMD_CTX,
2740 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2741 (unsigned)(t + image.sections[i].base_address),
2742 data[t],
2743 buffer[t]);
2744 free(data);
2745 free(buffer);
2746 retval = ERROR_FAIL;
2747 goto done;
2748 }
2749 if ((t%16384) == 0)
2750 {
2751 keep_alive();
2752 }
2753 }
2754 }
2755
2756 free(data);
2757 }
2758 } else
2759 {
2760 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2761 image.sections[i].base_address,
2762 buf_cnt);
2763 }
2764
2765 free(buffer);
2766 image_size += buf_cnt;
2767 }
2768 done:
2769 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2770 {
2771 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2772 "in %fs (%0.3f kb/s)", image_size,
2773 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2774 }
2775
2776 image_close(&image);
2777
2778 return retval;
2779 }
2780
2781 COMMAND_HANDLER(handle_verify_image_command)
2782 {
2783 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2784 }
2785
2786 COMMAND_HANDLER(handle_test_image_command)
2787 {
2788 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2789 }
2790
2791 static int handle_bp_command_list(struct command_context *cmd_ctx)
2792 {
2793 struct target *target = get_current_target(cmd_ctx);
2794 struct breakpoint *breakpoint = target->breakpoints;
2795 while (breakpoint)
2796 {
2797 if (breakpoint->type == BKPT_SOFT)
2798 {
2799 char* buf = buf_to_str(breakpoint->orig_instr,
2800 breakpoint->length, 16);
2801 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2802 breakpoint->address,
2803 breakpoint->length,
2804 breakpoint->set, buf);
2805 free(buf);
2806 }
2807 else
2808 {
2809 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2810 breakpoint->address,
2811 breakpoint->length, breakpoint->set);
2812 }
2813
2814 breakpoint = breakpoint->next;
2815 }
2816 return ERROR_OK;
2817 }
2818
2819 static int handle_bp_command_set(struct command_context *cmd_ctx,
2820 uint32_t addr, uint32_t length, int hw)
2821 {
2822 struct target *target = get_current_target(cmd_ctx);
2823 int retval = breakpoint_add(target, addr, length, hw);
2824 if (ERROR_OK == retval)
2825 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2826 else
2827 LOG_ERROR("Failure setting breakpoint");
2828 return retval;
2829 }
2830
2831 COMMAND_HANDLER(handle_bp_command)
2832 {
2833 if (CMD_ARGC == 0)
2834 return handle_bp_command_list(CMD_CTX);
2835
2836 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2837 {
2838 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2839 return ERROR_COMMAND_SYNTAX_ERROR;
2840 }
2841
2842 uint32_t addr;
2843 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2844 uint32_t length;
2845 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2846
2847 int hw = BKPT_SOFT;
2848 if (CMD_ARGC == 3)
2849 {
2850 if (strcmp(CMD_ARGV[2], "hw") == 0)
2851 hw = BKPT_HARD;
2852 else
2853 return ERROR_COMMAND_SYNTAX_ERROR;
2854 }
2855
2856 return handle_bp_command_set(CMD_CTX, addr, length, hw);
2857 }
2858
2859 COMMAND_HANDLER(handle_rbp_command)
2860 {
2861 if (CMD_ARGC != 1)
2862 return ERROR_COMMAND_SYNTAX_ERROR;
2863
2864 uint32_t addr;
2865 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2866
2867 struct target *target = get_current_target(CMD_CTX);
2868 breakpoint_remove(target, addr);
2869
2870 return ERROR_OK;
2871 }
2872
2873 COMMAND_HANDLER(handle_wp_command)
2874 {
2875 struct target *target = get_current_target(CMD_CTX);
2876
2877 if (CMD_ARGC == 0)
2878 {
2879 struct watchpoint *watchpoint = target->watchpoints;
2880
2881 while (watchpoint)
2882 {
2883 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2884 ", len: 0x%8.8" PRIx32
2885 ", r/w/a: %i, value: 0x%8.8" PRIx32
2886 ", mask: 0x%8.8" PRIx32,
2887 watchpoint->address,
2888 watchpoint->length,
2889 (int)watchpoint->rw,
2890 watchpoint->value,
2891 watchpoint->mask);
2892 watchpoint = watchpoint->next;
2893 }
2894 return ERROR_OK;
2895 }
2896
2897 enum watchpoint_rw type = WPT_ACCESS;
2898 uint32_t addr = 0;
2899 uint32_t length = 0;
2900 uint32_t data_value = 0x0;
2901 uint32_t data_mask = 0xffffffff;
2902
2903 switch (CMD_ARGC)
2904 {
2905 case 5:
2906 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2907 // fall through
2908 case 4:
2909 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2910 // fall through
2911 case 3:
2912 switch (CMD_ARGV[2][0])
2913 {
2914 case 'r':
2915 type = WPT_READ;
2916 break;
2917 case 'w':
2918 type = WPT_WRITE;
2919 break;
2920 case 'a':
2921 type = WPT_ACCESS;
2922 break;
2923 default:
2924 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2925 return ERROR_COMMAND_SYNTAX_ERROR;
2926 }
2927 // fall through
2928 case 2:
2929 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2930 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2931 break;
2932
2933 default:
2934 command_print(CMD_CTX, "usage: wp [address length "
2935 "[(r|w|a) [value [mask]]]]");
2936 return ERROR_COMMAND_SYNTAX_ERROR;
2937 }
2938
2939 int retval = watchpoint_add(target, addr, length, type,
2940 data_value, data_mask);
2941 if (ERROR_OK != retval)
2942 LOG_ERROR("Failure setting watchpoints");
2943
2944 return retval;
2945 }
2946
2947 COMMAND_HANDLER(handle_rwp_command)
2948 {
2949 if (CMD_ARGC != 1)
2950 return ERROR_COMMAND_SYNTAX_ERROR;
2951
2952 uint32_t addr;
2953 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2954
2955 struct target *target = get_current_target(CMD_CTX);
2956 watchpoint_remove(target, addr);
2957
2958 return ERROR_OK;
2959 }
2960
2961
2962 /**
2963 * Translate a virtual address to a physical address.
2964 *
2965 * The low-level target implementation must have logged a detailed error
2966 * which is forwarded to telnet/GDB session.
2967 */
2968 COMMAND_HANDLER(handle_virt2phys_command)
2969 {
2970 if (CMD_ARGC != 1)
2971 return ERROR_COMMAND_SYNTAX_ERROR;
2972
2973 uint32_t va;
2974 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2975 uint32_t pa;
2976
2977 struct target *target = get_current_target(CMD_CTX);
2978 int retval = target->type->virt2phys(target, va, &pa);
2979 if (retval == ERROR_OK)
2980 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2981
2982 return retval;
2983 }
2984
2985 static void writeData(FILE *f, const void *data, size_t len)
2986 {
2987 size_t written = fwrite(data, 1, len, f);
2988 if (written != len)
2989 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2990 }
2991
2992 static void writeLong(FILE *f, int l)
2993 {
2994 int i;
2995 for (i = 0; i < 4; i++)
2996 {
2997 char c = (l >> (i*8))&0xff;
2998 writeData(f, &c, 1);
2999 }
3000
3001 }
3002
3003 static void writeString(FILE *f, char *s)
3004 {
3005 writeData(f, s, strlen(s));
3006 }
3007
3008 /* Dump a gmon.out histogram file. */
3009 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3010 {
3011 uint32_t i;
3012 FILE *f = fopen(filename, "w");
3013 if (f == NULL)
3014 return;
3015 writeString(f, "gmon");
3016 writeLong(f, 0x00000001); /* Version */
3017 writeLong(f, 0); /* padding */
3018 writeLong(f, 0); /* padding */
3019 writeLong(f, 0); /* padding */
3020
3021 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3022 writeData(f, &zero, 1);
3023
3024 /* figure out bucket size */
3025 uint32_t min = samples[0];
3026 uint32_t max = samples[0];
3027 for (i = 0; i < sampleNum; i++)
3028 {
3029 if (min > samples[i])
3030 {
3031 min = samples[i];
3032 }
3033 if (max < samples[i])
3034 {
3035 max = samples[i];
3036 }
3037 }
3038
3039 int addressSpace = (max-min + 1);
3040
3041 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3042 uint32_t length = addressSpace;
3043 if (length > maxBuckets)
3044 {
3045 length = maxBuckets;
3046 }
3047 int *buckets = malloc(sizeof(int)*length);
3048 if (buckets == NULL)
3049 {
3050 fclose(f);
3051 return;
3052 }
3053 memset(buckets, 0, sizeof(int)*length);
3054 for (i = 0; i < sampleNum;i++)
3055 {
3056 uint32_t address = samples[i];
3057 long long a = address-min;
3058 long long b = length-1;
3059 long long c = addressSpace-1;
3060 int index = (a*b)/c; /* danger!!!! int32 overflows */
3061 buckets[index]++;
3062 }
3063
3064 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3065 writeLong(f, min); /* low_pc */
3066 writeLong(f, max); /* high_pc */
3067 writeLong(f, length); /* # of samples */
3068 writeLong(f, 64000000); /* 64MHz */
3069 writeString(f, "seconds");
3070 for (i = 0; i < (15-strlen("seconds")); i++)
3071 writeData(f, &zero, 1);
3072 writeString(f, "s");
3073
3074 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3075
3076 char *data = malloc(2*length);
3077 if (data != NULL)
3078 {
3079 for (i = 0; i < length;i++)
3080 {
3081 int val;
3082 val = buckets[i];
3083 if (val > 65535)
3084 {
3085 val = 65535;
3086 }
3087 data[i*2]=val&0xff;
3088 data[i*2 + 1]=(val >> 8)&0xff;
3089 }
3090 free(buckets);
3091 writeData(f, data, length * 2);
3092 free(data);
3093 } else
3094 {
3095 free(buckets);
3096 }
3097
3098 fclose(f);
3099 }
3100
3101 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3102 * which will be used as a random sampling of PC */
3103 COMMAND_HANDLER(handle_profile_command)
3104 {
3105 struct target *target = get_current_target(CMD_CTX);
3106 struct timeval timeout, now;
3107
3108 gettimeofday(&timeout, NULL);
3109 if (CMD_ARGC != 2)
3110 {
3111 return ERROR_COMMAND_SYNTAX_ERROR;
3112 }
3113 unsigned offset;
3114 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3115
3116 timeval_add_time(&timeout, offset, 0);
3117
3118 /**
3119 * @todo: Some cores let us sample the PC without the
3120 * annoying halt/resume step; for example, ARMv7 PCSR.
3121 * Provide a way to use that more efficient mechanism.
3122 */
3123
3124 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3125
3126 static const int maxSample = 10000;
3127 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3128 if (samples == NULL)
3129 return ERROR_OK;
3130
3131 int numSamples = 0;
3132 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3133 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3134
3135 for (;;)
3136 {
3137 int retval;
3138 target_poll(target);
3139 if (target->state == TARGET_HALTED)
3140 {
3141 uint32_t t=*((uint32_t *)reg->value);
3142 samples[numSamples++]=t;
3143 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3144 target_poll(target);
3145 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3146 } else if (target->state == TARGET_RUNNING)
3147 {
3148 /* We want to quickly sample the PC. */
3149 if ((retval = target_halt(target)) != ERROR_OK)
3150 {
3151 free(samples);
3152 return retval;
3153 }
3154 } else
3155 {
3156 command_print(CMD_CTX, "Target not halted or running");
3157 retval = ERROR_OK;
3158 break;
3159 }
3160 if (retval != ERROR_OK)
3161 {
3162 break;
3163 }
3164
3165 gettimeofday(&now, NULL);
3166 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3167 {
3168 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3169 if ((retval = target_poll(target)) != ERROR_OK)
3170 {
3171 free(samples);
3172 return retval;
3173 }
3174 if (target->state == TARGET_HALTED)
3175 {
3176 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3177 }
3178 if ((retval = target_poll(target)) != ERROR_OK)
3179 {
3180 free(samples);
3181 return retval;
3182 }
3183 writeGmon(samples, numSamples, CMD_ARGV[1]);
3184 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3185 break;
3186 }
3187 }
3188 free(samples);
3189
3190 return ERROR_OK;
3191 }
3192
3193 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3194 {
3195 char *namebuf;
3196 Jim_Obj *nameObjPtr, *valObjPtr;
3197 int result;
3198
3199 namebuf = alloc_printf("%s(%d)", varname, idx);
3200 if (!namebuf)
3201 return JIM_ERR;
3202
3203 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3204 valObjPtr = Jim_NewIntObj(interp, val);
3205 if (!nameObjPtr || !valObjPtr)
3206 {
3207 free(namebuf);
3208 return JIM_ERR;
3209 }
3210
3211 Jim_IncrRefCount(nameObjPtr);
3212 Jim_IncrRefCount(valObjPtr);
3213 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3214 Jim_DecrRefCount(interp, nameObjPtr);
3215 Jim_DecrRefCount(interp, valObjPtr);
3216 free(namebuf);
3217 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3218 return result;
3219 }
3220
3221 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3222 {
3223 struct command_context *context;
3224 struct target *target;
3225
3226 context = current_command_context(interp);
3227 assert (context != NULL);
3228
3229 target = get_current_target(context);
3230 if (target == NULL)
3231 {
3232 LOG_ERROR("mem2array: no current target");
3233 return JIM_ERR;
3234 }
3235
3236 return target_mem2array(interp, target, argc-1, argv + 1);
3237 }
3238
3239 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3240 {
3241 long l;
3242 uint32_t width;
3243 int len;
3244 uint32_t addr;
3245 uint32_t count;
3246 uint32_t v;
3247 const char *varname;
3248 int n, e, retval;
3249 uint32_t i;
3250
3251 /* argv[1] = name of array to receive the data
3252 * argv[2] = desired width
3253 * argv[3] = memory address
3254 * argv[4] = count of times to read
3255 */
3256 if (argc != 4) {
3257 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3258 return JIM_ERR;
3259 }
3260 varname = Jim_GetString(argv[0], &len);
3261 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3262
3263 e = Jim_GetLong(interp, argv[1], &l);
3264 width = l;
3265 if (e != JIM_OK) {
3266 return e;
3267 }
3268
3269 e = Jim_GetLong(interp, argv[2], &l);
3270 addr = l;
3271 if (e != JIM_OK) {
3272 return e;
3273 }
3274 e = Jim_GetLong(interp, argv[3], &l);
3275 len = l;
3276 if (e != JIM_OK) {
3277 return e;
3278 }
3279 switch (width) {
3280 case 8:
3281 width = 1;
3282 break;
3283 case 16:
3284 width = 2;
3285 break;
3286 case 32:
3287 width = 4;
3288 break;
3289 default:
3290 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3291 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3292 return JIM_ERR;
3293 }
3294 if (len == 0) {
3295 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3296 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3297 return JIM_ERR;
3298 }
3299 if ((addr + (len * width)) < addr) {
3300 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3301 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3302 return JIM_ERR;
3303 }
3304 /* absurd transfer size? */
3305 if (len > 65536) {
3306 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3307 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3308 return JIM_ERR;
3309 }
3310
3311 if ((width == 1) ||
3312 ((width == 2) && ((addr & 1) == 0)) ||
3313 ((width == 4) && ((addr & 3) == 0))) {
3314 /* all is well */
3315 } else {
3316 char buf[100];
3317 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3318 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3319 addr,
3320 width);
3321 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3322 return JIM_ERR;
3323 }
3324
3325 /* Transfer loop */
3326
3327 /* index counter */
3328 n = 0;
3329
3330 size_t buffersize = 4096;
3331 uint8_t *buffer = malloc(buffersize);
3332 if (buffer == NULL)
3333 return JIM_ERR;
3334
3335 /* assume ok */
3336 e = JIM_OK;
3337 while (len) {
3338 /* Slurp... in buffer size chunks */
3339
3340 count = len; /* in objects.. */
3341 if (count > (buffersize/width)) {
3342 count = (buffersize/width);
3343 }
3344
3345 retval = target_read_memory(target, addr, width, count, buffer);
3346 if (retval != ERROR_OK) {
3347 /* BOO !*/
3348 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3349 (unsigned int)addr,
3350 (int)width,
3351 (int)count);
3352 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3353 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3354 e = JIM_ERR;
3355 len = 0;
3356 } else {
3357 v = 0; /* shut up gcc */
3358 for (i = 0 ;i < count ;i++, n++) {
3359 switch (width) {
3360 case 4:
3361 v = target_buffer_get_u32(target, &buffer[i*width]);
3362 break;
3363 case 2:
3364 v = target_buffer_get_u16(target, &buffer[i*width]);
3365 break;
3366 case 1:
3367 v = buffer[i] & 0x0ff;
3368 break;
3369 }
3370 new_int_array_element(interp, varname, n, v);
3371 }
3372 len -= count;
3373 }
3374 }
3375
3376 free(buffer);
3377
3378 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3379
3380 return JIM_OK;
3381 }
3382
3383 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3384 {
3385 char *namebuf;
3386 Jim_Obj *nameObjPtr, *valObjPtr;
3387 int result;
3388 long l;
3389
3390 namebuf = alloc_printf("%s(%d)", varname, idx);
3391 if (!namebuf)
3392 return JIM_ERR;
3393
3394 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3395 if (!nameObjPtr)
3396 {
3397 free(namebuf);
3398 return JIM_ERR;
3399 }
3400
3401 Jim_IncrRefCount(nameObjPtr);
3402 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3403 Jim_DecrRefCount(interp, nameObjPtr);
3404 free(namebuf);
3405 if (valObjPtr == NULL)
3406 return JIM_ERR;
3407
3408 result = Jim_GetLong(interp, valObjPtr, &l);
3409 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3410 *val = l;
3411 return result;
3412 }
3413
3414 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3415 {
3416 struct command_context *context;
3417 struct target *target;
3418
3419 context = current_command_context(interp);
3420 assert (context != NULL);
3421
3422 target = get_current_target(context);
3423 if (target == NULL) {
3424 LOG_ERROR("array2mem: no current target");
3425 return JIM_ERR;
3426 }
3427
3428 return target_array2mem(interp,target, argc-1, argv + 1);
3429 }
3430
3431 static int target_array2mem(Jim_Interp *interp, struct target *target,
3432 int argc, Jim_Obj *const *argv)
3433 {
3434 long l;
3435 uint32_t width;
3436 int len;
3437 uint32_t addr;
3438 uint32_t count;
3439 uint32_t v;
3440 const char *varname;
3441 int n, e, retval;
3442 uint32_t i;
3443
3444 /* argv[1] = name of array to get the data
3445 * argv[2] = desired width
3446 * argv[3] = memory address
3447 * argv[4] = count to write
3448 */
3449 if (argc != 4) {
3450 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3451 return JIM_ERR;
3452 }
3453 varname = Jim_GetString(argv[0], &len);
3454 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3455
3456 e = Jim_GetLong(interp, argv[1], &l);
3457 width = l;
3458 if (e != JIM_OK) {
3459 return e;
3460 }
3461
3462 e = Jim_GetLong(interp, argv[2], &l);
3463 addr = l;
3464 if (e != JIM_OK) {
3465 return e;
3466 }
3467 e = Jim_GetLong(interp, argv[3], &l);
3468 len = l;
3469 if (e != JIM_OK) {
3470 return e;
3471 }
3472 switch (width) {
3473 case 8:
3474 width = 1;
3475 break;
3476 case 16:
3477 width = 2;
3478 break;
3479 case 32:
3480 width = 4;
3481 break;
3482 default:
3483 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3484 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3485 return JIM_ERR;
3486 }
3487 if (len == 0) {
3488 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3489 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3490 return JIM_ERR;
3491 }
3492 if ((addr + (len * width)) < addr) {
3493 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3494 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3495 return JIM_ERR;
3496 }
3497 /* absurd transfer size? */
3498 if (len > 65536) {
3499 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3500 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3501 return JIM_ERR;
3502 }
3503
3504 if ((width == 1) ||
3505 ((width == 2) && ((addr & 1) == 0)) ||
3506 ((width == 4) && ((addr & 3) == 0))) {
3507 /* all is well */
3508 } else {
3509 char buf[100];
3510 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3511 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3512 (unsigned int)addr,
3513 (int)width);
3514 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3515 return JIM_ERR;
3516 }
3517
3518 /* Transfer loop */
3519
3520 /* index counter */
3521 n = 0;
3522 /* assume ok */
3523 e = JIM_OK;
3524
3525 size_t buffersize = 4096;
3526 uint8_t *buffer = malloc(buffersize);
3527 if (buffer == NULL)
3528 return JIM_ERR;
3529
3530 while (len) {
3531 /* Slurp... in buffer size chunks */
3532
3533 count = len; /* in objects.. */
3534 if (count > (buffersize/width)) {
3535 count = (buffersize/width);
3536 }
3537
3538 v = 0; /* shut up gcc */
3539 for (i = 0 ;i < count ;i++, n++) {
3540 get_int_array_element(interp, varname, n, &v);
3541 switch (width) {
3542 case 4:
3543 target_buffer_set_u32(target, &buffer[i*width], v);
3544 break;
3545 case 2:
3546 target_buffer_set_u16(target, &buffer[i*width], v);
3547 break;
3548 case 1:
3549 buffer[i] = v & 0x0ff;
3550 break;
3551 }
3552 }
3553 len -= count;
3554
3555 retval = target_write_memory(target, addr, width, count, buffer);
3556 if (retval != ERROR_OK) {
3557 /* BOO !*/
3558 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3559 (unsigned int)addr,
3560 (int)width,
3561 (int)count);
3562 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3563 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3564 e = JIM_ERR;
3565 len = 0;
3566 }
3567 }
3568
3569 free(buffer);
3570
3571 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3572
3573 return JIM_OK;
3574 }
3575
3576 /* FIX? should we propagate errors here rather than printing them
3577 * and continuing?
3578 */
3579 void target_handle_event(struct target *target, enum target_event e)
3580 {
3581 struct target_event_action *teap;
3582
3583 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3584 if (teap->event == e) {
3585 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3586 target->target_number,
3587 target_name(target),
3588 target_type_name(target),
3589 e,
3590 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3591 Jim_GetString(teap->body, NULL));
3592 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3593 {
3594 Jim_PrintErrorMessage(teap->interp);
3595 }
3596 }
3597 }
3598 }
3599
3600 /**
3601 * Returns true only if the target has a handler for the specified event.
3602 */
3603 bool target_has_event_action(struct target *target, enum target_event event)
3604 {
3605 struct target_event_action *teap;
3606
3607 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3608 if (teap->event == event)
3609 return true;
3610 }
3611 return false;
3612 }
3613
3614 enum target_cfg_param {
3615 TCFG_TYPE,
3616 TCFG_EVENT,
3617 TCFG_WORK_AREA_VIRT,
3618 TCFG_WORK_AREA_PHYS,
3619 TCFG_WORK_AREA_SIZE,
3620 TCFG_WORK_AREA_BACKUP,
3621 TCFG_ENDIAN,
3622 TCFG_VARIANT,
3623 TCFG_CHAIN_POSITION,
3624 };
3625
3626 static Jim_Nvp nvp_config_opts[] = {
3627 { .name = "-type", .value = TCFG_TYPE },
3628 { .name = "-event", .value = TCFG_EVENT },
3629 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3630 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3631 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3632 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3633 { .name = "-endian" , .value = TCFG_ENDIAN },
3634 { .name = "-variant", .value = TCFG_VARIANT },
3635 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3636
3637 { .name = NULL, .value = -1 }
3638 };
3639
3640 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3641 {
3642 Jim_Nvp *n;
3643 Jim_Obj *o;
3644 jim_wide w;
3645 char *cp;
3646 int e;
3647
3648 /* parse config or cget options ... */
3649 while (goi->argc > 0) {
3650 Jim_SetEmptyResult(goi->interp);
3651 /* Jim_GetOpt_Debug(goi); */
3652
3653 if (target->type->target_jim_configure) {
3654 /* target defines a configure function */
3655 /* target gets first dibs on parameters */
3656 e = (*(target->type->target_jim_configure))(target, goi);
3657 if (e == JIM_OK) {
3658 /* more? */
3659 continue;
3660 }
3661 if (e == JIM_ERR) {
3662 /* An error */
3663 return e;
3664 }
3665 /* otherwise we 'continue' below */
3666 }
3667 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3668 if (e != JIM_OK) {
3669 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3670 return e;
3671 }
3672 switch (n->value) {
3673 case TCFG_TYPE:
3674 /* not setable */
3675 if (goi->isconfigure) {
3676 Jim_SetResult_sprintf(goi->interp,
3677 "not settable: %s", n->name);
3678 return JIM_ERR;
3679 } else {
3680 no_params:
3681 if (goi->argc != 0) {
3682 Jim_WrongNumArgs(goi->interp,
3683 goi->argc, goi->argv,
3684 "NO PARAMS");
3685 return JIM_ERR;
3686 }
3687 }
3688 Jim_SetResultString(goi->interp,
3689 target_type_name(target), -1);
3690 /* loop for more */
3691 break;
3692 case TCFG_EVENT:
3693 if (goi->argc == 0) {
3694 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3695 return JIM_ERR;
3696 }
3697
3698 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3699 if (e != JIM_OK) {
3700