target: remove unused event definitions
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109
110 static struct target_type *target_types[] = {
111 &arm7tdmi_target,
112 &arm9tdmi_target,
113 &arm920t_target,
114 &arm720t_target,
115 &arm966e_target,
116 &arm946e_target,
117 &arm926ejs_target,
118 &fa526_target,
119 &feroceon_target,
120 &dragonite_target,
121 &xscale_target,
122 &cortexm_target,
123 &cortexa_target,
124 &cortexr4_target,
125 &arm11_target,
126 &ls1_sap_target,
127 &mips_m4k_target,
128 &avr_target,
129 &dsp563xx_target,
130 &dsp5680xx_target,
131 &testee_target,
132 &avr32_ap7k_target,
133 &hla_target,
134 &nds32_v2_target,
135 &nds32_v3_target,
136 &nds32_v3m_target,
137 &or1k_target,
138 &quark_x10xx_target,
139 &quark_d20xx_target,
140 &stm8_target,
141 #if BUILD_TARGET64
142 &aarch64_target,
143 #endif
144 NULL,
145 };
146
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
153
154 static const Jim_Nvp nvp_assert[] = {
155 { .name = "assert", NVP_ASSERT },
156 { .name = "deassert", NVP_DEASSERT },
157 { .name = "T", NVP_ASSERT },
158 { .name = "F", NVP_DEASSERT },
159 { .name = "t", NVP_ASSERT },
160 { .name = "f", NVP_DEASSERT },
161 { .name = NULL, .value = -1 }
162 };
163
164 static const Jim_Nvp nvp_error_target[] = {
165 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
171 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
174 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176 { .value = -1, .name = NULL }
177 };
178
179 static const char *target_strerror_safe(int err)
180 {
181 const Jim_Nvp *n;
182
183 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184 if (n->name == NULL)
185 return "unknown";
186 else
187 return n->name;
188 }
189
190 static const Jim_Nvp nvp_target_event[] = {
191
192 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193 { .value = TARGET_EVENT_HALTED, .name = "halted" },
194 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
197
198 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
200
201 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
202 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
203 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
204 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
205 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
208 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
209
210 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
211 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
212
213 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
214 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
215
216 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
217 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
218
219 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
221
222 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
224
225 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
226
227 { .name = NULL, .value = -1 }
228 };
229
230 static const Jim_Nvp nvp_target_state[] = {
231 { .name = "unknown", .value = TARGET_UNKNOWN },
232 { .name = "running", .value = TARGET_RUNNING },
233 { .name = "halted", .value = TARGET_HALTED },
234 { .name = "reset", .value = TARGET_RESET },
235 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
236 { .name = NULL, .value = -1 },
237 };
238
239 static const Jim_Nvp nvp_target_debug_reason[] = {
240 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
241 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
242 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
243 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
244 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
245 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
246 { .name = "program-exit" , .value = DBG_REASON_EXIT },
247 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
248 { .name = NULL, .value = -1 },
249 };
250
251 static const Jim_Nvp nvp_target_endian[] = {
252 { .name = "big", .value = TARGET_BIG_ENDIAN },
253 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
254 { .name = "be", .value = TARGET_BIG_ENDIAN },
255 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
256 { .name = NULL, .value = -1 },
257 };
258
259 static const Jim_Nvp nvp_reset_modes[] = {
260 { .name = "unknown", .value = RESET_UNKNOWN },
261 { .name = "run" , .value = RESET_RUN },
262 { .name = "halt" , .value = RESET_HALT },
263 { .name = "init" , .value = RESET_INIT },
264 { .name = NULL , .value = -1 },
265 };
266
267 const char *debug_reason_name(struct target *t)
268 {
269 const char *cp;
270
271 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
272 t->debug_reason)->name;
273 if (!cp) {
274 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
275 cp = "(*BUG*unknown*BUG*)";
276 }
277 return cp;
278 }
279
280 const char *target_state_name(struct target *t)
281 {
282 const char *cp;
283 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid target state: %d", (int)(t->state));
286 cp = "(*BUG*unknown*BUG*)";
287 }
288
289 if (!target_was_examined(t) && t->defer_examine)
290 cp = "examine deferred";
291
292 return cp;
293 }
294
295 const char *target_event_name(enum target_event event)
296 {
297 const char *cp;
298 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
299 if (!cp) {
300 LOG_ERROR("Invalid target event: %d", (int)(event));
301 cp = "(*BUG*unknown*BUG*)";
302 }
303 return cp;
304 }
305
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
307 {
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
312 cp = "(*BUG*unknown*BUG*)";
313 }
314 return cp;
315 }
316
317 /* determine the number of the new target */
318 static int new_target_number(void)
319 {
320 struct target *t;
321 int x;
322
323 /* number is 0 based */
324 x = -1;
325 t = all_targets;
326 while (t) {
327 if (x < t->target_number)
328 x = t->target_number;
329 t = t->next;
330 }
331 return x + 1;
332 }
333
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
336 {
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u64(buffer);
339 else
340 return be_to_h_u64(buffer);
341 }
342
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
345 {
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u32(buffer);
348 else
349 return be_to_h_u32(buffer);
350 }
351
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
354 {
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u24(buffer);
357 else
358 return be_to_h_u24(buffer);
359 }
360
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
363 {
364 if (target->endianness == TARGET_LITTLE_ENDIAN)
365 return le_to_h_u16(buffer);
366 else
367 return be_to_h_u16(buffer);
368 }
369
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
372 {
373 return *buffer & 0x0ff;
374 }
375
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
378 {
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u64_to_le(buffer, value);
381 else
382 h_u64_to_be(buffer, value);
383 }
384
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
387 {
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u32_to_le(buffer, value);
390 else
391 h_u32_to_be(buffer, value);
392 }
393
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
396 {
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u24_to_le(buffer, value);
399 else
400 h_u24_to_be(buffer, value);
401 }
402
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
405 {
406 if (target->endianness == TARGET_LITTLE_ENDIAN)
407 h_u16_to_le(buffer, value);
408 else
409 h_u16_to_be(buffer, value);
410 }
411
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
414 {
415 *buffer = value;
416 }
417
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
420 {
421 uint32_t i;
422 for (i = 0; i < count; i++)
423 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
424 }
425
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
428 {
429 uint32_t i;
430 for (i = 0; i < count; i++)
431 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
432 }
433
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
436 {
437 uint32_t i;
438 for (i = 0; i < count; i++)
439 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
440 }
441
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
444 {
445 uint32_t i;
446 for (i = 0; i < count; i++)
447 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
448 }
449
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
452 {
453 uint32_t i;
454 for (i = 0; i < count; i++)
455 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
456 }
457
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
460 {
461 uint32_t i;
462 for (i = 0; i < count; i++)
463 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
464 }
465
466 /* return a pointer to a configured target; id is name or number */
467 struct target *get_target(const char *id)
468 {
469 struct target *target;
470
471 /* try as tcltarget name */
472 for (target = all_targets; target; target = target->next) {
473 if (target_name(target) == NULL)
474 continue;
475 if (strcmp(id, target_name(target)) == 0)
476 return target;
477 }
478
479 /* It's OK to remove this fallback sometime after August 2010 or so */
480
481 /* no match, try as number */
482 unsigned num;
483 if (parse_uint(id, &num) != ERROR_OK)
484 return NULL;
485
486 for (target = all_targets; target; target = target->next) {
487 if (target->target_number == (int)num) {
488 LOG_WARNING("use '%s' as target identifier, not '%u'",
489 target_name(target), num);
490 return target;
491 }
492 }
493
494 return NULL;
495 }
496
497 /* returns a pointer to the n-th configured target */
498 struct target *get_target_by_num(int num)
499 {
500 struct target *target = all_targets;
501
502 while (target) {
503 if (target->target_number == num)
504 return target;
505 target = target->next;
506 }
507
508 return NULL;
509 }
510
511 struct target *get_current_target(struct command_context *cmd_ctx)
512 {
513 struct target *target = get_target_by_num(cmd_ctx->current_target);
514
515 if (target == NULL) {
516 LOG_ERROR("BUG: current_target out of bounds");
517 exit(-1);
518 }
519
520 return target;
521 }
522
523 int target_poll(struct target *target)
524 {
525 int retval;
526
527 /* We can't poll until after examine */
528 if (!target_was_examined(target)) {
529 /* Fail silently lest we pollute the log */
530 return ERROR_FAIL;
531 }
532
533 retval = target->type->poll(target);
534 if (retval != ERROR_OK)
535 return retval;
536
537 if (target->halt_issued) {
538 if (target->state == TARGET_HALTED)
539 target->halt_issued = false;
540 else {
541 int64_t t = timeval_ms() - target->halt_issued_time;
542 if (t > DEFAULT_HALT_TIMEOUT) {
543 target->halt_issued = false;
544 LOG_INFO("Halt timed out, wake up GDB.");
545 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
546 }
547 }
548 }
549
550 return ERROR_OK;
551 }
552
553 int target_halt(struct target *target)
554 {
555 int retval;
556 /* We can't poll until after examine */
557 if (!target_was_examined(target)) {
558 LOG_ERROR("Target not examined yet");
559 return ERROR_FAIL;
560 }
561
562 retval = target->type->halt(target);
563 if (retval != ERROR_OK)
564 return retval;
565
566 target->halt_issued = true;
567 target->halt_issued_time = timeval_ms();
568
569 return ERROR_OK;
570 }
571
572 /**
573 * Make the target (re)start executing using its saved execution
574 * context (possibly with some modifications).
575 *
576 * @param target Which target should start executing.
577 * @param current True to use the target's saved program counter instead
578 * of the address parameter
579 * @param address Optionally used as the program counter.
580 * @param handle_breakpoints True iff breakpoints at the resumption PC
581 * should be skipped. (For example, maybe execution was stopped by
582 * such a breakpoint, in which case it would be counterprodutive to
583 * let it re-trigger.
584 * @param debug_execution False if all working areas allocated by OpenOCD
585 * should be released and/or restored to their original contents.
586 * (This would for example be true to run some downloaded "helper"
587 * algorithm code, which resides in one such working buffer and uses
588 * another for data storage.)
589 *
590 * @todo Resolve the ambiguity about what the "debug_execution" flag
591 * signifies. For example, Target implementations don't agree on how
592 * it relates to invalidation of the register cache, or to whether
593 * breakpoints and watchpoints should be enabled. (It would seem wrong
594 * to enable breakpoints when running downloaded "helper" algorithms
595 * (debug_execution true), since the breakpoints would be set to match
596 * target firmware being debugged, not the helper algorithm.... and
597 * enabling them could cause such helpers to malfunction (for example,
598 * by overwriting data with a breakpoint instruction. On the other
599 * hand the infrastructure for running such helpers might use this
600 * procedure but rely on hardware breakpoint to detect termination.)
601 */
602 int target_resume(struct target *target, int current, target_addr_t address,
603 int handle_breakpoints, int debug_execution)
604 {
605 int retval;
606
607 /* We can't poll until after examine */
608 if (!target_was_examined(target)) {
609 LOG_ERROR("Target not examined yet");
610 return ERROR_FAIL;
611 }
612
613 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
614
615 /* note that resume *must* be asynchronous. The CPU can halt before
616 * we poll. The CPU can even halt at the current PC as a result of
617 * a software breakpoint being inserted by (a bug?) the application.
618 */
619 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
620 if (retval != ERROR_OK)
621 return retval;
622
623 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
624
625 return retval;
626 }
627
628 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
629 {
630 char buf[100];
631 int retval;
632 Jim_Nvp *n;
633 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
634 if (n->name == NULL) {
635 LOG_ERROR("invalid reset mode");
636 return ERROR_FAIL;
637 }
638
639 struct target *target;
640 for (target = all_targets; target; target = target->next)
641 target_call_reset_callbacks(target, reset_mode);
642
643 /* disable polling during reset to make reset event scripts
644 * more predictable, i.e. dr/irscan & pathmove in events will
645 * not have JTAG operations injected into the middle of a sequence.
646 */
647 bool save_poll = jtag_poll_get_enabled();
648
649 jtag_poll_set_enabled(false);
650
651 sprintf(buf, "ocd_process_reset %s", n->name);
652 retval = Jim_Eval(cmd_ctx->interp, buf);
653
654 jtag_poll_set_enabled(save_poll);
655
656 if (retval != JIM_OK) {
657 Jim_MakeErrorMessage(cmd_ctx->interp);
658 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
659 return ERROR_FAIL;
660 }
661
662 /* We want any events to be processed before the prompt */
663 retval = target_call_timer_callbacks_now();
664
665 for (target = all_targets; target; target = target->next) {
666 target->type->check_reset(target);
667 target->running_alg = false;
668 }
669
670 return retval;
671 }
672
673 static int identity_virt2phys(struct target *target,
674 target_addr_t virtual, target_addr_t *physical)
675 {
676 *physical = virtual;
677 return ERROR_OK;
678 }
679
680 static int no_mmu(struct target *target, int *enabled)
681 {
682 *enabled = 0;
683 return ERROR_OK;
684 }
685
686 static int default_examine(struct target *target)
687 {
688 target_set_examined(target);
689 return ERROR_OK;
690 }
691
692 /* no check by default */
693 static int default_check_reset(struct target *target)
694 {
695 return ERROR_OK;
696 }
697
698 int target_examine_one(struct target *target)
699 {
700 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
701
702 int retval = target->type->examine(target);
703 if (retval != ERROR_OK)
704 return retval;
705
706 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
707
708 return ERROR_OK;
709 }
710
711 static int jtag_enable_callback(enum jtag_event event, void *priv)
712 {
713 struct target *target = priv;
714
715 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
716 return ERROR_OK;
717
718 jtag_unregister_event_callback(jtag_enable_callback, target);
719
720 return target_examine_one(target);
721 }
722
723 /* Targets that correctly implement init + examine, i.e.
724 * no communication with target during init:
725 *
726 * XScale
727 */
728 int target_examine(void)
729 {
730 int retval = ERROR_OK;
731 struct target *target;
732
733 for (target = all_targets; target; target = target->next) {
734 /* defer examination, but don't skip it */
735 if (!target->tap->enabled) {
736 jtag_register_event_callback(jtag_enable_callback,
737 target);
738 continue;
739 }
740
741 if (target->defer_examine)
742 continue;
743
744 retval = target_examine_one(target);
745 if (retval != ERROR_OK)
746 return retval;
747 }
748 return retval;
749 }
750
751 const char *target_type_name(struct target *target)
752 {
753 return target->type->name;
754 }
755
756 static int target_soft_reset_halt(struct target *target)
757 {
758 if (!target_was_examined(target)) {
759 LOG_ERROR("Target not examined yet");
760 return ERROR_FAIL;
761 }
762 if (!target->type->soft_reset_halt) {
763 LOG_ERROR("Target %s does not support soft_reset_halt",
764 target_name(target));
765 return ERROR_FAIL;
766 }
767 return target->type->soft_reset_halt(target);
768 }
769
770 /**
771 * Downloads a target-specific native code algorithm to the target,
772 * and executes it. * Note that some targets may need to set up, enable,
773 * and tear down a breakpoint (hard or * soft) to detect algorithm
774 * termination, while others may support lower overhead schemes where
775 * soft breakpoints embedded in the algorithm automatically terminate the
776 * algorithm.
777 *
778 * @param target used to run the algorithm
779 * @param arch_info target-specific description of the algorithm.
780 */
781 int target_run_algorithm(struct target *target,
782 int num_mem_params, struct mem_param *mem_params,
783 int num_reg_params, struct reg_param *reg_param,
784 uint32_t entry_point, uint32_t exit_point,
785 int timeout_ms, void *arch_info)
786 {
787 int retval = ERROR_FAIL;
788
789 if (!target_was_examined(target)) {
790 LOG_ERROR("Target not examined yet");
791 goto done;
792 }
793 if (!target->type->run_algorithm) {
794 LOG_ERROR("Target type '%s' does not support %s",
795 target_type_name(target), __func__);
796 goto done;
797 }
798
799 target->running_alg = true;
800 retval = target->type->run_algorithm(target,
801 num_mem_params, mem_params,
802 num_reg_params, reg_param,
803 entry_point, exit_point, timeout_ms, arch_info);
804 target->running_alg = false;
805
806 done:
807 return retval;
808 }
809
810 /**
811 * Downloads a target-specific native code algorithm to the target,
812 * executes and leaves it running.
813 *
814 * @param target used to run the algorithm
815 * @param arch_info target-specific description of the algorithm.
816 */
817 int target_start_algorithm(struct target *target,
818 int num_mem_params, struct mem_param *mem_params,
819 int num_reg_params, struct reg_param *reg_params,
820 uint32_t entry_point, uint32_t exit_point,
821 void *arch_info)
822 {
823 int retval = ERROR_FAIL;
824
825 if (!target_was_examined(target)) {
826 LOG_ERROR("Target not examined yet");
827 goto done;
828 }
829 if (!target->type->start_algorithm) {
830 LOG_ERROR("Target type '%s' does not support %s",
831 target_type_name(target), __func__);
832 goto done;
833 }
834 if (target->running_alg) {
835 LOG_ERROR("Target is already running an algorithm");
836 goto done;
837 }
838
839 target->running_alg = true;
840 retval = target->type->start_algorithm(target,
841 num_mem_params, mem_params,
842 num_reg_params, reg_params,
843 entry_point, exit_point, arch_info);
844
845 done:
846 return retval;
847 }
848
849 /**
850 * Waits for an algorithm started with target_start_algorithm() to complete.
851 *
852 * @param target used to run the algorithm
853 * @param arch_info target-specific description of the algorithm.
854 */
855 int target_wait_algorithm(struct target *target,
856 int num_mem_params, struct mem_param *mem_params,
857 int num_reg_params, struct reg_param *reg_params,
858 uint32_t exit_point, int timeout_ms,
859 void *arch_info)
860 {
861 int retval = ERROR_FAIL;
862
863 if (!target->type->wait_algorithm) {
864 LOG_ERROR("Target type '%s' does not support %s",
865 target_type_name(target), __func__);
866 goto done;
867 }
868 if (!target->running_alg) {
869 LOG_ERROR("Target is not running an algorithm");
870 goto done;
871 }
872
873 retval = target->type->wait_algorithm(target,
874 num_mem_params, mem_params,
875 num_reg_params, reg_params,
876 exit_point, timeout_ms, arch_info);
877 if (retval != ERROR_TARGET_TIMEOUT)
878 target->running_alg = false;
879
880 done:
881 return retval;
882 }
883
884 /**
885 * Executes a target-specific native code algorithm in the target.
886 * It differs from target_run_algorithm in that the algorithm is asynchronous.
887 * Because of this it requires an compliant algorithm:
888 * see contrib/loaders/flash/stm32f1x.S for example.
889 *
890 * @param target used to run the algorithm
891 */
892
893 int target_run_flash_async_algorithm(struct target *target,
894 const uint8_t *buffer, uint32_t count, int block_size,
895 int num_mem_params, struct mem_param *mem_params,
896 int num_reg_params, struct reg_param *reg_params,
897 uint32_t buffer_start, uint32_t buffer_size,
898 uint32_t entry_point, uint32_t exit_point, void *arch_info)
899 {
900 int retval;
901 int timeout = 0;
902
903 const uint8_t *buffer_orig = buffer;
904
905 /* Set up working area. First word is write pointer, second word is read pointer,
906 * rest is fifo data area. */
907 uint32_t wp_addr = buffer_start;
908 uint32_t rp_addr = buffer_start + 4;
909 uint32_t fifo_start_addr = buffer_start + 8;
910 uint32_t fifo_end_addr = buffer_start + buffer_size;
911
912 uint32_t wp = fifo_start_addr;
913 uint32_t rp = fifo_start_addr;
914
915 /* validate block_size is 2^n */
916 assert(!block_size || !(block_size & (block_size - 1)));
917
918 retval = target_write_u32(target, wp_addr, wp);
919 if (retval != ERROR_OK)
920 return retval;
921 retval = target_write_u32(target, rp_addr, rp);
922 if (retval != ERROR_OK)
923 return retval;
924
925 /* Start up algorithm on target and let it idle while writing the first chunk */
926 retval = target_start_algorithm(target, num_mem_params, mem_params,
927 num_reg_params, reg_params,
928 entry_point,
929 exit_point,
930 arch_info);
931
932 if (retval != ERROR_OK) {
933 LOG_ERROR("error starting target flash write algorithm");
934 return retval;
935 }
936
937 while (count > 0) {
938
939 retval = target_read_u32(target, rp_addr, &rp);
940 if (retval != ERROR_OK) {
941 LOG_ERROR("failed to get read pointer");
942 break;
943 }
944
945 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
946 (size_t) (buffer - buffer_orig), count, wp, rp);
947
948 if (rp == 0) {
949 LOG_ERROR("flash write algorithm aborted by target");
950 retval = ERROR_FLASH_OPERATION_FAILED;
951 break;
952 }
953
954 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
955 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
956 break;
957 }
958
959 /* Count the number of bytes available in the fifo without
960 * crossing the wrap around. Make sure to not fill it completely,
961 * because that would make wp == rp and that's the empty condition. */
962 uint32_t thisrun_bytes;
963 if (rp > wp)
964 thisrun_bytes = rp - wp - block_size;
965 else if (rp > fifo_start_addr)
966 thisrun_bytes = fifo_end_addr - wp;
967 else
968 thisrun_bytes = fifo_end_addr - wp - block_size;
969
970 if (thisrun_bytes == 0) {
971 /* Throttle polling a bit if transfer is (much) faster than flash
972 * programming. The exact delay shouldn't matter as long as it's
973 * less than buffer size / flash speed. This is very unlikely to
974 * run when using high latency connections such as USB. */
975 alive_sleep(10);
976
977 /* to stop an infinite loop on some targets check and increment a timeout
978 * this issue was observed on a stellaris using the new ICDI interface */
979 if (timeout++ >= 500) {
980 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
981 return ERROR_FLASH_OPERATION_FAILED;
982 }
983 continue;
984 }
985
986 /* reset our timeout */
987 timeout = 0;
988
989 /* Limit to the amount of data we actually want to write */
990 if (thisrun_bytes > count * block_size)
991 thisrun_bytes = count * block_size;
992
993 /* Write data to fifo */
994 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
995 if (retval != ERROR_OK)
996 break;
997
998 /* Update counters and wrap write pointer */
999 buffer += thisrun_bytes;
1000 count -= thisrun_bytes / block_size;
1001 wp += thisrun_bytes;
1002 if (wp >= fifo_end_addr)
1003 wp = fifo_start_addr;
1004
1005 /* Store updated write pointer to target */
1006 retval = target_write_u32(target, wp_addr, wp);
1007 if (retval != ERROR_OK)
1008 break;
1009 }
1010
1011 if (retval != ERROR_OK) {
1012 /* abort flash write algorithm on target */
1013 target_write_u32(target, wp_addr, 0);
1014 }
1015
1016 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1017 num_reg_params, reg_params,
1018 exit_point,
1019 10000,
1020 arch_info);
1021
1022 if (retval2 != ERROR_OK) {
1023 LOG_ERROR("error waiting for target flash write algorithm");
1024 retval = retval2;
1025 }
1026
1027 if (retval == ERROR_OK) {
1028 /* check if algorithm set rp = 0 after fifo writer loop finished */
1029 retval = target_read_u32(target, rp_addr, &rp);
1030 if (retval == ERROR_OK && rp == 0) {
1031 LOG_ERROR("flash write algorithm aborted by target");
1032 retval = ERROR_FLASH_OPERATION_FAILED;
1033 }
1034 }
1035
1036 return retval;
1037 }
1038
1039 int target_read_memory(struct target *target,
1040 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1041 {
1042 if (!target_was_examined(target)) {
1043 LOG_ERROR("Target not examined yet");
1044 return ERROR_FAIL;
1045 }
1046 if (!target->type->read_memory) {
1047 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1048 return ERROR_FAIL;
1049 }
1050 return target->type->read_memory(target, address, size, count, buffer);
1051 }
1052
1053 int target_read_phys_memory(struct target *target,
1054 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1055 {
1056 if (!target_was_examined(target)) {
1057 LOG_ERROR("Target not examined yet");
1058 return ERROR_FAIL;
1059 }
1060 if (!target->type->read_phys_memory) {
1061 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1062 return ERROR_FAIL;
1063 }
1064 return target->type->read_phys_memory(target, address, size, count, buffer);
1065 }
1066
1067 int target_write_memory(struct target *target,
1068 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1069 {
1070 if (!target_was_examined(target)) {
1071 LOG_ERROR("Target not examined yet");
1072 return ERROR_FAIL;
1073 }
1074 if (!target->type->write_memory) {
1075 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1076 return ERROR_FAIL;
1077 }
1078 return target->type->write_memory(target, address, size, count, buffer);
1079 }
1080
1081 int target_write_phys_memory(struct target *target,
1082 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1083 {
1084 if (!target_was_examined(target)) {
1085 LOG_ERROR("Target not examined yet");
1086 return ERROR_FAIL;
1087 }
1088 if (!target->type->write_phys_memory) {
1089 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1090 return ERROR_FAIL;
1091 }
1092 return target->type->write_phys_memory(target, address, size, count, buffer);
1093 }
1094
1095 int target_add_breakpoint(struct target *target,
1096 struct breakpoint *breakpoint)
1097 {
1098 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1099 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1100 return ERROR_TARGET_NOT_HALTED;
1101 }
1102 return target->type->add_breakpoint(target, breakpoint);
1103 }
1104
1105 int target_add_context_breakpoint(struct target *target,
1106 struct breakpoint *breakpoint)
1107 {
1108 if (target->state != TARGET_HALTED) {
1109 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1110 return ERROR_TARGET_NOT_HALTED;
1111 }
1112 return target->type->add_context_breakpoint(target, breakpoint);
1113 }
1114
1115 int target_add_hybrid_breakpoint(struct target *target,
1116 struct breakpoint *breakpoint)
1117 {
1118 if (target->state != TARGET_HALTED) {
1119 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1120 return ERROR_TARGET_NOT_HALTED;
1121 }
1122 return target->type->add_hybrid_breakpoint(target, breakpoint);
1123 }
1124
1125 int target_remove_breakpoint(struct target *target,
1126 struct breakpoint *breakpoint)
1127 {
1128 return target->type->remove_breakpoint(target, breakpoint);
1129 }
1130
1131 int target_add_watchpoint(struct target *target,
1132 struct watchpoint *watchpoint)
1133 {
1134 if (target->state != TARGET_HALTED) {
1135 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1136 return ERROR_TARGET_NOT_HALTED;
1137 }
1138 return target->type->add_watchpoint(target, watchpoint);
1139 }
1140 int target_remove_watchpoint(struct target *target,
1141 struct watchpoint *watchpoint)
1142 {
1143 return target->type->remove_watchpoint(target, watchpoint);
1144 }
1145 int target_hit_watchpoint(struct target *target,
1146 struct watchpoint **hit_watchpoint)
1147 {
1148 if (target->state != TARGET_HALTED) {
1149 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1150 return ERROR_TARGET_NOT_HALTED;
1151 }
1152
1153 if (target->type->hit_watchpoint == NULL) {
1154 /* For backward compatible, if hit_watchpoint is not implemented,
1155 * return ERROR_FAIL such that gdb_server will not take the nonsense
1156 * information. */
1157 return ERROR_FAIL;
1158 }
1159
1160 return target->type->hit_watchpoint(target, hit_watchpoint);
1161 }
1162
1163 int target_get_gdb_reg_list(struct target *target,
1164 struct reg **reg_list[], int *reg_list_size,
1165 enum target_register_class reg_class)
1166 {
1167 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1168 }
1169 int target_step(struct target *target,
1170 int current, target_addr_t address, int handle_breakpoints)
1171 {
1172 return target->type->step(target, current, address, handle_breakpoints);
1173 }
1174
1175 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1176 {
1177 if (target->state != TARGET_HALTED) {
1178 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1179 return ERROR_TARGET_NOT_HALTED;
1180 }
1181 return target->type->get_gdb_fileio_info(target, fileio_info);
1182 }
1183
1184 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1185 {
1186 if (target->state != TARGET_HALTED) {
1187 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1188 return ERROR_TARGET_NOT_HALTED;
1189 }
1190 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1191 }
1192
1193 int target_profiling(struct target *target, uint32_t *samples,
1194 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1195 {
1196 if (target->state != TARGET_HALTED) {
1197 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1198 return ERROR_TARGET_NOT_HALTED;
1199 }
1200 return target->type->profiling(target, samples, max_num_samples,
1201 num_samples, seconds);
1202 }
1203
1204 /**
1205 * Reset the @c examined flag for the given target.
1206 * Pure paranoia -- targets are zeroed on allocation.
1207 */
1208 static void target_reset_examined(struct target *target)
1209 {
1210 target->examined = false;
1211 }
1212
1213 static int handle_target(void *priv);
1214
1215 static int target_init_one(struct command_context *cmd_ctx,
1216 struct target *target)
1217 {
1218 target_reset_examined(target);
1219
1220 struct target_type *type = target->type;
1221 if (type->examine == NULL)
1222 type->examine = default_examine;
1223
1224 if (type->check_reset == NULL)
1225 type->check_reset = default_check_reset;
1226
1227 assert(type->init_target != NULL);
1228
1229 int retval = type->init_target(cmd_ctx, target);
1230 if (ERROR_OK != retval) {
1231 LOG_ERROR("target '%s' init failed", target_name(target));
1232 return retval;
1233 }
1234
1235 /* Sanity-check MMU support ... stub in what we must, to help
1236 * implement it in stages, but warn if we need to do so.
1237 */
1238 if (type->mmu) {
1239 if (type->virt2phys == NULL) {
1240 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1241 type->virt2phys = identity_virt2phys;
1242 }
1243 } else {
1244 /* Make sure no-MMU targets all behave the same: make no
1245 * distinction between physical and virtual addresses, and
1246 * ensure that virt2phys() is always an identity mapping.
1247 */
1248 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1249 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1250
1251 type->mmu = no_mmu;
1252 type->write_phys_memory = type->write_memory;
1253 type->read_phys_memory = type->read_memory;
1254 type->virt2phys = identity_virt2phys;
1255 }
1256
1257 if (target->type->read_buffer == NULL)
1258 target->type->read_buffer = target_read_buffer_default;
1259
1260 if (target->type->write_buffer == NULL)
1261 target->type->write_buffer = target_write_buffer_default;
1262
1263 if (target->type->get_gdb_fileio_info == NULL)
1264 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1265
1266 if (target->type->gdb_fileio_end == NULL)
1267 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1268
1269 if (target->type->profiling == NULL)
1270 target->type->profiling = target_profiling_default;
1271
1272 return ERROR_OK;
1273 }
1274
1275 static int target_init(struct command_context *cmd_ctx)
1276 {
1277 struct target *target;
1278 int retval;
1279
1280 for (target = all_targets; target; target = target->next) {
1281 retval = target_init_one(cmd_ctx, target);
1282 if (ERROR_OK != retval)
1283 return retval;
1284 }
1285
1286 if (!all_targets)
1287 return ERROR_OK;
1288
1289 retval = target_register_user_commands(cmd_ctx);
1290 if (ERROR_OK != retval)
1291 return retval;
1292
1293 retval = target_register_timer_callback(&handle_target,
1294 polling_interval, 1, cmd_ctx->interp);
1295 if (ERROR_OK != retval)
1296 return retval;
1297
1298 return ERROR_OK;
1299 }
1300
1301 COMMAND_HANDLER(handle_target_init_command)
1302 {
1303 int retval;
1304
1305 if (CMD_ARGC != 0)
1306 return ERROR_COMMAND_SYNTAX_ERROR;
1307
1308 static bool target_initialized;
1309 if (target_initialized) {
1310 LOG_INFO("'target init' has already been called");
1311 return ERROR_OK;
1312 }
1313 target_initialized = true;
1314
1315 retval = command_run_line(CMD_CTX, "init_targets");
1316 if (ERROR_OK != retval)
1317 return retval;
1318
1319 retval = command_run_line(CMD_CTX, "init_target_events");
1320 if (ERROR_OK != retval)
1321 return retval;
1322
1323 retval = command_run_line(CMD_CTX, "init_board");
1324 if (ERROR_OK != retval)
1325 return retval;
1326
1327 LOG_DEBUG("Initializing targets...");
1328 return target_init(CMD_CTX);
1329 }
1330
1331 int target_register_event_callback(int (*callback)(struct target *target,
1332 enum target_event event, void *priv), void *priv)
1333 {
1334 struct target_event_callback **callbacks_p = &target_event_callbacks;
1335
1336 if (callback == NULL)
1337 return ERROR_COMMAND_SYNTAX_ERROR;
1338
1339 if (*callbacks_p) {
1340 while ((*callbacks_p)->next)
1341 callbacks_p = &((*callbacks_p)->next);
1342 callbacks_p = &((*callbacks_p)->next);
1343 }
1344
1345 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1346 (*callbacks_p)->callback = callback;
1347 (*callbacks_p)->priv = priv;
1348 (*callbacks_p)->next = NULL;
1349
1350 return ERROR_OK;
1351 }
1352
1353 int target_register_reset_callback(int (*callback)(struct target *target,
1354 enum target_reset_mode reset_mode, void *priv), void *priv)
1355 {
1356 struct target_reset_callback *entry;
1357
1358 if (callback == NULL)
1359 return ERROR_COMMAND_SYNTAX_ERROR;
1360
1361 entry = malloc(sizeof(struct target_reset_callback));
1362 if (entry == NULL) {
1363 LOG_ERROR("error allocating buffer for reset callback entry");
1364 return ERROR_COMMAND_SYNTAX_ERROR;
1365 }
1366
1367 entry->callback = callback;
1368 entry->priv = priv;
1369 list_add(&entry->list, &target_reset_callback_list);
1370
1371
1372 return ERROR_OK;
1373 }
1374
1375 int target_register_trace_callback(int (*callback)(struct target *target,
1376 size_t len, uint8_t *data, void *priv), void *priv)
1377 {
1378 struct target_trace_callback *entry;
1379
1380 if (callback == NULL)
1381 return ERROR_COMMAND_SYNTAX_ERROR;
1382
1383 entry = malloc(sizeof(struct target_trace_callback));
1384 if (entry == NULL) {
1385 LOG_ERROR("error allocating buffer for trace callback entry");
1386 return ERROR_COMMAND_SYNTAX_ERROR;
1387 }
1388
1389 entry->callback = callback;
1390 entry->priv = priv;
1391 list_add(&entry->list, &target_trace_callback_list);
1392
1393
1394 return ERROR_OK;
1395 }
1396
1397 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1398 {
1399 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1400 struct timeval now;
1401
1402 if (callback == NULL)
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404
1405 if (*callbacks_p) {
1406 while ((*callbacks_p)->next)
1407 callbacks_p = &((*callbacks_p)->next);
1408 callbacks_p = &((*callbacks_p)->next);
1409 }
1410
1411 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1412 (*callbacks_p)->callback = callback;
1413 (*callbacks_p)->periodic = periodic;
1414 (*callbacks_p)->time_ms = time_ms;
1415 (*callbacks_p)->removed = false;
1416
1417 gettimeofday(&now, NULL);
1418 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1419 time_ms -= (time_ms % 1000);
1420 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1421 if ((*callbacks_p)->when.tv_usec > 1000000) {
1422 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1423 (*callbacks_p)->when.tv_sec += 1;
1424 }
1425
1426 (*callbacks_p)->priv = priv;
1427 (*callbacks_p)->next = NULL;
1428
1429 return ERROR_OK;
1430 }
1431
1432 int target_unregister_event_callback(int (*callback)(struct target *target,
1433 enum target_event event, void *priv), void *priv)
1434 {
1435 struct target_event_callback **p = &target_event_callbacks;
1436 struct target_event_callback *c = target_event_callbacks;
1437
1438 if (callback == NULL)
1439 return ERROR_COMMAND_SYNTAX_ERROR;
1440
1441 while (c) {
1442 struct target_event_callback *next = c->next;
1443 if ((c->callback == callback) && (c->priv == priv)) {
1444 *p = next;
1445 free(c);
1446 return ERROR_OK;
1447 } else
1448 p = &(c->next);
1449 c = next;
1450 }
1451
1452 return ERROR_OK;
1453 }
1454
1455 int target_unregister_reset_callback(int (*callback)(struct target *target,
1456 enum target_reset_mode reset_mode, void *priv), void *priv)
1457 {
1458 struct target_reset_callback *entry;
1459
1460 if (callback == NULL)
1461 return ERROR_COMMAND_SYNTAX_ERROR;
1462
1463 list_for_each_entry(entry, &target_reset_callback_list, list) {
1464 if (entry->callback == callback && entry->priv == priv) {
1465 list_del(&entry->list);
1466 free(entry);
1467 break;
1468 }
1469 }
1470
1471 return ERROR_OK;
1472 }
1473
1474 int target_unregister_trace_callback(int (*callback)(struct target *target,
1475 size_t len, uint8_t *data, void *priv), void *priv)
1476 {
1477 struct target_trace_callback *entry;
1478
1479 if (callback == NULL)
1480 return ERROR_COMMAND_SYNTAX_ERROR;
1481
1482 list_for_each_entry(entry, &target_trace_callback_list, list) {
1483 if (entry->callback == callback && entry->priv == priv) {
1484 list_del(&entry->list);
1485 free(entry);
1486 break;
1487 }
1488 }
1489
1490 return ERROR_OK;
1491 }
1492
1493 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1494 {
1495 if (callback == NULL)
1496 return ERROR_COMMAND_SYNTAX_ERROR;
1497
1498 for (struct target_timer_callback *c = target_timer_callbacks;
1499 c; c = c->next) {
1500 if ((c->callback == callback) && (c->priv == priv)) {
1501 c->removed = true;
1502 return ERROR_OK;
1503 }
1504 }
1505
1506 return ERROR_FAIL;
1507 }
1508
1509 int target_call_event_callbacks(struct target *target, enum target_event event)
1510 {
1511 struct target_event_callback *callback = target_event_callbacks;
1512 struct target_event_callback *next_callback;
1513
1514 if (event == TARGET_EVENT_HALTED) {
1515 /* execute early halted first */
1516 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1517 }
1518
1519 LOG_DEBUG("target event %i (%s)", event,
1520 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1521
1522 target_handle_event(target, event);
1523
1524 while (callback) {
1525 next_callback = callback->next;
1526 callback->callback(target, event, callback->priv);
1527 callback = next_callback;
1528 }
1529
1530 return ERROR_OK;
1531 }
1532
1533 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1534 {
1535 struct target_reset_callback *callback;
1536
1537 LOG_DEBUG("target reset %i (%s)", reset_mode,
1538 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1539
1540 list_for_each_entry(callback, &target_reset_callback_list, list)
1541 callback->callback(target, reset_mode, callback->priv);
1542
1543 return ERROR_OK;
1544 }
1545
1546 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1547 {
1548 struct target_trace_callback *callback;
1549
1550 list_for_each_entry(callback, &target_trace_callback_list, list)
1551 callback->callback(target, len, data, callback->priv);
1552
1553 return ERROR_OK;
1554 }
1555
1556 static int target_timer_callback_periodic_restart(
1557 struct target_timer_callback *cb, struct timeval *now)
1558 {
1559 int time_ms = cb->time_ms;
1560 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1561 time_ms -= (time_ms % 1000);
1562 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1563 if (cb->when.tv_usec > 1000000) {
1564 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1565 cb->when.tv_sec += 1;
1566 }
1567 return ERROR_OK;
1568 }
1569
1570 static int target_call_timer_callback(struct target_timer_callback *cb,
1571 struct timeval *now)
1572 {
1573 cb->callback(cb->priv);
1574
1575 if (cb->periodic)
1576 return target_timer_callback_periodic_restart(cb, now);
1577
1578 return target_unregister_timer_callback(cb->callback, cb->priv);
1579 }
1580
1581 static int target_call_timer_callbacks_check_time(int checktime)
1582 {
1583 static bool callback_processing;
1584
1585 /* Do not allow nesting */
1586 if (callback_processing)
1587 return ERROR_OK;
1588
1589 callback_processing = true;
1590
1591 keep_alive();
1592
1593 struct timeval now;
1594 gettimeofday(&now, NULL);
1595
1596 /* Store an address of the place containing a pointer to the
1597 * next item; initially, that's a standalone "root of the
1598 * list" variable. */
1599 struct target_timer_callback **callback = &target_timer_callbacks;
1600 while (*callback) {
1601 if ((*callback)->removed) {
1602 struct target_timer_callback *p = *callback;
1603 *callback = (*callback)->next;
1604 free(p);
1605 continue;
1606 }
1607
1608 bool call_it = (*callback)->callback &&
1609 ((!checktime && (*callback)->periodic) ||
1610 now.tv_sec > (*callback)->when.tv_sec ||
1611 (now.tv_sec == (*callback)->when.tv_sec &&
1612 now.tv_usec >= (*callback)->when.tv_usec));
1613
1614 if (call_it)
1615 target_call_timer_callback(*callback, &now);
1616
1617 callback = &(*callback)->next;
1618 }
1619
1620 callback_processing = false;
1621 return ERROR_OK;
1622 }
1623
1624 int target_call_timer_callbacks(void)
1625 {
1626 return target_call_timer_callbacks_check_time(1);
1627 }
1628
1629 /* invoke periodic callbacks immediately */
1630 int target_call_timer_callbacks_now(void)
1631 {
1632 return target_call_timer_callbacks_check_time(0);
1633 }
1634
1635 /* Prints the working area layout for debug purposes */
1636 static void print_wa_layout(struct target *target)
1637 {
1638 struct working_area *c = target->working_areas;
1639
1640 while (c) {
1641 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1642 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1643 c->address, c->address + c->size - 1, c->size);
1644 c = c->next;
1645 }
1646 }
1647
1648 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1649 static void target_split_working_area(struct working_area *area, uint32_t size)
1650 {
1651 assert(area->free); /* Shouldn't split an allocated area */
1652 assert(size <= area->size); /* Caller should guarantee this */
1653
1654 /* Split only if not already the right size */
1655 if (size < area->size) {
1656 struct working_area *new_wa = malloc(sizeof(*new_wa));
1657
1658 if (new_wa == NULL)
1659 return;
1660
1661 new_wa->next = area->next;
1662 new_wa->size = area->size - size;
1663 new_wa->address = area->address + size;
1664 new_wa->backup = NULL;
1665 new_wa->user = NULL;
1666 new_wa->free = true;
1667
1668 area->next = new_wa;
1669 area->size = size;
1670
1671 /* If backup memory was allocated to this area, it has the wrong size
1672 * now so free it and it will be reallocated if/when needed */
1673 if (area->backup) {
1674 free(area->backup);
1675 area->backup = NULL;
1676 }
1677 }
1678 }
1679
1680 /* Merge all adjacent free areas into one */
1681 static void target_merge_working_areas(struct target *target)
1682 {
1683 struct working_area *c = target->working_areas;
1684
1685 while (c && c->next) {
1686 assert(c->next->address == c->address + c->size); /* This is an invariant */
1687
1688 /* Find two adjacent free areas */
1689 if (c->free && c->next->free) {
1690 /* Merge the last into the first */
1691 c->size += c->next->size;
1692
1693 /* Remove the last */
1694 struct working_area *to_be_freed = c->next;
1695 c->next = c->next->next;
1696 if (to_be_freed->backup)
1697 free(to_be_freed->backup);
1698 free(to_be_freed);
1699
1700 /* If backup memory was allocated to the remaining area, it's has
1701 * the wrong size now */
1702 if (c->backup) {
1703 free(c->backup);
1704 c->backup = NULL;
1705 }
1706 } else {
1707 c = c->next;
1708 }
1709 }
1710 }
1711
1712 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1713 {
1714 /* Reevaluate working area address based on MMU state*/
1715 if (target->working_areas == NULL) {
1716 int retval;
1717 int enabled;
1718
1719 retval = target->type->mmu(target, &enabled);
1720 if (retval != ERROR_OK)
1721 return retval;
1722
1723 if (!enabled) {
1724 if (target->working_area_phys_spec) {
1725 LOG_DEBUG("MMU disabled, using physical "
1726 "address for working memory " TARGET_ADDR_FMT,
1727 target->working_area_phys);
1728 target->working_area = target->working_area_phys;
1729 } else {
1730 LOG_ERROR("No working memory available. "
1731 "Specify -work-area-phys to target.");
1732 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1733 }
1734 } else {
1735 if (target->working_area_virt_spec) {
1736 LOG_DEBUG("MMU enabled, using virtual "
1737 "address for working memory " TARGET_ADDR_FMT,
1738 target->working_area_virt);
1739 target->working_area = target->working_area_virt;
1740 } else {
1741 LOG_ERROR("No working memory available. "
1742 "Specify -work-area-virt to target.");
1743 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1744 }
1745 }
1746
1747 /* Set up initial working area on first call */
1748 struct working_area *new_wa = malloc(sizeof(*new_wa));
1749 if (new_wa) {
1750 new_wa->next = NULL;
1751 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1752 new_wa->address = target->working_area;
1753 new_wa->backup = NULL;
1754 new_wa->user = NULL;
1755 new_wa->free = true;
1756 }
1757
1758 target->working_areas = new_wa;
1759 }
1760
1761 /* only allocate multiples of 4 byte */
1762 if (size % 4)
1763 size = (size + 3) & (~3UL);
1764
1765 struct working_area *c = target->working_areas;
1766
1767 /* Find the first large enough working area */
1768 while (c) {
1769 if (c->free && c->size >= size)
1770 break;
1771 c = c->next;
1772 }
1773
1774 if (c == NULL)
1775 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1776
1777 /* Split the working area into the requested size */
1778 target_split_working_area(c, size);
1779
1780 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1781 size, c->address);
1782
1783 if (target->backup_working_area) {
1784 if (c->backup == NULL) {
1785 c->backup = malloc(c->size);
1786 if (c->backup == NULL)
1787 return ERROR_FAIL;
1788 }
1789
1790 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1791 if (retval != ERROR_OK)
1792 return retval;
1793 }
1794
1795 /* mark as used, and return the new (reused) area */
1796 c->free = false;
1797 *area = c;
1798
1799 /* user pointer */
1800 c->user = area;
1801
1802 print_wa_layout(target);
1803
1804 return ERROR_OK;
1805 }
1806
1807 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1808 {
1809 int retval;
1810
1811 retval = target_alloc_working_area_try(target, size, area);
1812 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1813 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1814 return retval;
1815
1816 }
1817
1818 static int target_restore_working_area(struct target *target, struct working_area *area)
1819 {
1820 int retval = ERROR_OK;
1821
1822 if (target->backup_working_area && area->backup != NULL) {
1823 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1824 if (retval != ERROR_OK)
1825 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1826 area->size, area->address);
1827 }
1828
1829 return retval;
1830 }
1831
1832 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1833 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1834 {
1835 int retval = ERROR_OK;
1836
1837 if (area->free)
1838 return retval;
1839
1840 if (restore) {
1841 retval = target_restore_working_area(target, area);
1842 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1843 if (retval != ERROR_OK)
1844 return retval;
1845 }
1846
1847 area->free = true;
1848
1849 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1850 area->size, area->address);
1851
1852 /* mark user pointer invalid */
1853 /* TODO: Is this really safe? It points to some previous caller's memory.
1854 * How could we know that the area pointer is still in that place and not
1855 * some other vital data? What's the purpose of this, anyway? */
1856 *area->user = NULL;
1857 area->user = NULL;
1858
1859 target_merge_working_areas(target);
1860
1861 print_wa_layout(target);
1862
1863 return retval;
1864 }
1865
1866 int target_free_working_area(struct target *target, struct working_area *area)
1867 {
1868 return target_free_working_area_restore(target, area, 1);
1869 }
1870
1871 static void target_destroy(struct target *target)
1872 {
1873 if (target->type->deinit_target)
1874 target->type->deinit_target(target);
1875
1876 free(target->type);
1877 free(target->trace_info);
1878 free(target->cmd_name);
1879 free(target);
1880 }
1881
1882 void target_quit(void)
1883 {
1884 struct target_event_callback *pe = target_event_callbacks;
1885 while (pe) {
1886 struct target_event_callback *t = pe->next;
1887 free(pe);
1888 pe = t;
1889 }
1890 target_event_callbacks = NULL;
1891
1892 struct target_timer_callback *pt = target_timer_callbacks;
1893 while (pt) {
1894 struct target_timer_callback *t = pt->next;
1895 free(pt);
1896 pt = t;
1897 }
1898 target_timer_callbacks = NULL;
1899
1900 for (struct target *target = all_targets; target;) {
1901 struct target *tmp;
1902
1903 tmp = target->next;
1904 target_destroy(target);
1905 target = tmp;
1906 }
1907
1908 all_targets = NULL;
1909 }
1910
1911 /* free resources and restore memory, if restoring memory fails,
1912 * free up resources anyway
1913 */
1914 static void target_free_all_working_areas_restore(struct target *target, int restore)
1915 {
1916 struct working_area *c = target->working_areas;
1917
1918 LOG_DEBUG("freeing all working areas");
1919
1920 /* Loop through all areas, restoring the allocated ones and marking them as free */
1921 while (c) {
1922 if (!c->free) {
1923 if (restore)
1924 target_restore_working_area(target, c);
1925 c->free = true;
1926 *c->user = NULL; /* Same as above */
1927 c->user = NULL;
1928 }
1929 c = c->next;
1930 }
1931
1932 /* Run a merge pass to combine all areas into one */
1933 target_merge_working_areas(target);
1934
1935 print_wa_layout(target);
1936 }
1937
1938 void target_free_all_working_areas(struct target *target)
1939 {
1940 target_free_all_working_areas_restore(target, 1);
1941 }
1942
1943 /* Find the largest number of bytes that can be allocated */
1944 uint32_t target_get_working_area_avail(struct target *target)
1945 {
1946 struct working_area *c = target->working_areas;
1947 uint32_t max_size = 0;
1948
1949 if (c == NULL)
1950 return target->working_area_size;
1951
1952 while (c) {
1953 if (c->free && max_size < c->size)
1954 max_size = c->size;
1955
1956 c = c->next;
1957 }
1958
1959 return max_size;
1960 }
1961
1962 int target_arch_state(struct target *target)
1963 {
1964 int retval;
1965 if (target == NULL) {
1966 LOG_WARNING("No target has been configured");
1967 return ERROR_OK;
1968 }
1969
1970 if (target->state != TARGET_HALTED)
1971 return ERROR_OK;
1972
1973 retval = target->type->arch_state(target);
1974 return retval;
1975 }
1976
1977 static int target_get_gdb_fileio_info_default(struct target *target,
1978 struct gdb_fileio_info *fileio_info)
1979 {
1980 /* If target does not support semi-hosting function, target
1981 has no need to provide .get_gdb_fileio_info callback.
1982 It just return ERROR_FAIL and gdb_server will return "Txx"
1983 as target halted every time. */
1984 return ERROR_FAIL;
1985 }
1986
1987 static int target_gdb_fileio_end_default(struct target *target,
1988 int retcode, int fileio_errno, bool ctrl_c)
1989 {
1990 return ERROR_OK;
1991 }
1992
1993 static int target_profiling_default(struct target *target, uint32_t *samples,
1994 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1995 {
1996 struct timeval timeout, now;
1997
1998 gettimeofday(&timeout, NULL);
1999 timeval_add_time(&timeout, seconds, 0);
2000
2001 LOG_INFO("Starting profiling. Halting and resuming the"
2002 " target as often as we can...");
2003
2004 uint32_t sample_count = 0;
2005 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2006 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2007
2008 int retval = ERROR_OK;
2009 for (;;) {
2010 target_poll(target);
2011 if (target->state == TARGET_HALTED) {
2012 uint32_t t = buf_get_u32(reg->value, 0, 32);
2013 samples[sample_count++] = t;
2014 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2015 retval = target_resume(target, 1, 0, 0, 0);
2016 target_poll(target);
2017 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2018 } else if (target->state == TARGET_RUNNING) {
2019 /* We want to quickly sample the PC. */
2020 retval = target_halt(target);
2021 } else {
2022 LOG_INFO("Target not halted or running");
2023 retval = ERROR_OK;
2024 break;
2025 }
2026
2027 if (retval != ERROR_OK)
2028 break;
2029
2030 gettimeofday(&now, NULL);
2031 if ((sample_count >= max_num_samples) ||
2032 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2033 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2034 break;
2035 }
2036 }
2037
2038 *num_samples = sample_count;
2039 return retval;
2040 }
2041
2042 /* Single aligned words are guaranteed to use 16 or 32 bit access
2043 * mode respectively, otherwise data is handled as quickly as
2044 * possible
2045 */
2046 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2047 {
2048 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2049 size, address);
2050
2051 if (!target_was_examined(target)) {
2052 LOG_ERROR("Target not examined yet");
2053 return ERROR_FAIL;
2054 }
2055
2056 if (size == 0)
2057 return ERROR_OK;
2058
2059 if ((address + size - 1) < address) {
2060 /* GDB can request this when e.g. PC is 0xfffffffc */
2061 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2062 address,
2063 size);
2064 return ERROR_FAIL;
2065 }
2066
2067 return target->type->write_buffer(target, address, size, buffer);
2068 }
2069
2070 static int target_write_buffer_default(struct target *target,
2071 target_addr_t address, uint32_t count, const uint8_t *buffer)
2072 {
2073 uint32_t size;
2074
2075 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2076 * will have something to do with the size we leave to it. */
2077 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2078 if (address & size) {
2079 int retval = target_write_memory(target, address, size, 1, buffer);
2080 if (retval != ERROR_OK)
2081 return retval;
2082 address += size;
2083 count -= size;
2084 buffer += size;
2085 }
2086 }
2087
2088 /* Write the data with as large access size as possible. */
2089 for (; size > 0; size /= 2) {
2090 uint32_t aligned = count - count % size;
2091 if (aligned > 0) {
2092 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2093 if (retval != ERROR_OK)
2094 return retval;
2095 address += aligned;
2096 count -= aligned;
2097 buffer += aligned;
2098 }
2099 }
2100
2101 return ERROR_OK;
2102 }
2103
2104 /* Single aligned words are guaranteed to use 16 or 32 bit access
2105 * mode respectively, otherwise data is handled as quickly as
2106 * possible
2107 */
2108 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2109 {
2110 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2111 size, address);
2112
2113 if (!target_was_examined(target)) {
2114 LOG_ERROR("Target not examined yet");
2115 return ERROR_FAIL;
2116 }
2117
2118 if (size == 0)
2119 return ERROR_OK;
2120
2121 if ((address + size - 1) < address) {
2122 /* GDB can request this when e.g. PC is 0xfffffffc */
2123 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2124 address,
2125 size);
2126 return ERROR_FAIL;
2127 }
2128
2129 return target->type->read_buffer(target, address, size, buffer);
2130 }
2131
2132 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2133 {
2134 uint32_t size;
2135
2136 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2137 * will have something to do with the size we leave to it. */
2138 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2139 if (address & size) {
2140 int retval = target_read_memory(target, address, size, 1, buffer);
2141 if (retval != ERROR_OK)
2142 return retval;
2143 address += size;
2144 count -= size;
2145 buffer += size;
2146 }
2147 }
2148
2149 /* Read the data with as large access size as possible. */
2150 for (; size > 0; size /= 2) {
2151 uint32_t aligned = count - count % size;
2152 if (aligned > 0) {
2153 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2154 if (retval != ERROR_OK)
2155 return retval;
2156 address += aligned;
2157 count -= aligned;
2158 buffer += aligned;
2159 }
2160 }
2161
2162 return ERROR_OK;
2163 }
2164
2165 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2166 {
2167 uint8_t *buffer;
2168 int retval;
2169 uint32_t i;
2170 uint32_t checksum = 0;
2171 if (!target_was_examined(target)) {
2172 LOG_ERROR("Target not examined yet");
2173 return ERROR_FAIL;
2174 }
2175
2176 retval = target->type->checksum_memory(target, address, size, &checksum);
2177 if (retval != ERROR_OK) {
2178 buffer = malloc(size);
2179 if (buffer == NULL) {
2180 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2181 return ERROR_COMMAND_SYNTAX_ERROR;
2182 }
2183 retval = target_read_buffer(target, address, size, buffer);
2184 if (retval != ERROR_OK) {
2185 free(buffer);
2186 return retval;
2187 }
2188
2189 /* convert to target endianness */
2190 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2191 uint32_t target_data;
2192 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2193 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2194 }
2195
2196 retval = image_calculate_checksum(buffer, size, &checksum);
2197 free(buffer);
2198 }
2199
2200 *crc = checksum;
2201
2202 return retval;
2203 }
2204
2205 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2206 uint8_t erased_value)
2207 {
2208 int retval;
2209 if (!target_was_examined(target)) {
2210 LOG_ERROR("Target not examined yet");
2211 return ERROR_FAIL;
2212 }
2213
2214 if (target->type->blank_check_memory == 0)
2215 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2216
2217 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2218
2219 return retval;
2220 }
2221
2222 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2223 {
2224 uint8_t value_buf[8];
2225 if (!target_was_examined(target)) {
2226 LOG_ERROR("Target not examined yet");
2227 return ERROR_FAIL;
2228 }
2229
2230 int retval = target_read_memory(target, address, 8, 1, value_buf);
2231
2232 if (retval == ERROR_OK) {
2233 *value = target_buffer_get_u64(target, value_buf);
2234 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2235 address,
2236 *value);
2237 } else {
2238 *value = 0x0;
2239 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2240 address);
2241 }
2242
2243 return retval;
2244 }
2245
2246 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2247 {
2248 uint8_t value_buf[4];
2249 if (!target_was_examined(target)) {
2250 LOG_ERROR("Target not examined yet");
2251 return ERROR_FAIL;
2252 }
2253
2254 int retval = target_read_memory(target, address, 4, 1, value_buf);
2255
2256 if (retval == ERROR_OK) {
2257 *value = target_buffer_get_u32(target, value_buf);
2258 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2259 address,
2260 *value);
2261 } else {
2262 *value = 0x0;
2263 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2264 address);
2265 }
2266
2267 return retval;
2268 }
2269
2270 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2271 {
2272 uint8_t value_buf[2];
2273 if (!target_was_examined(target)) {
2274 LOG_ERROR("Target not examined yet");
2275 return ERROR_FAIL;
2276 }
2277
2278 int retval = target_read_memory(target, address, 2, 1, value_buf);
2279
2280 if (retval == ERROR_OK) {
2281 *value = target_buffer_get_u16(target, value_buf);
2282 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2283 address,
2284 *value);
2285 } else {
2286 *value = 0x0;
2287 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2288 address);
2289 }
2290
2291 return retval;
2292 }
2293
2294 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2295 {
2296 if (!target_was_examined(target)) {
2297 LOG_ERROR("Target not examined yet");
2298 return ERROR_FAIL;
2299 }
2300
2301 int retval = target_read_memory(target, address, 1, 1, value);
2302
2303 if (retval == ERROR_OK) {
2304 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2305 address,
2306 *value);
2307 } else {
2308 *value = 0x0;
2309 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2310 address);
2311 }
2312
2313 return retval;
2314 }
2315
2316 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2317 {
2318 int retval;
2319 uint8_t value_buf[8];
2320 if (!target_was_examined(target)) {
2321 LOG_ERROR("Target not examined yet");
2322 return ERROR_FAIL;
2323 }
2324
2325 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2326 address,
2327 value);
2328
2329 target_buffer_set_u64(target, value_buf, value);
2330 retval = target_write_memory(target, address, 8, 1, value_buf);
2331 if (retval != ERROR_OK)
2332 LOG_DEBUG("failed: %i", retval);
2333
2334 return retval;
2335 }
2336
2337 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2338 {
2339 int retval;
2340 uint8_t value_buf[4];
2341 if (!target_was_examined(target)) {
2342 LOG_ERROR("Target not examined yet");
2343 return ERROR_FAIL;
2344 }
2345
2346 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2347 address,
2348 value);
2349
2350 target_buffer_set_u32(target, value_buf, value);
2351 retval = target_write_memory(target, address, 4, 1, value_buf);
2352 if (retval != ERROR_OK)
2353 LOG_DEBUG("failed: %i", retval);
2354
2355 return retval;
2356 }
2357
2358 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2359 {
2360 int retval;
2361 uint8_t value_buf[2];
2362 if (!target_was_examined(target)) {
2363 LOG_ERROR("Target not examined yet");
2364 return ERROR_FAIL;
2365 }
2366
2367 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2368 address,
2369 value);
2370
2371 target_buffer_set_u16(target, value_buf, value);
2372 retval = target_write_memory(target, address, 2, 1, value_buf);
2373 if (retval != ERROR_OK)
2374 LOG_DEBUG("failed: %i", retval);
2375
2376 return retval;
2377 }
2378
2379 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2380 {
2381 int retval;
2382 if (!target_was_examined(target)) {
2383 LOG_ERROR("Target not examined yet");
2384 return ERROR_FAIL;
2385 }
2386
2387 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2388 address, value);
2389
2390 retval = target_write_memory(target, address, 1, 1, &value);
2391 if (retval != ERROR_OK)
2392 LOG_DEBUG("failed: %i", retval);
2393
2394 return retval;
2395 }
2396
2397 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2398 {
2399 int retval;
2400 uint8_t value_buf[8];
2401 if (!target_was_examined(target)) {
2402 LOG_ERROR("Target not examined yet");
2403 return ERROR_FAIL;
2404 }
2405
2406 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2407 address,
2408 value);
2409
2410 target_buffer_set_u64(target, value_buf, value);
2411 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2412 if (retval != ERROR_OK)
2413 LOG_DEBUG("failed: %i", retval);
2414
2415 return retval;
2416 }
2417
2418 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2419 {
2420 int retval;
2421 uint8_t value_buf[4];
2422 if (!target_was_examined(target)) {
2423 LOG_ERROR("Target not examined yet");
2424 return ERROR_FAIL;
2425 }
2426
2427 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2428 address,
2429 value);
2430
2431 target_buffer_set_u32(target, value_buf, value);
2432 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2433 if (retval != ERROR_OK)
2434 LOG_DEBUG("failed: %i", retval);
2435
2436 return retval;
2437 }
2438
2439 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2440 {
2441 int retval;
2442 uint8_t value_buf[2];
2443 if (!target_was_examined(target)) {
2444 LOG_ERROR("Target not examined yet");
2445 return ERROR_FAIL;
2446 }
2447
2448 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2449 address,
2450 value);
2451
2452 target_buffer_set_u16(target, value_buf, value);
2453 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2454 if (retval != ERROR_OK)
2455 LOG_DEBUG("failed: %i", retval);
2456
2457 return retval;
2458 }
2459
2460 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2461 {
2462 int retval;
2463 if (!target_was_examined(target)) {
2464 LOG_ERROR("Target not examined yet");
2465 return ERROR_FAIL;
2466 }
2467
2468 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2469 address, value);
2470
2471 retval = target_write_phys_memory(target, address, 1, 1, &value);
2472 if (retval != ERROR_OK)
2473 LOG_DEBUG("failed: %i", retval);
2474
2475 return retval;
2476 }
2477
2478 static int find_target(struct command_context *cmd_ctx, const char *name)
2479 {
2480 struct target *target = get_target(name);
2481 if (target == NULL) {
2482 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2483 return ERROR_FAIL;
2484 }
2485 if (!target->tap->enabled) {
2486 LOG_USER("Target: TAP %s is disabled, "
2487 "can't be the current target\n",
2488 target->tap->dotted_name);
2489 return ERROR_FAIL;
2490 }
2491
2492 cmd_ctx->current_target = target->target_number;
2493 return ERROR_OK;
2494 }
2495
2496
2497 COMMAND_HANDLER(handle_targets_command)
2498 {
2499 int retval = ERROR_OK;
2500 if (CMD_ARGC == 1) {
2501 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2502 if (retval == ERROR_OK) {
2503 /* we're done! */
2504 return retval;
2505 }
2506 }
2507
2508 struct target *target = all_targets;
2509 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2510 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2511 while (target) {
2512 const char *state;
2513 char marker = ' ';
2514
2515 if (target->tap->enabled)
2516 state = target_state_name(target);
2517 else
2518 state = "tap-disabled";
2519
2520 if (CMD_CTX->current_target == target->target_number)
2521 marker = '*';
2522
2523 /* keep columns lined up to match the headers above */
2524 command_print(CMD_CTX,
2525 "%2d%c %-18s %-10s %-6s %-18s %s",
2526 target->target_number,
2527 marker,
2528 target_name(target),
2529 target_type_name(target),
2530 Jim_Nvp_value2name_simple(nvp_target_endian,
2531 target->endianness)->name,
2532 target->tap->dotted_name,
2533 state);
2534 target = target->next;
2535 }
2536
2537 return retval;
2538 }
2539
2540 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2541
2542 static int powerDropout;
2543 static int srstAsserted;
2544
2545 static int runPowerRestore;
2546 static int runPowerDropout;
2547 static int runSrstAsserted;
2548 static int runSrstDeasserted;
2549
2550 static int sense_handler(void)
2551 {
2552 static int prevSrstAsserted;
2553 static int prevPowerdropout;
2554
2555 int retval = jtag_power_dropout(&powerDropout);
2556 if (retval != ERROR_OK)
2557 return retval;
2558
2559 int powerRestored;
2560 powerRestored = prevPowerdropout && !powerDropout;
2561 if (powerRestored)
2562 runPowerRestore = 1;
2563
2564 int64_t current = timeval_ms();
2565 static int64_t lastPower;
2566 bool waitMore = lastPower + 2000 > current;
2567 if (powerDropout && !waitMore) {
2568 runPowerDropout = 1;
2569 lastPower = current;
2570 }
2571
2572 retval = jtag_srst_asserted(&srstAsserted);
2573 if (retval != ERROR_OK)
2574 return retval;
2575
2576 int srstDeasserted;
2577 srstDeasserted = prevSrstAsserted && !srstAsserted;
2578
2579 static int64_t lastSrst;
2580 waitMore = lastSrst + 2000 > current;
2581 if (srstDeasserted && !waitMore) {
2582 runSrstDeasserted = 1;
2583 lastSrst = current;
2584 }
2585
2586 if (!prevSrstAsserted && srstAsserted)
2587 runSrstAsserted = 1;
2588
2589 prevSrstAsserted = srstAsserted;
2590 prevPowerdropout = powerDropout;
2591
2592 if (srstDeasserted || powerRestored) {
2593 /* Other than logging the event we can't do anything here.
2594 * Issuing a reset is a particularly bad idea as we might
2595 * be inside a reset already.
2596 */
2597 }
2598
2599 return ERROR_OK;
2600 }
2601
2602 /* process target state changes */
2603 static int handle_target(void *priv)
2604 {
2605 Jim_Interp *interp = (Jim_Interp *)priv;
2606 int retval = ERROR_OK;
2607
2608 if (!is_jtag_poll_safe()) {
2609 /* polling is disabled currently */
2610 return ERROR_OK;
2611 }
2612
2613 /* we do not want to recurse here... */
2614 static int recursive;
2615 if (!recursive) {
2616 recursive = 1;
2617 sense_handler();
2618 /* danger! running these procedures can trigger srst assertions and power dropouts.
2619 * We need to avoid an infinite loop/recursion here and we do that by
2620 * clearing the flags after running these events.
2621 */
2622 int did_something = 0;
2623 if (runSrstAsserted) {
2624 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2625 Jim_Eval(interp, "srst_asserted");
2626 did_something = 1;
2627 }
2628 if (runSrstDeasserted) {
2629 Jim_Eval(interp, "srst_deasserted");
2630 did_something = 1;
2631 }
2632 if (runPowerDropout) {
2633 LOG_INFO("Power dropout detected, running power_dropout proc.");
2634 Jim_Eval(interp, "power_dropout");
2635 did_something = 1;
2636 }
2637 if (runPowerRestore) {
2638 Jim_Eval(interp, "power_restore");
2639 did_something = 1;
2640 }
2641
2642 if (did_something) {
2643 /* clear detect flags */
2644 sense_handler();
2645 }
2646
2647 /* clear action flags */
2648
2649 runSrstAsserted = 0;
2650 runSrstDeasserted = 0;
2651 runPowerRestore = 0;
2652 runPowerDropout = 0;
2653
2654 recursive = 0;
2655 }
2656
2657 /* Poll targets for state changes unless that's globally disabled.
2658 * Skip targets that are currently disabled.
2659 */
2660 for (struct target *target = all_targets;
2661 is_jtag_poll_safe() && target;
2662 target = target->next) {
2663
2664 if (!target_was_examined(target))
2665 continue;
2666
2667 if (!target->tap->enabled)
2668 continue;
2669
2670 if (target->backoff.times > target->backoff.count) {
2671 /* do not poll this time as we failed previously */
2672 target->backoff.count++;
2673 continue;
2674 }
2675 target->backoff.count = 0;
2676
2677 /* only poll target if we've got power and srst isn't asserted */
2678 if (!powerDropout && !srstAsserted) {
2679 /* polling may fail silently until the target has been examined */
2680 retval = target_poll(target);
2681 if (retval != ERROR_OK) {
2682 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2683 if (target->backoff.times * polling_interval < 5000) {
2684 target->backoff.times *= 2;
2685 target->backoff.times++;
2686 }
2687
2688 /* Tell GDB to halt the debugger. This allows the user to
2689 * run monitor commands to handle the situation.
2690 */
2691 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2692 }
2693 if (target->backoff.times > 0) {
2694 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2695 target_reset_examined(target);
2696 retval = target_examine_one(target);
2697 /* Target examination could have failed due to unstable connection,
2698 * but we set the examined flag anyway to repoll it later */
2699 if (retval != ERROR_OK) {
2700 target->examined = true;
2701 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2702 target->backoff.times * polling_interval);
2703 return retval;
2704 }
2705 }
2706
2707 /* Since we succeeded, we reset backoff count */
2708 target->backoff.times = 0;
2709 }
2710 }
2711
2712 return retval;
2713 }
2714
2715 COMMAND_HANDLER(handle_reg_command)
2716 {
2717 struct target *target;
2718 struct reg *reg = NULL;
2719 unsigned count = 0;
2720 char *value;
2721
2722 LOG_DEBUG("-");
2723
2724 target = get_current_target(CMD_CTX);
2725
2726 /* list all available registers for the current target */
2727 if (CMD_ARGC == 0) {
2728 struct reg_cache *cache = target->reg_cache;
2729
2730 count = 0;
2731 while (cache) {
2732 unsigned i;
2733
2734 command_print(CMD_CTX, "===== %s", cache->name);
2735
2736 for (i = 0, reg = cache->reg_list;
2737 i < cache->num_regs;
2738 i++, reg++, count++) {
2739 /* only print cached values if they are valid */
2740 if (reg->valid) {
2741 value = buf_to_str(reg->value,
2742 reg->size, 16);
2743 command_print(CMD_CTX,
2744 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2745 count, reg->name,
2746 reg->size, value,
2747 reg->dirty
2748 ? " (dirty)"
2749 : "");
2750 free(value);
2751 } else {
2752 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2753 count, reg->name,
2754 reg->size) ;
2755 }
2756 }
2757 cache = cache->next;
2758 }
2759
2760 return ERROR_OK;
2761 }
2762
2763 /* access a single register by its ordinal number */
2764 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2765 unsigned num;
2766 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2767
2768 struct reg_cache *cache = target->reg_cache;
2769 count = 0;
2770 while (cache) {
2771 unsigned i;
2772 for (i = 0; i < cache->num_regs; i++) {
2773 if (count++ == num) {
2774 reg = &cache->reg_list[i];
2775 break;
2776 }
2777 }
2778 if (reg)
2779 break;
2780 cache = cache->next;
2781 }
2782
2783 if (!reg) {
2784 command_print(CMD_CTX, "%i is out of bounds, the current target "
2785 "has only %i registers (0 - %i)", num, count, count - 1);
2786 return ERROR_OK;
2787 }
2788 } else {
2789 /* access a single register by its name */
2790 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2791
2792 if (!reg) {
2793 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2794 return ERROR_OK;
2795 }
2796 }
2797
2798 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2799
2800 /* display a register */
2801 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2802 && (CMD_ARGV[1][0] <= '9')))) {
2803 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2804 reg->valid = 0;
2805
2806 if (reg->valid == 0)
2807 reg->type->get(reg);
2808 value = buf_to_str(reg->value, reg->size, 16);
2809 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2810 free(value);
2811 return ERROR_OK;
2812 }
2813
2814 /* set register value */
2815 if (CMD_ARGC == 2) {
2816 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2817 if (buf == NULL)
2818 return ERROR_FAIL;
2819 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2820
2821 reg->type->set(reg, buf);
2822
2823 value = buf_to_str(reg->value, reg->size, 16);
2824 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2825 free(value);
2826
2827 free(buf);
2828
2829 return ERROR_OK;
2830 }
2831
2832 return ERROR_COMMAND_SYNTAX_ERROR;
2833 }
2834
2835 COMMAND_HANDLER(handle_poll_command)
2836 {
2837 int retval = ERROR_OK;
2838 struct target *target = get_current_target(CMD_CTX);
2839
2840 if (CMD_ARGC == 0) {
2841 command_print(CMD_CTX, "background polling: %s",
2842 jtag_poll_get_enabled() ? "on" : "off");
2843 command_print(CMD_CTX, "TAP: %s (%s)",
2844 target->tap->dotted_name,
2845 target->tap->enabled ? "enabled" : "disabled");
2846 if (!target->tap->enabled)
2847 return ERROR_OK;
2848 retval = target_poll(target);
2849 if (retval != ERROR_OK)
2850 return retval;
2851 retval = target_arch_state(target);
2852 if (retval != ERROR_OK)
2853 return retval;
2854 } else if (CMD_ARGC == 1) {
2855 bool enable;
2856 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2857 jtag_poll_set_enabled(enable);
2858 } else
2859 return ERROR_COMMAND_SYNTAX_ERROR;
2860
2861 return retval;
2862 }
2863
2864 COMMAND_HANDLER(handle_wait_halt_command)
2865 {
2866 if (CMD_ARGC > 1)
2867 return ERROR_COMMAND_SYNTAX_ERROR;
2868
2869 unsigned ms = DEFAULT_HALT_TIMEOUT;
2870 if (1 == CMD_ARGC) {
2871 int retval = parse_uint(CMD_ARGV[0], &ms);
2872 if (ERROR_OK != retval)
2873 return ERROR_COMMAND_SYNTAX_ERROR;
2874 }
2875
2876 struct target *target = get_current_target(CMD_CTX);
2877 return target_wait_state(target, TARGET_HALTED, ms);
2878 }
2879
2880 /* wait for target state to change. The trick here is to have a low
2881 * latency for short waits and not to suck up all the CPU time
2882 * on longer waits.
2883 *
2884 * After 500ms, keep_alive() is invoked
2885 */
2886 int target_wait_state(struct target *target, enum target_state state, int ms)
2887 {
2888 int retval;
2889 int64_t then = 0, cur;
2890 bool once = true;
2891
2892 for (;;) {
2893 retval = target_poll(target);
2894 if (retval != ERROR_OK)
2895 return retval;
2896 if (target->state == state)
2897 break;
2898 cur = timeval_ms();
2899 if (once) {
2900 once = false;
2901 then = timeval_ms();
2902 LOG_DEBUG("waiting for target %s...",
2903 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2904 }
2905
2906 if (cur-then > 500)
2907 keep_alive();
2908
2909 if ((cur-then) > ms) {
2910 LOG_ERROR("timed out while waiting for target %s",
2911 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2912 return ERROR_FAIL;
2913 }
2914 }
2915
2916 return ERROR_OK;
2917 }
2918
2919 COMMAND_HANDLER(handle_halt_command)
2920 {
2921 LOG_DEBUG("-");
2922
2923 struct target *target = get_current_target(CMD_CTX);
2924 int retval = target_halt(target);
2925 if (ERROR_OK != retval)
2926 return retval;
2927
2928 if (CMD_ARGC == 1) {
2929 unsigned wait_local;
2930 retval = parse_uint(CMD_ARGV[0], &wait_local);
2931 if (ERROR_OK != retval)
2932 return ERROR_COMMAND_SYNTAX_ERROR;
2933 if (!wait_local)
2934 return ERROR_OK;
2935 }
2936
2937 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2938 }
2939
2940 COMMAND_HANDLER(handle_soft_reset_halt_command)
2941 {
2942 struct target *target = get_current_target(CMD_CTX);
2943
2944 LOG_USER("requesting target halt and executing a soft reset");
2945
2946 target_soft_reset_halt(target);
2947
2948 return ERROR_OK;
2949 }
2950
2951 COMMAND_HANDLER(handle_reset_command)
2952 {
2953 if (CMD_ARGC > 1)
2954 return ERROR_COMMAND_SYNTAX_ERROR;
2955
2956 enum target_reset_mode reset_mode = RESET_RUN;
2957 if (CMD_ARGC == 1) {
2958 const Jim_Nvp *n;
2959 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2960 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2961 return ERROR_COMMAND_SYNTAX_ERROR;
2962 reset_mode = n->value;
2963 }
2964
2965 /* reset *all* targets */
2966 return target_process_reset(CMD_CTX, reset_mode);
2967 }
2968
2969
2970 COMMAND_HANDLER(handle_resume_command)
2971 {
2972 int current = 1;
2973 if (CMD_ARGC > 1)
2974 return ERROR_COMMAND_SYNTAX_ERROR;
2975
2976 struct target *target = get_current_target(CMD_CTX);
2977
2978 /* with no CMD_ARGV, resume from current pc, addr = 0,
2979 * with one arguments, addr = CMD_ARGV[0],
2980 * handle breakpoints, not debugging */
2981 target_addr_t addr = 0;
2982 if (CMD_ARGC == 1) {
2983 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2984 current = 0;
2985 }
2986
2987 return target_resume(target, current, addr, 1, 0);
2988 }
2989
2990 COMMAND_HANDLER(handle_step_command)
2991 {
2992 if (CMD_ARGC > 1)
2993 return ERROR_COMMAND_SYNTAX_ERROR;
2994
2995 LOG_DEBUG("-");
2996
2997 /* with no CMD_ARGV, step from current pc, addr = 0,
2998 * with one argument addr = CMD_ARGV[0],
2999 * handle breakpoints, debugging */
3000 target_addr_t addr = 0;
3001 int current_pc = 1;
3002 if (CMD_ARGC == 1) {
3003 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3004 current_pc = 0;
3005 }
3006
3007 struct target *target = get_current_target(CMD_CTX);
3008
3009 return target->type->step(target, current_pc, addr, 1);
3010 }
3011
3012 static void handle_md_output(struct command_context *cmd_ctx,
3013 struct target *target, target_addr_t address, unsigned size,
3014 unsigned count, const uint8_t *buffer)
3015 {
3016 const unsigned line_bytecnt = 32;
3017 unsigned line_modulo = line_bytecnt / size;
3018
3019 char output[line_bytecnt * 4 + 1];
3020 unsigned output_len = 0;
3021
3022 const char *value_fmt;
3023 switch (size) {
3024 case 8:
3025 value_fmt = "%16.16"PRIx64" ";
3026 break;
3027 case 4:
3028 value_fmt = "%8.8"PRIx64" ";
3029 break;
3030 case 2:
3031 value_fmt = "%4.4"PRIx64" ";
3032 break;
3033 case 1:
3034 value_fmt = "%2.2"PRIx64" ";
3035 break;
3036 default:
3037 /* "can't happen", caller checked */
3038 LOG_ERROR("invalid memory read size: %u", size);
3039 return;
3040 }
3041
3042 for (unsigned i = 0; i < count; i++) {
3043 if (i % line_modulo == 0) {
3044 output_len += snprintf(output + output_len,
3045 sizeof(output) - output_len,
3046 TARGET_ADDR_FMT ": ",
3047 (address + (i * size)));
3048 }
3049
3050 uint64_t value = 0;
3051 const uint8_t *value_ptr = buffer + i * size;
3052 switch (size) {
3053 case 8:
3054 value = target_buffer_get_u64(target, value_ptr);
3055 break;
3056 case 4:
3057 value = target_buffer_get_u32(target, value_ptr);
3058 break;
3059 case 2:
3060 value = target_buffer_get_u16(target, value_ptr);
3061 break;
3062 case 1:
3063 value = *value_ptr;
3064 }
3065 output_len += snprintf(output + output_len,
3066 sizeof(output) - output_len,
3067 value_fmt, value);
3068
3069 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3070 command_print(cmd_ctx, "%s", output);
3071 output_len = 0;
3072 }
3073 }
3074 }
3075
3076 COMMAND_HANDLER(handle_md_command)
3077 {
3078 if (CMD_ARGC < 1)
3079 return ERROR_COMMAND_SYNTAX_ERROR;
3080
3081 unsigned size = 0;
3082 switch (CMD_NAME[2]) {
3083 case 'd':
3084 size = 8;
3085 break;
3086 case 'w':
3087 size = 4;
3088 break;
3089 case 'h':
3090 size = 2;
3091 break;
3092 case 'b':
3093 size = 1;
3094 break;
3095 default:
3096 return ERROR_COMMAND_SYNTAX_ERROR;
3097 }
3098
3099 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3100 int (*fn)(struct target *target,
3101 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3102 if (physical) {
3103 CMD_ARGC--;
3104 CMD_ARGV++;
3105 fn = target_read_phys_memory;
3106 } else
3107 fn = target_read_memory;
3108 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3109 return ERROR_COMMAND_SYNTAX_ERROR;
3110
3111 target_addr_t address;
3112 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3113
3114 unsigned count = 1;
3115 if (CMD_ARGC == 2)
3116 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3117
3118 uint8_t *buffer = calloc(count, size);
3119
3120 struct target *target = get_current_target(CMD_CTX);
3121 int retval = fn(target, address, size, count, buffer);
3122 if (ERROR_OK == retval)
3123 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3124
3125 free(buffer);
3126
3127 return retval;
3128 }
3129
3130 typedef int (*target_write_fn)(struct target *target,
3131 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3132
3133 static int target_fill_mem(struct target *target,
3134 target_addr_t address,
3135 target_write_fn fn,
3136 unsigned data_size,
3137 /* value */
3138 uint64_t b,
3139 /* count */
3140 unsigned c)
3141 {
3142 /* We have to write in reasonably large chunks to be able
3143 * to fill large memory areas with any sane speed */
3144 const unsigned chunk_size = 16384;
3145 uint8_t *target_buf = malloc(chunk_size * data_size);
3146 if (target_buf == NULL) {
3147 LOG_ERROR("Out of memory");
3148 return ERROR_FAIL;
3149 }
3150
3151 for (unsigned i = 0; i < chunk_size; i++) {
3152 switch (data_size) {
3153 case 8:
3154 target_buffer_set_u64(target, target_buf + i * data_size, b);
3155 break;
3156 case 4:
3157 target_buffer_set_u32(target, target_buf + i * data_size, b);
3158 break;
3159 case 2:
3160 target_buffer_set_u16(target, target_buf + i * data_size, b);
3161 break;
3162 case 1:
3163 target_buffer_set_u8(target, target_buf + i * data_size, b);
3164 break;
3165 default:
3166 exit(-1);
3167 }
3168 }
3169
3170 int retval = ERROR_OK;
3171
3172 for (unsigned x = 0; x < c; x += chunk_size) {
3173 unsigned current;
3174 current = c - x;
3175 if (current > chunk_size)
3176 current = chunk_size;
3177 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3178 if (retval != ERROR_OK)
3179 break;
3180 /* avoid GDB timeouts */
3181 keep_alive();
3182 }
3183 free(target_buf);
3184
3185 return retval;
3186 }
3187
3188
3189 COMMAND_HANDLER(handle_mw_command)
3190 {
3191 if (CMD_ARGC < 2)
3192 return ERROR_COMMAND_SYNTAX_ERROR;
3193 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3194 target_write_fn fn;
3195 if (physical) {
3196 CMD_ARGC--;
3197 CMD_ARGV++;
3198 fn = target_write_phys_memory;
3199 } else
3200 fn = target_write_memory;
3201 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3202 return ERROR_COMMAND_SYNTAX_ERROR;
3203
3204 target_addr_t address;
3205 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3206
3207 target_addr_t value;
3208 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3209
3210 unsigned count = 1;
3211 if (CMD_ARGC == 3)
3212 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3213
3214 struct target *target = get_current_target(CMD_CTX);
3215 unsigned wordsize;
3216 switch (CMD_NAME[2]) {
3217 case 'd':
3218 wordsize = 8;
3219 break;
3220 case 'w':
3221 wordsize = 4;
3222 break;
3223 case 'h':
3224 wordsize = 2;
3225 break;
3226 case 'b':
3227 wordsize = 1;
3228 break;
3229 default:
3230 return ERROR_COMMAND_SYNTAX_ERROR;
3231 }
3232
3233 return target_fill_mem(target, address, fn, wordsize, value, count);
3234 }
3235
3236 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3237 target_addr_t *min_address, target_addr_t *max_address)
3238 {
3239 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3240 return ERROR_COMMAND_SYNTAX_ERROR;
3241
3242 /* a base address isn't always necessary,
3243 * default to 0x0 (i.e. don't relocate) */
3244 if (CMD_ARGC >= 2) {
3245 target_addr_t addr;
3246 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3247 image->base_address = addr;
3248 image->base_address_set = 1;
3249 } else
3250 image->base_address_set = 0;
3251
3252 image->start_address_set = 0;
3253
3254 if (CMD_ARGC >= 4)
3255 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3256 if (CMD_ARGC == 5) {
3257 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3258 /* use size (given) to find max (required) */
3259 *max_address += *min_address;
3260 }
3261
3262 if (*min_address > *max_address)
3263 return ERROR_COMMAND_SYNTAX_ERROR;
3264
3265 return ERROR_OK;
3266 }
3267
3268 COMMAND_HANDLER(handle_load_image_command)
3269 {
3270 uint8_t *buffer;
3271 size_t buf_cnt;
3272 uint32_t image_size;
3273 target_addr_t min_address = 0;
3274 target_addr_t max_address = -1;
3275 int i;
3276 struct image image;
3277
3278 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3279 &image, &min_address, &max_address);
3280 if (ERROR_OK != retval)
3281 return retval;
3282
3283 struct target *target = get_current_target(CMD_CTX);
3284
3285 struct duration bench;
3286 duration_start(&bench);
3287
3288 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3289 return ERROR_FAIL;
3290
3291 image_size = 0x0;
3292 retval = ERROR_OK;
3293 for (i = 0; i < image.num_sections; i++) {
3294 buffer = malloc(image.sections[i].size);
3295 if (buffer == NULL) {
3296 command_print(CMD_CTX,
3297 "error allocating buffer for section (%d bytes)",
3298 (int)(image.sections[i].size));
3299 retval = ERROR_FAIL;
3300 break;
3301 }
3302
3303 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3304 if (retval != ERROR_OK) {
3305 free(buffer);
3306 break;
3307 }
3308
3309 uint32_t offset = 0;
3310 uint32_t length = buf_cnt;
3311
3312 /* DANGER!!! beware of unsigned comparision here!!! */
3313
3314 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3315 (image.sections[i].base_address < max_address)) {
3316
3317 if (image.sections[i].base_address < min_address) {
3318 /* clip addresses below */
3319 offset += min_address-image.sections[i].base_address;
3320 length -= offset;
3321 }
3322
3323 if (image.sections[i].base_address + buf_cnt > max_address)
3324 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3325
3326 retval = target_write_buffer(target,
3327 image.sections[i].base_address + offset, length, buffer + offset);
3328 if (retval != ERROR_OK) {
3329 free(buffer);
3330 break;
3331 }
3332 image_size += length;
3333 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3334 (unsigned int)length,
3335 image.sections[i].base_address + offset);
3336 }
3337
3338 free(buffer);
3339 }
3340
3341 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3342 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3343 "in %fs (%0.3f KiB/s)", image_size,
3344 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3345 }
3346
3347 image_close(&image);
3348
3349 return retval;
3350
3351 }
3352
3353 COMMAND_HANDLER(handle_dump_image_command)
3354 {
3355 struct fileio *fileio;
3356 uint8_t *buffer;
3357 int retval, retvaltemp;
3358 target_addr_t address, size;
3359 struct duration bench;
3360 struct target *target = get_current_target(CMD_CTX);
3361
3362 if (CMD_ARGC != 3)
3363 return ERROR_COMMAND_SYNTAX_ERROR;
3364
3365 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3366 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3367
3368 uint32_t buf_size = (size > 4096) ? 4096 : size;
3369 buffer = malloc(buf_size);
3370 if (!buffer)
3371 return ERROR_FAIL;
3372
3373 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3374 if (retval != ERROR_OK) {
3375 free(buffer);
3376 return retval;
3377 }
3378
3379 duration_start(&bench);
3380
3381 while (size > 0) {
3382 size_t size_written;
3383 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3384 retval = target_read_buffer(target, address, this_run_size, buffer);
3385 if (retval != ERROR_OK)
3386 break;
3387
3388 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3389 if (retval != ERROR_OK)
3390 break;
3391
3392 size -= this_run_size;
3393 address += this_run_size;
3394 }
3395
3396 free(buffer);
3397
3398 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3399 size_t filesize;
3400 retval = fileio_size(fileio, &filesize);
3401 if (retval != ERROR_OK)
3402 return retval;
3403 command_print(CMD_CTX,
3404 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3405 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3406 }
3407
3408 retvaltemp = fileio_close(fileio);
3409 if (retvaltemp != ERROR_OK)
3410 return retvaltemp;
3411
3412 return retval;
3413 }
3414
3415 enum verify_mode {
3416 IMAGE_TEST = 0,
3417 IMAGE_VERIFY = 1,
3418 IMAGE_CHECKSUM_ONLY = 2
3419 };
3420
3421 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3422 {
3423 uint8_t *buffer;
3424 size_t buf_cnt;
3425 uint32_t image_size;
3426 int i;
3427 int retval;
3428 uint32_t checksum = 0;
3429 uint32_t mem_checksum = 0;
3430
3431 struct image image;
3432
3433 struct target *target = get_current_target(CMD_CTX);
3434
3435 if (CMD_ARGC < 1)
3436 return ERROR_COMMAND_SYNTAX_ERROR;
3437
3438 if (!target) {
3439 LOG_ERROR("no target selected");
3440 return ERROR_FAIL;
3441 }
3442
3443 struct duration bench;
3444 duration_start(&bench);
3445
3446 if (CMD_ARGC >= 2) {
3447 target_addr_t addr;
3448 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3449 image.base_address = addr;
3450 image.base_address_set = 1;
3451 } else {
3452 image.base_address_set = 0;
3453 image.base_address = 0x0;
3454 }
3455
3456 image.start_address_set = 0;
3457
3458 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3459 if (retval != ERROR_OK)
3460 return retval;
3461
3462 image_size = 0x0;
3463 int diffs = 0;
3464 retval = ERROR_OK;
3465 for (i = 0; i < image.num_sections; i++) {
3466 buffer = malloc(image.sections[i].size);
3467 if (buffer == NULL) {
3468 command_print(CMD_CTX,
3469 "error allocating buffer for section (%d bytes)",
3470 (int)(image.sections[i].size));
3471 break;
3472 }
3473 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3474 if (retval != ERROR_OK) {
3475 free(buffer);
3476 break;
3477 }
3478
3479 if (verify >= IMAGE_VERIFY) {
3480 /* calculate checksum of image */
3481 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3482 if (retval != ERROR_OK) {
3483 free(buffer);
3484 break;
3485 }
3486
3487 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3488 if (retval != ERROR_OK) {
3489 free(buffer);
3490 break;
3491 }
3492 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3493 LOG_ERROR("checksum mismatch");
3494 free(buffer);
3495 retval = ERROR_FAIL;
3496 goto done;
3497 }
3498 if (checksum != mem_checksum) {
3499 /* failed crc checksum, fall back to a binary compare */
3500 uint8_t *data;
3501
3502 if (diffs == 0)
3503 LOG_ERROR("checksum mismatch - attempting binary compare");
3504
3505 data = malloc(buf_cnt);
3506
3507 /* Can we use 32bit word accesses? */
3508 int size = 1;
3509 int count = buf_cnt;
3510 if ((count % 4) == 0) {
3511 size *= 4;
3512 count /= 4;
3513 }
3514 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3515 if (retval == ERROR_OK) {
3516 uint32_t t;
3517 for (t = 0; t < buf_cnt; t++) {
3518 if (data[t] != buffer[t]) {
3519 command_print(CMD_CTX,
3520 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3521 diffs,
3522 (unsigned)(t + image.sections[i].base_address),
3523 data[t],
3524 buffer[t]);
3525 if (diffs++ >= 127) {
3526 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3527 free(data);
3528 free(buffer);
3529 goto done;
3530 }
3531 }
3532 keep_alive();
3533 }
3534 }
3535 free(data);
3536 }
3537 } else {
3538 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3539 image.sections[i].base_address,
3540 buf_cnt);
3541 }
3542
3543 free(buffer);
3544 image_size += buf_cnt;
3545 }
3546 if (diffs > 0)
3547 command_print(CMD_CTX, "No more differences found.");
3548 done:
3549 if (diffs > 0)
3550 retval = ERROR_FAIL;
3551 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3552 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3553 "in %fs (%0.3f KiB/s)", image_size,
3554 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3555 }
3556
3557 image_close(&image);
3558
3559 return retval;
3560 }
3561
3562 COMMAND_HANDLER(handle_verify_image_checksum_command)
3563 {
3564 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3565 }
3566
3567 COMMAND_HANDLER(handle_verify_image_command)
3568 {
3569 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3570 }
3571
3572 COMMAND_HANDLER(handle_test_image_command)
3573 {
3574 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3575 }
3576
3577 static int handle_bp_command_list(struct command_context *cmd_ctx)
3578 {
3579 struct target *target = get_current_target(cmd_ctx);
3580 struct breakpoint *breakpoint = target->breakpoints;
3581 while (breakpoint) {
3582 if (breakpoint->type == BKPT_SOFT) {
3583 char *buf = buf_to_str(breakpoint->orig_instr,
3584 breakpoint->length, 16);
3585 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3586 breakpoint->address,
3587 breakpoint->length,
3588 breakpoint->set, buf);
3589 free(buf);
3590 } else {
3591 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3592 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3593 breakpoint->asid,
3594 breakpoint->length, breakpoint->set);
3595 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3596 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3597 breakpoint->address,
3598 breakpoint->length, breakpoint->set);
3599 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3600 breakpoint->asid);
3601 } else
3602 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3603 breakpoint->address,
3604 breakpoint->length, breakpoint->set);
3605 }
3606
3607 breakpoint = breakpoint->next;
3608 }
3609 return ERROR_OK;
3610 }
3611
3612 static int handle_bp_command_set(struct command_context *cmd_ctx,
3613 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3614 {
3615 struct target *target = get_current_target(cmd_ctx);
3616 int retval;
3617
3618 if (asid == 0) {
3619 retval = breakpoint_add(target, addr, length, hw);
3620 if (ERROR_OK == retval)
3621 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3622 else {
3623 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3624 return retval;
3625 }
3626 } else if (addr == 0) {
3627 if (target->type->add_context_breakpoint == NULL) {
3628 LOG_WARNING("Context breakpoint not available");
3629 return ERROR_OK;
3630 }
3631 retval = context_breakpoint_add(target, asid, length, hw);
3632 if (ERROR_OK == retval)
3633 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3634 else {
3635 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3636 return retval;
3637 }
3638 } else {
3639 if (target->type->add_hybrid_breakpoint == NULL) {
3640 LOG_WARNING("Hybrid breakpoint not available");
3641 return ERROR_OK;
3642 }
3643 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3644 if (ERROR_OK == retval)
3645 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3646 else {
3647 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3648 return retval;
3649 }
3650 }
3651 return ERROR_OK;
3652