ff5aef34c9bd0dd6fd31427284eb5abdb4a9161c
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38
39 #include "target.h"
40 #include "target_type.h"
41 #include "target_request.h"
42 #include "breakpoints.h"
43 #include "register.h"
44 #include "trace.h"
45 #include "image.h"
46
47
48 static int target_array2mem(Jim_Interp *interp, struct target *target,
49 int argc, Jim_Obj *const *argv);
50 static int target_mem2array(Jim_Interp *interp, struct target *target,
51 int argc, Jim_Obj *const *argv);
52
53 /* targets */
54 extern struct target_type arm7tdmi_target;
55 extern struct target_type arm720t_target;
56 extern struct target_type arm9tdmi_target;
57 extern struct target_type arm920t_target;
58 extern struct target_type arm966e_target;
59 extern struct target_type arm926ejs_target;
60 extern struct target_type fa526_target;
61 extern struct target_type feroceon_target;
62 extern struct target_type dragonite_target;
63 extern struct target_type xscale_target;
64 extern struct target_type cortexm3_target;
65 extern struct target_type cortexa8_target;
66 extern struct target_type arm11_target;
67 extern struct target_type mips_m4k_target;
68 extern struct target_type avr_target;
69 extern struct target_type dsp563xx_target;
70 extern struct target_type testee_target;
71
72 struct target_type *target_types[] =
73 {
74 &arm7tdmi_target,
75 &arm9tdmi_target,
76 &arm920t_target,
77 &arm720t_target,
78 &arm966e_target,
79 &arm926ejs_target,
80 &fa526_target,
81 &feroceon_target,
82 &dragonite_target,
83 &xscale_target,
84 &cortexm3_target,
85 &cortexa8_target,
86 &arm11_target,
87 &mips_m4k_target,
88 &avr_target,
89 &dsp563xx_target,
90 &testee_target,
91 NULL,
92 };
93
94 struct target *all_targets = NULL;
95 struct target_event_callback *target_event_callbacks = NULL;
96 struct target_timer_callback *target_timer_callbacks = NULL;
97
98 static const Jim_Nvp nvp_assert[] = {
99 { .name = "assert", NVP_ASSERT },
100 { .name = "deassert", NVP_DEASSERT },
101 { .name = "T", NVP_ASSERT },
102 { .name = "F", NVP_DEASSERT },
103 { .name = "t", NVP_ASSERT },
104 { .name = "f", NVP_DEASSERT },
105 { .name = NULL, .value = -1 }
106 };
107
108 static const Jim_Nvp nvp_error_target[] = {
109 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
110 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
111 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
112 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
113 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
114 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
115 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
116 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
117 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
118 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
119 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
120 { .value = -1, .name = NULL }
121 };
122
123 const char *target_strerror_safe(int err)
124 {
125 const Jim_Nvp *n;
126
127 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
128 if (n->name == NULL) {
129 return "unknown";
130 } else {
131 return n->name;
132 }
133 }
134
135 static const Jim_Nvp nvp_target_event[] = {
136 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
137 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
138
139 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
140 { .value = TARGET_EVENT_HALTED, .name = "halted" },
141 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
142 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
143 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
144
145 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
146 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
147
148 /* historical name */
149
150 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
151
152 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
153 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
154 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
155 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
156 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
157 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
158 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
159 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
160 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
161 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
162 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
163
164 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
165 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
166
167 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
168 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
169
170 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
171 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
172
173 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
174 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
175
176 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
177 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
178
179 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
180 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
181 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
182
183 { .name = NULL, .value = -1 }
184 };
185
186 static const Jim_Nvp nvp_target_state[] = {
187 { .name = "unknown", .value = TARGET_UNKNOWN },
188 { .name = "running", .value = TARGET_RUNNING },
189 { .name = "halted", .value = TARGET_HALTED },
190 { .name = "reset", .value = TARGET_RESET },
191 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
192 { .name = NULL, .value = -1 },
193 };
194
195 static const Jim_Nvp nvp_target_debug_reason [] = {
196 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
197 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
198 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
199 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
200 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
201 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
202 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
203 { .name = NULL, .value = -1 },
204 };
205
206 static const Jim_Nvp nvp_target_endian[] = {
207 { .name = "big", .value = TARGET_BIG_ENDIAN },
208 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
209 { .name = "be", .value = TARGET_BIG_ENDIAN },
210 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
211 { .name = NULL, .value = -1 },
212 };
213
214 static const Jim_Nvp nvp_reset_modes[] = {
215 { .name = "unknown", .value = RESET_UNKNOWN },
216 { .name = "run" , .value = RESET_RUN },
217 { .name = "halt" , .value = RESET_HALT },
218 { .name = "init" , .value = RESET_INIT },
219 { .name = NULL , .value = -1 },
220 };
221
222 const char *debug_reason_name(struct target *t)
223 {
224 const char *cp;
225
226 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
227 t->debug_reason)->name;
228 if (!cp) {
229 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
230 cp = "(*BUG*unknown*BUG*)";
231 }
232 return cp;
233 }
234
235 const char *
236 target_state_name( struct target *t )
237 {
238 const char *cp;
239 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
240 if( !cp ){
241 LOG_ERROR("Invalid target state: %d", (int)(t->state));
242 cp = "(*BUG*unknown*BUG*)";
243 }
244 return cp;
245 }
246
247 /* determine the number of the new target */
248 static int new_target_number(void)
249 {
250 struct target *t;
251 int x;
252
253 /* number is 0 based */
254 x = -1;
255 t = all_targets;
256 while (t) {
257 if (x < t->target_number) {
258 x = t->target_number;
259 }
260 t = t->next;
261 }
262 return x + 1;
263 }
264
265 /* read a uint32_t from a buffer in target memory endianness */
266 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
267 {
268 if (target->endianness == TARGET_LITTLE_ENDIAN)
269 return le_to_h_u32(buffer);
270 else
271 return be_to_h_u32(buffer);
272 }
273
274 /* read a uint16_t from a buffer in target memory endianness */
275 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
276 {
277 if (target->endianness == TARGET_LITTLE_ENDIAN)
278 return le_to_h_u16(buffer);
279 else
280 return be_to_h_u16(buffer);
281 }
282
283 /* read a uint8_t from a buffer in target memory endianness */
284 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
285 {
286 return *buffer & 0x0ff;
287 }
288
289 /* write a uint32_t to a buffer in target memory endianness */
290 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
291 {
292 if (target->endianness == TARGET_LITTLE_ENDIAN)
293 h_u32_to_le(buffer, value);
294 else
295 h_u32_to_be(buffer, value);
296 }
297
298 /* write a uint16_t to a buffer in target memory endianness */
299 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
300 {
301 if (target->endianness == TARGET_LITTLE_ENDIAN)
302 h_u16_to_le(buffer, value);
303 else
304 h_u16_to_be(buffer, value);
305 }
306
307 /* write a uint8_t to a buffer in target memory endianness */
308 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
309 {
310 *buffer = value;
311 }
312
313 /* return a pointer to a configured target; id is name or number */
314 struct target *get_target(const char *id)
315 {
316 struct target *target;
317
318 /* try as tcltarget name */
319 for (target = all_targets; target; target = target->next) {
320 if (target->cmd_name == NULL)
321 continue;
322 if (strcmp(id, target->cmd_name) == 0)
323 return target;
324 }
325
326 /* It's OK to remove this fallback sometime after August 2010 or so */
327
328 /* no match, try as number */
329 unsigned num;
330 if (parse_uint(id, &num) != ERROR_OK)
331 return NULL;
332
333 for (target = all_targets; target; target = target->next) {
334 if (target->target_number == (int)num) {
335 LOG_WARNING("use '%s' as target identifier, not '%u'",
336 target->cmd_name, num);
337 return target;
338 }
339 }
340
341 return NULL;
342 }
343
344 /* returns a pointer to the n-th configured target */
345 static struct target *get_target_by_num(int num)
346 {
347 struct target *target = all_targets;
348
349 while (target) {
350 if (target->target_number == num) {
351 return target;
352 }
353 target = target->next;
354 }
355
356 return NULL;
357 }
358
359 struct target* get_current_target(struct command_context *cmd_ctx)
360 {
361 struct target *target = get_target_by_num(cmd_ctx->current_target);
362
363 if (target == NULL)
364 {
365 LOG_ERROR("BUG: current_target out of bounds");
366 exit(-1);
367 }
368
369 return target;
370 }
371
372 int target_poll(struct target *target)
373 {
374 int retval;
375
376 /* We can't poll until after examine */
377 if (!target_was_examined(target))
378 {
379 /* Fail silently lest we pollute the log */
380 return ERROR_FAIL;
381 }
382
383 retval = target->type->poll(target);
384 if (retval != ERROR_OK)
385 return retval;
386
387 if (target->halt_issued)
388 {
389 if (target->state == TARGET_HALTED)
390 {
391 target->halt_issued = false;
392 } else
393 {
394 long long t = timeval_ms() - target->halt_issued_time;
395 if (t>1000)
396 {
397 target->halt_issued = false;
398 LOG_INFO("Halt timed out, wake up GDB.");
399 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
400 }
401 }
402 }
403
404 return ERROR_OK;
405 }
406
407 int target_halt(struct target *target)
408 {
409 int retval;
410 /* We can't poll until after examine */
411 if (!target_was_examined(target))
412 {
413 LOG_ERROR("Target not examined yet");
414 return ERROR_FAIL;
415 }
416
417 retval = target->type->halt(target);
418 if (retval != ERROR_OK)
419 return retval;
420
421 target->halt_issued = true;
422 target->halt_issued_time = timeval_ms();
423
424 return ERROR_OK;
425 }
426
427 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
428 {
429 int retval;
430
431 /* We can't poll until after examine */
432 if (!target_was_examined(target))
433 {
434 LOG_ERROR("Target not examined yet");
435 return ERROR_FAIL;
436 }
437
438 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
439 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
440 * the application.
441 */
442 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
443 return retval;
444
445 return retval;
446 }
447
448 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
449 {
450 char buf[100];
451 int retval;
452 Jim_Nvp *n;
453 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
454 if (n->name == NULL) {
455 LOG_ERROR("invalid reset mode");
456 return ERROR_FAIL;
457 }
458
459 /* disable polling during reset to make reset event scripts
460 * more predictable, i.e. dr/irscan & pathmove in events will
461 * not have JTAG operations injected into the middle of a sequence.
462 */
463 bool save_poll = jtag_poll_get_enabled();
464
465 jtag_poll_set_enabled(false);
466
467 sprintf(buf, "ocd_process_reset %s", n->name);
468 retval = Jim_Eval(cmd_ctx->interp, buf);
469
470 jtag_poll_set_enabled(save_poll);
471
472 if (retval != JIM_OK) {
473 Jim_PrintErrorMessage(cmd_ctx->interp);
474 return ERROR_FAIL;
475 }
476
477 /* We want any events to be processed before the prompt */
478 retval = target_call_timer_callbacks_now();
479
480 struct target *target;
481 for (target = all_targets; target; target = target->next) {
482 target->type->check_reset(target);
483 }
484
485 return retval;
486 }
487
488 static int identity_virt2phys(struct target *target,
489 uint32_t virtual, uint32_t *physical)
490 {
491 *physical = virtual;
492 return ERROR_OK;
493 }
494
495 static int no_mmu(struct target *target, int *enabled)
496 {
497 *enabled = 0;
498 return ERROR_OK;
499 }
500
501 static int default_examine(struct target *target)
502 {
503 target_set_examined(target);
504 return ERROR_OK;
505 }
506
507 /* no check by default */
508 static int default_check_reset(struct target *target)
509 {
510 return ERROR_OK;
511 }
512
513 int target_examine_one(struct target *target)
514 {
515 return target->type->examine(target);
516 }
517
518 static int jtag_enable_callback(enum jtag_event event, void *priv)
519 {
520 struct target *target = priv;
521
522 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
523 return ERROR_OK;
524
525 jtag_unregister_event_callback(jtag_enable_callback, target);
526 return target_examine_one(target);
527 }
528
529
530 /* Targets that correctly implement init + examine, i.e.
531 * no communication with target during init:
532 *
533 * XScale
534 */
535 int target_examine(void)
536 {
537 int retval = ERROR_OK;
538 struct target *target;
539
540 for (target = all_targets; target; target = target->next)
541 {
542 /* defer examination, but don't skip it */
543 if (!target->tap->enabled) {
544 jtag_register_event_callback(jtag_enable_callback,
545 target);
546 continue;
547 }
548 if ((retval = target_examine_one(target)) != ERROR_OK)
549 return retval;
550 }
551 return retval;
552 }
553 const char *target_type_name(struct target *target)
554 {
555 return target->type->name;
556 }
557
558 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
559 {
560 if (!target_was_examined(target))
561 {
562 LOG_ERROR("Target not examined yet");
563 return ERROR_FAIL;
564 }
565 return target->type->write_memory_imp(target, address, size, count, buffer);
566 }
567
568 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
569 {
570 if (!target_was_examined(target))
571 {
572 LOG_ERROR("Target not examined yet");
573 return ERROR_FAIL;
574 }
575 return target->type->read_memory_imp(target, address, size, count, buffer);
576 }
577
578 static int target_soft_reset_halt_imp(struct target *target)
579 {
580 if (!target_was_examined(target))
581 {
582 LOG_ERROR("Target not examined yet");
583 return ERROR_FAIL;
584 }
585 if (!target->type->soft_reset_halt_imp) {
586 LOG_ERROR("Target %s does not support soft_reset_halt",
587 target_name(target));
588 return ERROR_FAIL;
589 }
590 return target->type->soft_reset_halt_imp(target);
591 }
592
593 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
594 {
595 if (!target_was_examined(target))
596 {
597 LOG_ERROR("Target not examined yet");
598 return ERROR_FAIL;
599 }
600 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
601 }
602
603 int target_read_memory(struct target *target,
604 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
605 {
606 return target->type->read_memory(target, address, size, count, buffer);
607 }
608
609 int target_read_phys_memory(struct target *target,
610 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
611 {
612 return target->type->read_phys_memory(target, address, size, count, buffer);
613 }
614
615 int target_write_memory(struct target *target,
616 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
617 {
618 return target->type->write_memory(target, address, size, count, buffer);
619 }
620
621 int target_write_phys_memory(struct target *target,
622 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
623 {
624 return target->type->write_phys_memory(target, address, size, count, buffer);
625 }
626
627 int target_bulk_write_memory(struct target *target,
628 uint32_t address, uint32_t count, uint8_t *buffer)
629 {
630 return target->type->bulk_write_memory(target, address, count, buffer);
631 }
632
633 int target_add_breakpoint(struct target *target,
634 struct breakpoint *breakpoint)
635 {
636 if (target->state != TARGET_HALTED) {
637 LOG_WARNING("target %s is not halted", target->cmd_name);
638 return ERROR_TARGET_NOT_HALTED;
639 }
640 return target->type->add_breakpoint(target, breakpoint);
641 }
642 int target_remove_breakpoint(struct target *target,
643 struct breakpoint *breakpoint)
644 {
645 return target->type->remove_breakpoint(target, breakpoint);
646 }
647
648 int target_add_watchpoint(struct target *target,
649 struct watchpoint *watchpoint)
650 {
651 if (target->state != TARGET_HALTED) {
652 LOG_WARNING("target %s is not halted", target->cmd_name);
653 return ERROR_TARGET_NOT_HALTED;
654 }
655 return target->type->add_watchpoint(target, watchpoint);
656 }
657 int target_remove_watchpoint(struct target *target,
658 struct watchpoint *watchpoint)
659 {
660 return target->type->remove_watchpoint(target, watchpoint);
661 }
662
663 int target_get_gdb_reg_list(struct target *target,
664 struct reg **reg_list[], int *reg_list_size)
665 {
666 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
667 }
668 int target_step(struct target *target,
669 int current, uint32_t address, int handle_breakpoints)
670 {
671 return target->type->step(target, current, address, handle_breakpoints);
672 }
673
674
675 int target_run_algorithm(struct target *target,
676 int num_mem_params, struct mem_param *mem_params,
677 int num_reg_params, struct reg_param *reg_param,
678 uint32_t entry_point, uint32_t exit_point,
679 int timeout_ms, void *arch_info)
680 {
681 return target->type->run_algorithm(target,
682 num_mem_params, mem_params, num_reg_params, reg_param,
683 entry_point, exit_point, timeout_ms, arch_info);
684 }
685
686 /**
687 * Reset the @c examined flag for the given target.
688 * Pure paranoia -- targets are zeroed on allocation.
689 */
690 static void target_reset_examined(struct target *target)
691 {
692 target->examined = false;
693 }
694
695 static int
696 err_read_phys_memory(struct target *target, uint32_t address,
697 uint32_t size, uint32_t count, uint8_t *buffer)
698 {
699 LOG_ERROR("Not implemented: %s", __func__);
700 return ERROR_FAIL;
701 }
702
703 static int
704 err_write_phys_memory(struct target *target, uint32_t address,
705 uint32_t size, uint32_t count, uint8_t *buffer)
706 {
707 LOG_ERROR("Not implemented: %s", __func__);
708 return ERROR_FAIL;
709 }
710
711 static int handle_target(void *priv);
712
713 static int target_init_one(struct command_context *cmd_ctx,
714 struct target *target)
715 {
716 target_reset_examined(target);
717
718 struct target_type *type = target->type;
719 if (type->examine == NULL)
720 type->examine = default_examine;
721
722 if (type->check_reset== NULL)
723 type->check_reset = default_check_reset;
724
725 int retval = type->init_target(cmd_ctx, target);
726 if (ERROR_OK != retval)
727 {
728 LOG_ERROR("target '%s' init failed", target_name(target));
729 return retval;
730 }
731
732 /**
733 * @todo get rid of those *memory_imp() methods, now that all
734 * callers are using target_*_memory() accessors ... and make
735 * sure the "physical" paths handle the same issues.
736 */
737 /* a non-invasive way(in terms of patches) to add some code that
738 * runs before the type->write/read_memory implementation
739 */
740 type->write_memory_imp = target->type->write_memory;
741 type->write_memory = target_write_memory_imp;
742
743 type->read_memory_imp = target->type->read_memory;
744 type->read_memory = target_read_memory_imp;
745
746 type->soft_reset_halt_imp = target->type->soft_reset_halt;
747 type->soft_reset_halt = target_soft_reset_halt_imp;
748
749 type->run_algorithm_imp = target->type->run_algorithm;
750 type->run_algorithm = target_run_algorithm_imp;
751
752 /* Sanity-check MMU support ... stub in what we must, to help
753 * implement it in stages, but warn if we need to do so.
754 */
755 if (type->mmu)
756 {
757 if (type->write_phys_memory == NULL)
758 {
759 LOG_ERROR("type '%s' is missing write_phys_memory",
760 type->name);
761 type->write_phys_memory = err_write_phys_memory;
762 }
763 if (type->read_phys_memory == NULL)
764 {
765 LOG_ERROR("type '%s' is missing read_phys_memory",
766 type->name);
767 type->read_phys_memory = err_read_phys_memory;
768 }
769 if (type->virt2phys == NULL)
770 {
771 LOG_ERROR("type '%s' is missing virt2phys", type->name);
772 type->virt2phys = identity_virt2phys;
773 }
774 }
775 else
776 {
777 /* Make sure no-MMU targets all behave the same: make no
778 * distinction between physical and virtual addresses, and
779 * ensure that virt2phys() is always an identity mapping.
780 */
781 if (type->write_phys_memory || type->read_phys_memory
782 || type->virt2phys)
783 {
784 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
785 }
786
787 type->mmu = no_mmu;
788 type->write_phys_memory = type->write_memory;
789 type->read_phys_memory = type->read_memory;
790 type->virt2phys = identity_virt2phys;
791 }
792 return ERROR_OK;
793 }
794
795 int target_init(struct command_context *cmd_ctx)
796 {
797 struct target *target;
798 int retval;
799
800 for (target = all_targets; target; target = target->next)
801 {
802 retval = target_init_one(cmd_ctx, target);
803 if (ERROR_OK != retval)
804 return retval;
805 }
806
807 if (!all_targets)
808 return ERROR_OK;
809
810 retval = target_register_user_commands(cmd_ctx);
811 if (ERROR_OK != retval)
812 return retval;
813
814 retval = target_register_timer_callback(&handle_target,
815 100, 1, cmd_ctx->interp);
816 if (ERROR_OK != retval)
817 return retval;
818
819 return ERROR_OK;
820 }
821
822 COMMAND_HANDLER(handle_target_init_command)
823 {
824 if (CMD_ARGC != 0)
825 return ERROR_COMMAND_SYNTAX_ERROR;
826
827 static bool target_initialized = false;
828 if (target_initialized)
829 {
830 LOG_INFO("'target init' has already been called");
831 return ERROR_OK;
832 }
833 target_initialized = true;
834
835 LOG_DEBUG("Initializing targets...");
836 return target_init(CMD_CTX);
837 }
838
839 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
840 {
841 struct target_event_callback **callbacks_p = &target_event_callbacks;
842
843 if (callback == NULL)
844 {
845 return ERROR_INVALID_ARGUMENTS;
846 }
847
848 if (*callbacks_p)
849 {
850 while ((*callbacks_p)->next)
851 callbacks_p = &((*callbacks_p)->next);
852 callbacks_p = &((*callbacks_p)->next);
853 }
854
855 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
856 (*callbacks_p)->callback = callback;
857 (*callbacks_p)->priv = priv;
858 (*callbacks_p)->next = NULL;
859
860 return ERROR_OK;
861 }
862
863 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
864 {
865 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
866 struct timeval now;
867
868 if (callback == NULL)
869 {
870 return ERROR_INVALID_ARGUMENTS;
871 }
872
873 if (*callbacks_p)
874 {
875 while ((*callbacks_p)->next)
876 callbacks_p = &((*callbacks_p)->next);
877 callbacks_p = &((*callbacks_p)->next);
878 }
879
880 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
881 (*callbacks_p)->callback = callback;
882 (*callbacks_p)->periodic = periodic;
883 (*callbacks_p)->time_ms = time_ms;
884
885 gettimeofday(&now, NULL);
886 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
887 time_ms -= (time_ms % 1000);
888 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
889 if ((*callbacks_p)->when.tv_usec > 1000000)
890 {
891 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
892 (*callbacks_p)->when.tv_sec += 1;
893 }
894
895 (*callbacks_p)->priv = priv;
896 (*callbacks_p)->next = NULL;
897
898 return ERROR_OK;
899 }
900
901 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
902 {
903 struct target_event_callback **p = &target_event_callbacks;
904 struct target_event_callback *c = target_event_callbacks;
905
906 if (callback == NULL)
907 {
908 return ERROR_INVALID_ARGUMENTS;
909 }
910
911 while (c)
912 {
913 struct target_event_callback *next = c->next;
914 if ((c->callback == callback) && (c->priv == priv))
915 {
916 *p = next;
917 free(c);
918 return ERROR_OK;
919 }
920 else
921 p = &(c->next);
922 c = next;
923 }
924
925 return ERROR_OK;
926 }
927
928 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
929 {
930 struct target_timer_callback **p = &target_timer_callbacks;
931 struct target_timer_callback *c = target_timer_callbacks;
932
933 if (callback == NULL)
934 {
935 return ERROR_INVALID_ARGUMENTS;
936 }
937
938 while (c)
939 {
940 struct target_timer_callback *next = c->next;
941 if ((c->callback == callback) && (c->priv == priv))
942 {
943 *p = next;
944 free(c);
945 return ERROR_OK;
946 }
947 else
948 p = &(c->next);
949 c = next;
950 }
951
952 return ERROR_OK;
953 }
954
955 int target_call_event_callbacks(struct target *target, enum target_event event)
956 {
957 struct target_event_callback *callback = target_event_callbacks;
958 struct target_event_callback *next_callback;
959
960 if (event == TARGET_EVENT_HALTED)
961 {
962 /* execute early halted first */
963 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
964 }
965
966 LOG_DEBUG("target event %i (%s)",
967 event,
968 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
969
970 target_handle_event(target, event);
971
972 while (callback)
973 {
974 next_callback = callback->next;
975 callback->callback(target, event, callback->priv);
976 callback = next_callback;
977 }
978
979 return ERROR_OK;
980 }
981
982 static int target_timer_callback_periodic_restart(
983 struct target_timer_callback *cb, struct timeval *now)
984 {
985 int time_ms = cb->time_ms;
986 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
987 time_ms -= (time_ms % 1000);
988 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
989 if (cb->when.tv_usec > 1000000)
990 {
991 cb->when.tv_usec = cb->when.tv_usec - 1000000;
992 cb->when.tv_sec += 1;
993 }
994 return ERROR_OK;
995 }
996
997 static int target_call_timer_callback(struct target_timer_callback *cb,
998 struct timeval *now)
999 {
1000 cb->callback(cb->priv);
1001
1002 if (cb->periodic)
1003 return target_timer_callback_periodic_restart(cb, now);
1004
1005 return target_unregister_timer_callback(cb->callback, cb->priv);
1006 }
1007
1008 static int target_call_timer_callbacks_check_time(int checktime)
1009 {
1010 keep_alive();
1011
1012 struct timeval now;
1013 gettimeofday(&now, NULL);
1014
1015 struct target_timer_callback *callback = target_timer_callbacks;
1016 while (callback)
1017 {
1018 // cleaning up may unregister and free this callback
1019 struct target_timer_callback *next_callback = callback->next;
1020
1021 bool call_it = callback->callback &&
1022 ((!checktime && callback->periodic) ||
1023 now.tv_sec > callback->when.tv_sec ||
1024 (now.tv_sec == callback->when.tv_sec &&
1025 now.tv_usec >= callback->when.tv_usec));
1026
1027 if (call_it)
1028 {
1029 int retval = target_call_timer_callback(callback, &now);
1030 if (retval != ERROR_OK)
1031 return retval;
1032 }
1033
1034 callback = next_callback;
1035 }
1036
1037 return ERROR_OK;
1038 }
1039
1040 int target_call_timer_callbacks(void)
1041 {
1042 return target_call_timer_callbacks_check_time(1);
1043 }
1044
1045 /* invoke periodic callbacks immediately */
1046 int target_call_timer_callbacks_now(void)
1047 {
1048 return target_call_timer_callbacks_check_time(0);
1049 }
1050
1051 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1052 {
1053 struct working_area *c = target->working_areas;
1054 struct working_area *new_wa = NULL;
1055
1056 /* Reevaluate working area address based on MMU state*/
1057 if (target->working_areas == NULL)
1058 {
1059 int retval;
1060 int enabled;
1061
1062 retval = target->type->mmu(target, &enabled);
1063 if (retval != ERROR_OK)
1064 {
1065 return retval;
1066 }
1067
1068 if (!enabled) {
1069 if (target->working_area_phys_spec) {
1070 LOG_DEBUG("MMU disabled, using physical "
1071 "address for working memory 0x%08x",
1072 (unsigned)target->working_area_phys);
1073 target->working_area = target->working_area_phys;
1074 } else {
1075 LOG_ERROR("No working memory available. "
1076 "Specify -work-area-phys to target.");
1077 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1078 }
1079 } else {
1080 if (target->working_area_virt_spec) {
1081 LOG_DEBUG("MMU enabled, using virtual "
1082 "address for working memory 0x%08x",
1083 (unsigned)target->working_area_virt);
1084 target->working_area = target->working_area_virt;
1085 } else {
1086 LOG_ERROR("No working memory available. "
1087 "Specify -work-area-virt to target.");
1088 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1089 }
1090 }
1091 }
1092
1093 /* only allocate multiples of 4 byte */
1094 if (size % 4)
1095 {
1096 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1097 size = (size + 3) & (~3);
1098 }
1099
1100 /* see if there's already a matching working area */
1101 while (c)
1102 {
1103 if ((c->free) && (c->size == size))
1104 {
1105 new_wa = c;
1106 break;
1107 }
1108 c = c->next;
1109 }
1110
1111 /* if not, allocate a new one */
1112 if (!new_wa)
1113 {
1114 struct working_area **p = &target->working_areas;
1115 uint32_t first_free = target->working_area;
1116 uint32_t free_size = target->working_area_size;
1117
1118 c = target->working_areas;
1119 while (c)
1120 {
1121 first_free += c->size;
1122 free_size -= c->size;
1123 p = &c->next;
1124 c = c->next;
1125 }
1126
1127 if (free_size < size)
1128 {
1129 LOG_WARNING("not enough working area available(requested %u, free %u)",
1130 (unsigned)(size), (unsigned)(free_size));
1131 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1132 }
1133
1134 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1135
1136 new_wa = malloc(sizeof(struct working_area));
1137 new_wa->next = NULL;
1138 new_wa->size = size;
1139 new_wa->address = first_free;
1140
1141 if (target->backup_working_area)
1142 {
1143 int retval;
1144 new_wa->backup = malloc(new_wa->size);
1145 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1146 {
1147 free(new_wa->backup);
1148 free(new_wa);
1149 return retval;
1150 }
1151 }
1152 else
1153 {
1154 new_wa->backup = NULL;
1155 }
1156
1157 /* put new entry in list */
1158 *p = new_wa;
1159 }
1160
1161 /* mark as used, and return the new (reused) area */
1162 new_wa->free = 0;
1163 *area = new_wa;
1164
1165 /* user pointer */
1166 new_wa->user = area;
1167
1168 return ERROR_OK;
1169 }
1170
1171 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1172 {
1173 if (area->free)
1174 return ERROR_OK;
1175
1176 if (restore && target->backup_working_area)
1177 {
1178 int retval;
1179 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1180 return retval;
1181 }
1182
1183 area->free = 1;
1184
1185 /* mark user pointer invalid */
1186 *area->user = NULL;
1187 area->user = NULL;
1188
1189 return ERROR_OK;
1190 }
1191
1192 int target_free_working_area(struct target *target, struct working_area *area)
1193 {
1194 return target_free_working_area_restore(target, area, 1);
1195 }
1196
1197 /* free resources and restore memory, if restoring memory fails,
1198 * free up resources anyway
1199 */
1200 void target_free_all_working_areas_restore(struct target *target, int restore)
1201 {
1202 struct working_area *c = target->working_areas;
1203
1204 while (c)
1205 {
1206 struct working_area *next = c->next;
1207 target_free_working_area_restore(target, c, restore);
1208
1209 if (c->backup)
1210 free(c->backup);
1211
1212 free(c);
1213
1214 c = next;
1215 }
1216
1217 target->working_areas = NULL;
1218 }
1219
1220 void target_free_all_working_areas(struct target *target)
1221 {
1222 target_free_all_working_areas_restore(target, 1);
1223 }
1224
1225 int target_arch_state(struct target *target)
1226 {
1227 int retval;
1228 if (target == NULL)
1229 {
1230 LOG_USER("No target has been configured");
1231 return ERROR_OK;
1232 }
1233
1234 LOG_USER("target state: %s", target_state_name( target ));
1235
1236 if (target->state != TARGET_HALTED)
1237 return ERROR_OK;
1238
1239 retval = target->type->arch_state(target);
1240 return retval;
1241 }
1242
1243 /* Single aligned words are guaranteed to use 16 or 32 bit access
1244 * mode respectively, otherwise data is handled as quickly as
1245 * possible
1246 */
1247 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1248 {
1249 int retval;
1250 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1251 (int)size, (unsigned)address);
1252
1253 if (!target_was_examined(target))
1254 {
1255 LOG_ERROR("Target not examined yet");
1256 return ERROR_FAIL;
1257 }
1258
1259 if (size == 0) {
1260 return ERROR_OK;
1261 }
1262
1263 if ((address + size - 1) < address)
1264 {
1265 /* GDB can request this when e.g. PC is 0xfffffffc*/
1266 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1267 (unsigned)address,
1268 (unsigned)size);
1269 return ERROR_FAIL;
1270 }
1271
1272 if (((address % 2) == 0) && (size == 2))
1273 {
1274 return target_write_memory(target, address, 2, 1, buffer);
1275 }
1276
1277 /* handle unaligned head bytes */
1278 if (address % 4)
1279 {
1280 uint32_t unaligned = 4 - (address % 4);
1281
1282 if (unaligned > size)
1283 unaligned = size;
1284
1285 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1286 return retval;
1287
1288 buffer += unaligned;
1289 address += unaligned;
1290 size -= unaligned;
1291 }
1292
1293 /* handle aligned words */
1294 if (size >= 4)
1295 {
1296 int aligned = size - (size % 4);
1297
1298 /* use bulk writes above a certain limit. This may have to be changed */
1299 if (aligned > 128)
1300 {
1301 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1302 return retval;
1303 }
1304 else
1305 {
1306 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1307 return retval;
1308 }
1309
1310 buffer += aligned;
1311 address += aligned;
1312 size -= aligned;
1313 }
1314
1315 /* handle tail writes of less than 4 bytes */
1316 if (size > 0)
1317 {
1318 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1319 return retval;
1320 }
1321
1322 return ERROR_OK;
1323 }
1324
1325 /* Single aligned words are guaranteed to use 16 or 32 bit access
1326 * mode respectively, otherwise data is handled as quickly as
1327 * possible
1328 */
1329 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1330 {
1331 int retval;
1332 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1333 (int)size, (unsigned)address);
1334
1335 if (!target_was_examined(target))
1336 {
1337 LOG_ERROR("Target not examined yet");
1338 return ERROR_FAIL;
1339 }
1340
1341 if (size == 0) {
1342 return ERROR_OK;
1343 }
1344
1345 if ((address + size - 1) < address)
1346 {
1347 /* GDB can request this when e.g. PC is 0xfffffffc*/
1348 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1349 address,
1350 size);
1351 return ERROR_FAIL;
1352 }
1353
1354 if (((address % 2) == 0) && (size == 2))
1355 {
1356 return target_read_memory(target, address, 2, 1, buffer);
1357 }
1358
1359 /* handle unaligned head bytes */
1360 if (address % 4)
1361 {
1362 uint32_t unaligned = 4 - (address % 4);
1363
1364 if (unaligned > size)
1365 unaligned = size;
1366
1367 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1368 return retval;
1369
1370 buffer += unaligned;
1371 address += unaligned;
1372 size -= unaligned;
1373 }
1374
1375 /* handle aligned words */
1376 if (size >= 4)
1377 {
1378 int aligned = size - (size % 4);
1379
1380 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1381 return retval;
1382
1383 buffer += aligned;
1384 address += aligned;
1385 size -= aligned;
1386 }
1387
1388 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1389 if(size >=2)
1390 {
1391 int aligned = size - (size%2);
1392 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1393 if (retval != ERROR_OK)
1394 return retval;
1395
1396 buffer += aligned;
1397 address += aligned;
1398 size -= aligned;
1399 }
1400 /* handle tail writes of less than 4 bytes */
1401 if (size > 0)
1402 {
1403 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1404 return retval;
1405 }
1406
1407 return ERROR_OK;
1408 }
1409
1410 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1411 {
1412 uint8_t *buffer;
1413 int retval;
1414 uint32_t i;
1415 uint32_t checksum = 0;
1416 if (!target_was_examined(target))
1417 {
1418 LOG_ERROR("Target not examined yet");
1419 return ERROR_FAIL;
1420 }
1421
1422 if ((retval = target->type->checksum_memory(target, address,
1423 size, &checksum)) != ERROR_OK)
1424 {
1425 buffer = malloc(size);
1426 if (buffer == NULL)
1427 {
1428 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1429 return ERROR_INVALID_ARGUMENTS;
1430 }
1431 retval = target_read_buffer(target, address, size, buffer);
1432 if (retval != ERROR_OK)
1433 {
1434 free(buffer);
1435 return retval;
1436 }
1437
1438 /* convert to target endianess */
1439 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1440 {
1441 uint32_t target_data;
1442 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1443 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1444 }
1445
1446 retval = image_calculate_checksum(buffer, size, &checksum);
1447 free(buffer);
1448 }
1449
1450 *crc = checksum;
1451
1452 return retval;
1453 }
1454
1455 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1456 {
1457 int retval;
1458 if (!target_was_examined(target))
1459 {
1460 LOG_ERROR("Target not examined yet");
1461 return ERROR_FAIL;
1462 }
1463
1464 if (target->type->blank_check_memory == 0)
1465 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1466
1467 retval = target->type->blank_check_memory(target, address, size, blank);
1468
1469 return retval;
1470 }
1471
1472 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1473 {
1474 uint8_t value_buf[4];
1475 if (!target_was_examined(target))
1476 {
1477 LOG_ERROR("Target not examined yet");
1478 return ERROR_FAIL;
1479 }
1480
1481 int retval = target_read_memory(target, address, 4, 1, value_buf);
1482
1483 if (retval == ERROR_OK)
1484 {
1485 *value = target_buffer_get_u32(target, value_buf);
1486 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1487 address,
1488 *value);
1489 }
1490 else
1491 {
1492 *value = 0x0;
1493 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1494 address);
1495 }
1496
1497 return retval;
1498 }
1499
1500 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1501 {
1502 uint8_t value_buf[2];
1503 if (!target_was_examined(target))
1504 {
1505 LOG_ERROR("Target not examined yet");
1506 return ERROR_FAIL;
1507 }
1508
1509 int retval = target_read_memory(target, address, 2, 1, value_buf);
1510
1511 if (retval == ERROR_OK)
1512 {
1513 *value = target_buffer_get_u16(target, value_buf);
1514 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1515 address,
1516 *value);
1517 }
1518 else
1519 {
1520 *value = 0x0;
1521 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1522 address);
1523 }
1524
1525 return retval;
1526 }
1527
1528 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1529 {
1530 int retval = target_read_memory(target, address, 1, 1, value);
1531 if (!target_was_examined(target))
1532 {
1533 LOG_ERROR("Target not examined yet");
1534 return ERROR_FAIL;
1535 }
1536
1537 if (retval == ERROR_OK)
1538 {
1539 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1540 address,
1541 *value);
1542 }
1543 else
1544 {
1545 *value = 0x0;
1546 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1547 address);
1548 }
1549
1550 return retval;
1551 }
1552
1553 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1554 {
1555 int retval;
1556 uint8_t value_buf[4];
1557 if (!target_was_examined(target))
1558 {
1559 LOG_ERROR("Target not examined yet");
1560 return ERROR_FAIL;
1561 }
1562
1563 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1564 address,
1565 value);
1566
1567 target_buffer_set_u32(target, value_buf, value);
1568 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1569 {
1570 LOG_DEBUG("failed: %i", retval);
1571 }
1572
1573 return retval;
1574 }
1575
1576 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1577 {
1578 int retval;
1579 uint8_t value_buf[2];
1580 if (!target_was_examined(target))
1581 {
1582 LOG_ERROR("Target not examined yet");
1583 return ERROR_FAIL;
1584 }
1585
1586 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1587 address,
1588 value);
1589
1590 target_buffer_set_u16(target, value_buf, value);
1591 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1592 {
1593 LOG_DEBUG("failed: %i", retval);
1594 }
1595
1596 return retval;
1597 }
1598
1599 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1600 {
1601 int retval;
1602 if (!target_was_examined(target))
1603 {
1604 LOG_ERROR("Target not examined yet");
1605 return ERROR_FAIL;
1606 }
1607
1608 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1609 address, value);
1610
1611 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1612 {
1613 LOG_DEBUG("failed: %i", retval);
1614 }
1615
1616 return retval;
1617 }
1618
1619 COMMAND_HANDLER(handle_targets_command)
1620 {
1621 struct target *target = all_targets;
1622
1623 if (CMD_ARGC == 1)
1624 {
1625 target = get_target(CMD_ARGV[0]);
1626 if (target == NULL) {
1627 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1628 goto DumpTargets;
1629 }
1630 if (!target->tap->enabled) {
1631 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1632 "can't be the current target\n",
1633 target->tap->dotted_name);
1634 return ERROR_FAIL;
1635 }
1636
1637 CMD_CTX->current_target = target->target_number;
1638 return ERROR_OK;
1639 }
1640 DumpTargets:
1641
1642 target = all_targets;
1643 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1644 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1645 while (target)
1646 {
1647 const char *state;
1648 char marker = ' ';
1649
1650 if (target->tap->enabled)
1651 state = target_state_name( target );
1652 else
1653 state = "tap-disabled";
1654
1655 if (CMD_CTX->current_target == target->target_number)
1656 marker = '*';
1657
1658 /* keep columns lined up to match the headers above */
1659 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1660 target->target_number,
1661 marker,
1662 target_name(target),
1663 target_type_name(target),
1664 Jim_Nvp_value2name_simple(nvp_target_endian,
1665 target->endianness)->name,
1666 target->tap->dotted_name,
1667 state);
1668 target = target->next;
1669 }
1670
1671 return ERROR_OK;
1672 }
1673
1674 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1675
1676 static int powerDropout;
1677 static int srstAsserted;
1678
1679 static int runPowerRestore;
1680 static int runPowerDropout;
1681 static int runSrstAsserted;
1682 static int runSrstDeasserted;
1683
1684 static int sense_handler(void)
1685 {
1686 static int prevSrstAsserted = 0;
1687 static int prevPowerdropout = 0;
1688
1689 int retval;
1690 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1691 return retval;
1692
1693 int powerRestored;
1694 powerRestored = prevPowerdropout && !powerDropout;
1695 if (powerRestored)
1696 {
1697 runPowerRestore = 1;
1698 }
1699
1700 long long current = timeval_ms();
1701 static long long lastPower = 0;
1702 int waitMore = lastPower + 2000 > current;
1703 if (powerDropout && !waitMore)
1704 {
1705 runPowerDropout = 1;
1706 lastPower = current;
1707 }
1708
1709 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1710 return retval;
1711
1712 int srstDeasserted;
1713 srstDeasserted = prevSrstAsserted && !srstAsserted;
1714
1715 static long long lastSrst = 0;
1716 waitMore = lastSrst + 2000 > current;
1717 if (srstDeasserted && !waitMore)
1718 {
1719 runSrstDeasserted = 1;
1720 lastSrst = current;
1721 }
1722
1723 if (!prevSrstAsserted && srstAsserted)
1724 {
1725 runSrstAsserted = 1;
1726 }
1727
1728 prevSrstAsserted = srstAsserted;
1729 prevPowerdropout = powerDropout;
1730
1731 if (srstDeasserted || powerRestored)
1732 {
1733 /* Other than logging the event we can't do anything here.
1734 * Issuing a reset is a particularly bad idea as we might
1735 * be inside a reset already.
1736 */
1737 }
1738
1739 return ERROR_OK;
1740 }
1741
1742 static void target_call_event_callbacks_all(enum target_event e) {
1743 struct target *target;
1744 target = all_targets;
1745 while (target) {
1746 target_call_event_callbacks(target, e);
1747 target = target->next;
1748 }
1749 }
1750
1751 /* process target state changes */
1752 static int handle_target(void *priv)
1753 {
1754 Jim_Interp *interp = (Jim_Interp *)priv;
1755 int retval = ERROR_OK;
1756
1757 /* we do not want to recurse here... */
1758 static int recursive = 0;
1759 if (! recursive)
1760 {
1761 recursive = 1;
1762 sense_handler();
1763 /* danger! running these procedures can trigger srst assertions and power dropouts.
1764 * We need to avoid an infinite loop/recursion here and we do that by
1765 * clearing the flags after running these events.
1766 */
1767 int did_something = 0;
1768 if (runSrstAsserted)
1769 {
1770 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1771 Jim_Eval(interp, "srst_asserted");
1772 did_something = 1;
1773 }
1774 if (runSrstDeasserted)
1775 {
1776 Jim_Eval(interp, "srst_deasserted");
1777 did_something = 1;
1778 }
1779 if (runPowerDropout)
1780 {
1781 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1782 Jim_Eval(interp, "power_dropout");
1783 did_something = 1;
1784 }
1785 if (runPowerRestore)
1786 {
1787 Jim_Eval(interp, "power_restore");
1788 did_something = 1;
1789 }
1790
1791 if (did_something)
1792 {
1793 /* clear detect flags */
1794 sense_handler();
1795 }
1796
1797 /* clear action flags */
1798
1799 runSrstAsserted = 0;
1800 runSrstDeasserted = 0;
1801 runPowerRestore = 0;
1802 runPowerDropout = 0;
1803
1804 recursive = 0;
1805 }
1806
1807 /* Poll targets for state changes unless that's globally disabled.
1808 * Skip targets that are currently disabled.
1809 */
1810 for (struct target *target = all_targets;
1811 is_jtag_poll_safe() && target;
1812 target = target->next)
1813 {
1814 if (!target->tap->enabled)
1815 continue;
1816
1817 /* only poll target if we've got power and srst isn't asserted */
1818 if (!powerDropout && !srstAsserted)
1819 {
1820 /* polling may fail silently until the target has been examined */
1821 if ((retval = target_poll(target)) != ERROR_OK)
1822 {
1823 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1824 return retval;
1825 }
1826 }
1827 }
1828
1829 return retval;
1830 }
1831
1832 COMMAND_HANDLER(handle_reg_command)
1833 {
1834 struct target *target;
1835 struct reg *reg = NULL;
1836 unsigned count = 0;
1837 char *value;
1838
1839 LOG_DEBUG("-");
1840
1841 target = get_current_target(CMD_CTX);
1842
1843 /* list all available registers for the current target */
1844 if (CMD_ARGC == 0)
1845 {
1846 struct reg_cache *cache = target->reg_cache;
1847
1848 count = 0;
1849 while (cache)
1850 {
1851 unsigned i;
1852
1853 command_print(CMD_CTX, "===== %s", cache->name);
1854
1855 for (i = 0, reg = cache->reg_list;
1856 i < cache->num_regs;
1857 i++, reg++, count++)
1858 {
1859 /* only print cached values if they are valid */
1860 if (reg->valid) {
1861 value = buf_to_str(reg->value,
1862 reg->size, 16);
1863 command_print(CMD_CTX,
1864 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1865 count, reg->name,
1866 reg->size, value,
1867 reg->dirty
1868 ? " (dirty)"
1869 : "");
1870 free(value);
1871 } else {
1872 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1873 count, reg->name,
1874 reg->size) ;
1875 }
1876 }
1877 cache = cache->next;
1878 }
1879
1880 return ERROR_OK;
1881 }
1882
1883 /* access a single register by its ordinal number */
1884 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1885 {
1886 unsigned num;
1887 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1888
1889 struct reg_cache *cache = target->reg_cache;
1890 count = 0;
1891 while (cache)
1892 {
1893 unsigned i;
1894 for (i = 0; i < cache->num_regs; i++)
1895 {
1896 if (count++ == num)
1897 {
1898 reg = &cache->reg_list[i];
1899 break;
1900 }
1901 }
1902 if (reg)
1903 break;
1904 cache = cache->next;
1905 }
1906
1907 if (!reg)
1908 {
1909 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1910 return ERROR_OK;
1911 }
1912 } else /* access a single register by its name */
1913 {
1914 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1915
1916 if (!reg)
1917 {
1918 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1919 return ERROR_OK;
1920 }
1921 }
1922
1923 /* display a register */
1924 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1925 {
1926 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1927 reg->valid = 0;
1928
1929 if (reg->valid == 0)
1930 {
1931 reg->type->get(reg);
1932 }
1933 value = buf_to_str(reg->value, reg->size, 16);
1934 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1935 free(value);
1936 return ERROR_OK;
1937 }
1938
1939 /* set register value */
1940 if (CMD_ARGC == 2)
1941 {
1942 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1943 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1944
1945 reg->type->set(reg, buf);
1946
1947 value = buf_to_str(reg->value, reg->size, 16);
1948 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1949 free(value);
1950
1951 free(buf);
1952
1953 return ERROR_OK;
1954 }
1955
1956 command_print(CMD_CTX, "usage: reg <#|name> [value]");
1957
1958 return ERROR_OK;
1959 }
1960
1961 COMMAND_HANDLER(handle_poll_command)
1962 {
1963 int retval = ERROR_OK;
1964 struct target *target = get_current_target(CMD_CTX);
1965
1966 if (CMD_ARGC == 0)
1967 {
1968 command_print(CMD_CTX, "background polling: %s",
1969 jtag_poll_get_enabled() ? "on" : "off");
1970 command_print(CMD_CTX, "TAP: %s (%s)",
1971 target->tap->dotted_name,
1972 target->tap->enabled ? "enabled" : "disabled");
1973 if (!target->tap->enabled)
1974 return ERROR_OK;
1975 if ((retval = target_poll(target)) != ERROR_OK)
1976 return retval;
1977 if ((retval = target_arch_state(target)) != ERROR_OK)
1978 return retval;
1979 }
1980 else if (CMD_ARGC == 1)
1981 {
1982 bool enable;
1983 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1984 jtag_poll_set_enabled(enable);
1985 }
1986 else
1987 {
1988 return ERROR_COMMAND_SYNTAX_ERROR;
1989 }
1990
1991 return retval;
1992 }
1993
1994 COMMAND_HANDLER(handle_wait_halt_command)
1995 {
1996 if (CMD_ARGC > 1)
1997 return ERROR_COMMAND_SYNTAX_ERROR;
1998
1999 unsigned ms = 5000;
2000 if (1 == CMD_ARGC)
2001 {
2002 int retval = parse_uint(CMD_ARGV[0], &ms);
2003 if (ERROR_OK != retval)
2004 {
2005 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2006 return ERROR_COMMAND_SYNTAX_ERROR;
2007 }
2008 // convert seconds (given) to milliseconds (needed)
2009 ms *= 1000;
2010 }
2011
2012 struct target *target = get_current_target(CMD_CTX);
2013 return target_wait_state(target, TARGET_HALTED, ms);
2014 }
2015
2016 /* wait for target state to change. The trick here is to have a low
2017 * latency for short waits and not to suck up all the CPU time
2018 * on longer waits.
2019 *
2020 * After 500ms, keep_alive() is invoked
2021 */
2022 int target_wait_state(struct target *target, enum target_state state, int ms)
2023 {
2024 int retval;
2025 long long then = 0, cur;
2026 int once = 1;
2027
2028 for (;;)
2029 {
2030 if ((retval = target_poll(target)) != ERROR_OK)
2031 return retval;
2032 if (target->state == state)
2033 {
2034 break;
2035 }
2036 cur = timeval_ms();
2037 if (once)
2038 {
2039 once = 0;
2040 then = timeval_ms();
2041 LOG_DEBUG("waiting for target %s...",
2042 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2043 }
2044
2045 if (cur-then > 500)
2046 {
2047 keep_alive();
2048 }
2049
2050 if ((cur-then) > ms)
2051 {
2052 LOG_ERROR("timed out while waiting for target %s",
2053 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2054 return ERROR_FAIL;
2055 }
2056 }
2057
2058 return ERROR_OK;
2059 }
2060
2061 COMMAND_HANDLER(handle_halt_command)
2062 {
2063 LOG_DEBUG("-");
2064
2065 struct target *target = get_current_target(CMD_CTX);
2066 int retval = target_halt(target);
2067 if (ERROR_OK != retval)
2068 return retval;
2069
2070 if (CMD_ARGC == 1)
2071 {
2072 unsigned wait;
2073 retval = parse_uint(CMD_ARGV[0], &wait);
2074 if (ERROR_OK != retval)
2075 return ERROR_COMMAND_SYNTAX_ERROR;
2076 if (!wait)
2077 return ERROR_OK;
2078 }
2079
2080 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2081 }
2082
2083 COMMAND_HANDLER(handle_soft_reset_halt_command)
2084 {
2085 struct target *target = get_current_target(CMD_CTX);
2086
2087 LOG_USER("requesting target halt and executing a soft reset");
2088
2089 target->type->soft_reset_halt(target);
2090
2091 return ERROR_OK;
2092 }
2093
2094 COMMAND_HANDLER(handle_reset_command)
2095 {
2096 if (CMD_ARGC > 1)
2097 return ERROR_COMMAND_SYNTAX_ERROR;
2098
2099 enum target_reset_mode reset_mode = RESET_RUN;
2100 if (CMD_ARGC == 1)
2101 {
2102 const Jim_Nvp *n;
2103 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2104 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2105 return ERROR_COMMAND_SYNTAX_ERROR;
2106 }
2107 reset_mode = n->value;
2108 }
2109
2110 /* reset *all* targets */
2111 return target_process_reset(CMD_CTX, reset_mode);
2112 }
2113
2114
2115 COMMAND_HANDLER(handle_resume_command)
2116 {
2117 int current = 1;
2118 if (CMD_ARGC > 1)
2119 return ERROR_COMMAND_SYNTAX_ERROR;
2120
2121 struct target *target = get_current_target(CMD_CTX);
2122 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2123
2124 /* with no CMD_ARGV, resume from current pc, addr = 0,
2125 * with one arguments, addr = CMD_ARGV[0],
2126 * handle breakpoints, not debugging */
2127 uint32_t addr = 0;
2128 if (CMD_ARGC == 1)
2129 {
2130 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2131 current = 0;
2132 }
2133
2134 return target_resume(target, current, addr, 1, 0);
2135 }
2136
2137 COMMAND_HANDLER(handle_step_command)
2138 {
2139 if (CMD_ARGC > 1)
2140 return ERROR_COMMAND_SYNTAX_ERROR;
2141
2142 LOG_DEBUG("-");
2143
2144 /* with no CMD_ARGV, step from current pc, addr = 0,
2145 * with one argument addr = CMD_ARGV[0],
2146 * handle breakpoints, debugging */
2147 uint32_t addr = 0;
2148 int current_pc = 1;
2149 if (CMD_ARGC == 1)
2150 {
2151 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2152 current_pc = 0;
2153 }
2154
2155 struct target *target = get_current_target(CMD_CTX);
2156
2157 return target->type->step(target, current_pc, addr, 1);
2158 }
2159
2160 static void handle_md_output(struct command_context *cmd_ctx,
2161 struct target *target, uint32_t address, unsigned size,
2162 unsigned count, const uint8_t *buffer)
2163 {
2164 const unsigned line_bytecnt = 32;
2165 unsigned line_modulo = line_bytecnt / size;
2166
2167 char output[line_bytecnt * 4 + 1];
2168 unsigned output_len = 0;
2169
2170 const char *value_fmt;
2171 switch (size) {
2172 case 4: value_fmt = "%8.8x "; break;
2173 case 2: value_fmt = "%4.4x "; break;
2174 case 1: value_fmt = "%2.2x "; break;
2175 default:
2176 /* "can't happen", caller checked */
2177 LOG_ERROR("invalid memory read size: %u", size);
2178 return;
2179 }
2180
2181 for (unsigned i = 0; i < count; i++)
2182 {
2183 if (i % line_modulo == 0)
2184 {
2185 output_len += snprintf(output + output_len,
2186 sizeof(output) - output_len,
2187 "0x%8.8x: ",
2188 (unsigned)(address + (i*size)));
2189 }
2190
2191 uint32_t value = 0;
2192 const uint8_t *value_ptr = buffer + i * size;
2193 switch (size) {
2194 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2195 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2196 case 1: value = *value_ptr;
2197 }
2198 output_len += snprintf(output + output_len,
2199 sizeof(output) - output_len,
2200 value_fmt, value);
2201
2202 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2203 {
2204 command_print(cmd_ctx, "%s", output);
2205 output_len = 0;
2206 }
2207 }
2208 }
2209
2210 COMMAND_HANDLER(handle_md_command)
2211 {
2212 if (CMD_ARGC < 1)
2213 return ERROR_COMMAND_SYNTAX_ERROR;
2214
2215 unsigned size = 0;
2216 switch (CMD_NAME[2]) {
2217 case 'w': size = 4; break;
2218 case 'h': size = 2; break;
2219 case 'b': size = 1; break;
2220 default: return ERROR_COMMAND_SYNTAX_ERROR;
2221 }
2222
2223 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2224 int (*fn)(struct target *target,
2225 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2226 if (physical)
2227 {
2228 CMD_ARGC--;
2229 CMD_ARGV++;
2230 fn=target_read_phys_memory;
2231 } else
2232 {
2233 fn=target_read_memory;
2234 }
2235 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2236 {
2237 return ERROR_COMMAND_SYNTAX_ERROR;
2238 }
2239
2240 uint32_t address;
2241 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2242
2243 unsigned count = 1;
2244 if (CMD_ARGC == 2)
2245 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2246
2247 uint8_t *buffer = calloc(count, size);
2248
2249 struct target *target = get_current_target(CMD_CTX);
2250 int retval = fn(target, address, size, count, buffer);
2251 if (ERROR_OK == retval)
2252 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2253
2254 free(buffer);
2255
2256 return retval;
2257 }
2258
2259 COMMAND_HANDLER(handle_mw_command)
2260 {
2261 if (CMD_ARGC < 2)
2262 {
2263 return ERROR_COMMAND_SYNTAX_ERROR;
2264 }
2265 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2266 int (*fn)(struct target *target,
2267 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2268 if (physical)
2269 {
2270 CMD_ARGC--;
2271 CMD_ARGV++;
2272 fn=target_write_phys_memory;
2273 } else
2274 {
2275 fn=target_write_memory;
2276 }
2277 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2278 return ERROR_COMMAND_SYNTAX_ERROR;
2279
2280 uint32_t address;
2281 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2282
2283 uint32_t value;
2284 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2285
2286 unsigned count = 1;
2287 if (CMD_ARGC == 3)
2288 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2289
2290 struct target *target = get_current_target(CMD_CTX);
2291 unsigned wordsize;
2292 uint8_t value_buf[4];
2293 switch (CMD_NAME[2])
2294 {
2295 case 'w':
2296 wordsize = 4;
2297 target_buffer_set_u32(target, value_buf, value);
2298 break;
2299 case 'h':
2300 wordsize = 2;
2301 target_buffer_set_u16(target, value_buf, value);
2302 break;
2303 case 'b':
2304 wordsize = 1;
2305 value_buf[0] = value;
2306 break;
2307 default:
2308 return ERROR_COMMAND_SYNTAX_ERROR;
2309 }
2310 for (unsigned i = 0; i < count; i++)
2311 {
2312 int retval = fn(target,
2313 address + i * wordsize, wordsize, 1, value_buf);
2314 if (ERROR_OK != retval)
2315 return retval;
2316 keep_alive();
2317 }
2318
2319 return ERROR_OK;
2320
2321 }
2322
2323 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2324 uint32_t *min_address, uint32_t *max_address)
2325 {
2326 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2327 return ERROR_COMMAND_SYNTAX_ERROR;
2328
2329 /* a base address isn't always necessary,
2330 * default to 0x0 (i.e. don't relocate) */
2331 if (CMD_ARGC >= 2)
2332 {
2333 uint32_t addr;
2334 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2335 image->base_address = addr;
2336 image->base_address_set = 1;
2337 }
2338 else
2339 image->base_address_set = 0;
2340
2341 image->start_address_set = 0;
2342
2343 if (CMD_ARGC >= 4)
2344 {
2345 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2346 }
2347 if (CMD_ARGC == 5)
2348 {
2349 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2350 // use size (given) to find max (required)
2351 *max_address += *min_address;
2352 }
2353
2354 if (*min_address > *max_address)
2355 return ERROR_COMMAND_SYNTAX_ERROR;
2356
2357 return ERROR_OK;
2358 }
2359
2360 COMMAND_HANDLER(handle_load_image_command)
2361 {
2362 uint8_t *buffer;
2363 size_t buf_cnt;
2364 uint32_t image_size;
2365 uint32_t min_address = 0;
2366 uint32_t max_address = 0xffffffff;
2367 int i;
2368 struct image image;
2369
2370 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2371 &image, &min_address, &max_address);
2372 if (ERROR_OK != retval)
2373 return retval;
2374
2375 struct target *target = get_current_target(CMD_CTX);
2376
2377 struct duration bench;
2378 duration_start(&bench);
2379
2380 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2381 {
2382 return ERROR_OK;
2383 }
2384
2385 image_size = 0x0;
2386 retval = ERROR_OK;
2387 for (i = 0; i < image.num_sections; i++)
2388 {
2389 buffer = malloc(image.sections[i].size);
2390 if (buffer == NULL)
2391 {
2392 command_print(CMD_CTX,
2393 "error allocating buffer for section (%d bytes)",
2394 (int)(image.sections[i].size));
2395 break;
2396 }
2397
2398 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2399 {
2400 free(buffer);
2401 break;
2402 }
2403
2404 uint32_t offset = 0;
2405 uint32_t length = buf_cnt;
2406
2407 /* DANGER!!! beware of unsigned comparision here!!! */
2408
2409 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2410 (image.sections[i].base_address < max_address))
2411 {
2412 if (image.sections[i].base_address < min_address)
2413 {
2414 /* clip addresses below */
2415 offset += min_address-image.sections[i].base_address;
2416 length -= offset;
2417 }
2418
2419 if (image.sections[i].base_address + buf_cnt > max_address)
2420 {
2421 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2422 }
2423
2424 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2425 {
2426 free(buffer);
2427 break;
2428 }
2429 image_size += length;
2430 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2431 (unsigned int)length,
2432 image.sections[i].base_address + offset);
2433 }
2434
2435 free(buffer);
2436 }
2437
2438 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2439 {
2440 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2441 "in %fs (%0.3f kb/s)", image_size,
2442 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2443 }
2444
2445 image_close(&image);
2446
2447 return retval;
2448
2449 }
2450
2451 COMMAND_HANDLER(handle_dump_image_command)
2452 {
2453 struct fileio fileio;
2454
2455 uint8_t buffer[560];
2456 int retvaltemp;
2457
2458
2459 struct target *target = get_current_target(CMD_CTX);
2460
2461 if (CMD_ARGC != 3)
2462 {
2463 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2464 return ERROR_OK;
2465 }
2466
2467 uint32_t address;
2468 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2469 uint32_t size;
2470 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2471
2472 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2473 {
2474 return ERROR_OK;
2475 }
2476
2477 struct duration bench;
2478 duration_start(&bench);
2479
2480 int retval = ERROR_OK;
2481 while (size > 0)
2482 {
2483 size_t size_written;
2484 uint32_t this_run_size = (size > 560) ? 560 : size;
2485 retval = target_read_buffer(target, address, this_run_size, buffer);
2486 if (retval != ERROR_OK)
2487 {
2488 break;
2489 }
2490
2491 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2492 if (retval != ERROR_OK)
2493 {
2494 break;
2495 }
2496
2497 size -= this_run_size;
2498 address += this_run_size;
2499 }
2500
2501 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2502 return retvaltemp;
2503
2504 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2505 {
2506 command_print(CMD_CTX,
2507 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2508 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2509 }
2510
2511 return retval;
2512 }
2513
2514 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2515 {
2516 uint8_t *buffer;
2517 size_t buf_cnt;
2518 uint32_t image_size;
2519 int i;
2520 int retval;
2521 uint32_t checksum = 0;
2522 uint32_t mem_checksum = 0;
2523
2524 struct image image;
2525
2526 struct target *target = get_current_target(CMD_CTX);
2527
2528 if (CMD_ARGC < 1)
2529 {
2530 return ERROR_COMMAND_SYNTAX_ERROR;
2531 }
2532
2533 if (!target)
2534 {
2535 LOG_ERROR("no target selected");
2536 return ERROR_FAIL;
2537 }
2538
2539 struct duration bench;
2540 duration_start(&bench);
2541
2542 if (CMD_ARGC >= 2)
2543 {
2544 uint32_t addr;
2545 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2546 image.base_address = addr;
2547 image.base_address_set = 1;
2548 }
2549 else
2550 {
2551 image.base_address_set = 0;
2552 image.base_address = 0x0;
2553 }
2554
2555 image.start_address_set = 0;
2556
2557 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2558 {
2559 return retval;
2560 }
2561
2562 image_size = 0x0;
2563 retval = ERROR_OK;
2564 for (i = 0; i < image.num_sections; i++)
2565 {
2566 buffer = malloc(image.sections[i].size);
2567 if (buffer == NULL)
2568 {
2569 command_print(CMD_CTX,
2570 "error allocating buffer for section (%d bytes)",
2571 (int)(image.sections[i].size));
2572 break;
2573 }
2574 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2575 {
2576 free(buffer);
2577 break;
2578 }
2579
2580 if (verify)
2581 {
2582 /* calculate checksum of image */
2583 image_calculate_checksum(buffer, buf_cnt, &checksum);
2584
2585 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2586 if (retval != ERROR_OK)
2587 {
2588 free(buffer);
2589 break;
2590 }
2591
2592 if (checksum != mem_checksum)
2593 {
2594 /* failed crc checksum, fall back to a binary compare */
2595 uint8_t *data;
2596
2597 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2598
2599 data = (uint8_t*)malloc(buf_cnt);
2600
2601 /* Can we use 32bit word accesses? */
2602 int size = 1;
2603 int count = buf_cnt;
2604 if ((count % 4) == 0)
2605 {
2606 size *= 4;
2607 count /= 4;
2608 }
2609 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2610 if (retval == ERROR_OK)
2611 {
2612 uint32_t t;
2613 for (t = 0; t < buf_cnt; t++)
2614 {
2615 if (data[t] != buffer[t])
2616 {
2617 command_print(CMD_CTX,
2618 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2619 (unsigned)(t + image.sections[i].base_address),
2620 data[t],
2621 buffer[t]);
2622 free(data);
2623 free(buffer);
2624 retval = ERROR_FAIL;
2625 goto done;
2626 }
2627 if ((t%16384) == 0)
2628 {
2629 keep_alive();
2630 }
2631 }
2632 }
2633
2634 free(data);
2635 }
2636 } else
2637 {
2638 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2639 image.sections[i].base_address,
2640 buf_cnt);
2641 }
2642
2643 free(buffer);
2644 image_size += buf_cnt;
2645 }
2646 done:
2647 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2648 {
2649 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2650 "in %fs (%0.3f kb/s)", image_size,
2651 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2652 }
2653
2654 image_close(&image);
2655
2656 return retval;
2657 }
2658
2659 COMMAND_HANDLER(handle_verify_image_command)
2660 {
2661 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2662 }
2663
2664 COMMAND_HANDLER(handle_test_image_command)
2665 {
2666 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2667 }
2668
2669 static int handle_bp_command_list(struct command_context *cmd_ctx)
2670 {
2671 struct target *target = get_current_target(cmd_ctx);
2672 struct breakpoint *breakpoint = target->breakpoints;
2673 while (breakpoint)
2674 {
2675 if (breakpoint->type == BKPT_SOFT)
2676 {
2677 char* buf = buf_to_str(breakpoint->orig_instr,
2678 breakpoint->length, 16);
2679 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2680 breakpoint->address,
2681 breakpoint->length,
2682 breakpoint->set, buf);
2683 free(buf);
2684 }
2685 else
2686 {
2687 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2688 breakpoint->address,
2689 breakpoint->length, breakpoint->set);
2690 }
2691
2692 breakpoint = breakpoint->next;
2693 }
2694 return ERROR_OK;
2695 }
2696
2697 static int handle_bp_command_set(struct command_context *cmd_ctx,
2698 uint32_t addr, uint32_t length, int hw)
2699 {
2700 struct target *target = get_current_target(cmd_ctx);
2701 int retval = breakpoint_add(target, addr, length, hw);
2702 if (ERROR_OK == retval)
2703 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2704 else
2705 LOG_ERROR("Failure setting breakpoint");
2706 return retval;
2707 }
2708
2709 COMMAND_HANDLER(handle_bp_command)
2710 {
2711 if (CMD_ARGC == 0)
2712 return handle_bp_command_list(CMD_CTX);
2713
2714 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2715 {
2716 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2717 return ERROR_COMMAND_SYNTAX_ERROR;
2718 }
2719
2720 uint32_t addr;
2721 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2722 uint32_t length;
2723 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2724
2725 int hw = BKPT_SOFT;
2726 if (CMD_ARGC == 3)
2727 {
2728 if (strcmp(CMD_ARGV[2], "hw") == 0)
2729 hw = BKPT_HARD;
2730 else
2731 return ERROR_COMMAND_SYNTAX_ERROR;
2732 }
2733
2734 return handle_bp_command_set(CMD_CTX, addr, length, hw);
2735 }
2736
2737 COMMAND_HANDLER(handle_rbp_command)
2738 {
2739 if (CMD_ARGC != 1)
2740 return ERROR_COMMAND_SYNTAX_ERROR;
2741
2742 uint32_t addr;
2743 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2744
2745 struct target *target = get_current_target(CMD_CTX);
2746 breakpoint_remove(target, addr);
2747
2748 return ERROR_OK;
2749 }
2750
2751 COMMAND_HANDLER(handle_wp_command)
2752 {
2753 struct target *target = get_current_target(CMD_CTX);
2754
2755 if (CMD_ARGC == 0)
2756 {
2757 struct watchpoint *watchpoint = target->watchpoints;
2758
2759 while (watchpoint)
2760 {
2761 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2762 ", len: 0x%8.8" PRIx32
2763 ", r/w/a: %i, value: 0x%8.8" PRIx32
2764 ", mask: 0x%8.8" PRIx32,
2765 watchpoint->address,
2766 watchpoint->length,
2767 (int)watchpoint->rw,
2768 watchpoint->value,
2769 watchpoint->mask);
2770 watchpoint = watchpoint->next;
2771 }
2772 return ERROR_OK;
2773 }
2774
2775 enum watchpoint_rw type = WPT_ACCESS;
2776 uint32_t addr = 0;
2777 uint32_t length = 0;
2778 uint32_t data_value = 0x0;
2779 uint32_t data_mask = 0xffffffff;
2780
2781 switch (CMD_ARGC)
2782 {
2783 case 5:
2784 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2785 // fall through
2786 case 4:
2787 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2788 // fall through
2789 case 3:
2790 switch (CMD_ARGV[2][0])
2791 {
2792 case 'r':
2793 type = WPT_READ;
2794 break;
2795 case 'w':
2796 type = WPT_WRITE;
2797 break;
2798 case 'a':
2799 type = WPT_ACCESS;
2800 break;
2801 default:
2802 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2803 return ERROR_COMMAND_SYNTAX_ERROR;
2804 }
2805 // fall through
2806 case 2:
2807 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2808 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2809 break;
2810
2811 default:
2812 command_print(CMD_CTX, "usage: wp [address length "
2813 "[(r|w|a) [value [mask]]]]");
2814 return ERROR_COMMAND_SYNTAX_ERROR;
2815 }
2816
2817 int retval = watchpoint_add(target, addr, length, type,
2818 data_value, data_mask);
2819 if (ERROR_OK != retval)
2820 LOG_ERROR("Failure setting watchpoints");
2821
2822 return retval;
2823 }
2824
2825 COMMAND_HANDLER(handle_rwp_command)
2826 {
2827 if (CMD_ARGC != 1)
2828 return ERROR_COMMAND_SYNTAX_ERROR;
2829
2830 uint32_t addr;
2831 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2832
2833 struct target *target = get_current_target(CMD_CTX);
2834 watchpoint_remove(target, addr);
2835
2836 return ERROR_OK;
2837 }
2838
2839
2840 /**
2841 * Translate a virtual address to a physical address.
2842 *
2843 * The low-level target implementation must have logged a detailed error
2844 * which is forwarded to telnet/GDB session.
2845 */
2846 COMMAND_HANDLER(handle_virt2phys_command)
2847 {
2848 if (CMD_ARGC != 1)
2849 return ERROR_COMMAND_SYNTAX_ERROR;
2850
2851 uint32_t va;
2852 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2853 uint32_t pa;
2854
2855 struct target *target = get_current_target(CMD_CTX);
2856 int retval = target->type->virt2phys(target, va, &pa);
2857 if (retval == ERROR_OK)
2858 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2859
2860 return retval;
2861 }
2862
2863 static void writeData(FILE *f, const void *data, size_t len)
2864 {
2865 size_t written = fwrite(data, 1, len, f);
2866 if (written != len)
2867 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2868 }
2869
2870 static void writeLong(FILE *f, int l)
2871 {
2872 int i;
2873 for (i = 0; i < 4; i++)
2874 {
2875 char c = (l >> (i*8))&0xff;
2876 writeData(f, &c, 1);
2877 }
2878
2879 }
2880
2881 static void writeString(FILE *f, char *s)
2882 {
2883 writeData(f, s, strlen(s));
2884 }
2885
2886 /* Dump a gmon.out histogram file. */
2887 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2888 {
2889 uint32_t i;
2890 FILE *f = fopen(filename, "w");
2891 if (f == NULL)
2892 return;
2893 writeString(f, "gmon");
2894 writeLong(f, 0x00000001); /* Version */
2895 writeLong(f, 0); /* padding */
2896 writeLong(f, 0); /* padding */
2897 writeLong(f, 0); /* padding */
2898
2899 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
2900 writeData(f, &zero, 1);
2901
2902 /* figure out bucket size */
2903 uint32_t min = samples[0];
2904 uint32_t max = samples[0];
2905 for (i = 0; i < sampleNum; i++)
2906 {
2907 if (min > samples[i])
2908 {
2909 min = samples[i];
2910 }
2911 if (max < samples[i])
2912 {
2913 max = samples[i];
2914 }
2915 }
2916
2917 int addressSpace = (max-min + 1);
2918
2919 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2920 uint32_t length = addressSpace;
2921 if (length > maxBuckets)
2922 {
2923 length = maxBuckets;
2924 }
2925 int *buckets = malloc(sizeof(int)*length);
2926 if (buckets == NULL)
2927 {
2928 fclose(f);
2929 return;
2930 }
2931 memset(buckets, 0, sizeof(int)*length);
2932 for (i = 0; i < sampleNum;i++)
2933 {
2934 uint32_t address = samples[i];
2935 long long a = address-min;
2936 long long b = length-1;
2937 long long c = addressSpace-1;
2938 int index = (a*b)/c; /* danger!!!! int32 overflows */
2939 buckets[index]++;
2940 }
2941
2942 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2943 writeLong(f, min); /* low_pc */
2944 writeLong(f, max); /* high_pc */
2945 writeLong(f, length); /* # of samples */
2946 writeLong(f, 64000000); /* 64MHz */
2947 writeString(f, "seconds");
2948 for (i = 0; i < (15-strlen("seconds")); i++)
2949 writeData(f, &zero, 1);
2950 writeString(f, "s");
2951
2952 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2953
2954 char *data = malloc(2*length);
2955 if (data != NULL)
2956 {
2957 for (i = 0; i < length;i++)
2958 {
2959 int val;
2960 val = buckets[i];
2961 if (val > 65535)
2962 {
2963 val = 65535;
2964 }
2965 data[i*2]=val&0xff;
2966 data[i*2 + 1]=(val >> 8)&0xff;
2967 }
2968 free(buckets);
2969 writeData(f, data, length * 2);
2970 free(data);
2971 } else
2972 {
2973 free(buckets);
2974 }
2975
2976 fclose(f);
2977 }
2978
2979 /* profiling samples the CPU PC as quickly as OpenOCD is able,
2980 * which will be used as a random sampling of PC */
2981 COMMAND_HANDLER(handle_profile_command)
2982 {
2983 struct target *target = get_current_target(CMD_CTX);
2984 struct timeval timeout, now;
2985
2986 gettimeofday(&timeout, NULL);
2987 if (CMD_ARGC != 2)
2988 {
2989 return ERROR_COMMAND_SYNTAX_ERROR;
2990 }
2991 unsigned offset;
2992 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
2993
2994 timeval_add_time(&timeout, offset, 0);
2995
2996 /**
2997 * @todo: Some cores let us sample the PC without the
2998 * annoying halt/resume step; for example, ARMv7 PCSR.
2999 * Provide a way to use that more efficient mechanism.
3000 */
3001
3002 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3003
3004 static const int maxSample = 10000;
3005 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3006 if (samples == NULL)
3007 return ERROR_OK;
3008
3009 int numSamples = 0;
3010 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3011 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3012
3013 for (;;)
3014 {
3015 int retval;
3016 target_poll(target);
3017 if (target->state == TARGET_HALTED)
3018 {
3019 uint32_t t=*((uint32_t *)reg->value);
3020 samples[numSamples++]=t;
3021 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3022 target_poll(target);
3023 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3024 } else if (target->state == TARGET_RUNNING)
3025 {
3026 /* We want to quickly sample the PC. */
3027 if ((retval = target_halt(target)) != ERROR_OK)
3028 {
3029 free(samples);
3030 return retval;
3031 }
3032 } else
3033 {
3034 command_print(CMD_CTX, "Target not halted or running");
3035 retval = ERROR_OK;
3036 break;
3037 }
3038 if (retval != ERROR_OK)
3039 {
3040 break;
3041 }
3042
3043 gettimeofday(&now, NULL);
3044 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3045 {
3046 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3047 if ((retval = target_poll(target)) != ERROR_OK)
3048 {
3049 free(samples);
3050 return retval;
3051 }
3052 if (target->state == TARGET_HALTED)
3053 {
3054 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3055 }
3056 if ((retval = target_poll(target)) != ERROR_OK)
3057 {
3058 free(samples);
3059 return retval;
3060 }
3061 writeGmon(samples, numSamples, CMD_ARGV[1]);
3062 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3063 break;
3064 }
3065 }
3066 free(samples);
3067
3068 return ERROR_OK;
3069 }
3070
3071 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3072 {
3073 char *namebuf;
3074 Jim_Obj *nameObjPtr, *valObjPtr;
3075 int result;
3076
3077 namebuf = alloc_printf("%s(%d)", varname, idx);
3078 if (!namebuf)
3079 return JIM_ERR;
3080
3081 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3082 valObjPtr = Jim_NewIntObj(interp, val);
3083 if (!nameObjPtr || !valObjPtr)
3084 {
3085 free(namebuf);
3086 return JIM_ERR;
3087 }
3088
3089 Jim_IncrRefCount(nameObjPtr);
3090 Jim_IncrRefCount(valObjPtr);
3091 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3092 Jim_DecrRefCount(interp, nameObjPtr);
3093 Jim_DecrRefCount(interp, valObjPtr);
3094 free(namebuf);
3095 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3096 return result;
3097 }
3098
3099 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3100 {
3101 struct command_context *context;
3102 struct target *target;
3103
3104 context = Jim_GetAssocData(interp, "context");
3105 if (context == NULL)
3106 {
3107 LOG_ERROR("mem2array: no command context");
3108 return JIM_ERR;
3109 }
3110 target = get_current_target(context);
3111 if (target == NULL)
3112 {
3113 LOG_ERROR("mem2array: no current target");
3114 return JIM_ERR;
3115 }
3116
3117 return target_mem2array(interp, target, argc-1, argv + 1);
3118 }
3119
3120 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3121 {
3122 long l;
3123 uint32_t width;
3124 int len;
3125 uint32_t addr;
3126 uint32_t count;
3127 uint32_t v;
3128 const char *varname;
3129 int n, e, retval;
3130 uint32_t i;
3131
3132 /* argv[1] = name of array to receive the data
3133 * argv[2] = desired width
3134 * argv[3] = memory address
3135 * argv[4] = count of times to read
3136 */
3137 if (argc != 4) {
3138 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3139 return JIM_ERR;
3140 }
3141 varname = Jim_GetString(argv[0], &len);
3142 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3143
3144 e = Jim_GetLong(interp, argv[1], &l);
3145 width = l;
3146 if (e != JIM_OK) {
3147 return e;
3148 }
3149
3150 e = Jim_GetLong(interp, argv[2], &l);
3151 addr = l;
3152 if (e != JIM_OK) {
3153 return e;
3154 }
3155 e = Jim_GetLong(interp, argv[3], &l);
3156 len = l;
3157 if (e != JIM_OK) {
3158 return e;
3159 }
3160 switch (width) {
3161 case 8:
3162 width = 1;
3163 break;
3164 case 16:
3165 width = 2;
3166 break;
3167 case 32:
3168 width = 4;
3169 break;
3170 default:
3171 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3172 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3173 return JIM_ERR;
3174 }
3175 if (len == 0) {
3176 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3177 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3178 return JIM_ERR;
3179 }
3180 if ((addr + (len * width)) < addr) {
3181 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3182 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3183 return JIM_ERR;
3184 }
3185 /* absurd transfer size? */
3186 if (len > 65536) {
3187 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3188 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3189 return JIM_ERR;
3190 }
3191
3192 if ((width == 1) ||
3193 ((width == 2) && ((addr & 1) == 0)) ||
3194 ((width == 4) && ((addr & 3) == 0))) {
3195 /* all is well */
3196 } else {
3197 char buf[100];
3198 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3199 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3200 addr,
3201 width);
3202 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3203 return JIM_ERR;
3204 }
3205
3206 /* Transfer loop */
3207
3208 /* index counter */
3209 n = 0;
3210
3211 size_t buffersize = 4096;
3212 uint8_t *buffer = malloc(buffersize<