fce1cd42dff740bab04c97e1152b4053350a51ea
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm3_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104
105 static struct target_type *target_types[] = {
106 &arm7tdmi_target,
107 &arm9tdmi_target,
108 &arm920t_target,
109 &arm720t_target,
110 &arm966e_target,
111 &arm946e_target,
112 &arm926ejs_target,
113 &fa526_target,
114 &feroceon_target,
115 &dragonite_target,
116 &xscale_target,
117 &cortexm3_target,
118 &cortexa8_target,
119 &cortexr4_target,
120 &arm11_target,
121 &mips_m4k_target,
122 &avr_target,
123 &dsp563xx_target,
124 &dsp5680xx_target,
125 &testee_target,
126 &avr32_ap7k_target,
127 &hla_target,
128 &nds32_v2_target,
129 &nds32_v3_target,
130 &nds32_v3m_target,
131 NULL,
132 };
133
134 struct target *all_targets;
135 static struct target_event_callback *target_event_callbacks;
136 static struct target_timer_callback *target_timer_callbacks;
137 static const int polling_interval = 100;
138
139 static const Jim_Nvp nvp_assert[] = {
140 { .name = "assert", NVP_ASSERT },
141 { .name = "deassert", NVP_DEASSERT },
142 { .name = "T", NVP_ASSERT },
143 { .name = "F", NVP_DEASSERT },
144 { .name = "t", NVP_ASSERT },
145 { .name = "f", NVP_DEASSERT },
146 { .name = NULL, .value = -1 }
147 };
148
149 static const Jim_Nvp nvp_error_target[] = {
150 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
151 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
152 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
153 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
154 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
155 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
156 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
157 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
158 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
159 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
160 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
161 { .value = -1, .name = NULL }
162 };
163
164 static const char *target_strerror_safe(int err)
165 {
166 const Jim_Nvp *n;
167
168 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
169 if (n->name == NULL)
170 return "unknown";
171 else
172 return n->name;
173 }
174
175 static const Jim_Nvp nvp_target_event[] = {
176
177 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
178 { .value = TARGET_EVENT_HALTED, .name = "halted" },
179 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
180 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
181 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
182
183 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
184 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
185
186 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
187 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
188 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
189 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
190 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
191 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
192 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
193 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
194 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
195 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
196 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
197 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
198
199 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
200 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
201
202 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
203 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
204
205 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
206 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
207
208 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
209 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
210
211 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
212 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
213
214 { .name = NULL, .value = -1 }
215 };
216
217 static const Jim_Nvp nvp_target_state[] = {
218 { .name = "unknown", .value = TARGET_UNKNOWN },
219 { .name = "running", .value = TARGET_RUNNING },
220 { .name = "halted", .value = TARGET_HALTED },
221 { .name = "reset", .value = TARGET_RESET },
222 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
223 { .name = NULL, .value = -1 },
224 };
225
226 static const Jim_Nvp nvp_target_debug_reason[] = {
227 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
228 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
229 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
230 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
231 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
232 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
233 { .name = "program-exit" , .value = DBG_REASON_EXIT },
234 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
235 { .name = NULL, .value = -1 },
236 };
237
238 static const Jim_Nvp nvp_target_endian[] = {
239 { .name = "big", .value = TARGET_BIG_ENDIAN },
240 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
241 { .name = "be", .value = TARGET_BIG_ENDIAN },
242 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
243 { .name = NULL, .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_reset_modes[] = {
247 { .name = "unknown", .value = RESET_UNKNOWN },
248 { .name = "run" , .value = RESET_RUN },
249 { .name = "halt" , .value = RESET_HALT },
250 { .name = "init" , .value = RESET_INIT },
251 { .name = NULL , .value = -1 },
252 };
253
254 const char *debug_reason_name(struct target *t)
255 {
256 const char *cp;
257
258 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
259 t->debug_reason)->name;
260 if (!cp) {
261 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
262 cp = "(*BUG*unknown*BUG*)";
263 }
264 return cp;
265 }
266
267 const char *target_state_name(struct target *t)
268 {
269 const char *cp;
270 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
271 if (!cp) {
272 LOG_ERROR("Invalid target state: %d", (int)(t->state));
273 cp = "(*BUG*unknown*BUG*)";
274 }
275 return cp;
276 }
277
278 /* determine the number of the new target */
279 static int new_target_number(void)
280 {
281 struct target *t;
282 int x;
283
284 /* number is 0 based */
285 x = -1;
286 t = all_targets;
287 while (t) {
288 if (x < t->target_number)
289 x = t->target_number;
290 t = t->next;
291 }
292 return x + 1;
293 }
294
295 /* read a uint32_t from a buffer in target memory endianness */
296 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
297 {
298 if (target->endianness == TARGET_LITTLE_ENDIAN)
299 return le_to_h_u32(buffer);
300 else
301 return be_to_h_u32(buffer);
302 }
303
304 /* read a uint24_t from a buffer in target memory endianness */
305 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
306 {
307 if (target->endianness == TARGET_LITTLE_ENDIAN)
308 return le_to_h_u24(buffer);
309 else
310 return be_to_h_u24(buffer);
311 }
312
313 /* read a uint16_t from a buffer in target memory endianness */
314 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
315 {
316 if (target->endianness == TARGET_LITTLE_ENDIAN)
317 return le_to_h_u16(buffer);
318 else
319 return be_to_h_u16(buffer);
320 }
321
322 /* read a uint8_t from a buffer in target memory endianness */
323 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
324 {
325 return *buffer & 0x0ff;
326 }
327
328 /* write a uint32_t to a buffer in target memory endianness */
329 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
330 {
331 if (target->endianness == TARGET_LITTLE_ENDIAN)
332 h_u32_to_le(buffer, value);
333 else
334 h_u32_to_be(buffer, value);
335 }
336
337 /* write a uint24_t to a buffer in target memory endianness */
338 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
339 {
340 if (target->endianness == TARGET_LITTLE_ENDIAN)
341 h_u24_to_le(buffer, value);
342 else
343 h_u24_to_be(buffer, value);
344 }
345
346 /* write a uint16_t to a buffer in target memory endianness */
347 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
348 {
349 if (target->endianness == TARGET_LITTLE_ENDIAN)
350 h_u16_to_le(buffer, value);
351 else
352 h_u16_to_be(buffer, value);
353 }
354
355 /* write a uint8_t to a buffer in target memory endianness */
356 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
357 {
358 *buffer = value;
359 }
360
361 /* write a uint32_t array to a buffer in target memory endianness */
362 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
363 {
364 uint32_t i;
365 for (i = 0; i < count; i++)
366 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
367 }
368
369 /* write a uint16_t array to a buffer in target memory endianness */
370 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
371 {
372 uint32_t i;
373 for (i = 0; i < count; i++)
374 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
375 }
376
377 /* write a uint32_t array to a buffer in target memory endianness */
378 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
379 {
380 uint32_t i;
381 for (i = 0; i < count; i++)
382 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
383 }
384
385 /* write a uint16_t array to a buffer in target memory endianness */
386 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
387 {
388 uint32_t i;
389 for (i = 0; i < count; i++)
390 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
391 }
392
393 /* return a pointer to a configured target; id is name or number */
394 struct target *get_target(const char *id)
395 {
396 struct target *target;
397
398 /* try as tcltarget name */
399 for (target = all_targets; target; target = target->next) {
400 if (target_name(target) == NULL)
401 continue;
402 if (strcmp(id, target_name(target)) == 0)
403 return target;
404 }
405
406 /* It's OK to remove this fallback sometime after August 2010 or so */
407
408 /* no match, try as number */
409 unsigned num;
410 if (parse_uint(id, &num) != ERROR_OK)
411 return NULL;
412
413 for (target = all_targets; target; target = target->next) {
414 if (target->target_number == (int)num) {
415 LOG_WARNING("use '%s' as target identifier, not '%u'",
416 target_name(target), num);
417 return target;
418 }
419 }
420
421 return NULL;
422 }
423
424 /* returns a pointer to the n-th configured target */
425 static struct target *get_target_by_num(int num)
426 {
427 struct target *target = all_targets;
428
429 while (target) {
430 if (target->target_number == num)
431 return target;
432 target = target->next;
433 }
434
435 return NULL;
436 }
437
438 struct target *get_current_target(struct command_context *cmd_ctx)
439 {
440 struct target *target = get_target_by_num(cmd_ctx->current_target);
441
442 if (target == NULL) {
443 LOG_ERROR("BUG: current_target out of bounds");
444 exit(-1);
445 }
446
447 return target;
448 }
449
450 int target_poll(struct target *target)
451 {
452 int retval;
453
454 /* We can't poll until after examine */
455 if (!target_was_examined(target)) {
456 /* Fail silently lest we pollute the log */
457 return ERROR_FAIL;
458 }
459
460 retval = target->type->poll(target);
461 if (retval != ERROR_OK)
462 return retval;
463
464 if (target->halt_issued) {
465 if (target->state == TARGET_HALTED)
466 target->halt_issued = false;
467 else {
468 long long t = timeval_ms() - target->halt_issued_time;
469 if (t > DEFAULT_HALT_TIMEOUT) {
470 target->halt_issued = false;
471 LOG_INFO("Halt timed out, wake up GDB.");
472 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
473 }
474 }
475 }
476
477 return ERROR_OK;
478 }
479
480 int target_halt(struct target *target)
481 {
482 int retval;
483 /* We can't poll until after examine */
484 if (!target_was_examined(target)) {
485 LOG_ERROR("Target not examined yet");
486 return ERROR_FAIL;
487 }
488
489 retval = target->type->halt(target);
490 if (retval != ERROR_OK)
491 return retval;
492
493 target->halt_issued = true;
494 target->halt_issued_time = timeval_ms();
495
496 return ERROR_OK;
497 }
498
499 /**
500 * Make the target (re)start executing using its saved execution
501 * context (possibly with some modifications).
502 *
503 * @param target Which target should start executing.
504 * @param current True to use the target's saved program counter instead
505 * of the address parameter
506 * @param address Optionally used as the program counter.
507 * @param handle_breakpoints True iff breakpoints at the resumption PC
508 * should be skipped. (For example, maybe execution was stopped by
509 * such a breakpoint, in which case it would be counterprodutive to
510 * let it re-trigger.
511 * @param debug_execution False if all working areas allocated by OpenOCD
512 * should be released and/or restored to their original contents.
513 * (This would for example be true to run some downloaded "helper"
514 * algorithm code, which resides in one such working buffer and uses
515 * another for data storage.)
516 *
517 * @todo Resolve the ambiguity about what the "debug_execution" flag
518 * signifies. For example, Target implementations don't agree on how
519 * it relates to invalidation of the register cache, or to whether
520 * breakpoints and watchpoints should be enabled. (It would seem wrong
521 * to enable breakpoints when running downloaded "helper" algorithms
522 * (debug_execution true), since the breakpoints would be set to match
523 * target firmware being debugged, not the helper algorithm.... and
524 * enabling them could cause such helpers to malfunction (for example,
525 * by overwriting data with a breakpoint instruction. On the other
526 * hand the infrastructure for running such helpers might use this
527 * procedure but rely on hardware breakpoint to detect termination.)
528 */
529 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
530 {
531 int retval;
532
533 /* We can't poll until after examine */
534 if (!target_was_examined(target)) {
535 LOG_ERROR("Target not examined yet");
536 return ERROR_FAIL;
537 }
538
539 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
540
541 /* note that resume *must* be asynchronous. The CPU can halt before
542 * we poll. The CPU can even halt at the current PC as a result of
543 * a software breakpoint being inserted by (a bug?) the application.
544 */
545 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
546 if (retval != ERROR_OK)
547 return retval;
548
549 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
550
551 return retval;
552 }
553
554 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
555 {
556 char buf[100];
557 int retval;
558 Jim_Nvp *n;
559 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
560 if (n->name == NULL) {
561 LOG_ERROR("invalid reset mode");
562 return ERROR_FAIL;
563 }
564
565 /* disable polling during reset to make reset event scripts
566 * more predictable, i.e. dr/irscan & pathmove in events will
567 * not have JTAG operations injected into the middle of a sequence.
568 */
569 bool save_poll = jtag_poll_get_enabled();
570
571 jtag_poll_set_enabled(false);
572
573 sprintf(buf, "ocd_process_reset %s", n->name);
574 retval = Jim_Eval(cmd_ctx->interp, buf);
575
576 jtag_poll_set_enabled(save_poll);
577
578 if (retval != JIM_OK) {
579 Jim_MakeErrorMessage(cmd_ctx->interp);
580 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
581 return ERROR_FAIL;
582 }
583
584 /* We want any events to be processed before the prompt */
585 retval = target_call_timer_callbacks_now();
586
587 struct target *target;
588 for (target = all_targets; target; target = target->next) {
589 target->type->check_reset(target);
590 target->running_alg = false;
591 }
592
593 return retval;
594 }
595
596 static int identity_virt2phys(struct target *target,
597 uint32_t virtual, uint32_t *physical)
598 {
599 *physical = virtual;
600 return ERROR_OK;
601 }
602
603 static int no_mmu(struct target *target, int *enabled)
604 {
605 *enabled = 0;
606 return ERROR_OK;
607 }
608
609 static int default_examine(struct target *target)
610 {
611 target_set_examined(target);
612 return ERROR_OK;
613 }
614
615 /* no check by default */
616 static int default_check_reset(struct target *target)
617 {
618 return ERROR_OK;
619 }
620
621 int target_examine_one(struct target *target)
622 {
623 return target->type->examine(target);
624 }
625
626 static int jtag_enable_callback(enum jtag_event event, void *priv)
627 {
628 struct target *target = priv;
629
630 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
631 return ERROR_OK;
632
633 jtag_unregister_event_callback(jtag_enable_callback, target);
634
635 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
636
637 int retval = target_examine_one(target);
638 if (retval != ERROR_OK)
639 return retval;
640
641 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
642
643 return retval;
644 }
645
646 /* Targets that correctly implement init + examine, i.e.
647 * no communication with target during init:
648 *
649 * XScale
650 */
651 int target_examine(void)
652 {
653 int retval = ERROR_OK;
654 struct target *target;
655
656 for (target = all_targets; target; target = target->next) {
657 /* defer examination, but don't skip it */
658 if (!target->tap->enabled) {
659 jtag_register_event_callback(jtag_enable_callback,
660 target);
661 continue;
662 }
663
664 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
665
666 retval = target_examine_one(target);
667 if (retval != ERROR_OK)
668 return retval;
669
670 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
671 }
672 return retval;
673 }
674
675 const char *target_type_name(struct target *target)
676 {
677 return target->type->name;
678 }
679
680 static int target_soft_reset_halt(struct target *target)
681 {
682 if (!target_was_examined(target)) {
683 LOG_ERROR("Target not examined yet");
684 return ERROR_FAIL;
685 }
686 if (!target->type->soft_reset_halt) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target));
689 return ERROR_FAIL;
690 }
691 return target->type->soft_reset_halt(target);
692 }
693
694 /**
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
700 * algorithm.
701 *
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
704 */
705 int target_run_algorithm(struct target *target,
706 int num_mem_params, struct mem_param *mem_params,
707 int num_reg_params, struct reg_param *reg_param,
708 uint32_t entry_point, uint32_t exit_point,
709 int timeout_ms, void *arch_info)
710 {
711 int retval = ERROR_FAIL;
712
713 if (!target_was_examined(target)) {
714 LOG_ERROR("Target not examined yet");
715 goto done;
716 }
717 if (!target->type->run_algorithm) {
718 LOG_ERROR("Target type '%s' does not support %s",
719 target_type_name(target), __func__);
720 goto done;
721 }
722
723 target->running_alg = true;
724 retval = target->type->run_algorithm(target,
725 num_mem_params, mem_params,
726 num_reg_params, reg_param,
727 entry_point, exit_point, timeout_ms, arch_info);
728 target->running_alg = false;
729
730 done:
731 return retval;
732 }
733
734 /**
735 * Downloads a target-specific native code algorithm to the target,
736 * executes and leaves it running.
737 *
738 * @param target used to run the algorithm
739 * @param arch_info target-specific description of the algorithm.
740 */
741 int target_start_algorithm(struct target *target,
742 int num_mem_params, struct mem_param *mem_params,
743 int num_reg_params, struct reg_param *reg_params,
744 uint32_t entry_point, uint32_t exit_point,
745 void *arch_info)
746 {
747 int retval = ERROR_FAIL;
748
749 if (!target_was_examined(target)) {
750 LOG_ERROR("Target not examined yet");
751 goto done;
752 }
753 if (!target->type->start_algorithm) {
754 LOG_ERROR("Target type '%s' does not support %s",
755 target_type_name(target), __func__);
756 goto done;
757 }
758 if (target->running_alg) {
759 LOG_ERROR("Target is already running an algorithm");
760 goto done;
761 }
762
763 target->running_alg = true;
764 retval = target->type->start_algorithm(target,
765 num_mem_params, mem_params,
766 num_reg_params, reg_params,
767 entry_point, exit_point, arch_info);
768
769 done:
770 return retval;
771 }
772
773 /**
774 * Waits for an algorithm started with target_start_algorithm() to complete.
775 *
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
778 */
779 int target_wait_algorithm(struct target *target,
780 int num_mem_params, struct mem_param *mem_params,
781 int num_reg_params, struct reg_param *reg_params,
782 uint32_t exit_point, int timeout_ms,
783 void *arch_info)
784 {
785 int retval = ERROR_FAIL;
786
787 if (!target->type->wait_algorithm) {
788 LOG_ERROR("Target type '%s' does not support %s",
789 target_type_name(target), __func__);
790 goto done;
791 }
792 if (!target->running_alg) {
793 LOG_ERROR("Target is not running an algorithm");
794 goto done;
795 }
796
797 retval = target->type->wait_algorithm(target,
798 num_mem_params, mem_params,
799 num_reg_params, reg_params,
800 exit_point, timeout_ms, arch_info);
801 if (retval != ERROR_TARGET_TIMEOUT)
802 target->running_alg = false;
803
804 done:
805 return retval;
806 }
807
808 /**
809 * Executes a target-specific native code algorithm in the target.
810 * It differs from target_run_algorithm in that the algorithm is asynchronous.
811 * Because of this it requires an compliant algorithm:
812 * see contrib/loaders/flash/stm32f1x.S for example.
813 *
814 * @param target used to run the algorithm
815 */
816
817 int target_run_flash_async_algorithm(struct target *target,
818 uint8_t *buffer, uint32_t count, int block_size,
819 int num_mem_params, struct mem_param *mem_params,
820 int num_reg_params, struct reg_param *reg_params,
821 uint32_t buffer_start, uint32_t buffer_size,
822 uint32_t entry_point, uint32_t exit_point, void *arch_info)
823 {
824 int retval;
825 int timeout = 0;
826
827 /* Set up working area. First word is write pointer, second word is read pointer,
828 * rest is fifo data area. */
829 uint32_t wp_addr = buffer_start;
830 uint32_t rp_addr = buffer_start + 4;
831 uint32_t fifo_start_addr = buffer_start + 8;
832 uint32_t fifo_end_addr = buffer_start + buffer_size;
833
834 uint32_t wp = fifo_start_addr;
835 uint32_t rp = fifo_start_addr;
836
837 /* validate block_size is 2^n */
838 assert(!block_size || !(block_size & (block_size - 1)));
839
840 retval = target_write_u32(target, wp_addr, wp);
841 if (retval != ERROR_OK)
842 return retval;
843 retval = target_write_u32(target, rp_addr, rp);
844 if (retval != ERROR_OK)
845 return retval;
846
847 /* Start up algorithm on target and let it idle while writing the first chunk */
848 retval = target_start_algorithm(target, num_mem_params, mem_params,
849 num_reg_params, reg_params,
850 entry_point,
851 exit_point,
852 arch_info);
853
854 if (retval != ERROR_OK) {
855 LOG_ERROR("error starting target flash write algorithm");
856 return retval;
857 }
858
859 while (count > 0) {
860
861 retval = target_read_u32(target, rp_addr, &rp);
862 if (retval != ERROR_OK) {
863 LOG_ERROR("failed to get read pointer");
864 break;
865 }
866
867 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
868
869 if (rp == 0) {
870 LOG_ERROR("flash write algorithm aborted by target");
871 retval = ERROR_FLASH_OPERATION_FAILED;
872 break;
873 }
874
875 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
876 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
877 break;
878 }
879
880 /* Count the number of bytes available in the fifo without
881 * crossing the wrap around. Make sure to not fill it completely,
882 * because that would make wp == rp and that's the empty condition. */
883 uint32_t thisrun_bytes;
884 if (rp > wp)
885 thisrun_bytes = rp - wp - block_size;
886 else if (rp > fifo_start_addr)
887 thisrun_bytes = fifo_end_addr - wp;
888 else
889 thisrun_bytes = fifo_end_addr - wp - block_size;
890
891 if (thisrun_bytes == 0) {
892 /* Throttle polling a bit if transfer is (much) faster than flash
893 * programming. The exact delay shouldn't matter as long as it's
894 * less than buffer size / flash speed. This is very unlikely to
895 * run when using high latency connections such as USB. */
896 alive_sleep(10);
897
898 /* to stop an infinite loop on some targets check and increment a timeout
899 * this issue was observed on a stellaris using the new ICDI interface */
900 if (timeout++ >= 500) {
901 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
902 return ERROR_FLASH_OPERATION_FAILED;
903 }
904 continue;
905 }
906
907 /* reset our timeout */
908 timeout = 0;
909
910 /* Limit to the amount of data we actually want to write */
911 if (thisrun_bytes > count * block_size)
912 thisrun_bytes = count * block_size;
913
914 /* Write data to fifo */
915 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
916 if (retval != ERROR_OK)
917 break;
918
919 /* Update counters and wrap write pointer */
920 buffer += thisrun_bytes;
921 count -= thisrun_bytes / block_size;
922 wp += thisrun_bytes;
923 if (wp >= fifo_end_addr)
924 wp = fifo_start_addr;
925
926 /* Store updated write pointer to target */
927 retval = target_write_u32(target, wp_addr, wp);
928 if (retval != ERROR_OK)
929 break;
930 }
931
932 if (retval != ERROR_OK) {
933 /* abort flash write algorithm on target */
934 target_write_u32(target, wp_addr, 0);
935 }
936
937 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
938 num_reg_params, reg_params,
939 exit_point,
940 10000,
941 arch_info);
942
943 if (retval2 != ERROR_OK) {
944 LOG_ERROR("error waiting for target flash write algorithm");
945 retval = retval2;
946 }
947
948 return retval;
949 }
950
951 int target_read_memory(struct target *target,
952 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
953 {
954 if (!target_was_examined(target)) {
955 LOG_ERROR("Target not examined yet");
956 return ERROR_FAIL;
957 }
958 return target->type->read_memory(target, address, size, count, buffer);
959 }
960
961 int target_read_phys_memory(struct target *target,
962 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
963 {
964 if (!target_was_examined(target)) {
965 LOG_ERROR("Target not examined yet");
966 return ERROR_FAIL;
967 }
968 return target->type->read_phys_memory(target, address, size, count, buffer);
969 }
970
971 int target_write_memory(struct target *target,
972 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
973 {
974 if (!target_was_examined(target)) {
975 LOG_ERROR("Target not examined yet");
976 return ERROR_FAIL;
977 }
978 return target->type->write_memory(target, address, size, count, buffer);
979 }
980
981 int target_write_phys_memory(struct target *target,
982 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
983 {
984 if (!target_was_examined(target)) {
985 LOG_ERROR("Target not examined yet");
986 return ERROR_FAIL;
987 }
988 return target->type->write_phys_memory(target, address, size, count, buffer);
989 }
990
991 int target_add_breakpoint(struct target *target,
992 struct breakpoint *breakpoint)
993 {
994 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
995 LOG_WARNING("target %s is not halted", target_name(target));
996 return ERROR_TARGET_NOT_HALTED;
997 }
998 return target->type->add_breakpoint(target, breakpoint);
999 }
1000
1001 int target_add_context_breakpoint(struct target *target,
1002 struct breakpoint *breakpoint)
1003 {
1004 if (target->state != TARGET_HALTED) {
1005 LOG_WARNING("target %s is not halted", target_name(target));
1006 return ERROR_TARGET_NOT_HALTED;
1007 }
1008 return target->type->add_context_breakpoint(target, breakpoint);
1009 }
1010
1011 int target_add_hybrid_breakpoint(struct target *target,
1012 struct breakpoint *breakpoint)
1013 {
1014 if (target->state != TARGET_HALTED) {
1015 LOG_WARNING("target %s is not halted", target_name(target));
1016 return ERROR_TARGET_NOT_HALTED;
1017 }
1018 return target->type->add_hybrid_breakpoint(target, breakpoint);
1019 }
1020
1021 int target_remove_breakpoint(struct target *target,
1022 struct breakpoint *breakpoint)
1023 {
1024 return target->type->remove_breakpoint(target, breakpoint);
1025 }
1026
1027 int target_add_watchpoint(struct target *target,
1028 struct watchpoint *watchpoint)
1029 {
1030 if (target->state != TARGET_HALTED) {
1031 LOG_WARNING("target %s is not halted", target_name(target));
1032 return ERROR_TARGET_NOT_HALTED;
1033 }
1034 return target->type->add_watchpoint(target, watchpoint);
1035 }
1036 int target_remove_watchpoint(struct target *target,
1037 struct watchpoint *watchpoint)
1038 {
1039 return target->type->remove_watchpoint(target, watchpoint);
1040 }
1041 int target_hit_watchpoint(struct target *target,
1042 struct watchpoint **hit_watchpoint)
1043 {
1044 if (target->state != TARGET_HALTED) {
1045 LOG_WARNING("target %s is not halted", target->cmd_name);
1046 return ERROR_TARGET_NOT_HALTED;
1047 }
1048
1049 if (target->type->hit_watchpoint == NULL) {
1050 /* For backward compatible, if hit_watchpoint is not implemented,
1051 * return ERROR_FAIL such that gdb_server will not take the nonsense
1052 * information. */
1053 return ERROR_FAIL;
1054 }
1055
1056 return target->type->hit_watchpoint(target, hit_watchpoint);
1057 }
1058
1059 int target_get_gdb_reg_list(struct target *target,
1060 struct reg **reg_list[], int *reg_list_size,
1061 enum target_register_class reg_class)
1062 {
1063 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1064 }
1065 int target_step(struct target *target,
1066 int current, uint32_t address, int handle_breakpoints)
1067 {
1068 return target->type->step(target, current, address, handle_breakpoints);
1069 }
1070
1071 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1072 {
1073 if (target->state != TARGET_HALTED) {
1074 LOG_WARNING("target %s is not halted", target->cmd_name);
1075 return ERROR_TARGET_NOT_HALTED;
1076 }
1077 return target->type->get_gdb_fileio_info(target, fileio_info);
1078 }
1079
1080 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1081 {
1082 if (target->state != TARGET_HALTED) {
1083 LOG_WARNING("target %s is not halted", target->cmd_name);
1084 return ERROR_TARGET_NOT_HALTED;
1085 }
1086 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1087 }
1088
1089 int target_profiling(struct target *target, uint32_t *samples,
1090 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1091 {
1092 if (target->state != TARGET_HALTED) {
1093 LOG_WARNING("target %s is not halted", target->cmd_name);
1094 return ERROR_TARGET_NOT_HALTED;
1095 }
1096 return target->type->profiling(target, samples, max_num_samples,
1097 num_samples, seconds);
1098 }
1099
1100 /**
1101 * Reset the @c examined flag for the given target.
1102 * Pure paranoia -- targets are zeroed on allocation.
1103 */
1104 static void target_reset_examined(struct target *target)
1105 {
1106 target->examined = false;
1107 }
1108
1109 static int err_read_phys_memory(struct target *target, uint32_t address,
1110 uint32_t size, uint32_t count, uint8_t *buffer)
1111 {
1112 LOG_ERROR("Not implemented: %s", __func__);
1113 return ERROR_FAIL;
1114 }
1115
1116 static int err_write_phys_memory(struct target *target, uint32_t address,
1117 uint32_t size, uint32_t count, const uint8_t *buffer)
1118 {
1119 LOG_ERROR("Not implemented: %s", __func__);
1120 return ERROR_FAIL;
1121 }
1122
1123 static int handle_target(void *priv);
1124
1125 static int target_init_one(struct command_context *cmd_ctx,
1126 struct target *target)
1127 {
1128 target_reset_examined(target);
1129
1130 struct target_type *type = target->type;
1131 if (type->examine == NULL)
1132 type->examine = default_examine;
1133
1134 if (type->check_reset == NULL)
1135 type->check_reset = default_check_reset;
1136
1137 assert(type->init_target != NULL);
1138
1139 int retval = type->init_target(cmd_ctx, target);
1140 if (ERROR_OK != retval) {
1141 LOG_ERROR("target '%s' init failed", target_name(target));
1142 return retval;
1143 }
1144
1145 /* Sanity-check MMU support ... stub in what we must, to help
1146 * implement it in stages, but warn if we need to do so.
1147 */
1148 if (type->mmu) {
1149 if (type->write_phys_memory == NULL) {
1150 LOG_ERROR("type '%s' is missing write_phys_memory",
1151 type->name);
1152 type->write_phys_memory = err_write_phys_memory;
1153 }
1154 if (type->read_phys_memory == NULL) {
1155 LOG_ERROR("type '%s' is missing read_phys_memory",
1156 type->name);
1157 type->read_phys_memory = err_read_phys_memory;
1158 }
1159 if (type->virt2phys == NULL) {
1160 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1161 type->virt2phys = identity_virt2phys;
1162 }
1163 } else {
1164 /* Make sure no-MMU targets all behave the same: make no
1165 * distinction between physical and virtual addresses, and
1166 * ensure that virt2phys() is always an identity mapping.
1167 */
1168 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1169 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1170
1171 type->mmu = no_mmu;
1172 type->write_phys_memory = type->write_memory;
1173 type->read_phys_memory = type->read_memory;
1174 type->virt2phys = identity_virt2phys;
1175 }
1176
1177 if (target->type->read_buffer == NULL)
1178 target->type->read_buffer = target_read_buffer_default;
1179
1180 if (target->type->write_buffer == NULL)
1181 target->type->write_buffer = target_write_buffer_default;
1182
1183 if (target->type->get_gdb_fileio_info == NULL)
1184 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1185
1186 if (target->type->gdb_fileio_end == NULL)
1187 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1188
1189 if (target->type->profiling == NULL)
1190 target->type->profiling = target_profiling_default;
1191
1192 return ERROR_OK;
1193 }
1194
1195 static int target_init(struct command_context *cmd_ctx)
1196 {
1197 struct target *target;
1198 int retval;
1199
1200 for (target = all_targets; target; target = target->next) {
1201 retval = target_init_one(cmd_ctx, target);
1202 if (ERROR_OK != retval)
1203 return retval;
1204 }
1205
1206 if (!all_targets)
1207 return ERROR_OK;
1208
1209 retval = target_register_user_commands(cmd_ctx);
1210 if (ERROR_OK != retval)
1211 return retval;
1212
1213 retval = target_register_timer_callback(&handle_target,
1214 polling_interval, 1, cmd_ctx->interp);
1215 if (ERROR_OK != retval)
1216 return retval;
1217
1218 return ERROR_OK;
1219 }
1220
1221 COMMAND_HANDLER(handle_target_init_command)
1222 {
1223 int retval;
1224
1225 if (CMD_ARGC != 0)
1226 return ERROR_COMMAND_SYNTAX_ERROR;
1227
1228 static bool target_initialized;
1229 if (target_initialized) {
1230 LOG_INFO("'target init' has already been called");
1231 return ERROR_OK;
1232 }
1233 target_initialized = true;
1234
1235 retval = command_run_line(CMD_CTX, "init_targets");
1236 if (ERROR_OK != retval)
1237 return retval;
1238
1239 retval = command_run_line(CMD_CTX, "init_board");
1240 if (ERROR_OK != retval)
1241 return retval;
1242
1243 LOG_DEBUG("Initializing targets...");
1244 return target_init(CMD_CTX);
1245 }
1246
1247 int target_register_event_callback(int (*callback)(struct target *target,
1248 enum target_event event, void *priv), void *priv)
1249 {
1250 struct target_event_callback **callbacks_p = &target_event_callbacks;
1251
1252 if (callback == NULL)
1253 return ERROR_COMMAND_SYNTAX_ERROR;
1254
1255 if (*callbacks_p) {
1256 while ((*callbacks_p)->next)
1257 callbacks_p = &((*callbacks_p)->next);
1258 callbacks_p = &((*callbacks_p)->next);
1259 }
1260
1261 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1262 (*callbacks_p)->callback = callback;
1263 (*callbacks_p)->priv = priv;
1264 (*callbacks_p)->next = NULL;
1265
1266 return ERROR_OK;
1267 }
1268
1269 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1270 {
1271 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1272 struct timeval now;
1273
1274 if (callback == NULL)
1275 return ERROR_COMMAND_SYNTAX_ERROR;
1276
1277 if (*callbacks_p) {
1278 while ((*callbacks_p)->next)
1279 callbacks_p = &((*callbacks_p)->next);
1280 callbacks_p = &((*callbacks_p)->next);
1281 }
1282
1283 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1284 (*callbacks_p)->callback = callback;
1285 (*callbacks_p)->periodic = periodic;
1286 (*callbacks_p)->time_ms = time_ms;
1287
1288 gettimeofday(&now, NULL);
1289 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1290 time_ms -= (time_ms % 1000);
1291 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1292 if ((*callbacks_p)->when.tv_usec > 1000000) {
1293 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1294 (*callbacks_p)->when.tv_sec += 1;
1295 }
1296
1297 (*callbacks_p)->priv = priv;
1298 (*callbacks_p)->next = NULL;
1299
1300 return ERROR_OK;
1301 }
1302
1303 int target_unregister_event_callback(int (*callback)(struct target *target,
1304 enum target_event event, void *priv), void *priv)
1305 {
1306 struct target_event_callback **p = &target_event_callbacks;
1307 struct target_event_callback *c = target_event_callbacks;
1308
1309 if (callback == NULL)
1310 return ERROR_COMMAND_SYNTAX_ERROR;
1311
1312 while (c) {
1313 struct target_event_callback *next = c->next;
1314 if ((c->callback == callback) && (c->priv == priv)) {
1315 *p = next;
1316 free(c);
1317 return ERROR_OK;
1318 } else
1319 p = &(c->next);
1320 c = next;
1321 }
1322
1323 return ERROR_OK;
1324 }
1325
1326 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1327 {
1328 struct target_timer_callback **p = &target_timer_callbacks;
1329 struct target_timer_callback *c = target_timer_callbacks;
1330
1331 if (callback == NULL)
1332 return ERROR_COMMAND_SYNTAX_ERROR;
1333
1334 while (c) {
1335 struct target_timer_callback *next = c->next;
1336 if ((c->callback == callback) && (c->priv == priv)) {
1337 *p = next;
1338 free(c);
1339 return ERROR_OK;
1340 } else
1341 p = &(c->next);
1342 c = next;
1343 }
1344
1345 return ERROR_OK;
1346 }
1347
1348 int target_call_event_callbacks(struct target *target, enum target_event event)
1349 {
1350 struct target_event_callback *callback = target_event_callbacks;
1351 struct target_event_callback *next_callback;
1352
1353 if (event == TARGET_EVENT_HALTED) {
1354 /* execute early halted first */
1355 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1356 }
1357
1358 LOG_DEBUG("target event %i (%s)", event,
1359 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1360
1361 target_handle_event(target, event);
1362
1363 while (callback) {
1364 next_callback = callback->next;
1365 callback->callback(target, event, callback->priv);
1366 callback = next_callback;
1367 }
1368
1369 return ERROR_OK;
1370 }
1371
1372 static int target_timer_callback_periodic_restart(
1373 struct target_timer_callback *cb, struct timeval *now)
1374 {
1375 int time_ms = cb->time_ms;
1376 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1377 time_ms -= (time_ms % 1000);
1378 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1379 if (cb->when.tv_usec > 1000000) {
1380 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1381 cb->when.tv_sec += 1;
1382 }
1383 return ERROR_OK;
1384 }
1385
1386 static int target_call_timer_callback(struct target_timer_callback *cb,
1387 struct timeval *now)
1388 {
1389 cb->callback(cb->priv);
1390
1391 if (cb->periodic)
1392 return target_timer_callback_periodic_restart(cb, now);
1393
1394 return target_unregister_timer_callback(cb->callback, cb->priv);
1395 }
1396
1397 static int target_call_timer_callbacks_check_time(int checktime)
1398 {
1399 keep_alive();
1400
1401 struct timeval now;
1402 gettimeofday(&now, NULL);
1403
1404 struct target_timer_callback *callback = target_timer_callbacks;
1405 while (callback) {
1406 /* cleaning up may unregister and free this callback */
1407 struct target_timer_callback *next_callback = callback->next;
1408
1409 bool call_it = callback->callback &&
1410 ((!checktime && callback->periodic) ||
1411 now.tv_sec > callback->when.tv_sec ||
1412 (now.tv_sec == callback->when.tv_sec &&
1413 now.tv_usec >= callback->when.tv_usec));
1414
1415 if (call_it) {
1416 int retval = target_call_timer_callback(callback, &now);
1417 if (retval != ERROR_OK)
1418 return retval;
1419 }
1420
1421 callback = next_callback;
1422 }
1423
1424 return ERROR_OK;
1425 }
1426
1427 int target_call_timer_callbacks(void)
1428 {
1429 return target_call_timer_callbacks_check_time(1);
1430 }
1431
1432 /* invoke periodic callbacks immediately */
1433 int target_call_timer_callbacks_now(void)
1434 {
1435 return target_call_timer_callbacks_check_time(0);
1436 }
1437
1438 /* Prints the working area layout for debug purposes */
1439 static void print_wa_layout(struct target *target)
1440 {
1441 struct working_area *c = target->working_areas;
1442
1443 while (c) {
1444 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1445 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1446 c->address, c->address + c->size - 1, c->size);
1447 c = c->next;
1448 }
1449 }
1450
1451 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1452 static void target_split_working_area(struct working_area *area, uint32_t size)
1453 {
1454 assert(area->free); /* Shouldn't split an allocated area */
1455 assert(size <= area->size); /* Caller should guarantee this */
1456
1457 /* Split only if not already the right size */
1458 if (size < area->size) {
1459 struct working_area *new_wa = malloc(sizeof(*new_wa));
1460
1461 if (new_wa == NULL)
1462 return;
1463
1464 new_wa->next = area->next;
1465 new_wa->size = area->size - size;
1466 new_wa->address = area->address + size;
1467 new_wa->backup = NULL;
1468 new_wa->user = NULL;
1469 new_wa->free = true;
1470
1471 area->next = new_wa;
1472 area->size = size;
1473
1474 /* If backup memory was allocated to this area, it has the wrong size
1475 * now so free it and it will be reallocated if/when needed */
1476 if (area->backup) {
1477 free(area->backup);
1478 area->backup = NULL;
1479 }
1480 }
1481 }
1482
1483 /* Merge all adjacent free areas into one */
1484 static void target_merge_working_areas(struct target *target)
1485 {
1486 struct working_area *c = target->working_areas;
1487
1488 while (c && c->next) {
1489 assert(c->next->address == c->address + c->size); /* This is an invariant */
1490
1491 /* Find two adjacent free areas */
1492 if (c->free && c->next->free) {
1493 /* Merge the last into the first */
1494 c->size += c->next->size;
1495
1496 /* Remove the last */
1497 struct working_area *to_be_freed = c->next;
1498 c->next = c->next->next;
1499 if (to_be_freed->backup)
1500 free(to_be_freed->backup);
1501 free(to_be_freed);
1502
1503 /* If backup memory was allocated to the remaining area, it's has
1504 * the wrong size now */
1505 if (c->backup) {
1506 free(c->backup);
1507 c->backup = NULL;
1508 }
1509 } else {
1510 c = c->next;
1511 }
1512 }
1513 }
1514
1515 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1516 {
1517 /* Reevaluate working area address based on MMU state*/
1518 if (target->working_areas == NULL) {
1519 int retval;
1520 int enabled;
1521
1522 retval = target->type->mmu(target, &enabled);
1523 if (retval != ERROR_OK)
1524 return retval;
1525
1526 if (!enabled) {
1527 if (target->working_area_phys_spec) {
1528 LOG_DEBUG("MMU disabled, using physical "
1529 "address for working memory 0x%08"PRIx32,
1530 target->working_area_phys);
1531 target->working_area = target->working_area_phys;
1532 } else {
1533 LOG_ERROR("No working memory available. "
1534 "Specify -work-area-phys to target.");
1535 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1536 }
1537 } else {
1538 if (target->working_area_virt_spec) {
1539 LOG_DEBUG("MMU enabled, using virtual "
1540 "address for working memory 0x%08"PRIx32,
1541 target->working_area_virt);
1542 target->working_area = target->working_area_virt;
1543 } else {
1544 LOG_ERROR("No working memory available. "
1545 "Specify -work-area-virt to target.");
1546 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1547 }
1548 }
1549
1550 /* Set up initial working area on first call */
1551 struct working_area *new_wa = malloc(sizeof(*new_wa));
1552 if (new_wa) {
1553 new_wa->next = NULL;
1554 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1555 new_wa->address = target->working_area;
1556 new_wa->backup = NULL;
1557 new_wa->user = NULL;
1558 new_wa->free = true;
1559 }
1560
1561 target->working_areas = new_wa;
1562 }
1563
1564 /* only allocate multiples of 4 byte */
1565 if (size % 4)
1566 size = (size + 3) & (~3UL);
1567
1568 struct working_area *c = target->working_areas;
1569
1570 /* Find the first large enough working area */
1571 while (c) {
1572 if (c->free && c->size >= size)
1573 break;
1574 c = c->next;
1575 }
1576
1577 if (c == NULL)
1578 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1579
1580 /* Split the working area into the requested size */
1581 target_split_working_area(c, size);
1582
1583 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1584
1585 if (target->backup_working_area) {
1586 if (c->backup == NULL) {
1587 c->backup = malloc(c->size);
1588 if (c->backup == NULL)
1589 return ERROR_FAIL;
1590 }
1591
1592 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1593 if (retval != ERROR_OK)
1594 return retval;
1595 }
1596
1597 /* mark as used, and return the new (reused) area */
1598 c->free = false;
1599 *area = c;
1600
1601 /* user pointer */
1602 c->user = area;
1603
1604 print_wa_layout(target);
1605
1606 return ERROR_OK;
1607 }
1608
1609 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1610 {
1611 int retval;
1612
1613 retval = target_alloc_working_area_try(target, size, area);
1614 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1615 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1616 return retval;
1617
1618 }
1619
1620 static int target_restore_working_area(struct target *target, struct working_area *area)
1621 {
1622 int retval = ERROR_OK;
1623
1624 if (target->backup_working_area && area->backup != NULL) {
1625 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1626 if (retval != ERROR_OK)
1627 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1628 area->size, area->address);
1629 }
1630
1631 return retval;
1632 }
1633
1634 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1635 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1636 {
1637 int retval = ERROR_OK;
1638
1639 if (area->free)
1640 return retval;
1641
1642 if (restore) {
1643 retval = target_restore_working_area(target, area);
1644 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1645 if (retval != ERROR_OK)
1646 return retval;
1647 }
1648
1649 area->free = true;
1650
1651 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1652 area->size, area->address);
1653
1654 /* mark user pointer invalid */
1655 /* TODO: Is this really safe? It points to some previous caller's memory.
1656 * How could we know that the area pointer is still in that place and not
1657 * some other vital data? What's the purpose of this, anyway? */
1658 *area->user = NULL;
1659 area->user = NULL;
1660
1661 target_merge_working_areas(target);
1662
1663 print_wa_layout(target);
1664
1665 return retval;
1666 }
1667
1668 int target_free_working_area(struct target *target, struct working_area *area)
1669 {
1670 return target_free_working_area_restore(target, area, 1);
1671 }
1672
1673 /* free resources and restore memory, if restoring memory fails,
1674 * free up resources anyway
1675 */
1676 static void target_free_all_working_areas_restore(struct target *target, int restore)
1677 {
1678 struct working_area *c = target->working_areas;
1679
1680 LOG_DEBUG("freeing all working areas");
1681
1682 /* Loop through all areas, restoring the allocated ones and marking them as free */
1683 while (c) {
1684 if (!c->free) {
1685 if (restore)
1686 target_restore_working_area(target, c);
1687 c->free = true;
1688 *c->user = NULL; /* Same as above */
1689 c->user = NULL;
1690 }
1691 c = c->next;
1692 }
1693
1694 /* Run a merge pass to combine all areas into one */
1695 target_merge_working_areas(target);
1696
1697 print_wa_layout(target);
1698 }
1699
1700 void target_free_all_working_areas(struct target *target)
1701 {
1702 target_free_all_working_areas_restore(target, 1);
1703 }
1704
1705 /* Find the largest number of bytes that can be allocated */
1706 uint32_t target_get_working_area_avail(struct target *target)
1707 {
1708 struct working_area *c = target->working_areas;
1709 uint32_t max_size = 0;
1710
1711 if (c == NULL)
1712 return target->working_area_size;
1713
1714 while (c) {
1715 if (c->free && max_size < c->size)
1716 max_size = c->size;
1717
1718 c = c->next;
1719 }
1720
1721 return max_size;
1722 }
1723
1724 int target_arch_state(struct target *target)
1725 {
1726 int retval;
1727 if (target == NULL) {
1728 LOG_USER("No target has been configured");
1729 return ERROR_OK;
1730 }
1731
1732 LOG_USER("target state: %s", target_state_name(target));
1733
1734 if (target->state != TARGET_HALTED)
1735 return ERROR_OK;
1736
1737 retval = target->type->arch_state(target);
1738 return retval;
1739 }
1740
1741 static int target_get_gdb_fileio_info_default(struct target *target,
1742 struct gdb_fileio_info *fileio_info)
1743 {
1744 /* If target does not support semi-hosting function, target
1745 has no need to provide .get_gdb_fileio_info callback.
1746 It just return ERROR_FAIL and gdb_server will return "Txx"
1747 as target halted every time. */
1748 return ERROR_FAIL;
1749 }
1750
1751 static int target_gdb_fileio_end_default(struct target *target,
1752 int retcode, int fileio_errno, bool ctrl_c)
1753 {
1754 return ERROR_OK;
1755 }
1756
1757 static int target_profiling_default(struct target *target, uint32_t *samples,
1758 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1759 {
1760 struct timeval timeout, now;
1761
1762 gettimeofday(&timeout, NULL);
1763 timeval_add_time(&timeout, seconds, 0);
1764
1765 LOG_INFO("Starting profiling. Halting and resuming the"
1766 " target as often as we can...");
1767
1768 uint32_t sample_count = 0;
1769 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1770 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1771
1772 int retval = ERROR_OK;
1773 for (;;) {
1774 target_poll(target);
1775 if (target->state == TARGET_HALTED) {
1776 uint32_t t = *((uint32_t *)reg->value);
1777 samples[sample_count++] = t;
1778 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1779 retval = target_resume(target, 1, 0, 0, 0);
1780 target_poll(target);
1781 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1782 } else if (target->state == TARGET_RUNNING) {
1783 /* We want to quickly sample the PC. */
1784 retval = target_halt(target);
1785 } else {
1786 LOG_INFO("Target not halted or running");
1787 retval = ERROR_OK;
1788 break;
1789 }
1790
1791 if (retval != ERROR_OK)
1792 break;
1793
1794 gettimeofday(&now, NULL);
1795 if ((sample_count >= max_num_samples) ||
1796 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1797 LOG_INFO("Profiling completed. %d samples.", sample_count);
1798 break;
1799 }
1800 }
1801
1802 *num_samples = sample_count;
1803 return retval;
1804 }
1805
1806 /* Single aligned words are guaranteed to use 16 or 32 bit access
1807 * mode respectively, otherwise data is handled as quickly as
1808 * possible
1809 */
1810 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1811 {
1812 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1813 (int)size, (unsigned)address);
1814
1815 if (!target_was_examined(target)) {
1816 LOG_ERROR("Target not examined yet");
1817 return ERROR_FAIL;
1818 }
1819
1820 if (size == 0)
1821 return ERROR_OK;
1822
1823 if ((address + size - 1) < address) {
1824 /* GDB can request this when e.g. PC is 0xfffffffc*/
1825 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1826 (unsigned)address,
1827 (unsigned)size);
1828 return ERROR_FAIL;
1829 }
1830
1831 return target->type->write_buffer(target, address, size, buffer);
1832 }
1833
1834 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1835 {
1836 uint32_t size;
1837
1838 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1839 * will have something to do with the size we leave to it. */
1840 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1841 if (address & size) {
1842 int retval = target_write_memory(target, address, size, 1, buffer);
1843 if (retval != ERROR_OK)
1844 return retval;
1845 address += size;
1846 count -= size;
1847 buffer += size;
1848 }
1849 }
1850
1851 /* Write the data with as large access size as possible. */
1852 for (; size > 0; size /= 2) {
1853 uint32_t aligned = count - count % size;
1854 if (aligned > 0) {
1855 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1856 if (retval != ERROR_OK)
1857 return retval;
1858 address += aligned;
1859 count -= aligned;
1860 buffer += aligned;
1861 }
1862 }
1863
1864 return ERROR_OK;
1865 }
1866
1867 /* Single aligned words are guaranteed to use 16 or 32 bit access
1868 * mode respectively, otherwise data is handled as quickly as
1869 * possible
1870 */
1871 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1872 {
1873 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1874 (int)size, (unsigned)address);
1875
1876 if (!target_was_examined(target)) {
1877 LOG_ERROR("Target not examined yet");
1878 return ERROR_FAIL;
1879 }
1880
1881 if (size == 0)
1882 return ERROR_OK;
1883
1884 if ((address + size - 1) < address) {
1885 /* GDB can request this when e.g. PC is 0xfffffffc*/
1886 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1887 address,
1888 size);
1889 return ERROR_FAIL;
1890 }
1891
1892 return target->type->read_buffer(target, address, size, buffer);
1893 }
1894
1895 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1896 {
1897 uint32_t size;
1898
1899 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1900 * will have something to do with the size we leave to it. */
1901 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1902 if (address & size) {
1903 int retval = target_read_memory(target, address, size, 1, buffer);
1904 if (retval != ERROR_OK)
1905 return retval;
1906 address += size;
1907 count -= size;
1908 buffer += size;
1909 }
1910 }
1911
1912 /* Read the data with as large access size as possible. */
1913 for (; size > 0; size /= 2) {
1914 uint32_t aligned = count - count % size;
1915 if (aligned > 0) {
1916 int retval = target_read_memory(target, address, size, aligned / size, buffer);
1917 if (retval != ERROR_OK)
1918 return retval;
1919 address += aligned;
1920 count -= aligned;
1921 buffer += aligned;
1922 }
1923 }
1924
1925 return ERROR_OK;
1926 }
1927
1928 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1929 {
1930 uint8_t *buffer;
1931 int retval;
1932 uint32_t i;
1933 uint32_t checksum = 0;
1934 if (!target_was_examined(target)) {
1935 LOG_ERROR("Target not examined yet");
1936 return ERROR_FAIL;
1937 }
1938
1939 retval = target->type->checksum_memory(target, address, size, &checksum);
1940 if (retval != ERROR_OK) {
1941 buffer = malloc(size);
1942 if (buffer == NULL) {
1943 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1944 return ERROR_COMMAND_SYNTAX_ERROR;
1945 }
1946 retval = target_read_buffer(target, address, size, buffer);
1947 if (retval != ERROR_OK) {
1948 free(buffer);
1949 return retval;
1950 }
1951
1952 /* convert to target endianness */
1953 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1954 uint32_t target_data;
1955 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1956 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1957 }
1958
1959 retval = image_calculate_checksum(buffer, size, &checksum);
1960 free(buffer);
1961 }
1962
1963 *crc = checksum;
1964
1965 return retval;
1966 }
1967
1968 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1969 {
1970 int retval;
1971 if (!target_was_examined(target)) {
1972 LOG_ERROR("Target not examined yet");
1973 return ERROR_FAIL;
1974 }
1975
1976 if (target->type->blank_check_memory == 0)
1977 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1978
1979 retval = target->type->blank_check_memory(target, address, size, blank);
1980
1981 return retval;
1982 }
1983
1984 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1985 {
1986 uint8_t value_buf[4];
1987 if (!target_was_examined(target)) {
1988 LOG_ERROR("Target not examined yet");
1989 return ERROR_FAIL;
1990 }
1991
1992 int retval = target_read_memory(target, address, 4, 1, value_buf);
1993
1994 if (retval == ERROR_OK) {
1995 *value = target_buffer_get_u32(target, value_buf);
1996 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1997 address,
1998 *value);
1999 } else {
2000 *value = 0x0;
2001 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2002 address);
2003 }
2004
2005 return retval;
2006 }
2007
2008 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2009 {
2010 uint8_t value_buf[2];
2011 if (!target_was_examined(target)) {
2012 LOG_ERROR("Target not examined yet");
2013 return ERROR_FAIL;
2014 }
2015
2016 int retval = target_read_memory(target, address, 2, 1, value_buf);
2017
2018 if (retval == ERROR_OK) {
2019 *value = target_buffer_get_u16(target, value_buf);
2020 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2021 address,
2022 *value);
2023 } else {
2024 *value = 0x0;
2025 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2026 address);
2027 }
2028
2029 return retval;
2030 }
2031
2032 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2033 {
2034 int retval = target_read_memory(target, address, 1, 1, value);
2035 if (!target_was_examined(target)) {
2036 LOG_ERROR("Target not examined yet");
2037 return ERROR_FAIL;
2038 }
2039
2040 if (retval == ERROR_OK) {
2041 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2042 address,
2043 *value);
2044 } else {
2045 *value = 0x0;
2046 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2047 address);
2048 }
2049
2050 return retval;
2051 }
2052
2053 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2054 {
2055 int retval;
2056 uint8_t value_buf[4];
2057 if (!target_was_examined(target)) {
2058 LOG_ERROR("Target not examined yet");
2059 return ERROR_FAIL;
2060 }
2061
2062 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2063 address,
2064 value);
2065
2066 target_buffer_set_u32(target, value_buf, value);
2067 retval = target_write_memory(target, address, 4, 1, value_buf);
2068 if (retval != ERROR_OK)
2069 LOG_DEBUG("failed: %i", retval);
2070
2071 return retval;
2072 }
2073
2074 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2075 {
2076 int retval;
2077 uint8_t value_buf[2];
2078 if (!target_was_examined(target)) {
2079 LOG_ERROR("Target not examined yet");
2080 return ERROR_FAIL;
2081 }
2082
2083 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2084 address,
2085 value);
2086
2087 target_buffer_set_u16(target, value_buf, value);
2088 retval = target_write_memory(target, address, 2, 1, value_buf);
2089 if (retval != ERROR_OK)
2090 LOG_DEBUG("failed: %i", retval);
2091
2092 return retval;
2093 }
2094
2095 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2096 {
2097 int retval;
2098 if (!target_was_examined(target)) {
2099 LOG_ERROR("Target not examined yet");
2100 return ERROR_FAIL;
2101 }
2102
2103 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2104 address, value);
2105
2106 retval = target_write_memory(target, address, 1, 1, &value);
2107 if (retval != ERROR_OK)
2108 LOG_DEBUG("failed: %i", retval);
2109
2110 return retval;
2111 }
2112
2113 static int find_target(struct command_context *cmd_ctx, const char *name)
2114 {
2115 struct target *target = get_target(name);
2116 if (target == NULL) {
2117 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2118 return ERROR_FAIL;
2119 }
2120 if (!target->tap->enabled) {
2121 LOG_USER("Target: TAP %s is disabled, "
2122 "can't be the current target\n",
2123 target->tap->dotted_name);
2124 return ERROR_FAIL;
2125 }
2126
2127 cmd_ctx->current_target = target->target_number;
2128 return ERROR_OK;
2129 }
2130
2131
2132 COMMAND_HANDLER(handle_targets_command)
2133 {
2134 int retval = ERROR_OK;
2135 if (CMD_ARGC == 1) {
2136 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2137 if (retval == ERROR_OK) {
2138 /* we're done! */
2139 return retval;
2140 }
2141 }
2142
2143 struct target *target = all_targets;
2144 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2145 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2146 while (target) {
2147 const char *state;
2148 char marker = ' ';
2149
2150 if (target->tap->enabled)
2151 state = target_state_name(target);
2152 else
2153 state = "tap-disabled";
2154
2155 if (CMD_CTX->current_target == target->target_number)
2156 marker = '*';
2157
2158 /* keep columns lined up to match the headers above */
2159 command_print(CMD_CTX,
2160 "%2d%c %-18s %-10s %-6s %-18s %s",
2161 target->target_number,
2162 marker,
2163 target_name(target),
2164 target_type_name(target),
2165 Jim_Nvp_value2name_simple(nvp_target_endian,
2166 target->endianness)->name,
2167 target->tap->dotted_name,
2168 state);
2169 target = target->next;
2170 }
2171
2172 return retval;
2173 }
2174
2175 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2176
2177 static int powerDropout;
2178 static int srstAsserted;
2179
2180 static int runPowerRestore;
2181 static int runPowerDropout;
2182 static int runSrstAsserted;
2183 static int runSrstDeasserted;
2184
2185 static int sense_handler(void)
2186 {
2187 static int prevSrstAsserted;
2188 static int prevPowerdropout;
2189
2190 int retval = jtag_power_dropout(&powerDropout);
2191 if (retval != ERROR_OK)
2192 return retval;
2193
2194 int powerRestored;
2195 powerRestored = prevPowerdropout && !powerDropout;
2196 if (powerRestored)
2197 runPowerRestore = 1;
2198
2199 long long current = timeval_ms();
2200 static long long lastPower;
2201 int waitMore = lastPower + 2000 > current;
2202 if (powerDropout && !waitMore) {
2203 runPowerDropout = 1;
2204 lastPower = current;
2205 }
2206
2207 retval = jtag_srst_asserted(&srstAsserted);
2208 if (retval != ERROR_OK)
2209 return retval;
2210
2211 int srstDeasserted;
2212 srstDeasserted = prevSrstAsserted && !srstAsserted;
2213
2214 static long long lastSrst;
2215 waitMore = lastSrst + 2000 > current;
2216 if (srstDeasserted && !waitMore) {
2217 runSrstDeasserted = 1;
2218 lastSrst = current;
2219 }
2220
2221 if (!prevSrstAsserted && srstAsserted)
2222 runSrstAsserted = 1;
2223
2224 prevSrstAsserted = srstAsserted;
2225 prevPowerdropout = powerDropout;
2226
2227 if (srstDeasserted || powerRestored) {
2228 /* Other than logging the event we can't do anything here.
2229 * Issuing a reset is a particularly bad idea as we might
2230 * be inside a reset already.
2231 */
2232 }
2233
2234 return ERROR_OK;
2235 }
2236
2237 /* process target state changes */
2238 static int handle_target(void *priv)
2239 {
2240 Jim_Interp *interp = (Jim_Interp *)priv;
2241 int retval = ERROR_OK;
2242
2243 if (!is_jtag_poll_safe()) {
2244 /* polling is disabled currently */
2245 return ERROR_OK;
2246 }
2247
2248 /* we do not want to recurse here... */
2249 static int recursive;
2250 if (!recursive) {
2251 recursive = 1;
2252 sense_handler();
2253 /* danger! running these procedures can trigger srst assertions and power dropouts.
2254 * We need to avoid an infinite loop/recursion here and we do that by
2255 * clearing the flags after running these events.
2256 */
2257 int did_something = 0;
2258 if (runSrstAsserted) {
2259 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2260 Jim_Eval(interp, "srst_asserted");
2261 did_something = 1;
2262 }
2263 if (runSrstDeasserted) {
2264 Jim_Eval(interp, "srst_deasserted");
2265 did_something = 1;
2266 }
2267 if (runPowerDropout) {
2268 LOG_INFO("Power dropout detected, running power_dropout proc.");
2269 Jim_Eval(interp, "power_dropout");
2270 did_something = 1;
2271 }
2272 if (runPowerRestore) {
2273 Jim_Eval(interp, "power_restore");
2274 did_something = 1;
2275 }
2276
2277 if (did_something) {
2278 /* clear detect flags */
2279 sense_handler();
2280 }
2281
2282 /* clear action flags */
2283
2284 runSrstAsserted = 0;
2285 runSrstDeasserted = 0;
2286 runPowerRestore = 0;
2287 runPowerDropout = 0;
2288
2289 recursive = 0;
2290 }
2291
2292 /* Poll targets for state changes unless that's globally disabled.
2293 * Skip targets that are currently disabled.
2294 */
2295 for (struct target *target = all_targets;
2296 is_jtag_poll_safe() && target;
2297 target = target->next) {
2298 if (!target->tap->enabled)
2299 continue;
2300
2301 if (target->backoff.times > target->backoff.count) {
2302 /* do not poll this time as we failed previously */
2303 target->backoff.count++;
2304 continue;
2305 }
2306 target->backoff.count = 0;
2307
2308 /* only poll target if we've got power and srst isn't asserted */
2309 if (!powerDropout && !srstAsserted) {
2310 /* polling may fail silently until the target has been examined */
2311 retval = target_poll(target);
2312 if (retval != ERROR_OK) {
2313 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2314 if (target->backoff.times * polling_interval < 5000) {
2315 target->backoff.times *= 2;
2316 target->backoff.times++;
2317 }
2318 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2319 target_name(target),
2320 target->backoff.times * polling_interval);
2321
2322 /* Tell GDB to halt the debugger. This allows the user to
2323 * run monitor commands to handle the situation.
2324 */
2325 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2326 return retval;
2327 }
2328 /* Since we succeeded, we reset backoff count */
2329 if (target->backoff.times > 0)
2330 LOG_USER("Polling target %s succeeded again", target_name(target));
2331 target->backoff.times = 0;
2332 }
2333 }
2334
2335 return retval;
2336 }
2337
2338 COMMAND_HANDLER(handle_reg_command)
2339 {
2340 struct target *target;
2341 struct reg *reg = NULL;
2342 unsigned count = 0;
2343 char *value;
2344
2345 LOG_DEBUG("-");
2346
2347 target = get_current_target(CMD_CTX);
2348
2349 /* list all available registers for the current target */
2350 if (CMD_ARGC == 0) {
2351 struct reg_cache *cache = target->reg_cache;
2352
2353 count = 0;
2354 while (cache) {
2355 unsigned i;
2356
2357 command_print(CMD_CTX, "===== %s", cache->name);
2358
2359 for (i = 0, reg = cache->reg_list;
2360 i < cache->num_regs;
2361 i++, reg++, count++) {
2362 /* only print cached values if they are valid */
2363 if (reg->valid) {
2364 value = buf_to_str(reg->value,
2365 reg->size, 16);
2366 command_print(CMD_CTX,
2367 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2368 count, reg->name,
2369 reg->size, value,
2370 reg->dirty
2371 ? " (dirty)"
2372 : "");
2373 free(value);
2374 } else {
2375 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2376 count, reg->name,
2377 reg->size) ;
2378 }
2379 }
2380 cache = cache->next;
2381 }
2382
2383 return ERROR_OK;
2384 }
2385
2386 /* access a single register by its ordinal number */
2387 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2388 unsigned num;
2389 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2390
2391 struct reg_cache *cache = target->reg_cache;
2392 count = 0;
2393 while (cache) {
2394 unsigned i;
2395 for (i = 0; i < cache->num_regs; i++) {
2396 if (count++ == num) {
2397 reg = &cache->reg_list[i];
2398 break;
2399 }
2400 }
2401 if (reg)
2402 break;
2403 cache = cache->next;
2404 }
2405
2406 if (!reg) {
2407 command_print(CMD_CTX, "%i is out of bounds, the current target "
2408 "has only %i registers (0 - %i)", num, count, count - 1);
2409 return ERROR_OK;
2410 }
2411 } else {
2412 /* access a single register by its name */
2413 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2414
2415 if (!reg) {
2416 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2417 return ERROR_OK;
2418 }
2419 }
2420
2421 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2422
2423 /* display a register */
2424 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2425 && (CMD_ARGV[1][0] <= '9')))) {
2426 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2427 reg->valid = 0;
2428
2429 if (reg->valid == 0)
2430 reg->type->get(reg);
2431 value = buf_to_str(reg->value, reg->size, 16);
2432 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2433 free(value);
2434 return ERROR_OK;
2435 }
2436
2437 /* set register value */
2438 if (CMD_ARGC == 2) {
2439 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2440 if (buf == NULL)
2441 return ERROR_FAIL;
2442 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2443
2444 reg->type->set(reg, buf);
2445
2446 value = buf_to_str(reg->value, reg->size, 16);
2447 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2448 free(value);
2449
2450 free(buf);
2451
2452 return ERROR_OK;
2453 }
2454
2455 return ERROR_COMMAND_SYNTAX_ERROR;
2456 }
2457
2458 COMMAND_HANDLER(handle_poll_command)
2459 {
2460 int retval = ERROR_OK;
2461 struct target *target = get_current_target(CMD_CTX);
2462
2463 if (CMD_ARGC == 0) {
2464 command_print(CMD_CTX, "background polling: %s",
2465 jtag_poll_get_enabled() ? "on" : "off");
2466 command_print(CMD_CTX, "TAP: %s (%s)",
2467 target->tap->dotted_name,
2468 target->tap->enabled ? "enabled" : "disabled");
2469 if (!target->tap->enabled)
2470 return ERROR_OK;
2471 retval = target_poll(target);
2472 if (retval != ERROR_OK)
2473 return retval;
2474 retval = target_arch_state(target);
2475 if (retval != ERROR_OK)
2476 return retval;
2477 } else if (CMD_ARGC == 1) {
2478 bool enable;
2479 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2480 jtag_poll_set_enabled(enable);
2481 } else
2482 return ERROR_COMMAND_SYNTAX_ERROR;
2483
2484 return retval;
2485 }
2486
2487 COMMAND_HANDLER(handle_wait_halt_command)
2488 {
2489 if (CMD_ARGC > 1)
2490 return ERROR_COMMAND_SYNTAX_ERROR;
2491
2492 unsigned ms = DEFAULT_HALT_TIMEOUT;
2493 if (1 == CMD_ARGC) {
2494 int retval = parse_uint(CMD_ARGV[0], &ms);
2495 if (ERROR_OK != retval)
2496 return ERROR_COMMAND_SYNTAX_ERROR;
2497 }
2498
2499 struct target *target = get_current_target(CMD_CTX);
2500 return target_wait_state(target, TARGET_HALTED, ms);
2501 }
2502
2503 /* wait for target state to change. The trick here is to have a low
2504 * latency for short waits and not to suck up all the CPU time
2505 * on longer waits.
2506 *
2507 * After 500ms, keep_alive() is invoked
2508 */
2509 int target_wait_state(struct target *target, enum target_state state, int ms)
2510 {
2511 int retval;
2512 long long then = 0, cur;
2513 int once = 1;
2514
2515 for (;;) {
2516 retval = target_poll(target);
2517 if (retval != ERROR_OK)
2518 return retval;
2519 if (target->state == state)
2520 break;
2521 cur = timeval_ms();
2522 if (once) {
2523 once = 0;
2524 then = timeval_ms();
2525 LOG_DEBUG("waiting for target %s...",
2526 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2527 }
2528
2529 if (cur-then > 500)
2530 keep_alive();
2531
2532 if ((cur-then) > ms) {
2533 LOG_ERROR("timed out while waiting for target %s",
2534 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2535 return ERROR_FAIL;
2536 }
2537 }
2538
2539 return ERROR_OK;
2540 }
2541
2542 COMMAND_HANDLER(handle_halt_command)
2543 {
2544 LOG_DEBUG("-");
2545
2546 struct target *target = get_current_target(CMD_CTX);
2547 int retval = target_halt(target);
2548 if (ERROR_OK != retval)
2549 return retval;
2550
2551 if (CMD_ARGC == 1) {
2552 unsigned wait_local;
2553 retval = parse_uint(CMD_ARGV[0], &wait_local);
2554 if (ERROR_OK != retval)
2555 return ERROR_COMMAND_SYNTAX_ERROR;
2556 if (!wait_local)
2557 return ERROR_OK;
2558 }
2559
2560 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2561 }
2562
2563 COMMAND_HANDLER(handle_soft_reset_halt_command)
2564 {
2565 struct target *target = get_current_target(CMD_CTX);
2566
2567 LOG_USER("requesting target halt and executing a soft reset");
2568
2569 target_soft_reset_halt(target);
2570
2571 return ERROR_OK;
2572 }
2573
2574 COMMAND_HANDLER(handle_reset_command)
2575 {
2576 if (CMD_ARGC > 1)
2577 return ERROR_COMMAND_SYNTAX_ERROR;
2578
2579 enum target_reset_mode reset_mode = RESET_RUN;
2580 if (CMD_ARGC == 1) {
2581 const Jim_Nvp *n;
2582 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2583 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2584 return ERROR_COMMAND_SYNTAX_ERROR;
2585 reset_mode = n->value;
2586 }
2587
2588 /* reset *all* targets */
2589 return target_process_reset(CMD_CTX, reset_mode);
2590 }
2591
2592
2593 COMMAND_HANDLER(handle_resume_command)
2594 {
2595 int current = 1;
2596 if (CMD_ARGC > 1)
2597 return ERROR_COMMAND_SYNTAX_ERROR;
2598
2599 struct target *target = get_current_target(CMD_CTX);
2600
2601 /* with no CMD_ARGV, resume from current pc, addr = 0,
2602 * with one arguments, addr = CMD_ARGV[0],
2603 * handle breakpoints, not debugging */
2604 uint32_t addr = 0;
2605 if (CMD_ARGC == 1) {
2606 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2607 current = 0;
2608 }
2609
2610 return target_resume(target, current, addr, 1, 0);
2611 }
2612
2613 COMMAND_HANDLER(handle_step_command)
2614 {
2615 if (CMD_ARGC > 1)
2616 return ERROR_COMMAND_SYNTAX_ERROR;
2617
2618 LOG_DEBUG("-");
2619
2620 /* with no CMD_ARGV, step from current pc, addr = 0,
2621 * with one argument addr = CMD_ARGV[0],
2622 * handle breakpoints, debugging */
2623 uint32_t addr = 0;
2624 int current_pc = 1;
2625 if (CMD_ARGC == 1) {
2626 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2627 current_pc = 0;
2628 }
2629
2630 struct target *target = get_current_target(CMD_CTX);
2631
2632 return target->type->step(target, current_pc, addr, 1);
2633 }
2634
2635 static void handle_md_output(struct command_context *cmd_ctx,
2636 struct target *target, uint32_t address, unsigned size,
2637 unsigned count, const uint8_t *buffer)
2638 {
2639 const unsigned line_bytecnt = 32;
2640 unsigned line_modulo = line_bytecnt / size;
2641
2642 char output[line_bytecnt * 4 + 1];
2643 unsigned output_len = 0;
2644
2645 const char *value_fmt;
2646 switch (size) {
2647 case 4:
2648 value_fmt = "%8.8x ";
2649 break;
2650 case 2:
2651 value_fmt = "%4.4x ";
2652 break;
2653 case 1:
2654 value_fmt = "%2.2x ";
2655 break;
2656 default:
2657 /* "can't happen", caller checked */
2658 LOG_ERROR("invalid memory read size: %u", size);
2659 return;
2660 }
2661
2662 for (unsigned i = 0; i < count; i++) {
2663 if (i % line_modulo == 0) {
2664 output_len += snprintf(output + output_len,
2665 sizeof(output) - output_len,
2666 "0x%8.8x: ",
2667 (unsigned)(address + (i*size)));
2668 }
2669
2670 uint32_t value = 0;
2671 const uint8_t *value_ptr = buffer + i * size;
2672 switch (size) {
2673 case 4:
2674 value = target_buffer_get_u32(target, value_ptr);
2675 break;
2676 case 2:
2677 value = target_buffer_get_u16(target, value_ptr);
2678 break;
2679 case 1:
2680 value = *value_ptr;
2681 }
2682 output_len += snprintf(output + output_len,
2683 sizeof(output) - output_len,
2684 value_fmt, value);
2685
2686 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2687 command_print(cmd_ctx, "%s", output);
2688 output_len = 0;
2689 }
2690 }
2691 }
2692
2693 COMMAND_HANDLER(handle_md_command)
2694 {
2695 if (CMD_ARGC < 1)
2696 return ERROR_COMMAND_SYNTAX_ERROR;
2697
2698 unsigned size = 0;
2699 switch (CMD_NAME[2]) {
2700 case 'w':
2701 size = 4;
2702 break;
2703 case 'h':
2704 size = 2;
2705 break;
2706 case 'b':
2707 size = 1;
2708 break;
2709 default:
2710 return ERROR_COMMAND_SYNTAX_ERROR;
2711 }
2712
2713 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2714 int (*fn)(struct target *target,
2715 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2716 if (physical) {
2717 CMD_ARGC--;
2718 CMD_ARGV++;
2719 fn = target_read_phys_memory;
2720 } else
2721 fn = target_read_memory;
2722 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2723 return ERROR_COMMAND_SYNTAX_ERROR;
2724
2725 uint32_t address;
2726 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2727
2728 unsigned count = 1;
2729 if (CMD_ARGC == 2)
2730 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2731
2732 uint8_t *buffer = calloc(count, size);
2733
2734 struct target *target = get_current_target(CMD_CTX);
2735 int retval = fn(target, address, size, count, buffer);
2736 if (ERROR_OK == retval)
2737 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2738
2739 free(buffer);
2740
2741 return retval;
2742 }
2743
2744 typedef int (*target_write_fn)(struct target *target,
2745 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2746
2747 static int target_fill_mem(struct target *target,
2748 uint32_t address,
2749 target_write_fn fn,
2750 unsigned data_size,
2751 /* value */
2752 uint32_t b,
2753 /* count */
2754 unsigned c)
2755 {
2756 /* We have to write in reasonably large chunks to be able
2757 * to fill large memory areas with any sane speed */
2758 const unsigned chunk_size = 16384;
2759 uint8_t *target_buf = malloc(chunk_size * data_size);
2760 if (target_buf == NULL) {
2761 LOG_ERROR("Out of memory");
2762 return ERROR_FAIL;
2763 }
2764
2765 for (unsigned i = 0; i < chunk_size; i++) {
2766 switch (data_size) {
2767 case 4:
2768 target_buffer_set_u32(target, target_buf + i * data_size, b);
2769 break;
2770 case 2:
2771 target_buffer_set_u16(target, target_buf + i * data_size, b);
2772 break;
2773 case 1:
2774 target_buffer_set_u8(target, target_buf + i * data_size, b);
2775 break;
2776 default:
2777 exit(-1);
2778 }
2779 }
2780
2781 int retval = ERROR_OK;
2782
2783 for (unsigned x = 0; x < c; x += chunk_size) {
2784 unsigned current;
2785 current = c - x;
2786 if (current > chunk_size)
2787 current = chunk_size;
2788 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2789 if (retval != ERROR_OK)
2790 break;
2791 /* avoid GDB timeouts */
2792 keep_alive();
2793 }
2794 free(target_buf);
2795
2796 return retval;
2797 }
2798
2799
2800 COMMAND_HANDLER(handle_mw_command)
2801 {
2802 if (CMD_ARGC < 2)
2803 return ERROR_COMMAND_SYNTAX_ERROR;
2804 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2805 target_write_fn fn;
2806 if (physical) {
2807 CMD_ARGC--;
2808 CMD_ARGV++;
2809 fn = target_write_phys_memory;
2810 } else
2811 fn = target_write_memory;
2812 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2813 return ERROR_COMMAND_SYNTAX_ERROR;
2814
2815 uint32_t address;
2816 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2817
2818 uint32_t value;
2819 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2820
2821 unsigned count = 1;
2822 if (CMD_ARGC == 3)
2823 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2824
2825 struct target *target = get_current_target(CMD_CTX);
2826 unsigned wordsize;
2827 switch (CMD_NAME[2]) {
2828 case 'w':
2829 wordsize = 4;
2830 break;
2831 case 'h':
2832 wordsize = 2;
2833 break;
2834 case 'b':
2835 wordsize = 1;
2836 break;
2837 default:
2838 return ERROR_COMMAND_SYNTAX_ERROR;
2839 }
2840
2841 return target_fill_mem(target, address, fn, wordsize, value, count);
2842 }
2843
2844 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2845 uint32_t *min_address, uint32_t *max_address)
2846 {
2847 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2848 return ERROR_COMMAND_SYNTAX_ERROR;
2849
2850 /* a base address isn't always necessary,
2851 * default to 0x0 (i.e. don't relocate) */
2852 if (CMD_ARGC >= 2) {
2853 uint32_t addr;
2854 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2855 image->base_address = addr;
2856 image->base_address_set = 1;
2857 } else
2858 image->base_address_set = 0;
2859
2860 image->start_address_set = 0;
2861
2862 if (CMD_ARGC >= 4)
2863 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2864 if (CMD_ARGC == 5) {
2865 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2866 /* use size (given) to find max (required) */
2867 *max_address += *min_address;
2868 }
2869
2870 if (*min_address > *max_address)
2871 return ERROR_COMMAND_SYNTAX_ERROR;
2872
2873 return ERROR_OK;
2874 }
2875
2876 COMMAND_HANDLER(handle_load_image_command)
2877 {
2878 uint8_t *buffer;
2879 size_t buf_cnt;
2880 uint32_t image_size;
2881 uint32_t min_address = 0;
2882 uint32_t max_address = 0xffffffff;
2883 int i;
2884 struct image image;
2885
2886 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2887 &image, &min_address, &max_address);
2888 if (ERROR_OK != retval)
2889 return retval;
2890
2891 struct target *target = get_current_target(CMD_CTX);
2892
2893 struct duration bench;
2894 duration_start(&bench);
2895
2896 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2897 return ERROR_OK;
2898
2899 image_size = 0x0;
2900 retval = ERROR_OK;
2901 for (i = 0; i < image.num_sections; i++) {
2902 buffer = malloc(image.sections[i].size);
2903 if (buffer == NULL) {
2904 command_print(CMD_CTX,
2905 "error allocating buffer for section (%d bytes)",
2906 (int)(image.sections[i].size));
2907 break;
2908 }
2909
2910 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2911 if (retval != ERROR_OK) {
2912 free(buffer);
2913 break;
2914 }
2915
2916 uint32_t offset = 0;
2917 uint32_t length = buf_cnt;
2918
2919 /* DANGER!!! beware of unsigned comparision here!!! */
2920
2921 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2922 (image.sections[i].base_address < max_address)) {
2923
2924 if (image.sections[i].base_address < min_address) {
2925 /* clip addresses below */
2926 offset += min_address-image.sections[i].base_address;
2927 length -= offset;
2928 }
2929
2930 if (image.sections[i].base_address + buf_cnt > max_address)
2931 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2932
2933 retval = target_write_buffer(target,
2934 image.sections[i].base_address + offset, length, buffer + offset);
2935 if (retval != ERROR_OK) {
2936 free(buffer);
2937 break;
2938 }
2939 image_size += length;
2940 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2941 (unsigned int)length,
2942 image.sections[i].base_address + offset);
2943 }
2944
2945 free(buffer);
2946 }
2947
2948 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2949 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2950 "in %fs (%0.3f KiB/s)", image_size,
2951 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2952 }
2953
2954 image_close(&image);
2955
2956 return retval;
2957
2958 }
2959
2960 COMMAND_HANDLER(handle_dump_image_command)
2961 {
2962 struct fileio fileio;
2963 uint8_t *buffer;
2964 int retval, retvaltemp;
2965 uint32_t address, size;
2966 struct duration bench;
2967 struct target *target = get_current_target(CMD_CTX);
2968
2969 if (CMD_ARGC != 3)
2970 return ERROR_COMMAND_SYNTAX_ERROR;
2971
2972 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2973 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2974
2975 uint32_t buf_size = (size > 4096) ? 4096 : size;
2976 buffer = malloc(buf_size);
2977 if (!buffer)
2978 return ERROR_FAIL;
2979
2980 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2981 if (retval != ERROR_OK) {
2982 free(buffer);
2983 return retval;
2984 }
2985
2986 duration_start(&bench);
2987
2988 while (size > 0) {
2989 size_t size_written;
2990 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2991 retval = target_read_buffer(target, address, this_run_size, buffer);
2992 if (retval != ERROR_OK)
2993 break;
2994
2995 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2996 if (retval != ERROR_OK)
2997 break;
2998
2999 size -= this_run_size;
3000 address += this_run_size;
3001 }
3002
3003 free(buffer);
3004
3005 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3006 int filesize;
3007 retval = fileio_size(&fileio, &filesize);
3008 if (retval != ERROR_OK)
3009 return retval;
3010 command_print(CMD_CTX,
3011 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3012 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3013 }
3014
3015 retvaltemp = fileio_close(&fileio);
3016 if (retvaltemp != ERROR_OK)
3017 return retvaltemp;
3018
3019 return retval;
3020 }
3021
3022 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3023 {
3024 uint8_t *buffer;
3025 size_t buf_cnt;
3026 uint32_t image_size;
3027 int i;
3028 int retval;
3029 uint32_t checksum = 0;
3030 uint32_t mem_checksum = 0;
3031
3032 struct image image;
3033
3034 struct target *target = get_current_target(CMD_CTX);
3035
3036 if (CMD_ARGC < 1)
3037 return ERROR_COMMAND_SYNTAX_ERROR;
3038
3039 if (!target) {
3040 LOG_ERROR("no target selected");
3041 return ERROR_FAIL;
3042 }
3043
3044 struct duration bench;
3045 duration_start(&bench);
3046
3047 if (CMD_ARGC >= 2) {
3048 uint32_t addr;
3049 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3050 image.base_address = addr;
3051 image.base_address_set = 1;
3052 } else {
3053 image.base_address_set = 0;
3054 image.base_address = 0x0;
3055 }
3056
3057 image.start_address_set = 0;
3058
3059 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3060 if (retval != ERROR_OK)
3061 return retval;
3062
3063 image_size = 0x0;
3064 int diffs = 0;
3065 retval = ERROR_OK;
3066 for (i = 0; i < image.num_sections; i++) {
3067 buffer = malloc(image.sections[i].size);
3068 if (buffer == NULL) {
3069 command_print(CMD_CTX,
3070 "error allocating buffer for section (%d bytes)",
3071 (int)(image.sections[i].size));
3072 break;
3073 }
3074 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3075 if (retval != ERROR_OK) {
3076 free(buffer);
3077 break;
3078 }
3079
3080 if (verify) {
3081 /* calculate checksum of image */
3082 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3083 if (retval != ERROR_OK) {
3084 free(buffer);
3085 break;
3086 }
3087
3088 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3089 if (retval != ERROR_OK) {
3090 free(buffer);
3091 break;
3092 }
3093
3094 if (checksum != mem_checksum) {
3095 /* failed crc checksum, fall back to a binary compare */
3096 uint8_t *data;
3097
3098 if (diffs == 0)
3099 LOG_ERROR("checksum mismatch - attempting binary compare");
3100
3101 data = (uint8_t *)malloc(buf_cnt);
3102
3103 /* Can we use 32bit word accesses? */
3104 int size = 1;
3105 int count = buf_cnt;
3106 if ((count % 4) == 0) {
3107 size *= 4;
3108 count /= 4;
3109 }
3110 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3111 if (retval == ERROR_OK) {
3112 uint32_t t;
3113 for (t = 0; t < buf_cnt; t++) {
3114 if (data[t] != buffer[t]) {
3115 command_print(CMD_CTX,
3116 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3117 diffs,
3118 (unsigned)(t + image.sections[i].base_address),
3119 data[t],
3120 buffer[t]);
3121 if (diffs++ >= 127) {
3122 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3123 free(data);
3124 free(buffer);
3125 goto done;
3126 }
3127 }
3128 keep_alive();
3129 }
3130 }
3131 free(data);
3132 }
3133 } else {
3134 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3135 image.sections[i].base_address,
3136 buf_cnt);
3137 }
3138
3139 free(buffer);
3140 image_size += buf_cnt;
3141 }
3142 if (diffs > 0)
3143 command_print(CMD_CTX, "No more differences found.");
3144 done:
3145 if (diffs > 0)
3146 retval = ERROR_FAIL;
3147 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3148 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3149 "in %fs (%0.3f KiB/s)", image_size,
3150 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3151 }
3152
3153 image_close(&image);
3154
3155 return retval;
3156 }
3157
3158 COMMAND_HANDLER(handle_verify_image_command)
3159 {
3160 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3161 }
3162
3163 COMMAND_HANDLER(handle_test_image_command)
3164 {
3165 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3166 }
3167
3168 static int handle_bp_command_list(struct command_context *cmd_ctx)
3169 {
3170 struct target *target = get_current_target(cmd_ctx);
3171 struct breakpoint *breakpoint = target->breakpoints;
3172 while (breakpoint) {
3173 if (breakpoint->type == BKPT_SOFT) {
3174 char *buf = buf_to_str(breakpoint->orig_instr,
3175 breakpoint->length, 16);
3176 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3177 breakpoint->address,
3178 breakpoint->length,
3179 breakpoint->set, buf);
3180 free(buf);
3181 } else {
3182 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3183 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3184 breakpoint->asid,
3185 breakpoint->length, breakpoint->set);
3186 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3187 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3188 breakpoint->address,
3189 breakpoint->length, breakpoint->set);
3190 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3191 breakpoint->asid);
3192 } else
3193 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3194 breakpoint->address,
3195 breakpoint->length, breakpoint->set);
3196 }
3197
3198 breakpoint = breakpoint->next;
3199 }
3200 return ERROR_OK;
3201 }
3202
3203 static int handle_bp_command_set(struct command_context *cmd_ctx,
3204 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3205 {
3206 struct target *target = get_current_target(cmd_ctx);
3207
3208 if (asid == 0) {
3209 int retval = breakpoint_add(target, addr, length, hw);
3210 if (ERROR_OK == retval)
3211 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3212 else {
3213 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3214 return retval;
3215 }
3216 } else if (addr == 0) {
3217 int retval = context_breakpoint_add(target, asid, length, hw);
3218 if (ERROR_OK == retval)
3219 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3220 else {
3221 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3222 return retval;
3223 }
3224 } else {
3225 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3226 if (ERROR_OK == retval)
3227 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3228 else {
3229 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3230 return retval;
3231 }
3232 }
3233 return ERROR_OK;
3234 }
3235
3236 COMMAND_HANDLER(handle_bp_command)
3237 {
3238 uint32_t addr;
3239 uint32_t asid;
3240 uint32_t length;
3241 int hw = BKPT_SOFT;
3242
3243 switch (CMD_ARGC) {
3244 case 0:
3245 return handle_bp_command_list(CMD_CTX);
3246
3247 case 2:
3248 asid = 0;
3249 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3250 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3251 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3252
3253 case 3:
3254 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3255 hw = BKPT_HARD;
3256 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3257
3258 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3259
3260 asid = 0;
3261 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3262 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3263 hw = BKPT_HARD;
3264 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3265 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3266 addr = 0;
3267 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3268 }
3269
3270 case 4:
3271 hw = BKPT_HARD;
3272 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3273 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3274 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3275 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3276
3277 default:
3278 return ERROR_COMMAND_SYNTAX_ERROR;
3279 }
3280 }
3281
3282 COMMAND_HANDLER(handle_rbp_command)
3283 {
3284 if (CMD_ARGC != 1)
3285 return ERROR_COMMAND_SYNTAX_ERROR;
3286
3287 uint32_t addr;
3288 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3289
3290 struct target *target = get_current_target(CMD_CTX);
3291 breakpoint_remove(target, addr);
3292
3293 return ERROR_OK;
3294 }
3295
3296 COMMAND_HANDLER(handle_wp_command)
3297 {
3298 struct target *target = get_current_target(CMD_CTX);
3299
3300 if (CMD_ARGC == 0) {
3301 struct watchpoint *watchpoint = target->watchpoints;
3302
3303 while (watchpoint) {
3304 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3305 ", len: 0x%8.8" PRIx32
3306 ", r/w/a: %i, value: 0x%8.8" PRIx32
3307 ", mask: 0x%8.8" PRIx32,
3308 watchpoint->address,
3309 watchpoint->length,
3310 (int)watchpoint->rw,
3311 watchpoint->value,
3312 watchpoint->mask);
3313 watchpoint = watchpoint->next;
3314 }
3315 return ERROR_OK;
3316 }
3317
3318 enum watchpoint_rw type = WPT_ACCESS;
3319 uint32_t addr = 0;
3320 uint32_t length = 0;
3321 uint32_t data_value = 0x0;
3322 uint32_t data_mask = 0xffffffff;
3323
3324 switch (CMD_ARGC) {
3325 case 5:
3326 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3327 /* fall through */
3328 case 4:
3329 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3330 /* fall through */
3331 case 3:
3332 switch (CMD_ARGV[2][0]) {
3333 case 'r':
3334 type = WPT_READ;
3335 break;
3336 case 'w':
3337 type = WPT_WRITE;
3338 break;
3339 case 'a':
3340 type = WPT_ACCESS;
3341 break;
3342 default:
3343 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3344 return ERROR_COMMAND_SYNTAX_ERROR;
3345 }
3346 /* fall through */
3347 case 2:
3348 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3349 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3350 break;
3351
3352 default:
3353 return ERROR_COMMAND_SYNTAX_ERROR;
3354 }
3355
3356 int retval = watchpoint_add(target, addr, length, type,
3357 data_value, data_mask);
3358 if (ERROR_OK != retval)
3359 LOG_ERROR("Failure setting watchpoints");
3360
3361 return retval;
3362 }
3363
3364 COMMAND_HANDLER(handle_rwp_command)
3365 {
3366 if (CMD_ARGC != 1)
3367 return ERROR_COMMAND_SYNTAX_ERROR;
3368
3369 uint32_t addr;
3370 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3371
3372 struct target *target = get_current_target(CMD_CTX);
3373 watchpoint_remove(target, addr);
3374
3375 return ERROR_OK;
3376 }
3377
3378 /**
3379 * Translate a virtual address to a physical address.
3380 *
3381 * The low-level target implementation must have logged a detailed error
3382 * which is forwarded to telnet/GDB session.
3383 */
3384 COMMAND_HANDLER(handle_virt2phys_command)
3385 {
3386 if (CMD_ARGC != 1)
3387 return ERROR_COMMAND_SYNTAX_ERROR;
3388
3389 uint32_t va;
3390 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3391 uint32_t pa;
3392
3393 struct target *target = get_current_target(CMD_CTX);
3394 int retval = target->type->virt2phys(target, va, &pa);
3395 if (retval == ERROR_OK)
3396 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3397
3398 return retval;
3399 }
3400
3401 static void writeData(FILE *f, const void *data, size_t len)
3402 {
3403 size_t written = fwrite(data, 1, len, f);
3404 if (written != len)
3405 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3406 }
3407
3408 static void writeLong(FILE *f, int l)
3409 {
3410 int i;
3411 for (i = 0; i < 4; i++) {
3412 char c = (l >> (i*8))&0xff;
3413 writeData(f, &c, 1);
3414 }
3415
3416 }
3417
3418 static void writeString(FILE *f, char *s)
3419 {
3420 writeData(f, s, strlen(s));
3421 }
3422
3423 typedef unsigned char UNIT[2]; /* unit of profiling */
3424
3425 /* Dump a gmon.out histogram file. */
3426 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3427 bool with_range, uint32_t start_address, uint32_t end_address)
3428 {
3429 uint32_t i;
3430 FILE *f = fopen(filename, "w");
3431 if (f == NULL)
3432 return;
3433 writeString(f, "gmon");
3434 writeLong(f, 0x00000001); /* Version */
3435 writeLong(f, 0); /* padding */
3436 writeLong(f, 0); /* padding */
3437 writeLong(f, 0); /* padding */
3438
3439 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3440 writeData(f, &zero, 1);
3441
3442 /* figure out bucket size */
3443 uint32_t min;
3444 uint32_t max;
3445 if (with_range) {
3446 min = start_address;
3447 max = end_address;
3448 } else {
3449 min = samples[0];
3450 max = samples[0];
3451 for (i = 0; i < sampleNum; i++) {
3452 if (min > samples[i])
3453 min = samples[i];
3454 if (max < samples[i])
3455 max = samples[i];
3456 }
3457
3458 /* max should be (largest sample + 1)
3459 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3460 max++;
3461 }
3462
3463 int addressSpace = max - min;
3464 assert(addressSpace >= 2);
3465
3466 /* FIXME: What is the reasonable number of buckets?
3467 * The profiling result will be more accurate if there are enough buckets. */
3468 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3469 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3470 if (numBuckets > maxBuckets)
3471 numBuckets = maxBuckets;
3472 int *buckets = malloc(sizeof(int) * numBuckets);
3473 if (buckets == NULL) {
3474 fclose(f);
3475 return;
3476 }
3477 memset(buckets, 0, sizeof(int) * numBuckets);
3478 for (i = 0; i < sampleNum; i++) {
3479 uint32_t address = samples[i];
3480
3481 if ((address < min) || (max <= address))
3482 continue;
3483
3484 long long a = address - min;
3485 long long b = numBuckets;
3486 long long c = addressSpace;
3487 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3488 buckets[index_t]++;
3489 }
3490
3491 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3492 writeLong(f, min); /* low_pc */
3493 writeLong(f, max); /* high_pc */
3494 writeLong(f, numBuckets); /* # of buckets */
3495 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3496 writeString(f, "seconds");
3497 for (i = 0; i < (15-strlen("seconds")); i++)
3498 writeData(f, &zero, 1);
3499 writeString(f, "s");
3500
3501 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3502
3503 char *data = malloc(2 * numBuckets);
3504 if (data != NULL) {
3505 for (i = 0; i < numBuckets; i++) {
3506 int val;
3507 val = buckets[i];
3508 if (val > 65535)
3509 val = 65535;
3510 data[i * 2] = val&0xff;
3511 data[i * 2 + 1] = (val >> 8) & 0xff;
3512 }
3513 free(buckets);
3514 writeData(f, data, numBuckets * 2);
3515 free(data);
3516 } else
3517 free(buckets);
3518
3519 fclose(f);
3520 }
3521
3522 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3523 * which will be used as a random sampling of PC */
3524 COMMAND_HANDLER(handle_profile_command)
3525 {
3526 struct target *target = get_current_target(CMD_CTX);
3527
3528 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3529 return ERROR_COMMAND_SYNTAX_ERROR;
3530
3531 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3532 uint32_t offset;
3533 uint32_t num_of_sampels;
3534 int retval = ERROR_OK;
3535 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3536 if (samples == NULL) {
3537 LOG_ERROR("No memory to store samples.");
3538 return ERROR_FAIL;
3539 }
3540
3541 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3542
3543 /**
3544 * Some cores let us sample the PC without the
3545 * annoying halt/resume step; for example, ARMv7 PCSR.
3546 * Provide a way to use that more efficient mechanism.
3547 */
3548 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3549 &num_of_sampels, offset);
3550 if (retval != ERROR_OK) {
3551 free(samples);
3552 return retval;
3553 }
3554
3555 assert(num_of_sampels <= MAX_PROFILE_SAMPLE_NUM);
3556
3557 retval = target_poll(target);
3558 if (retval != ERROR_OK) {
3559 free(samples);
3560 return retval;
3561 }
3562 if (target->state == TARGET_RUNNING) {
3563 retval = target_halt(target);
3564 if (retval != ERROR_OK) {
3565 free(samples);
3566 return retval;
3567 }
3568 }
3569
3570 retval = target_poll(target);
3571 if (retval != ERROR_OK) {
3572 free(samples);
3573 return retval;
3574 }
3575
3576 uint32_t start_address = 0;
3577 uint32_t end_address = 0;
3578 bool with_range = false;
3579 if (CMD_ARGC == 4) {
3580 with_range = true;
3581 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], start_address);
3582 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[3], end_address);
3583 }
3584
3585 write_gmon(samples, num_of_sampels, CMD_ARGV[1],
3586 with_range, start_address, end_address);
3587 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3588
3589 free(samples);
3590 return retval;
3591 }
3592
3593 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3594 {
3595 char *namebuf;
3596 Jim_Obj *nameObjPtr, *valObjPtr;
3597 int result;
3598
3599 namebuf = alloc_printf("%s(%d)", varname, idx);
3600 if (!namebuf)
3601 return JIM_ERR;
3602
3603 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3604 valObjPtr = Jim_NewIntObj(interp, val);
3605 if (!nameObjPtr || !valObjPtr) {
3606 free(namebuf);
3607 return JIM_ERR;
3608 }
3609
3610 Jim_IncrRefCount(nameObjPtr);
3611 Jim_IncrRefCount(valObjPtr);
3612 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3613 Jim_DecrRefCount(interp, nameObjPtr);
3614 Jim_DecrRefCount(interp, valObjPtr);
3615 free(namebuf);
3616 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3617 return result;
3618 }
3619
3620 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3621 {
3622 struct command_context *context;
3623 struct target *target;
3624
3625 context = current_command_context(interp);
3626 assert(context != NULL);
3627
3628 target = get_current_target(context);
3629 if (target == NULL) {
3630 LOG_ERROR("mem2array: no current target");
3631 return JIM_ERR;
3632 }
3633
3634 return target_mem2array(interp, target, argc - 1, argv + 1);
3635 }
3636
3637 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3638 {
3639 long l;
3640 uint32_t width;
3641 int len;
3642 uint32_t addr;
3643 uint32_t count;
3644 uint32_t v;
3645 const char *varname;
3646 int n, e, retval;
3647 uint32_t i;
3648
3649 /* argv[1] = name of array to receive the data
3650 * argv[2] = desired width
3651 * argv[3] = memory address
3652 * argv[4] = count of times to read
3653 */