target: Clean up format strings
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, uint32_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106 extern struct target_type quark_d20xx_target;
107
108 static struct target_type *target_types[] = {
109 &arm7tdmi_target,
110 &arm9tdmi_target,
111 &arm920t_target,
112 &arm720t_target,
113 &arm966e_target,
114 &arm946e_target,
115 &arm926ejs_target,
116 &fa526_target,
117 &feroceon_target,
118 &dragonite_target,
119 &xscale_target,
120 &cortexm_target,
121 &cortexa_target,
122 &cortexr4_target,
123 &arm11_target,
124 &ls1_sap_target,
125 &mips_m4k_target,
126 &avr_target,
127 &dsp563xx_target,
128 &dsp5680xx_target,
129 &testee_target,
130 &avr32_ap7k_target,
131 &hla_target,
132 &nds32_v2_target,
133 &nds32_v3_target,
134 &nds32_v3m_target,
135 &or1k_target,
136 &quark_x10xx_target,
137 &quark_d20xx_target,
138 NULL,
139 };
140
141 struct target *all_targets;
142 static struct target_event_callback *target_event_callbacks;
143 static struct target_timer_callback *target_timer_callbacks;
144 LIST_HEAD(target_reset_callback_list);
145 LIST_HEAD(target_trace_callback_list);
146 static const int polling_interval = 100;
147
148 static const Jim_Nvp nvp_assert[] = {
149 { .name = "assert", NVP_ASSERT },
150 { .name = "deassert", NVP_DEASSERT },
151 { .name = "T", NVP_ASSERT },
152 { .name = "F", NVP_DEASSERT },
153 { .name = "t", NVP_ASSERT },
154 { .name = "f", NVP_DEASSERT },
155 { .name = NULL, .value = -1 }
156 };
157
158 static const Jim_Nvp nvp_error_target[] = {
159 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
160 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
161 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
162 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
163 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
164 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
165 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
166 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
167 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
168 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
169 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
170 { .value = -1, .name = NULL }
171 };
172
173 static const char *target_strerror_safe(int err)
174 {
175 const Jim_Nvp *n;
176
177 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
178 if (n->name == NULL)
179 return "unknown";
180 else
181 return n->name;
182 }
183
184 static const Jim_Nvp nvp_target_event[] = {
185
186 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
187 { .value = TARGET_EVENT_HALTED, .name = "halted" },
188 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
189 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
190 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
191
192 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
193 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
194
195 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
196 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
197 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
198 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
199 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
200 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
201 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
202 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
203 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
204 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
205 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
206 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
207
208 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
209 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
210
211 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
212 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
213
214 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
215 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
216
217 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
218 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
219
220 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
221 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
222
223 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
224
225 { .name = NULL, .value = -1 }
226 };
227
228 static const Jim_Nvp nvp_target_state[] = {
229 { .name = "unknown", .value = TARGET_UNKNOWN },
230 { .name = "running", .value = TARGET_RUNNING },
231 { .name = "halted", .value = TARGET_HALTED },
232 { .name = "reset", .value = TARGET_RESET },
233 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
234 { .name = NULL, .value = -1 },
235 };
236
237 static const Jim_Nvp nvp_target_debug_reason[] = {
238 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
239 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
240 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
241 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
242 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
243 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
244 { .name = "program-exit" , .value = DBG_REASON_EXIT },
245 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
246 { .name = NULL, .value = -1 },
247 };
248
249 static const Jim_Nvp nvp_target_endian[] = {
250 { .name = "big", .value = TARGET_BIG_ENDIAN },
251 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
252 { .name = "be", .value = TARGET_BIG_ENDIAN },
253 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
254 { .name = NULL, .value = -1 },
255 };
256
257 static const Jim_Nvp nvp_reset_modes[] = {
258 { .name = "unknown", .value = RESET_UNKNOWN },
259 { .name = "run" , .value = RESET_RUN },
260 { .name = "halt" , .value = RESET_HALT },
261 { .name = "init" , .value = RESET_INIT },
262 { .name = NULL , .value = -1 },
263 };
264
265 const char *debug_reason_name(struct target *t)
266 {
267 const char *cp;
268
269 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
270 t->debug_reason)->name;
271 if (!cp) {
272 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
273 cp = "(*BUG*unknown*BUG*)";
274 }
275 return cp;
276 }
277
278 const char *target_state_name(struct target *t)
279 {
280 const char *cp;
281 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
282 if (!cp) {
283 LOG_ERROR("Invalid target state: %d", (int)(t->state));
284 cp = "(*BUG*unknown*BUG*)";
285 }
286 return cp;
287 }
288
289 const char *target_event_name(enum target_event event)
290 {
291 const char *cp;
292 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
293 if (!cp) {
294 LOG_ERROR("Invalid target event: %d", (int)(event));
295 cp = "(*BUG*unknown*BUG*)";
296 }
297 return cp;
298 }
299
300 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
301 {
302 const char *cp;
303 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
304 if (!cp) {
305 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
306 cp = "(*BUG*unknown*BUG*)";
307 }
308 return cp;
309 }
310
311 /* determine the number of the new target */
312 static int new_target_number(void)
313 {
314 struct target *t;
315 int x;
316
317 /* number is 0 based */
318 x = -1;
319 t = all_targets;
320 while (t) {
321 if (x < t->target_number)
322 x = t->target_number;
323 t = t->next;
324 }
325 return x + 1;
326 }
327
328 /* read a uint64_t from a buffer in target memory endianness */
329 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
330 {
331 if (target->endianness == TARGET_LITTLE_ENDIAN)
332 return le_to_h_u64(buffer);
333 else
334 return be_to_h_u64(buffer);
335 }
336
337 /* read a uint32_t from a buffer in target memory endianness */
338 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
339 {
340 if (target->endianness == TARGET_LITTLE_ENDIAN)
341 return le_to_h_u32(buffer);
342 else
343 return be_to_h_u32(buffer);
344 }
345
346 /* read a uint24_t from a buffer in target memory endianness */
347 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
348 {
349 if (target->endianness == TARGET_LITTLE_ENDIAN)
350 return le_to_h_u24(buffer);
351 else
352 return be_to_h_u24(buffer);
353 }
354
355 /* read a uint16_t from a buffer in target memory endianness */
356 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
357 {
358 if (target->endianness == TARGET_LITTLE_ENDIAN)
359 return le_to_h_u16(buffer);
360 else
361 return be_to_h_u16(buffer);
362 }
363
364 /* read a uint8_t from a buffer in target memory endianness */
365 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
366 {
367 return *buffer & 0x0ff;
368 }
369
370 /* write a uint64_t to a buffer in target memory endianness */
371 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
372 {
373 if (target->endianness == TARGET_LITTLE_ENDIAN)
374 h_u64_to_le(buffer, value);
375 else
376 h_u64_to_be(buffer, value);
377 }
378
379 /* write a uint32_t to a buffer in target memory endianness */
380 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
381 {
382 if (target->endianness == TARGET_LITTLE_ENDIAN)
383 h_u32_to_le(buffer, value);
384 else
385 h_u32_to_be(buffer, value);
386 }
387
388 /* write a uint24_t to a buffer in target memory endianness */
389 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
390 {
391 if (target->endianness == TARGET_LITTLE_ENDIAN)
392 h_u24_to_le(buffer, value);
393 else
394 h_u24_to_be(buffer, value);
395 }
396
397 /* write a uint16_t to a buffer in target memory endianness */
398 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
399 {
400 if (target->endianness == TARGET_LITTLE_ENDIAN)
401 h_u16_to_le(buffer, value);
402 else
403 h_u16_to_be(buffer, value);
404 }
405
406 /* write a uint8_t to a buffer in target memory endianness */
407 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
408 {
409 *buffer = value;
410 }
411
412 /* write a uint64_t array to a buffer in target memory endianness */
413 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
414 {
415 uint32_t i;
416 for (i = 0; i < count; i++)
417 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
418 }
419
420 /* write a uint32_t array to a buffer in target memory endianness */
421 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
422 {
423 uint32_t i;
424 for (i = 0; i < count; i++)
425 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
426 }
427
428 /* write a uint16_t array to a buffer in target memory endianness */
429 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
430 {
431 uint32_t i;
432 for (i = 0; i < count; i++)
433 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
434 }
435
436 /* write a uint64_t array to a buffer in target memory endianness */
437 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
438 {
439 uint32_t i;
440 for (i = 0; i < count; i++)
441 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
442 }
443
444 /* write a uint32_t array to a buffer in target memory endianness */
445 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
446 {
447 uint32_t i;
448 for (i = 0; i < count; i++)
449 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
450 }
451
452 /* write a uint16_t array to a buffer in target memory endianness */
453 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
454 {
455 uint32_t i;
456 for (i = 0; i < count; i++)
457 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
458 }
459
460 /* return a pointer to a configured target; id is name or number */
461 struct target *get_target(const char *id)
462 {
463 struct target *target;
464
465 /* try as tcltarget name */
466 for (target = all_targets; target; target = target->next) {
467 if (target_name(target) == NULL)
468 continue;
469 if (strcmp(id, target_name(target)) == 0)
470 return target;
471 }
472
473 /* It's OK to remove this fallback sometime after August 2010 or so */
474
475 /* no match, try as number */
476 unsigned num;
477 if (parse_uint(id, &num) != ERROR_OK)
478 return NULL;
479
480 for (target = all_targets; target; target = target->next) {
481 if (target->target_number == (int)num) {
482 LOG_WARNING("use '%s' as target identifier, not '%u'",
483 target_name(target), num);
484 return target;
485 }
486 }
487
488 return NULL;
489 }
490
491 /* returns a pointer to the n-th configured target */
492 struct target *get_target_by_num(int num)
493 {
494 struct target *target = all_targets;
495
496 while (target) {
497 if (target->target_number == num)
498 return target;
499 target = target->next;
500 }
501
502 return NULL;
503 }
504
505 struct target *get_current_target(struct command_context *cmd_ctx)
506 {
507 struct target *target = get_target_by_num(cmd_ctx->current_target);
508
509 if (target == NULL) {
510 LOG_ERROR("BUG: current_target out of bounds");
511 exit(-1);
512 }
513
514 return target;
515 }
516
517 int target_poll(struct target *target)
518 {
519 int retval;
520
521 /* We can't poll until after examine */
522 if (!target_was_examined(target)) {
523 /* Fail silently lest we pollute the log */
524 return ERROR_FAIL;
525 }
526
527 retval = target->type->poll(target);
528 if (retval != ERROR_OK)
529 return retval;
530
531 if (target->halt_issued) {
532 if (target->state == TARGET_HALTED)
533 target->halt_issued = false;
534 else {
535 int64_t t = timeval_ms() - target->halt_issued_time;
536 if (t > DEFAULT_HALT_TIMEOUT) {
537 target->halt_issued = false;
538 LOG_INFO("Halt timed out, wake up GDB.");
539 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
540 }
541 }
542 }
543
544 return ERROR_OK;
545 }
546
547 int target_halt(struct target *target)
548 {
549 int retval;
550 /* We can't poll until after examine */
551 if (!target_was_examined(target)) {
552 LOG_ERROR("Target not examined yet");
553 return ERROR_FAIL;
554 }
555
556 retval = target->type->halt(target);
557 if (retval != ERROR_OK)
558 return retval;
559
560 target->halt_issued = true;
561 target->halt_issued_time = timeval_ms();
562
563 return ERROR_OK;
564 }
565
566 /**
567 * Make the target (re)start executing using its saved execution
568 * context (possibly with some modifications).
569 *
570 * @param target Which target should start executing.
571 * @param current True to use the target's saved program counter instead
572 * of the address parameter
573 * @param address Optionally used as the program counter.
574 * @param handle_breakpoints True iff breakpoints at the resumption PC
575 * should be skipped. (For example, maybe execution was stopped by
576 * such a breakpoint, in which case it would be counterprodutive to
577 * let it re-trigger.
578 * @param debug_execution False if all working areas allocated by OpenOCD
579 * should be released and/or restored to their original contents.
580 * (This would for example be true to run some downloaded "helper"
581 * algorithm code, which resides in one such working buffer and uses
582 * another for data storage.)
583 *
584 * @todo Resolve the ambiguity about what the "debug_execution" flag
585 * signifies. For example, Target implementations don't agree on how
586 * it relates to invalidation of the register cache, or to whether
587 * breakpoints and watchpoints should be enabled. (It would seem wrong
588 * to enable breakpoints when running downloaded "helper" algorithms
589 * (debug_execution true), since the breakpoints would be set to match
590 * target firmware being debugged, not the helper algorithm.... and
591 * enabling them could cause such helpers to malfunction (for example,
592 * by overwriting data with a breakpoint instruction. On the other
593 * hand the infrastructure for running such helpers might use this
594 * procedure but rely on hardware breakpoint to detect termination.)
595 */
596 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
597 {
598 int retval;
599
600 /* We can't poll until after examine */
601 if (!target_was_examined(target)) {
602 LOG_ERROR("Target not examined yet");
603 return ERROR_FAIL;
604 }
605
606 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
607
608 /* note that resume *must* be asynchronous. The CPU can halt before
609 * we poll. The CPU can even halt at the current PC as a result of
610 * a software breakpoint being inserted by (a bug?) the application.
611 */
612 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
613 if (retval != ERROR_OK)
614 return retval;
615
616 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
617
618 return retval;
619 }
620
621 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
622 {
623 char buf[100];
624 int retval;
625 Jim_Nvp *n;
626 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
627 if (n->name == NULL) {
628 LOG_ERROR("invalid reset mode");
629 return ERROR_FAIL;
630 }
631
632 struct target *target;
633 for (target = all_targets; target; target = target->next)
634 target_call_reset_callbacks(target, reset_mode);
635
636 /* disable polling during reset to make reset event scripts
637 * more predictable, i.e. dr/irscan & pathmove in events will
638 * not have JTAG operations injected into the middle of a sequence.
639 */
640 bool save_poll = jtag_poll_get_enabled();
641
642 jtag_poll_set_enabled(false);
643
644 sprintf(buf, "ocd_process_reset %s", n->name);
645 retval = Jim_Eval(cmd_ctx->interp, buf);
646
647 jtag_poll_set_enabled(save_poll);
648
649 if (retval != JIM_OK) {
650 Jim_MakeErrorMessage(cmd_ctx->interp);
651 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
652 return ERROR_FAIL;
653 }
654
655 /* We want any events to be processed before the prompt */
656 retval = target_call_timer_callbacks_now();
657
658 for (target = all_targets; target; target = target->next) {
659 target->type->check_reset(target);
660 target->running_alg = false;
661 }
662
663 return retval;
664 }
665
666 static int identity_virt2phys(struct target *target,
667 uint32_t virtual, uint32_t *physical)
668 {
669 *physical = virtual;
670 return ERROR_OK;
671 }
672
673 static int no_mmu(struct target *target, int *enabled)
674 {
675 *enabled = 0;
676 return ERROR_OK;
677 }
678
679 static int default_examine(struct target *target)
680 {
681 target_set_examined(target);
682 return ERROR_OK;
683 }
684
685 /* no check by default */
686 static int default_check_reset(struct target *target)
687 {
688 return ERROR_OK;
689 }
690
691 int target_examine_one(struct target *target)
692 {
693 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
694
695 int retval = target->type->examine(target);
696 if (retval != ERROR_OK)
697 return retval;
698
699 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
700
701 return ERROR_OK;
702 }
703
704 static int jtag_enable_callback(enum jtag_event event, void *priv)
705 {
706 struct target *target = priv;
707
708 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
709 return ERROR_OK;
710
711 jtag_unregister_event_callback(jtag_enable_callback, target);
712
713 return target_examine_one(target);
714 }
715
716 /* Targets that correctly implement init + examine, i.e.
717 * no communication with target during init:
718 *
719 * XScale
720 */
721 int target_examine(void)
722 {
723 int retval = ERROR_OK;
724 struct target *target;
725
726 for (target = all_targets; target; target = target->next) {
727 /* defer examination, but don't skip it */
728 if (!target->tap->enabled) {
729 jtag_register_event_callback(jtag_enable_callback,
730 target);
731 continue;
732 }
733
734 retval = target_examine_one(target);
735 if (retval != ERROR_OK)
736 return retval;
737 }
738 return retval;
739 }
740
741 const char *target_type_name(struct target *target)
742 {
743 return target->type->name;
744 }
745
746 static int target_soft_reset_halt(struct target *target)
747 {
748 if (!target_was_examined(target)) {
749 LOG_ERROR("Target not examined yet");
750 return ERROR_FAIL;
751 }
752 if (!target->type->soft_reset_halt) {
753 LOG_ERROR("Target %s does not support soft_reset_halt",
754 target_name(target));
755 return ERROR_FAIL;
756 }
757 return target->type->soft_reset_halt(target);
758 }
759
760 /**
761 * Downloads a target-specific native code algorithm to the target,
762 * and executes it. * Note that some targets may need to set up, enable,
763 * and tear down a breakpoint (hard or * soft) to detect algorithm
764 * termination, while others may support lower overhead schemes where
765 * soft breakpoints embedded in the algorithm automatically terminate the
766 * algorithm.
767 *
768 * @param target used to run the algorithm
769 * @param arch_info target-specific description of the algorithm.
770 */
771 int target_run_algorithm(struct target *target,
772 int num_mem_params, struct mem_param *mem_params,
773 int num_reg_params, struct reg_param *reg_param,
774 uint32_t entry_point, uint32_t exit_point,
775 int timeout_ms, void *arch_info)
776 {
777 int retval = ERROR_FAIL;
778
779 if (!target_was_examined(target)) {
780 LOG_ERROR("Target not examined yet");
781 goto done;
782 }
783 if (!target->type->run_algorithm) {
784 LOG_ERROR("Target type '%s' does not support %s",
785 target_type_name(target), __func__);
786 goto done;
787 }
788
789 target->running_alg = true;
790 retval = target->type->run_algorithm(target,
791 num_mem_params, mem_params,
792 num_reg_params, reg_param,
793 entry_point, exit_point, timeout_ms, arch_info);
794 target->running_alg = false;
795
796 done:
797 return retval;
798 }
799
800 /**
801 * Downloads a target-specific native code algorithm to the target,
802 * executes and leaves it running.
803 *
804 * @param target used to run the algorithm
805 * @param arch_info target-specific description of the algorithm.
806 */
807 int target_start_algorithm(struct target *target,
808 int num_mem_params, struct mem_param *mem_params,
809 int num_reg_params, struct reg_param *reg_params,
810 uint32_t entry_point, uint32_t exit_point,
811 void *arch_info)
812 {
813 int retval = ERROR_FAIL;
814
815 if (!target_was_examined(target)) {
816 LOG_ERROR("Target not examined yet");
817 goto done;
818 }
819 if (!target->type->start_algorithm) {
820 LOG_ERROR("Target type '%s' does not support %s",
821 target_type_name(target), __func__);
822 goto done;
823 }
824 if (target->running_alg) {
825 LOG_ERROR("Target is already running an algorithm");
826 goto done;
827 }
828
829 target->running_alg = true;
830 retval = target->type->start_algorithm(target,
831 num_mem_params, mem_params,
832 num_reg_params, reg_params,
833 entry_point, exit_point, arch_info);
834
835 done:
836 return retval;
837 }
838
839 /**
840 * Waits for an algorithm started with target_start_algorithm() to complete.
841 *
842 * @param target used to run the algorithm
843 * @param arch_info target-specific description of the algorithm.
844 */
845 int target_wait_algorithm(struct target *target,
846 int num_mem_params, struct mem_param *mem_params,
847 int num_reg_params, struct reg_param *reg_params,
848 uint32_t exit_point, int timeout_ms,
849 void *arch_info)
850 {
851 int retval = ERROR_FAIL;
852
853 if (!target->type->wait_algorithm) {
854 LOG_ERROR("Target type '%s' does not support %s",
855 target_type_name(target), __func__);
856 goto done;
857 }
858 if (!target->running_alg) {
859 LOG_ERROR("Target is not running an algorithm");
860 goto done;
861 }
862
863 retval = target->type->wait_algorithm(target,
864 num_mem_params, mem_params,
865 num_reg_params, reg_params,
866 exit_point, timeout_ms, arch_info);
867 if (retval != ERROR_TARGET_TIMEOUT)
868 target->running_alg = false;
869
870 done:
871 return retval;
872 }
873
874 /**
875 * Executes a target-specific native code algorithm in the target.
876 * It differs from target_run_algorithm in that the algorithm is asynchronous.
877 * Because of this it requires an compliant algorithm:
878 * see contrib/loaders/flash/stm32f1x.S for example.
879 *
880 * @param target used to run the algorithm
881 */
882
883 int target_run_flash_async_algorithm(struct target *target,
884 const uint8_t *buffer, uint32_t count, int block_size,
885 int num_mem_params, struct mem_param *mem_params,
886 int num_reg_params, struct reg_param *reg_params,
887 uint32_t buffer_start, uint32_t buffer_size,
888 uint32_t entry_point, uint32_t exit_point, void *arch_info)
889 {
890 int retval;
891 int timeout = 0;
892
893 const uint8_t *buffer_orig = buffer;
894
895 /* Set up working area. First word is write pointer, second word is read pointer,
896 * rest is fifo data area. */
897 uint32_t wp_addr = buffer_start;
898 uint32_t rp_addr = buffer_start + 4;
899 uint32_t fifo_start_addr = buffer_start + 8;
900 uint32_t fifo_end_addr = buffer_start + buffer_size;
901
902 uint32_t wp = fifo_start_addr;
903 uint32_t rp = fifo_start_addr;
904
905 /* validate block_size is 2^n */
906 assert(!block_size || !(block_size & (block_size - 1)));
907
908 retval = target_write_u32(target, wp_addr, wp);
909 if (retval != ERROR_OK)
910 return retval;
911 retval = target_write_u32(target, rp_addr, rp);
912 if (retval != ERROR_OK)
913 return retval;
914
915 /* Start up algorithm on target and let it idle while writing the first chunk */
916 retval = target_start_algorithm(target, num_mem_params, mem_params,
917 num_reg_params, reg_params,
918 entry_point,
919 exit_point,
920 arch_info);
921
922 if (retval != ERROR_OK) {
923 LOG_ERROR("error starting target flash write algorithm");
924 return retval;
925 }
926
927 while (count > 0) {
928
929 retval = target_read_u32(target, rp_addr, &rp);
930 if (retval != ERROR_OK) {
931 LOG_ERROR("failed to get read pointer");
932 break;
933 }
934
935 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
936 (size_t) (buffer - buffer_orig), count, wp, rp);
937
938 if (rp == 0) {
939 LOG_ERROR("flash write algorithm aborted by target");
940 retval = ERROR_FLASH_OPERATION_FAILED;
941 break;
942 }
943
944 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
945 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
946 break;
947 }
948
949 /* Count the number of bytes available in the fifo without
950 * crossing the wrap around. Make sure to not fill it completely,
951 * because that would make wp == rp and that's the empty condition. */
952 uint32_t thisrun_bytes;
953 if (rp > wp)
954 thisrun_bytes = rp - wp - block_size;
955 else if (rp > fifo_start_addr)
956 thisrun_bytes = fifo_end_addr - wp;
957 else
958 thisrun_bytes = fifo_end_addr - wp - block_size;
959
960 if (thisrun_bytes == 0) {
961 /* Throttle polling a bit if transfer is (much) faster than flash
962 * programming. The exact delay shouldn't matter as long as it's
963 * less than buffer size / flash speed. This is very unlikely to
964 * run when using high latency connections such as USB. */
965 alive_sleep(10);
966
967 /* to stop an infinite loop on some targets check and increment a timeout
968 * this issue was observed on a stellaris using the new ICDI interface */
969 if (timeout++ >= 500) {
970 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
971 return ERROR_FLASH_OPERATION_FAILED;
972 }
973 continue;
974 }
975
976 /* reset our timeout */
977 timeout = 0;
978
979 /* Limit to the amount of data we actually want to write */
980 if (thisrun_bytes > count * block_size)
981 thisrun_bytes = count * block_size;
982
983 /* Write data to fifo */
984 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
985 if (retval != ERROR_OK)
986 break;
987
988 /* Update counters and wrap write pointer */
989 buffer += thisrun_bytes;
990 count -= thisrun_bytes / block_size;
991 wp += thisrun_bytes;
992 if (wp >= fifo_end_addr)
993 wp = fifo_start_addr;
994
995 /* Store updated write pointer to target */
996 retval = target_write_u32(target, wp_addr, wp);
997 if (retval != ERROR_OK)
998 break;
999 }
1000
1001 if (retval != ERROR_OK) {
1002 /* abort flash write algorithm on target */
1003 target_write_u32(target, wp_addr, 0);
1004 }
1005
1006 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1007 num_reg_params, reg_params,
1008 exit_point,
1009 10000,
1010 arch_info);
1011
1012 if (retval2 != ERROR_OK) {
1013 LOG_ERROR("error waiting for target flash write algorithm");
1014 retval = retval2;
1015 }
1016
1017 if (retval == ERROR_OK) {
1018 /* check if algorithm set rp = 0 after fifo writer loop finished */
1019 retval = target_read_u32(target, rp_addr, &rp);
1020 if (retval == ERROR_OK && rp == 0) {
1021 LOG_ERROR("flash write algorithm aborted by target");
1022 retval = ERROR_FLASH_OPERATION_FAILED;
1023 }
1024 }
1025
1026 return retval;
1027 }
1028
1029 int target_read_memory(struct target *target,
1030 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1031 {
1032 if (!target_was_examined(target)) {
1033 LOG_ERROR("Target not examined yet");
1034 return ERROR_FAIL;
1035 }
1036 if (!target->type->read_memory) {
1037 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1038 return ERROR_FAIL;
1039 }
1040 return target->type->read_memory(target, address, size, count, buffer);
1041 }
1042
1043 int target_read_phys_memory(struct target *target,
1044 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1045 {
1046 if (!target_was_examined(target)) {
1047 LOG_ERROR("Target not examined yet");
1048 return ERROR_FAIL;
1049 }
1050 if (!target->type->read_phys_memory) {
1051 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1052 return ERROR_FAIL;
1053 }
1054 return target->type->read_phys_memory(target, address, size, count, buffer);
1055 }
1056
1057 int target_write_memory(struct target *target,
1058 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1059 {
1060 if (!target_was_examined(target)) {
1061 LOG_ERROR("Target not examined yet");
1062 return ERROR_FAIL;
1063 }
1064 if (!target->type->write_memory) {
1065 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1066 return ERROR_FAIL;
1067 }
1068 return target->type->write_memory(target, address, size, count, buffer);
1069 }
1070
1071 int target_write_phys_memory(struct target *target,
1072 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1073 {
1074 if (!target_was_examined(target)) {
1075 LOG_ERROR("Target not examined yet");
1076 return ERROR_FAIL;
1077 }
1078 if (!target->type->write_phys_memory) {
1079 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1080 return ERROR_FAIL;
1081 }
1082 return target->type->write_phys_memory(target, address, size, count, buffer);
1083 }
1084
1085 int target_add_breakpoint(struct target *target,
1086 struct breakpoint *breakpoint)
1087 {
1088 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1089 LOG_WARNING("target %s is not halted", target_name(target));
1090 return ERROR_TARGET_NOT_HALTED;
1091 }
1092 return target->type->add_breakpoint(target, breakpoint);
1093 }
1094
1095 int target_add_context_breakpoint(struct target *target,
1096 struct breakpoint *breakpoint)
1097 {
1098 if (target->state != TARGET_HALTED) {
1099 LOG_WARNING("target %s is not halted", target_name(target));
1100 return ERROR_TARGET_NOT_HALTED;
1101 }
1102 return target->type->add_context_breakpoint(target, breakpoint);
1103 }
1104
1105 int target_add_hybrid_breakpoint(struct target *target,
1106 struct breakpoint *breakpoint)
1107 {
1108 if (target->state != TARGET_HALTED) {
1109 LOG_WARNING("target %s is not halted", target_name(target));
1110 return ERROR_TARGET_NOT_HALTED;
1111 }
1112 return target->type->add_hybrid_breakpoint(target, breakpoint);
1113 }
1114
1115 int target_remove_breakpoint(struct target *target,
1116 struct breakpoint *breakpoint)
1117 {
1118 return target->type->remove_breakpoint(target, breakpoint);
1119 }
1120
1121 int target_add_watchpoint(struct target *target,
1122 struct watchpoint *watchpoint)
1123 {
1124 if (target->state != TARGET_HALTED) {
1125 LOG_WARNING("target %s is not halted", target_name(target));
1126 return ERROR_TARGET_NOT_HALTED;
1127 }
1128 return target->type->add_watchpoint(target, watchpoint);
1129 }
1130 int target_remove_watchpoint(struct target *target,
1131 struct watchpoint *watchpoint)
1132 {
1133 return target->type->remove_watchpoint(target, watchpoint);
1134 }
1135 int target_hit_watchpoint(struct target *target,
1136 struct watchpoint **hit_watchpoint)
1137 {
1138 if (target->state != TARGET_HALTED) {
1139 LOG_WARNING("target %s is not halted", target->cmd_name);
1140 return ERROR_TARGET_NOT_HALTED;
1141 }
1142
1143 if (target->type->hit_watchpoint == NULL) {
1144 /* For backward compatible, if hit_watchpoint is not implemented,
1145 * return ERROR_FAIL such that gdb_server will not take the nonsense
1146 * information. */
1147 return ERROR_FAIL;
1148 }
1149
1150 return target->type->hit_watchpoint(target, hit_watchpoint);
1151 }
1152
1153 int target_get_gdb_reg_list(struct target *target,
1154 struct reg **reg_list[], int *reg_list_size,
1155 enum target_register_class reg_class)
1156 {
1157 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1158 }
1159 int target_step(struct target *target,
1160 int current, uint32_t address, int handle_breakpoints)
1161 {
1162 return target->type->step(target, current, address, handle_breakpoints);
1163 }
1164
1165 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1166 {
1167 if (target->state != TARGET_HALTED) {
1168 LOG_WARNING("target %s is not halted", target->cmd_name);
1169 return ERROR_TARGET_NOT_HALTED;
1170 }
1171 return target->type->get_gdb_fileio_info(target, fileio_info);
1172 }
1173
1174 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1175 {
1176 if (target->state != TARGET_HALTED) {
1177 LOG_WARNING("target %s is not halted", target->cmd_name);
1178 return ERROR_TARGET_NOT_HALTED;
1179 }
1180 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1181 }
1182
1183 int target_profiling(struct target *target, uint32_t *samples,
1184 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1185 {
1186 if (target->state != TARGET_HALTED) {
1187 LOG_WARNING("target %s is not halted", target->cmd_name);
1188 return ERROR_TARGET_NOT_HALTED;
1189 }
1190 return target->type->profiling(target, samples, max_num_samples,
1191 num_samples, seconds);
1192 }
1193
1194 /**
1195 * Reset the @c examined flag for the given target.
1196 * Pure paranoia -- targets are zeroed on allocation.
1197 */
1198 static void target_reset_examined(struct target *target)
1199 {
1200 target->examined = false;
1201 }
1202
1203 static int handle_target(void *priv);
1204
1205 static int target_init_one(struct command_context *cmd_ctx,
1206 struct target *target)
1207 {
1208 target_reset_examined(target);
1209
1210 struct target_type *type = target->type;
1211 if (type->examine == NULL)
1212 type->examine = default_examine;
1213
1214 if (type->check_reset == NULL)
1215 type->check_reset = default_check_reset;
1216
1217 assert(type->init_target != NULL);
1218
1219 int retval = type->init_target(cmd_ctx, target);
1220 if (ERROR_OK != retval) {
1221 LOG_ERROR("target '%s' init failed", target_name(target));
1222 return retval;
1223 }
1224
1225 /* Sanity-check MMU support ... stub in what we must, to help
1226 * implement it in stages, but warn if we need to do so.
1227 */
1228 if (type->mmu) {
1229 if (type->virt2phys == NULL) {
1230 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1231 type->virt2phys = identity_virt2phys;
1232 }
1233 } else {
1234 /* Make sure no-MMU targets all behave the same: make no
1235 * distinction between physical and virtual addresses, and
1236 * ensure that virt2phys() is always an identity mapping.
1237 */
1238 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1239 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1240
1241 type->mmu = no_mmu;
1242 type->write_phys_memory = type->write_memory;
1243 type->read_phys_memory = type->read_memory;
1244 type->virt2phys = identity_virt2phys;
1245 }
1246
1247 if (target->type->read_buffer == NULL)
1248 target->type->read_buffer = target_read_buffer_default;
1249
1250 if (target->type->write_buffer == NULL)
1251 target->type->write_buffer = target_write_buffer_default;
1252
1253 if (target->type->get_gdb_fileio_info == NULL)
1254 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1255
1256 if (target->type->gdb_fileio_end == NULL)
1257 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1258
1259 if (target->type->profiling == NULL)
1260 target->type->profiling = target_profiling_default;
1261
1262 return ERROR_OK;
1263 }
1264
1265 static int target_init(struct command_context *cmd_ctx)
1266 {
1267 struct target *target;
1268 int retval;
1269
1270 for (target = all_targets; target; target = target->next) {
1271 retval = target_init_one(cmd_ctx, target);
1272 if (ERROR_OK != retval)
1273 return retval;
1274 }
1275
1276 if (!all_targets)
1277 return ERROR_OK;
1278
1279 retval = target_register_user_commands(cmd_ctx);
1280 if (ERROR_OK != retval)
1281 return retval;
1282
1283 retval = target_register_timer_callback(&handle_target,
1284 polling_interval, 1, cmd_ctx->interp);
1285 if (ERROR_OK != retval)
1286 return retval;
1287
1288 return ERROR_OK;
1289 }
1290
1291 COMMAND_HANDLER(handle_target_init_command)
1292 {
1293 int retval;
1294
1295 if (CMD_ARGC != 0)
1296 return ERROR_COMMAND_SYNTAX_ERROR;
1297
1298 static bool target_initialized;
1299 if (target_initialized) {
1300 LOG_INFO("'target init' has already been called");
1301 return ERROR_OK;
1302 }
1303 target_initialized = true;
1304
1305 retval = command_run_line(CMD_CTX, "init_targets");
1306 if (ERROR_OK != retval)
1307 return retval;
1308
1309 retval = command_run_line(CMD_CTX, "init_target_events");
1310 if (ERROR_OK != retval)
1311 return retval;
1312
1313 retval = command_run_line(CMD_CTX, "init_board");
1314 if (ERROR_OK != retval)
1315 return retval;
1316
1317 LOG_DEBUG("Initializing targets...");
1318 return target_init(CMD_CTX);
1319 }
1320
1321 int target_register_event_callback(int (*callback)(struct target *target,
1322 enum target_event event, void *priv), void *priv)
1323 {
1324 struct target_event_callback **callbacks_p = &target_event_callbacks;
1325
1326 if (callback == NULL)
1327 return ERROR_COMMAND_SYNTAX_ERROR;
1328
1329 if (*callbacks_p) {
1330 while ((*callbacks_p)->next)
1331 callbacks_p = &((*callbacks_p)->next);
1332 callbacks_p = &((*callbacks_p)->next);
1333 }
1334
1335 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1336 (*callbacks_p)->callback = callback;
1337 (*callbacks_p)->priv = priv;
1338 (*callbacks_p)->next = NULL;
1339
1340 return ERROR_OK;
1341 }
1342
1343 int target_register_reset_callback(int (*callback)(struct target *target,
1344 enum target_reset_mode reset_mode, void *priv), void *priv)
1345 {
1346 struct target_reset_callback *entry;
1347
1348 if (callback == NULL)
1349 return ERROR_COMMAND_SYNTAX_ERROR;
1350
1351 entry = malloc(sizeof(struct target_reset_callback));
1352 if (entry == NULL) {
1353 LOG_ERROR("error allocating buffer for reset callback entry");
1354 return ERROR_COMMAND_SYNTAX_ERROR;
1355 }
1356
1357 entry->callback = callback;
1358 entry->priv = priv;
1359 list_add(&entry->list, &target_reset_callback_list);
1360
1361
1362 return ERROR_OK;
1363 }
1364
1365 int target_register_trace_callback(int (*callback)(struct target *target,
1366 size_t len, uint8_t *data, void *priv), void *priv)
1367 {
1368 struct target_trace_callback *entry;
1369
1370 if (callback == NULL)
1371 return ERROR_COMMAND_SYNTAX_ERROR;
1372
1373 entry = malloc(sizeof(struct target_trace_callback));
1374 if (entry == NULL) {
1375 LOG_ERROR("error allocating buffer for trace callback entry");
1376 return ERROR_COMMAND_SYNTAX_ERROR;
1377 }
1378
1379 entry->callback = callback;
1380 entry->priv = priv;
1381 list_add(&entry->list, &target_trace_callback_list);
1382
1383
1384 return ERROR_OK;
1385 }
1386
1387 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1388 {
1389 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1390 struct timeval now;
1391
1392 if (callback == NULL)
1393 return ERROR_COMMAND_SYNTAX_ERROR;
1394
1395 if (*callbacks_p) {
1396 while ((*callbacks_p)->next)
1397 callbacks_p = &((*callbacks_p)->next);
1398 callbacks_p = &((*callbacks_p)->next);
1399 }
1400
1401 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1402 (*callbacks_p)->callback = callback;
1403 (*callbacks_p)->periodic = periodic;
1404 (*callbacks_p)->time_ms = time_ms;
1405 (*callbacks_p)->removed = false;
1406
1407 gettimeofday(&now, NULL);
1408 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1409 time_ms -= (time_ms % 1000);
1410 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1411 if ((*callbacks_p)->when.tv_usec > 1000000) {
1412 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1413 (*callbacks_p)->when.tv_sec += 1;
1414 }
1415
1416 (*callbacks_p)->priv = priv;
1417 (*callbacks_p)->next = NULL;
1418
1419 return ERROR_OK;
1420 }
1421
1422 int target_unregister_event_callback(int (*callback)(struct target *target,
1423 enum target_event event, void *priv), void *priv)
1424 {
1425 struct target_event_callback **p = &target_event_callbacks;
1426 struct target_event_callback *c = target_event_callbacks;
1427
1428 if (callback == NULL)
1429 return ERROR_COMMAND_SYNTAX_ERROR;
1430
1431 while (c) {
1432 struct target_event_callback *next = c->next;
1433 if ((c->callback == callback) && (c->priv == priv)) {
1434 *p = next;
1435 free(c);
1436 return ERROR_OK;
1437 } else
1438 p = &(c->next);
1439 c = next;
1440 }
1441
1442 return ERROR_OK;
1443 }
1444
1445 int target_unregister_reset_callback(int (*callback)(struct target *target,
1446 enum target_reset_mode reset_mode, void *priv), void *priv)
1447 {
1448 struct target_reset_callback *entry;
1449
1450 if (callback == NULL)
1451 return ERROR_COMMAND_SYNTAX_ERROR;
1452
1453 list_for_each_entry(entry, &target_reset_callback_list, list) {
1454 if (entry->callback == callback && entry->priv == priv) {
1455 list_del(&entry->list);
1456 free(entry);
1457 break;
1458 }
1459 }
1460
1461 return ERROR_OK;
1462 }
1463
1464 int target_unregister_trace_callback(int (*callback)(struct target *target,
1465 size_t len, uint8_t *data, void *priv), void *priv)
1466 {
1467 struct target_trace_callback *entry;
1468
1469 if (callback == NULL)
1470 return ERROR_COMMAND_SYNTAX_ERROR;
1471
1472 list_for_each_entry(entry, &target_trace_callback_list, list) {
1473 if (entry->callback == callback && entry->priv == priv) {
1474 list_del(&entry->list);
1475 free(entry);
1476 break;
1477 }
1478 }
1479
1480 return ERROR_OK;
1481 }
1482
1483 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1484 {
1485 if (callback == NULL)
1486 return ERROR_COMMAND_SYNTAX_ERROR;
1487
1488 for (struct target_timer_callback *c = target_timer_callbacks;
1489 c; c = c->next) {
1490 if ((c->callback == callback) && (c->priv == priv)) {
1491 c->removed = true;
1492 return ERROR_OK;
1493 }
1494 }
1495
1496 return ERROR_FAIL;
1497 }
1498
1499 int target_call_event_callbacks(struct target *target, enum target_event event)
1500 {
1501 struct target_event_callback *callback = target_event_callbacks;
1502 struct target_event_callback *next_callback;
1503
1504 if (event == TARGET_EVENT_HALTED) {
1505 /* execute early halted first */
1506 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1507 }
1508
1509 LOG_DEBUG("target event %i (%s)", event,
1510 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1511
1512 target_handle_event(target, event);
1513
1514 while (callback) {
1515 next_callback = callback->next;
1516 callback->callback(target, event, callback->priv);
1517 callback = next_callback;
1518 }
1519
1520 return ERROR_OK;
1521 }
1522
1523 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1524 {
1525 struct target_reset_callback *callback;
1526
1527 LOG_DEBUG("target reset %i (%s)", reset_mode,
1528 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1529
1530 list_for_each_entry(callback, &target_reset_callback_list, list)
1531 callback->callback(target, reset_mode, callback->priv);
1532
1533 return ERROR_OK;
1534 }
1535
1536 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1537 {
1538 struct target_trace_callback *callback;
1539
1540 list_for_each_entry(callback, &target_trace_callback_list, list)
1541 callback->callback(target, len, data, callback->priv);
1542
1543 return ERROR_OK;
1544 }
1545
1546 static int target_timer_callback_periodic_restart(
1547 struct target_timer_callback *cb, struct timeval *now)
1548 {
1549 int time_ms = cb->time_ms;
1550 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1551 time_ms -= (time_ms % 1000);
1552 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1553 if (cb->when.tv_usec > 1000000) {
1554 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1555 cb->when.tv_sec += 1;
1556 }
1557 return ERROR_OK;
1558 }
1559
1560 static int target_call_timer_callback(struct target_timer_callback *cb,
1561 struct timeval *now)
1562 {
1563 cb->callback(cb->priv);
1564
1565 if (cb->periodic)
1566 return target_timer_callback_periodic_restart(cb, now);
1567
1568 return target_unregister_timer_callback(cb->callback, cb->priv);
1569 }
1570
1571 static int target_call_timer_callbacks_check_time(int checktime)
1572 {
1573 static bool callback_processing;
1574
1575 /* Do not allow nesting */
1576 if (callback_processing)
1577 return ERROR_OK;
1578
1579 callback_processing = true;
1580
1581 keep_alive();
1582
1583 struct timeval now;
1584 gettimeofday(&now, NULL);
1585
1586 /* Store an address of the place containing a pointer to the
1587 * next item; initially, that's a standalone "root of the
1588 * list" variable. */
1589 struct target_timer_callback **callback = &target_timer_callbacks;
1590 while (*callback) {
1591 if ((*callback)->removed) {
1592 struct target_timer_callback *p = *callback;
1593 *callback = (*callback)->next;
1594 free(p);
1595 continue;
1596 }
1597
1598 bool call_it = (*callback)->callback &&
1599 ((!checktime && (*callback)->periodic) ||
1600 now.tv_sec > (*callback)->when.tv_sec ||
1601 (now.tv_sec == (*callback)->when.tv_sec &&
1602 now.tv_usec >= (*callback)->when.tv_usec));
1603
1604 if (call_it)
1605 target_call_timer_callback(*callback, &now);
1606
1607 callback = &(*callback)->next;
1608 }
1609
1610 callback_processing = false;
1611 return ERROR_OK;
1612 }
1613
1614 int target_call_timer_callbacks(void)
1615 {
1616 return target_call_timer_callbacks_check_time(1);
1617 }
1618
1619 /* invoke periodic callbacks immediately */
1620 int target_call_timer_callbacks_now(void)
1621 {
1622 return target_call_timer_callbacks_check_time(0);
1623 }
1624
1625 /* Prints the working area layout for debug purposes */
1626 static void print_wa_layout(struct target *target)
1627 {
1628 struct working_area *c = target->working_areas;
1629
1630 while (c) {
1631 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1632 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1633 c->address, c->address + c->size - 1, c->size);
1634 c = c->next;
1635 }
1636 }
1637
1638 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1639 static void target_split_working_area(struct working_area *area, uint32_t size)
1640 {
1641 assert(area->free); /* Shouldn't split an allocated area */
1642 assert(size <= area->size); /* Caller should guarantee this */
1643
1644 /* Split only if not already the right size */
1645 if (size < area->size) {
1646 struct working_area *new_wa = malloc(sizeof(*new_wa));
1647
1648 if (new_wa == NULL)
1649 return;
1650
1651 new_wa->next = area->next;
1652 new_wa->size = area->size - size;
1653 new_wa->address = area->address + size;
1654 new_wa->backup = NULL;
1655 new_wa->user = NULL;
1656 new_wa->free = true;
1657
1658 area->next = new_wa;
1659 area->size = size;
1660
1661 /* If backup memory was allocated to this area, it has the wrong size
1662 * now so free it and it will be reallocated if/when needed */
1663 if (area->backup) {
1664 free(area->backup);
1665 area->backup = NULL;
1666 }
1667 }
1668 }
1669
1670 /* Merge all adjacent free areas into one */
1671 static void target_merge_working_areas(struct target *target)
1672 {
1673 struct working_area *c = target->working_areas;
1674
1675 while (c && c->next) {
1676 assert(c->next->address == c->address + c->size); /* This is an invariant */
1677
1678 /* Find two adjacent free areas */
1679 if (c->free && c->next->free) {
1680 /* Merge the last into the first */
1681 c->size += c->next->size;
1682
1683 /* Remove the last */
1684 struct working_area *to_be_freed = c->next;
1685 c->next = c->next->next;
1686 if (to_be_freed->backup)
1687 free(to_be_freed->backup);
1688 free(to_be_freed);
1689
1690 /* If backup memory was allocated to the remaining area, it's has
1691 * the wrong size now */
1692 if (c->backup) {
1693 free(c->backup);
1694 c->backup = NULL;
1695 }
1696 } else {
1697 c = c->next;
1698 }
1699 }
1700 }
1701
1702 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1703 {
1704 /* Reevaluate working area address based on MMU state*/
1705 if (target->working_areas == NULL) {
1706 int retval;
1707 int enabled;
1708
1709 retval = target->type->mmu(target, &enabled);
1710 if (retval != ERROR_OK)
1711 return retval;
1712
1713 if (!enabled) {
1714 if (target->working_area_phys_spec) {
1715 LOG_DEBUG("MMU disabled, using physical "
1716 "address for working memory 0x%08"PRIx32,
1717 target->working_area_phys);
1718 target->working_area = target->working_area_phys;
1719 } else {
1720 LOG_ERROR("No working memory available. "
1721 "Specify -work-area-phys to target.");
1722 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1723 }
1724 } else {
1725 if (target->working_area_virt_spec) {
1726 LOG_DEBUG("MMU enabled, using virtual "
1727 "address for working memory 0x%08"PRIx32,
1728 target->working_area_virt);
1729 target->working_area = target->working_area_virt;
1730 } else {
1731 LOG_ERROR("No working memory available. "
1732 "Specify -work-area-virt to target.");
1733 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1734 }
1735 }
1736
1737 /* Set up initial working area on first call */
1738 struct working_area *new_wa = malloc(sizeof(*new_wa));
1739 if (new_wa) {
1740 new_wa->next = NULL;
1741 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1742 new_wa->address = target->working_area;
1743 new_wa->backup = NULL;
1744 new_wa->user = NULL;
1745 new_wa->free = true;
1746 }
1747
1748 target->working_areas = new_wa;
1749 }
1750
1751 /* only allocate multiples of 4 byte */
1752 if (size % 4)
1753 size = (size + 3) & (~3UL);
1754
1755 struct working_area *c = target->working_areas;
1756
1757 /* Find the first large enough working area */
1758 while (c) {
1759 if (c->free && c->size >= size)
1760 break;
1761 c = c->next;
1762 }
1763
1764 if (c == NULL)
1765 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1766
1767 /* Split the working area into the requested size */
1768 target_split_working_area(c, size);
1769
1770 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1771
1772 if (target->backup_working_area) {
1773 if (c->backup == NULL) {
1774 c->backup = malloc(c->size);
1775 if (c->backup == NULL)
1776 return ERROR_FAIL;
1777 }
1778
1779 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1780 if (retval != ERROR_OK)
1781 return retval;
1782 }
1783
1784 /* mark as used, and return the new (reused) area */
1785 c->free = false;
1786 *area = c;
1787
1788 /* user pointer */
1789 c->user = area;
1790
1791 print_wa_layout(target);
1792
1793 return ERROR_OK;
1794 }
1795
1796 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1797 {
1798 int retval;
1799
1800 retval = target_alloc_working_area_try(target, size, area);
1801 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1802 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1803 return retval;
1804
1805 }
1806
1807 static int target_restore_working_area(struct target *target, struct working_area *area)
1808 {
1809 int retval = ERROR_OK;
1810
1811 if (target->backup_working_area && area->backup != NULL) {
1812 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1813 if (retval != ERROR_OK)
1814 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1815 area->size, area->address);
1816 }
1817
1818 return retval;
1819 }
1820
1821 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1822 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1823 {
1824 int retval = ERROR_OK;
1825
1826 if (area->free)
1827 return retval;
1828
1829 if (restore) {
1830 retval = target_restore_working_area(target, area);
1831 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1832 if (retval != ERROR_OK)
1833 return retval;
1834 }
1835
1836 area->free = true;
1837
1838 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1839 area->size, area->address);
1840
1841 /* mark user pointer invalid */
1842 /* TODO: Is this really safe? It points to some previous caller's memory.
1843 * How could we know that the area pointer is still in that place and not
1844 * some other vital data? What's the purpose of this, anyway? */
1845 *area->user = NULL;
1846 area->user = NULL;
1847
1848 target_merge_working_areas(target);
1849
1850 print_wa_layout(target);
1851
1852 return retval;
1853 }
1854
1855 int target_free_working_area(struct target *target, struct working_area *area)
1856 {
1857 return target_free_working_area_restore(target, area, 1);
1858 }
1859
1860 void target_quit(void)
1861 {
1862 struct target_event_callback *pe = target_event_callbacks;
1863 while (pe) {
1864 struct target_event_callback *t = pe->next;
1865 free(pe);
1866 pe = t;
1867 }
1868 target_event_callbacks = NULL;
1869
1870 struct target_timer_callback *pt = target_timer_callbacks;
1871 while (pt) {
1872 struct target_timer_callback *t = pt->next;
1873 free(pt);
1874 pt = t;
1875 }
1876 target_timer_callbacks = NULL;
1877
1878 for (struct target *target = all_targets;
1879 target; target = target->next) {
1880 if (target->type->deinit_target)
1881 target->type->deinit_target(target);
1882 }
1883 }
1884
1885 /* free resources and restore memory, if restoring memory fails,
1886 * free up resources anyway
1887 */
1888 static void target_free_all_working_areas_restore(struct target *target, int restore)
1889 {
1890 struct working_area *c = target->working_areas;
1891
1892 LOG_DEBUG("freeing all working areas");
1893
1894 /* Loop through all areas, restoring the allocated ones and marking them as free */
1895 while (c) {
1896 if (!c->free) {
1897 if (restore)
1898 target_restore_working_area(target, c);
1899 c->free = true;
1900 *c->user = NULL; /* Same as above */
1901 c->user = NULL;
1902 }
1903 c = c->next;
1904 }
1905
1906 /* Run a merge pass to combine all areas into one */
1907 target_merge_working_areas(target);
1908
1909 print_wa_layout(target);
1910 }
1911
1912 void target_free_all_working_areas(struct target *target)
1913 {
1914 target_free_all_working_areas_restore(target, 1);
1915 }
1916
1917 /* Find the largest number of bytes that can be allocated */
1918 uint32_t target_get_working_area_avail(struct target *target)
1919 {
1920 struct working_area *c = target->working_areas;
1921 uint32_t max_size = 0;
1922
1923 if (c == NULL)
1924 return target->working_area_size;
1925
1926 while (c) {
1927 if (c->free && max_size < c->size)
1928 max_size = c->size;
1929
1930 c = c->next;
1931 }
1932
1933 return max_size;
1934 }
1935
1936 int target_arch_state(struct target *target)
1937 {
1938 int retval;
1939 if (target == NULL) {
1940 LOG_USER("No target has been configured");
1941 return ERROR_OK;
1942 }
1943
1944 LOG_USER("%s: target state: %s", target_name(target),
1945 target_state_name(target));
1946
1947 if (target->state != TARGET_HALTED)
1948 return ERROR_OK;
1949
1950 retval = target->type->arch_state(target);
1951 return retval;
1952 }
1953
1954 static int target_get_gdb_fileio_info_default(struct target *target,
1955 struct gdb_fileio_info *fileio_info)
1956 {
1957 /* If target does not support semi-hosting function, target
1958 has no need to provide .get_gdb_fileio_info callback.
1959 It just return ERROR_FAIL and gdb_server will return "Txx"
1960 as target halted every time. */
1961 return ERROR_FAIL;
1962 }
1963
1964 static int target_gdb_fileio_end_default(struct target *target,
1965 int retcode, int fileio_errno, bool ctrl_c)
1966 {
1967 return ERROR_OK;
1968 }
1969
1970 static int target_profiling_default(struct target *target, uint32_t *samples,
1971 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1972 {
1973 struct timeval timeout, now;
1974
1975 gettimeofday(&timeout, NULL);
1976 timeval_add_time(&timeout, seconds, 0);
1977
1978 LOG_INFO("Starting profiling. Halting and resuming the"
1979 " target as often as we can...");
1980
1981 uint32_t sample_count = 0;
1982 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1983 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1984
1985 int retval = ERROR_OK;
1986 for (;;) {
1987 target_poll(target);
1988 if (target->state == TARGET_HALTED) {
1989 uint32_t t = buf_get_u32(reg->value, 0, 32);
1990 samples[sample_count++] = t;
1991 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1992 retval = target_resume(target, 1, 0, 0, 0);
1993 target_poll(target);
1994 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1995 } else if (target->state == TARGET_RUNNING) {
1996 /* We want to quickly sample the PC. */
1997 retval = target_halt(target);
1998 } else {
1999 LOG_INFO("Target not halted or running");
2000 retval = ERROR_OK;
2001 break;
2002 }
2003
2004 if (retval != ERROR_OK)
2005 break;
2006
2007 gettimeofday(&now, NULL);
2008 if ((sample_count >= max_num_samples) ||
2009 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2010 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2011 break;
2012 }
2013 }
2014
2015 *num_samples = sample_count;
2016 return retval;
2017 }
2018
2019 /* Single aligned words are guaranteed to use 16 or 32 bit access
2020 * mode respectively, otherwise data is handled as quickly as
2021 * possible
2022 */
2023 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
2024 {
2025 LOG_DEBUG("writing buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2026 size, address);
2027
2028 if (!target_was_examined(target)) {
2029 LOG_ERROR("Target not examined yet");
2030 return ERROR_FAIL;
2031 }
2032
2033 if (size == 0)
2034 return ERROR_OK;
2035
2036 if ((address + size - 1) < address) {
2037 /* GDB can request this when e.g. PC is 0xfffffffc */
2038 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2039 address,
2040 size);
2041 return ERROR_FAIL;
2042 }
2043
2044 return target->type->write_buffer(target, address, size, buffer);
2045 }
2046
2047 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2048 {
2049 uint32_t size;
2050
2051 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2052 * will have something to do with the size we leave to it. */
2053 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2054 if (address & size) {
2055 int retval = target_write_memory(target, address, size, 1, buffer);
2056 if (retval != ERROR_OK)
2057 return retval;
2058 address += size;
2059 count -= size;
2060 buffer += size;
2061 }
2062 }
2063
2064 /* Write the data with as large access size as possible. */
2065 for (; size > 0; size /= 2) {
2066 uint32_t aligned = count - count % size;
2067 if (aligned > 0) {
2068 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2069 if (retval != ERROR_OK)
2070 return retval;
2071 address += aligned;
2072 count -= aligned;
2073 buffer += aligned;
2074 }
2075 }
2076
2077 return ERROR_OK;
2078 }
2079
2080 /* Single aligned words are guaranteed to use 16 or 32 bit access
2081 * mode respectively, otherwise data is handled as quickly as
2082 * possible
2083 */
2084 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2085 {
2086 LOG_DEBUG("reading buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2087 size, address);
2088
2089 if (!target_was_examined(target)) {
2090 LOG_ERROR("Target not examined yet");
2091 return ERROR_FAIL;
2092 }
2093
2094 if (size == 0)
2095 return ERROR_OK;
2096
2097 if ((address + size - 1) < address) {
2098 /* GDB can request this when e.g. PC is 0xfffffffc */
2099 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2100 address,
2101 size);
2102 return ERROR_FAIL;
2103 }
2104
2105 return target->type->read_buffer(target, address, size, buffer);
2106 }
2107
2108 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2109 {
2110 uint32_t size;
2111
2112 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2113 * will have something to do with the size we leave to it. */
2114 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2115 if (address & size) {
2116 int retval = target_read_memory(target, address, size, 1, buffer);
2117 if (retval != ERROR_OK)
2118 return retval;
2119 address += size;
2120 count -= size;
2121 buffer += size;
2122 }
2123 }
2124
2125 /* Read the data with as large access size as possible. */
2126 for (; size > 0; size /= 2) {
2127 uint32_t aligned = count - count % size;
2128 if (aligned > 0) {
2129 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2130 if (retval != ERROR_OK)
2131 return retval;
2132 address += aligned;
2133 count -= aligned;
2134 buffer += aligned;
2135 }
2136 }
2137
2138 return ERROR_OK;
2139 }
2140
2141 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2142 {
2143 uint8_t *buffer;
2144 int retval;
2145 uint32_t i;
2146 uint32_t checksum = 0;
2147 if (!target_was_examined(target)) {
2148 LOG_ERROR("Target not examined yet");
2149 return ERROR_FAIL;
2150 }
2151
2152 retval = target->type->checksum_memory(target, address, size, &checksum);
2153 if (retval != ERROR_OK) {
2154 buffer = malloc(size);
2155 if (buffer == NULL) {
2156 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2157 return ERROR_COMMAND_SYNTAX_ERROR;
2158 }
2159 retval = target_read_buffer(target, address, size, buffer);
2160 if (retval != ERROR_OK) {
2161 free(buffer);
2162 return retval;
2163 }
2164
2165 /* convert to target endianness */
2166 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2167 uint32_t target_data;
2168 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2169 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2170 }
2171
2172 retval = image_calculate_checksum(buffer, size, &checksum);
2173 free(buffer);
2174 }
2175
2176 *crc = checksum;
2177
2178 return retval;
2179 }
2180
2181 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2182 {
2183 int retval;
2184 if (!target_was_examined(target)) {
2185 LOG_ERROR("Target not examined yet");
2186 return ERROR_FAIL;
2187 }
2188
2189 if (target->type->blank_check_memory == 0)
2190 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2191
2192 retval = target->type->blank_check_memory(target, address, size, blank);
2193
2194 return retval;
2195 }
2196
2197 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2198 {
2199 uint8_t value_buf[8];
2200 if (!target_was_examined(target)) {
2201 LOG_ERROR("Target not examined yet");
2202 return ERROR_FAIL;
2203 }
2204
2205 int retval = target_read_memory(target, address, 8, 1, value_buf);
2206
2207 if (retval == ERROR_OK) {
2208 *value = target_buffer_get_u64(target, value_buf);
2209 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2210 address,
2211 *value);
2212 } else {
2213 *value = 0x0;
2214 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2215 address);
2216 }
2217
2218 return retval;
2219 }
2220
2221 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2222 {
2223 uint8_t value_buf[4];
2224 if (!target_was_examined(target)) {
2225 LOG_ERROR("Target not examined yet");
2226 return ERROR_FAIL;
2227 }
2228
2229 int retval = target_read_memory(target, address, 4, 1, value_buf);
2230
2231 if (retval == ERROR_OK) {
2232 *value = target_buffer_get_u32(target, value_buf);
2233 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2234 address,
2235 *value);
2236 } else {
2237 *value = 0x0;
2238 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2239 address);
2240 }
2241
2242 return retval;
2243 }
2244
2245 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2246 {
2247 uint8_t value_buf[2];
2248 if (!target_was_examined(target)) {
2249 LOG_ERROR("Target not examined yet");
2250 return ERROR_FAIL;
2251 }
2252
2253 int retval = target_read_memory(target, address, 2, 1, value_buf);
2254
2255 if (retval == ERROR_OK) {
2256 *value = target_buffer_get_u16(target, value_buf);
2257 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4" PRIx16,
2258 address,
2259 *value);
2260 } else {
2261 *value = 0x0;
2262 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2263 address);
2264 }
2265
2266 return retval;
2267 }
2268
2269 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2270 {
2271 if (!target_was_examined(target)) {
2272 LOG_ERROR("Target not examined yet");
2273 return ERROR_FAIL;
2274 }
2275
2276 int retval = target_read_memory(target, address, 1, 1, value);
2277
2278 if (retval == ERROR_OK) {
2279 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2280 address,
2281 *value);
2282 } else {
2283 *value = 0x0;
2284 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2285 address);
2286 }
2287
2288 return retval;
2289 }
2290
2291 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2292 {
2293 int retval;
2294 uint8_t value_buf[8];
2295 if (!target_was_examined(target)) {
2296 LOG_ERROR("Target not examined yet");
2297 return ERROR_FAIL;
2298 }
2299
2300 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2301 address,
2302 value);
2303
2304 target_buffer_set_u64(target, value_buf, value);
2305 retval = target_write_memory(target, address, 8, 1, value_buf);
2306 if (retval != ERROR_OK)
2307 LOG_DEBUG("failed: %i", retval);
2308
2309 return retval;
2310 }
2311
2312 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2313 {
2314 int retval;
2315 uint8_t value_buf[4];
2316 if (!target_was_examined(target)) {
2317 LOG_ERROR("Target not examined yet");
2318 return ERROR_FAIL;
2319 }
2320
2321 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2322 address,
2323 value);
2324
2325 target_buffer_set_u32(target, value_buf, value);
2326 retval = target_write_memory(target, address, 4, 1, value_buf);
2327 if (retval != ERROR_OK)
2328 LOG_DEBUG("failed: %i", retval);
2329
2330 return retval;
2331 }
2332
2333 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2334 {
2335 int retval;
2336 uint8_t value_buf[2];
2337 if (!target_was_examined(target)) {
2338 LOG_ERROR("Target not examined yet");
2339 return ERROR_FAIL;
2340 }
2341
2342 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx16,
2343 address,
2344 value);
2345
2346 target_buffer_set_u16(target, value_buf, value);
2347 retval = target_write_memory(target, address, 2, 1, value_buf);
2348 if (retval != ERROR_OK)
2349 LOG_DEBUG("failed: %i", retval);
2350
2351 return retval;
2352 }
2353
2354 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2355 {
2356 int retval;
2357 if (!target_was_examined(target)) {
2358 LOG_ERROR("Target not examined yet");
2359 return ERROR_FAIL;
2360 }
2361
2362 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2363 address, value);
2364
2365 retval = target_write_memory(target, address, 1, 1, &value);
2366 if (retval != ERROR_OK)
2367 LOG_DEBUG("failed: %i", retval);
2368
2369 return retval;
2370 }
2371
2372 static int find_target(struct command_context *cmd_ctx, const char *name)
2373 {
2374 struct target *target = get_target(name);
2375 if (target == NULL) {
2376 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2377 return ERROR_FAIL;
2378 }
2379 if (!target->tap->enabled) {
2380 LOG_USER("Target: TAP %s is disabled, "
2381 "can't be the current target\n",
2382 target->tap->dotted_name);
2383 return ERROR_FAIL;
2384 }
2385
2386 cmd_ctx->current_target = target->target_number;
2387 return ERROR_OK;
2388 }
2389
2390
2391 COMMAND_HANDLER(handle_targets_command)
2392 {
2393 int retval = ERROR_OK;
2394 if (CMD_ARGC == 1) {
2395 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2396 if (retval == ERROR_OK) {
2397 /* we're done! */
2398 return retval;
2399 }
2400 }
2401
2402 struct target *target = all_targets;
2403 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2404 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2405 while (target) {
2406 const char *state;
2407 char marker = ' ';
2408
2409 if (target->tap->enabled)
2410 state = target_state_name(target);
2411 else
2412 state = "tap-disabled";
2413
2414 if (CMD_CTX->current_target == target->target_number)
2415 marker = '*';
2416
2417 /* keep columns lined up to match the headers above */
2418 command_print(CMD_CTX,
2419 "%2d%c %-18s %-10s %-6s %-18s %s",
2420 target->target_number,
2421 marker,
2422 target_name(target),
2423 target_type_name(target),
2424 Jim_Nvp_value2name_simple(nvp_target_endian,
2425 target->endianness)->name,
2426 target->tap->dotted_name,
2427 state);
2428 target = target->next;
2429 }
2430
2431 return retval;
2432 }
2433
2434 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2435
2436 static int powerDropout;
2437 static int srstAsserted;
2438
2439 static int runPowerRestore;
2440 static int runPowerDropout;
2441 static int runSrstAsserted;
2442 static int runSrstDeasserted;
2443
2444 static int sense_handler(void)
2445 {
2446 static int prevSrstAsserted;
2447 static int prevPowerdropout;
2448
2449 int retval = jtag_power_dropout(&powerDropout);
2450 if (retval != ERROR_OK)
2451 return retval;
2452
2453 int powerRestored;
2454 powerRestored = prevPowerdropout && !powerDropout;
2455 if (powerRestored)
2456 runPowerRestore = 1;
2457
2458 int64_t current = timeval_ms();
2459 static int64_t lastPower;
2460 bool waitMore = lastPower + 2000 > current;
2461 if (powerDropout && !waitMore) {
2462 runPowerDropout = 1;
2463 lastPower = current;
2464 }
2465
2466 retval = jtag_srst_asserted(&srstAsserted);
2467 if (retval != ERROR_OK)
2468 return retval;
2469
2470 int srstDeasserted;
2471 srstDeasserted = prevSrstAsserted && !srstAsserted;
2472
2473 static int64_t lastSrst;
2474 waitMore = lastSrst + 2000 > current;
2475 if (srstDeasserted && !waitMore) {
2476 runSrstDeasserted = 1;
2477 lastSrst = current;
2478 }
2479
2480 if (!prevSrstAsserted && srstAsserted)
2481 runSrstAsserted = 1;
2482
2483 prevSrstAsserted = srstAsserted;
2484 prevPowerdropout = powerDropout;
2485
2486 if (srstDeasserted || powerRestored) {
2487 /* Other than logging the event we can't do anything here.
2488 * Issuing a reset is a particularly bad idea as we might
2489 * be inside a reset already.
2490 */
2491 }
2492
2493 return ERROR_OK;
2494 }
2495
2496 /* process target state changes */
2497 static int handle_target(void *priv)
2498 {
2499 Jim_Interp *interp = (Jim_Interp *)priv;
2500 int retval = ERROR_OK;
2501
2502 if (!is_jtag_poll_safe()) {
2503 /* polling is disabled currently */
2504 return ERROR_OK;
2505 }
2506
2507 /* we do not want to recurse here... */
2508 static int recursive;
2509 if (!recursive) {
2510 recursive = 1;
2511 sense_handler();
2512 /* danger! running these procedures can trigger srst assertions and power dropouts.
2513 * We need to avoid an infinite loop/recursion here and we do that by
2514 * clearing the flags after running these events.
2515 */
2516 int did_something = 0;
2517 if (runSrstAsserted) {
2518 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2519 Jim_Eval(interp, "srst_asserted");
2520 did_something = 1;
2521 }
2522 if (runSrstDeasserted) {
2523 Jim_Eval(interp, "srst_deasserted");
2524 did_something = 1;
2525 }
2526 if (runPowerDropout) {
2527 LOG_INFO("Power dropout detected, running power_dropout proc.");
2528 Jim_Eval(interp, "power_dropout");
2529 did_something = 1;
2530 }
2531 if (runPowerRestore) {
2532 Jim_Eval(interp, "power_restore");
2533 did_something = 1;
2534 }
2535
2536 if (did_something) {
2537 /* clear detect flags */
2538 sense_handler();
2539 }
2540
2541 /* clear action flags */
2542
2543 runSrstAsserted = 0;
2544 runSrstDeasserted = 0;
2545 runPowerRestore = 0;
2546 runPowerDropout = 0;
2547
2548 recursive = 0;
2549 }
2550
2551 /* Poll targets for state changes unless that's globally disabled.
2552 * Skip targets that are currently disabled.
2553 */
2554 for (struct target *target = all_targets;
2555 is_jtag_poll_safe() && target;
2556 target = target->next) {
2557
2558 if (!target_was_examined(target))
2559 continue;
2560
2561 if (!target->tap->enabled)
2562 continue;
2563
2564 if (target->backoff.times > target->backoff.count) {
2565 /* do not poll this time as we failed previously */
2566 target->backoff.count++;
2567 continue;
2568 }
2569 target->backoff.count = 0;
2570
2571 /* only poll target if we've got power and srst isn't asserted */
2572 if (!powerDropout && !srstAsserted) {
2573 /* polling may fail silently until the target has been examined */
2574 retval = target_poll(target);
2575 if (retval != ERROR_OK) {
2576 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2577 if (target->backoff.times * polling_interval < 5000) {
2578 target->backoff.times *= 2;
2579 target->backoff.times++;
2580 }
2581
2582 /* Tell GDB to halt the debugger. This allows the user to
2583 * run monitor commands to handle the situation.
2584 */
2585 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2586 }
2587 if (target->backoff.times > 0) {
2588 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2589 target_reset_examined(target);
2590 retval = target_examine_one(target);
2591 /* Target examination could have failed due to unstable connection,
2592 * but we set the examined flag anyway to repoll it later */
2593 if (retval != ERROR_OK) {
2594 target->examined = true;
2595 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2596 target->backoff.times * polling_interval);
2597 return retval;
2598 }
2599 }
2600
2601 /* Since we succeeded, we reset backoff count */
2602 target->backoff.times = 0;
2603 }
2604 }
2605
2606 return retval;
2607 }
2608
2609 COMMAND_HANDLER(handle_reg_command)
2610 {
2611 struct target *target;
2612 struct reg *reg = NULL;
2613 unsigned count = 0;
2614 char *value;
2615
2616 LOG_DEBUG("-");
2617
2618 target = get_current_target(CMD_CTX);
2619
2620 /* list all available registers for the current target */
2621 if (CMD_ARGC == 0) {
2622 struct reg_cache *cache = target->reg_cache;
2623
2624 count = 0;
2625 while (cache) {
2626 unsigned i;
2627
2628 command_print(CMD_CTX, "===== %s", cache->name);
2629
2630 for (i = 0, reg = cache->reg_list;
2631 i < cache->num_regs;
2632 i++, reg++, count++) {
2633 /* only print cached values if they are valid */
2634 if (reg->valid) {
2635 value = buf_to_str(reg->value,
2636 reg->size, 16);
2637 command_print(CMD_CTX,
2638 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2639 count, reg->name,
2640 reg->size, value,
2641 reg->dirty
2642 ? " (dirty)"
2643 : "");
2644 free(value);
2645 } else {
2646 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2647 count, reg->name,
2648 reg->size) ;
2649 }
2650 }
2651 cache = cache->next;
2652 }
2653
2654 return ERROR_OK;
2655 }
2656
2657 /* access a single register by its ordinal number */
2658 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2659 unsigned num;
2660 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2661
2662 struct reg_cache *cache = target->reg_cache;
2663 count = 0;
2664 while (cache) {
2665 unsigned i;
2666 for (i = 0; i < cache->num_regs; i++) {
2667 if (count++ == num) {
2668 reg = &cache->reg_list[i];
2669 break;
2670 }
2671 }
2672 if (reg)
2673 break;
2674 cache = cache->next;
2675 }
2676
2677 if (!reg) {
2678 command_print(CMD_CTX, "%i is out of bounds, the current target "
2679 "has only %i registers (0 - %i)", num, count, count - 1);
2680 return ERROR_OK;
2681 }
2682 } else {
2683 /* access a single register by its name */
2684 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2685
2686 if (!reg) {
2687 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2688 return ERROR_OK;
2689 }
2690 }
2691
2692 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2693
2694 /* display a register */
2695 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2696 && (CMD_ARGV[1][0] <= '9')))) {
2697 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2698 reg->valid = 0;
2699
2700 if (reg->valid == 0)
2701 reg->type->get(reg);
2702 value = buf_to_str(reg->value, reg->size, 16);
2703 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2704 free(value);
2705 return ERROR_OK;
2706 }
2707
2708 /* set register value */
2709 if (CMD_ARGC == 2) {
2710 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2711 if (buf == NULL)
2712 return ERROR_FAIL;
2713 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2714
2715 reg->type->set(reg, buf);
2716
2717 value = buf_to_str(reg->value, reg->size, 16);
2718 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2719 free(value);
2720
2721 free(buf);
2722
2723 return ERROR_OK;
2724 }
2725
2726 return ERROR_COMMAND_SYNTAX_ERROR;
2727 }
2728
2729 COMMAND_HANDLER(handle_poll_command)
2730 {
2731 int retval = ERROR_OK;
2732 struct target *target = get_current_target(CMD_CTX);
2733
2734 if (CMD_ARGC == 0) {
2735 command_print(CMD_CTX, "background polling: %s",
2736 jtag_poll_get_enabled() ? "on" : "off");
2737 command_print(CMD_CTX, "TAP: %s (%s)",
2738 target->tap->dotted_name,
2739 target->tap->enabled ? "enabled" : "disabled");
2740 if (!target->tap->enabled)
2741 return ERROR_OK;
2742 retval = target_poll(target);
2743 if (retval != ERROR_OK)
2744 return retval;
2745 retval = target_arch_state(target);
2746 if (retval != ERROR_OK)
2747 return retval;
2748 } else if (CMD_ARGC == 1) {
2749 bool enable;
2750 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2751 jtag_poll_set_enabled(enable);
2752 } else
2753 return ERROR_COMMAND_SYNTAX_ERROR;
2754
2755 return retval;
2756 }
2757
2758 COMMAND_HANDLER(handle_wait_halt_command)
2759 {
2760 if (CMD_ARGC > 1)
2761 return ERROR_COMMAND_SYNTAX_ERROR;
2762
2763 unsigned ms = DEFAULT_HALT_TIMEOUT;
2764 if (1 == CMD_ARGC) {
2765 int retval = parse_uint(CMD_ARGV[0], &ms);
2766 if (ERROR_OK != retval)
2767 return ERROR_COMMAND_SYNTAX_ERROR;
2768 }
2769
2770 struct target *target = get_current_target(CMD_CTX);
2771 return target_wait_state(target, TARGET_HALTED, ms);
2772 }
2773
2774 /* wait for target state to change. The trick here is to have a low
2775 * latency for short waits and not to suck up all the CPU time
2776 * on longer waits.
2777 *
2778 * After 500ms, keep_alive() is invoked
2779 */
2780 int target_wait_state(struct target *target, enum target_state state, int ms)
2781 {
2782 int retval;
2783 int64_t then = 0, cur;
2784 bool once = true;
2785
2786 for (;;) {
2787 retval = target_poll(target);
2788 if (retval != ERROR_OK)
2789 return retval;
2790 if (target->state == state)
2791 break;
2792 cur = timeval_ms();
2793 if (once) {
2794 once = false;
2795 then = timeval_ms();
2796 LOG_DEBUG("waiting for target %s...",
2797 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2798 }
2799
2800 if (cur-then > 500)
2801 keep_alive();
2802
2803 if ((cur-then) > ms) {
2804 LOG_ERROR("timed out while waiting for target %s",
2805 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2806 return ERROR_FAIL;
2807 }
2808 }
2809
2810 return ERROR_OK;
2811 }
2812
2813 COMMAND_HANDLER(handle_halt_command)
2814 {
2815 LOG_DEBUG("-");
2816
2817 struct target *target = get_current_target(CMD_CTX);
2818 int retval = target_halt(target);
2819 if (ERROR_OK != retval)
2820 return retval;
2821
2822 if (CMD_ARGC == 1) {
2823 unsigned wait_local;
2824 retval = parse_uint(CMD_ARGV[0], &wait_local);
2825 if (ERROR_OK != retval)
2826 return ERROR_COMMAND_SYNTAX_ERROR;
2827 if (!wait_local)
2828 return ERROR_OK;
2829 }
2830
2831 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2832 }
2833
2834 COMMAND_HANDLER(handle_soft_reset_halt_command)
2835 {
2836 struct target *target = get_current_target(CMD_CTX);
2837
2838 LOG_USER("requesting target halt and executing a soft reset");
2839
2840 target_soft_reset_halt(target);
2841
2842 return ERROR_OK;
2843 }
2844
2845 COMMAND_HANDLER(handle_reset_command)
2846 {
2847 if (CMD_ARGC > 1)
2848 return ERROR_COMMAND_SYNTAX_ERROR;
2849
2850 enum target_reset_mode reset_mode = RESET_RUN;
2851 if (CMD_ARGC == 1) {
2852 const Jim_Nvp *n;
2853 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2854 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2855 return ERROR_COMMAND_SYNTAX_ERROR;
2856 reset_mode = n->value;
2857 }
2858
2859 /* reset *all* targets */
2860 return target_process_reset(CMD_CTX, reset_mode);
2861 }
2862
2863
2864 COMMAND_HANDLER(handle_resume_command)
2865 {
2866 int current = 1;
2867 if (CMD_ARGC > 1)
2868 return ERROR_COMMAND_SYNTAX_ERROR;
2869
2870 struct target *target = get_current_target(CMD_CTX);
2871
2872 /* with no CMD_ARGV, resume from current pc, addr = 0,
2873 * with one arguments, addr = CMD_ARGV[0],
2874 * handle breakpoints, not debugging */
2875 uint32_t addr = 0;
2876 if (CMD_ARGC == 1) {
2877 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2878 current = 0;
2879 }
2880
2881 return target_resume(target, current, addr, 1, 0);
2882 }
2883
2884 COMMAND_HANDLER(handle_step_command)
2885 {
2886 if (CMD_ARGC > 1)
2887 return ERROR_COMMAND_SYNTAX_ERROR;
2888
2889 LOG_DEBUG("-");
2890
2891 /* with no CMD_ARGV, step from current pc, addr = 0,
2892 * with one argument addr = CMD_ARGV[0],
2893 * handle breakpoints, debugging */
2894 uint32_t addr = 0;
2895 int current_pc = 1;
2896 if (CMD_ARGC == 1) {
2897 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2898 current_pc = 0;
2899 }
2900
2901 struct target *target = get_current_target(CMD_CTX);
2902
2903 return target->type->step(target, current_pc, addr, 1);
2904 }
2905
2906 static void handle_md_output(struct command_context *cmd_ctx,
2907 struct target *target, uint32_t address, unsigned size,
2908 unsigned count, const uint8_t *buffer)
2909 {
2910 const unsigned line_bytecnt = 32;
2911 unsigned line_modulo = line_bytecnt / size;
2912
2913 char output[line_bytecnt * 4 + 1];
2914 unsigned output_len = 0;
2915
2916 const char *value_fmt;
2917 switch (size) {
2918 case 4:
2919 value_fmt = "%8.8x ";
2920 break;
2921 case 2:
2922 value_fmt = "%4.4x ";
2923 break;
2924 case 1:
2925 value_fmt = "%2.2x ";
2926 break;
2927 default:
2928 /* "can't happen", caller checked */
2929 LOG_ERROR("invalid memory read size: %u", size);
2930 return;
2931 }
2932
2933 for (unsigned i = 0; i < count; i++) {
2934 if (i % line_modulo == 0) {
2935 output_len += snprintf(output + output_len,
2936 sizeof(output) - output_len,
2937 "0x%8.8x: ",
2938 (unsigned)(address + (i*size)));
2939 }
2940
2941 uint32_t value = 0;
2942 const uint8_t *value_ptr = buffer + i * size;
2943 switch (size) {
2944 case 4:
2945 value = target_buffer_get_u32(target, value_ptr);
2946 break;
2947 case 2:
2948 value = target_buffer_get_u16(target, value_ptr);
2949 break;
2950 case 1:
2951 value = *value_ptr;
2952 }
2953 output_len += snprintf(output + output_len,
2954 sizeof(output) - output_len,
2955 value_fmt, value);
2956
2957 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2958 command_print(cmd_ctx, "%s", output);
2959 output_len = 0;
2960 }
2961 }
2962 }
2963
2964 COMMAND_HANDLER(handle_md_command)
2965 {
2966 if (CMD_ARGC < 1)
2967 return ERROR_COMMAND_SYNTAX_ERROR;
2968
2969 unsigned size = 0;
2970 switch (CMD_NAME[2]) {
2971 case 'w':
2972 size = 4;
2973 break;
2974 case 'h':
2975 size = 2;
2976 break;
2977 case 'b':
2978 size = 1;
2979 break;
2980 default:
2981 return ERROR_COMMAND_SYNTAX_ERROR;
2982 }
2983
2984 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2985 int (*fn)(struct target *target,
2986 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2987 if (physical) {
2988 CMD_ARGC--;
2989 CMD_ARGV++;
2990 fn = target_read_phys_memory;
2991 } else
2992 fn = target_read_memory;
2993 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2994 return ERROR_COMMAND_SYNTAX_ERROR;
2995
2996 uint32_t address;
2997 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2998
2999 unsigned count = 1;
3000 if (CMD_ARGC == 2)
3001 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3002
3003 uint8_t *buffer = calloc(count, size);
3004
3005 struct target *target = get_current_target(CMD_CTX);
3006 int retval = fn(target, address, size, count, buffer);
3007 if (ERROR_OK == retval)
3008 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3009
3010 free(buffer);
3011
3012 return retval;
3013 }
3014
3015 typedef int (*target_write_fn)(struct target *target,
3016 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3017
3018 static int target_fill_mem(struct target *target,
3019 uint32_t address,
3020 target_write_fn fn,
3021 unsigned data_size,
3022 /* value */
3023 uint32_t b,
3024 /* count */
3025 unsigned c)
3026 {
3027 /* We have to write in reasonably large chunks to be able
3028 * to fill large memory areas with any sane speed */
3029 const unsigned chunk_size = 16384;
3030 uint8_t *target_buf = malloc(chunk_size * data_size);
3031 if (target_buf == NULL) {
3032 LOG_ERROR("Out of memory");
3033 return ERROR_FAIL;
3034 }
3035
3036 for (unsigned i = 0; i < chunk_size; i++) {
3037 switch (data_size) {
3038 case 4:
3039 target_buffer_set_u32(target, target_buf + i * data_size, b);
3040 break;
3041 case 2:
3042 target_buffer_set_u16(target, target_buf + i * data_size, b);
3043 break;
3044 case 1:
3045 target_buffer_set_u8(target, target_buf + i * data_size, b);
3046 break;
3047 default:
3048 exit(-1);
3049 }
3050 }
3051
3052 int retval = ERROR_OK;
3053
3054 for (unsigned x = 0; x < c; x += chunk_size) {
3055 unsigned current;
3056 current = c - x;
3057 if (current > chunk_size)
3058 current = chunk_size;
3059 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3060 if (retval != ERROR_OK)
3061 break;
3062 /* avoid GDB timeouts */
3063 keep_alive();
3064 }
3065 free(target_buf);
3066
3067 return retval;
3068 }
3069
3070
3071 COMMAND_HANDLER(handle_mw_command)
3072 {
3073 if (CMD_ARGC < 2)
3074 return ERROR_COMMAND_SYNTAX_ERROR;
3075 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3076 target_write_fn fn;
3077 if (physical) {
3078 CMD_ARGC--;
3079 CMD_ARGV++;
3080 fn = target_write_phys_memory;
3081 } else
3082 fn = target_write_memory;
3083 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3084 return ERROR_COMMAND_SYNTAX_ERROR;
3085
3086 uint32_t address;
3087 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3088
3089 uint32_t value;
3090 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3091
3092 unsigned count = 1;
3093 if (CMD_ARGC == 3)
3094 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3095
3096 struct target *target = get_current_target(CMD_CTX);
3097 unsigned wordsize;
3098 switch (CMD_NAME[2]) {
3099 case 'w':
3100 wordsize = 4;
3101 break;
3102 case 'h':
3103 wordsize = 2;
3104 break;
3105 case 'b':
3106 wordsize = 1;
3107 break;
3108 default:
3109 return ERROR_COMMAND_SYNTAX_ERROR;
3110 }
3111
3112 return target_fill_mem(target, address, fn, wordsize, value, count);
3113 }
3114
3115 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3116 uint32_t *min_address, uint32_t *max_address)
3117 {
3118 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3119 return ERROR_COMMAND_SYNTAX_ERROR;
3120
3121 /* a base address isn't always necessary,
3122 * default to 0x0 (i.e. don't relocate) */
3123 if (CMD_ARGC >= 2) {
3124 uint32_t addr;
3125 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3126 image->base_address = addr;
3127 image->base_address_set = 1;
3128 } else
3129 image->base_address_set = 0;
3130
3131 image->start_address_set = 0;
3132
3133 if (CMD_ARGC >= 4)
3134 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3135 if (CMD_ARGC == 5) {
3136 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3137 /* use size (given) to find max (required) */
3138 *max_address += *min_address;
3139 }
3140
3141 if (*min_address > *max_address)
3142 return ERROR_COMMAND_SYNTAX_ERROR;
3143
3144 return ERROR_OK;
3145 }
3146
3147 COMMAND_HANDLER(handle_load_image_command)
3148 {
3149 uint8_t *buffer;
3150 size_t buf_cnt;
3151 uint32_t image_size;
3152 uint32_t min_address = 0;
3153 uint32_t max_address = 0xffffffff;
3154 int i;
3155 struct image image;
3156
3157 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3158 &image, &min_address, &max_address);
3159 if (ERROR_OK != retval)
3160 return retval;
3161
3162 struct target *target = get_current_target(CMD_CTX);
3163
3164 struct duration bench;
3165 duration_start(&bench);
3166
3167 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3168 return ERROR_OK;
3169
3170 image_size = 0x0;
3171 retval = ERROR_OK;
3172 for (i = 0; i < image.num_sections; i++) {
3173 buffer = malloc(image.sections[i].size);
3174 if (buffer == NULL) {
3175 command_print(CMD_CTX,
3176 "error allocating buffer for section (%d bytes)",
3177 (int)(image.sections[i].size));
3178 break;
3179 }
3180
3181