target: Remove read_memory_imp
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
68
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type arm11_target;
84 extern struct target_type mips_m4k_target;
85 extern struct target_type avr_target;
86 extern struct target_type dsp563xx_target;
87 extern struct target_type dsp5680xx_target;
88 extern struct target_type testee_target;
89 extern struct target_type avr32_ap7k_target;
90 extern struct target_type hla_target;
91
92 static struct target_type *target_types[] = {
93 &arm7tdmi_target,
94 &arm9tdmi_target,
95 &arm920t_target,
96 &arm720t_target,
97 &arm966e_target,
98 &arm946e_target,
99 &arm926ejs_target,
100 &fa526_target,
101 &feroceon_target,
102 &dragonite_target,
103 &xscale_target,
104 &cortexm3_target,
105 &cortexa8_target,
106 &arm11_target,
107 &mips_m4k_target,
108 &avr_target,
109 &dsp563xx_target,
110 &dsp5680xx_target,
111 &testee_target,
112 &avr32_ap7k_target,
113 &hla_target,
114 NULL,
115 };
116
117 struct target *all_targets;
118 static struct target_event_callback *target_event_callbacks;
119 static struct target_timer_callback *target_timer_callbacks;
120 static const int polling_interval = 100;
121
122 static const Jim_Nvp nvp_assert[] = {
123 { .name = "assert", NVP_ASSERT },
124 { .name = "deassert", NVP_DEASSERT },
125 { .name = "T", NVP_ASSERT },
126 { .name = "F", NVP_DEASSERT },
127 { .name = "t", NVP_ASSERT },
128 { .name = "f", NVP_DEASSERT },
129 { .name = NULL, .value = -1 }
130 };
131
132 static const Jim_Nvp nvp_error_target[] = {
133 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
134 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
135 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
136 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
137 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
138 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
139 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
140 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
141 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
142 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
143 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
144 { .value = -1, .name = NULL }
145 };
146
147 static const char *target_strerror_safe(int err)
148 {
149 const Jim_Nvp *n;
150
151 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
152 if (n->name == NULL)
153 return "unknown";
154 else
155 return n->name;
156 }
157
158 static const Jim_Nvp nvp_target_event[] = {
159
160 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
161 { .value = TARGET_EVENT_HALTED, .name = "halted" },
162 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
163 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
164 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
165
166 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
167 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
168
169 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
170 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
171 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
172 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
173 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
174 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
176 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
177 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
178 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
179 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
180 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
181
182 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
193
194 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
196
197 { .name = NULL, .value = -1 }
198 };
199
200 static const Jim_Nvp nvp_target_state[] = {
201 { .name = "unknown", .value = TARGET_UNKNOWN },
202 { .name = "running", .value = TARGET_RUNNING },
203 { .name = "halted", .value = TARGET_HALTED },
204 { .name = "reset", .value = TARGET_RESET },
205 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
206 { .name = NULL, .value = -1 },
207 };
208
209 static const Jim_Nvp nvp_target_debug_reason[] = {
210 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
211 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
212 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
213 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
214 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
215 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
216 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
217 { .name = NULL, .value = -1 },
218 };
219
220 static const Jim_Nvp nvp_target_endian[] = {
221 { .name = "big", .value = TARGET_BIG_ENDIAN },
222 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
223 { .name = "be", .value = TARGET_BIG_ENDIAN },
224 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
225 { .name = NULL, .value = -1 },
226 };
227
228 static const Jim_Nvp nvp_reset_modes[] = {
229 { .name = "unknown", .value = RESET_UNKNOWN },
230 { .name = "run" , .value = RESET_RUN },
231 { .name = "halt" , .value = RESET_HALT },
232 { .name = "init" , .value = RESET_INIT },
233 { .name = NULL , .value = -1 },
234 };
235
236 const char *debug_reason_name(struct target *t)
237 {
238 const char *cp;
239
240 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
241 t->debug_reason)->name;
242 if (!cp) {
243 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
244 cp = "(*BUG*unknown*BUG*)";
245 }
246 return cp;
247 }
248
249 const char *target_state_name(struct target *t)
250 {
251 const char *cp;
252 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
253 if (!cp) {
254 LOG_ERROR("Invalid target state: %d", (int)(t->state));
255 cp = "(*BUG*unknown*BUG*)";
256 }
257 return cp;
258 }
259
260 /* determine the number of the new target */
261 static int new_target_number(void)
262 {
263 struct target *t;
264 int x;
265
266 /* number is 0 based */
267 x = -1;
268 t = all_targets;
269 while (t) {
270 if (x < t->target_number)
271 x = t->target_number;
272 t = t->next;
273 }
274 return x + 1;
275 }
276
277 /* read a uint32_t from a buffer in target memory endianness */
278 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
279 {
280 if (target->endianness == TARGET_LITTLE_ENDIAN)
281 return le_to_h_u32(buffer);
282 else
283 return be_to_h_u32(buffer);
284 }
285
286 /* read a uint24_t from a buffer in target memory endianness */
287 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
288 {
289 if (target->endianness == TARGET_LITTLE_ENDIAN)
290 return le_to_h_u24(buffer);
291 else
292 return be_to_h_u24(buffer);
293 }
294
295 /* read a uint16_t from a buffer in target memory endianness */
296 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
297 {
298 if (target->endianness == TARGET_LITTLE_ENDIAN)
299 return le_to_h_u16(buffer);
300 else
301 return be_to_h_u16(buffer);
302 }
303
304 /* read a uint8_t from a buffer in target memory endianness */
305 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
306 {
307 return *buffer & 0x0ff;
308 }
309
310 /* write a uint32_t to a buffer in target memory endianness */
311 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
312 {
313 if (target->endianness == TARGET_LITTLE_ENDIAN)
314 h_u32_to_le(buffer, value);
315 else
316 h_u32_to_be(buffer, value);
317 }
318
319 /* write a uint24_t to a buffer in target memory endianness */
320 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
321 {
322 if (target->endianness == TARGET_LITTLE_ENDIAN)
323 h_u24_to_le(buffer, value);
324 else
325 h_u24_to_be(buffer, value);
326 }
327
328 /* write a uint16_t to a buffer in target memory endianness */
329 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
330 {
331 if (target->endianness == TARGET_LITTLE_ENDIAN)
332 h_u16_to_le(buffer, value);
333 else
334 h_u16_to_be(buffer, value);
335 }
336
337 /* write a uint8_t to a buffer in target memory endianness */
338 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
339 {
340 *buffer = value;
341 }
342
343 /* write a uint32_t array to a buffer in target memory endianness */
344 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
345 {
346 uint32_t i;
347 for (i = 0; i < count; i++)
348 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
349 }
350
351 /* write a uint16_t array to a buffer in target memory endianness */
352 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
353 {
354 uint32_t i;
355 for (i = 0; i < count; i++)
356 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
357 }
358
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
361 {
362 uint32_t i;
363 for (i = 0; i < count; i++)
364 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
365 }
366
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
369 {
370 uint32_t i;
371 for (i = 0; i < count; i++)
372 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
373 }
374
375 /* return a pointer to a configured target; id is name or number */
376 struct target *get_target(const char *id)
377 {
378 struct target *target;
379
380 /* try as tcltarget name */
381 for (target = all_targets; target; target = target->next) {
382 if (target_name(target) == NULL)
383 continue;
384 if (strcmp(id, target_name(target)) == 0)
385 return target;
386 }
387
388 /* It's OK to remove this fallback sometime after August 2010 or so */
389
390 /* no match, try as number */
391 unsigned num;
392 if (parse_uint(id, &num) != ERROR_OK)
393 return NULL;
394
395 for (target = all_targets; target; target = target->next) {
396 if (target->target_number == (int)num) {
397 LOG_WARNING("use '%s' as target identifier, not '%u'",
398 target_name(target), num);
399 return target;
400 }
401 }
402
403 return NULL;
404 }
405
406 /* returns a pointer to the n-th configured target */
407 static struct target *get_target_by_num(int num)
408 {
409 struct target *target = all_targets;
410
411 while (target) {
412 if (target->target_number == num)
413 return target;
414 target = target->next;
415 }
416
417 return NULL;
418 }
419
420 struct target *get_current_target(struct command_context *cmd_ctx)
421 {
422 struct target *target = get_target_by_num(cmd_ctx->current_target);
423
424 if (target == NULL) {
425 LOG_ERROR("BUG: current_target out of bounds");
426 exit(-1);
427 }
428
429 return target;
430 }
431
432 int target_poll(struct target *target)
433 {
434 int retval;
435
436 /* We can't poll until after examine */
437 if (!target_was_examined(target)) {
438 /* Fail silently lest we pollute the log */
439 return ERROR_FAIL;
440 }
441
442 retval = target->type->poll(target);
443 if (retval != ERROR_OK)
444 return retval;
445
446 if (target->halt_issued) {
447 if (target->state == TARGET_HALTED)
448 target->halt_issued = false;
449 else {
450 long long t = timeval_ms() - target->halt_issued_time;
451 if (t > 1000) {
452 target->halt_issued = false;
453 LOG_INFO("Halt timed out, wake up GDB.");
454 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
455 }
456 }
457 }
458
459 return ERROR_OK;
460 }
461
462 int target_halt(struct target *target)
463 {
464 int retval;
465 /* We can't poll until after examine */
466 if (!target_was_examined(target)) {
467 LOG_ERROR("Target not examined yet");
468 return ERROR_FAIL;
469 }
470
471 retval = target->type->halt(target);
472 if (retval != ERROR_OK)
473 return retval;
474
475 target->halt_issued = true;
476 target->halt_issued_time = timeval_ms();
477
478 return ERROR_OK;
479 }
480
481 /**
482 * Make the target (re)start executing using its saved execution
483 * context (possibly with some modifications).
484 *
485 * @param target Which target should start executing.
486 * @param current True to use the target's saved program counter instead
487 * of the address parameter
488 * @param address Optionally used as the program counter.
489 * @param handle_breakpoints True iff breakpoints at the resumption PC
490 * should be skipped. (For example, maybe execution was stopped by
491 * such a breakpoint, in which case it would be counterprodutive to
492 * let it re-trigger.
493 * @param debug_execution False if all working areas allocated by OpenOCD
494 * should be released and/or restored to their original contents.
495 * (This would for example be true to run some downloaded "helper"
496 * algorithm code, which resides in one such working buffer and uses
497 * another for data storage.)
498 *
499 * @todo Resolve the ambiguity about what the "debug_execution" flag
500 * signifies. For example, Target implementations don't agree on how
501 * it relates to invalidation of the register cache, or to whether
502 * breakpoints and watchpoints should be enabled. (It would seem wrong
503 * to enable breakpoints when running downloaded "helper" algorithms
504 * (debug_execution true), since the breakpoints would be set to match
505 * target firmware being debugged, not the helper algorithm.... and
506 * enabling them could cause such helpers to malfunction (for example,
507 * by overwriting data with a breakpoint instruction. On the other
508 * hand the infrastructure for running such helpers might use this
509 * procedure but rely on hardware breakpoint to detect termination.)
510 */
511 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
512 {
513 int retval;
514
515 /* We can't poll until after examine */
516 if (!target_was_examined(target)) {
517 LOG_ERROR("Target not examined yet");
518 return ERROR_FAIL;
519 }
520
521 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
522
523 /* note that resume *must* be asynchronous. The CPU can halt before
524 * we poll. The CPU can even halt at the current PC as a result of
525 * a software breakpoint being inserted by (a bug?) the application.
526 */
527 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
528 if (retval != ERROR_OK)
529 return retval;
530
531 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
532
533 return retval;
534 }
535
536 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
537 {
538 char buf[100];
539 int retval;
540 Jim_Nvp *n;
541 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
542 if (n->name == NULL) {
543 LOG_ERROR("invalid reset mode");
544 return ERROR_FAIL;
545 }
546
547 /* disable polling during reset to make reset event scripts
548 * more predictable, i.e. dr/irscan & pathmove in events will
549 * not have JTAG operations injected into the middle of a sequence.
550 */
551 bool save_poll = jtag_poll_get_enabled();
552
553 jtag_poll_set_enabled(false);
554
555 sprintf(buf, "ocd_process_reset %s", n->name);
556 retval = Jim_Eval(cmd_ctx->interp, buf);
557
558 jtag_poll_set_enabled(save_poll);
559
560 if (retval != JIM_OK) {
561 Jim_MakeErrorMessage(cmd_ctx->interp);
562 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
563 return ERROR_FAIL;
564 }
565
566 /* We want any events to be processed before the prompt */
567 retval = target_call_timer_callbacks_now();
568
569 struct target *target;
570 for (target = all_targets; target; target = target->next)
571 target->type->check_reset(target);
572
573 return retval;
574 }
575
576 static int identity_virt2phys(struct target *target,
577 uint32_t virtual, uint32_t *physical)
578 {
579 *physical = virtual;
580 return ERROR_OK;
581 }
582
583 static int no_mmu(struct target *target, int *enabled)
584 {
585 *enabled = 0;
586 return ERROR_OK;
587 }
588
589 static int default_examine(struct target *target)
590 {
591 target_set_examined(target);
592 return ERROR_OK;
593 }
594
595 /* no check by default */
596 static int default_check_reset(struct target *target)
597 {
598 return ERROR_OK;
599 }
600
601 int target_examine_one(struct target *target)
602 {
603 return target->type->examine(target);
604 }
605
606 static int jtag_enable_callback(enum jtag_event event, void *priv)
607 {
608 struct target *target = priv;
609
610 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
611 return ERROR_OK;
612
613 jtag_unregister_event_callback(jtag_enable_callback, target);
614
615 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
616
617 int retval = target_examine_one(target);
618 if (retval != ERROR_OK)
619 return retval;
620
621 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
622
623 return retval;
624 }
625
626 /* Targets that correctly implement init + examine, i.e.
627 * no communication with target during init:
628 *
629 * XScale
630 */
631 int target_examine(void)
632 {
633 int retval = ERROR_OK;
634 struct target *target;
635
636 for (target = all_targets; target; target = target->next) {
637 /* defer examination, but don't skip it */
638 if (!target->tap->enabled) {
639 jtag_register_event_callback(jtag_enable_callback,
640 target);
641 continue;
642 }
643
644 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
645
646 retval = target_examine_one(target);
647 if (retval != ERROR_OK)
648 return retval;
649
650 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
651 }
652 return retval;
653 }
654
655 const char *target_type_name(struct target *target)
656 {
657 return target->type->name;
658 }
659
660 static int target_soft_reset_halt(struct target *target)
661 {
662 if (!target_was_examined(target)) {
663 LOG_ERROR("Target not examined yet");
664 return ERROR_FAIL;
665 }
666 if (!target->type->soft_reset_halt) {
667 LOG_ERROR("Target %s does not support soft_reset_halt",
668 target_name(target));
669 return ERROR_FAIL;
670 }
671 return target->type->soft_reset_halt(target);
672 }
673
674 /**
675 * Downloads a target-specific native code algorithm to the target,
676 * and executes it. * Note that some targets may need to set up, enable,
677 * and tear down a breakpoint (hard or * soft) to detect algorithm
678 * termination, while others may support lower overhead schemes where
679 * soft breakpoints embedded in the algorithm automatically terminate the
680 * algorithm.
681 *
682 * @param target used to run the algorithm
683 * @param arch_info target-specific description of the algorithm.
684 */
685 int target_run_algorithm(struct target *target,
686 int num_mem_params, struct mem_param *mem_params,
687 int num_reg_params, struct reg_param *reg_param,
688 uint32_t entry_point, uint32_t exit_point,
689 int timeout_ms, void *arch_info)
690 {
691 int retval = ERROR_FAIL;
692
693 if (!target_was_examined(target)) {
694 LOG_ERROR("Target not examined yet");
695 goto done;
696 }
697 if (!target->type->run_algorithm) {
698 LOG_ERROR("Target type '%s' does not support %s",
699 target_type_name(target), __func__);
700 goto done;
701 }
702
703 target->running_alg = true;
704 retval = target->type->run_algorithm(target,
705 num_mem_params, mem_params,
706 num_reg_params, reg_param,
707 entry_point, exit_point, timeout_ms, arch_info);
708 target->running_alg = false;
709
710 done:
711 return retval;
712 }
713
714 /**
715 * Downloads a target-specific native code algorithm to the target,
716 * executes and leaves it running.
717 *
718 * @param target used to run the algorithm
719 * @param arch_info target-specific description of the algorithm.
720 */
721 int target_start_algorithm(struct target *target,
722 int num_mem_params, struct mem_param *mem_params,
723 int num_reg_params, struct reg_param *reg_params,
724 uint32_t entry_point, uint32_t exit_point,
725 void *arch_info)
726 {
727 int retval = ERROR_FAIL;
728
729 if (!target_was_examined(target)) {
730 LOG_ERROR("Target not examined yet");
731 goto done;
732 }
733 if (!target->type->start_algorithm) {
734 LOG_ERROR("Target type '%s' does not support %s",
735 target_type_name(target), __func__);
736 goto done;
737 }
738 if (target->running_alg) {
739 LOG_ERROR("Target is already running an algorithm");
740 goto done;
741 }
742
743 target->running_alg = true;
744 retval = target->type->start_algorithm(target,
745 num_mem_params, mem_params,
746 num_reg_params, reg_params,
747 entry_point, exit_point, arch_info);
748
749 done:
750 return retval;
751 }
752
753 /**
754 * Waits for an algorithm started with target_start_algorithm() to complete.
755 *
756 * @param target used to run the algorithm
757 * @param arch_info target-specific description of the algorithm.
758 */
759 int target_wait_algorithm(struct target *target,
760 int num_mem_params, struct mem_param *mem_params,
761 int num_reg_params, struct reg_param *reg_params,
762 uint32_t exit_point, int timeout_ms,
763 void *arch_info)
764 {
765 int retval = ERROR_FAIL;
766
767 if (!target->type->wait_algorithm) {
768 LOG_ERROR("Target type '%s' does not support %s",
769 target_type_name(target), __func__);
770 goto done;
771 }
772 if (!target->running_alg) {
773 LOG_ERROR("Target is not running an algorithm");
774 goto done;
775 }
776
777 retval = target->type->wait_algorithm(target,
778 num_mem_params, mem_params,
779 num_reg_params, reg_params,
780 exit_point, timeout_ms, arch_info);
781 if (retval != ERROR_TARGET_TIMEOUT)
782 target->running_alg = false;
783
784 done:
785 return retval;
786 }
787
788 /**
789 * Executes a target-specific native code algorithm in the target.
790 * It differs from target_run_algorithm in that the algorithm is asynchronous.
791 * Because of this it requires an compliant algorithm:
792 * see contrib/loaders/flash/stm32f1x.S for example.
793 *
794 * @param target used to run the algorithm
795 */
796
797 int target_run_flash_async_algorithm(struct target *target,
798 uint8_t *buffer, uint32_t count, int block_size,
799 int num_mem_params, struct mem_param *mem_params,
800 int num_reg_params, struct reg_param *reg_params,
801 uint32_t buffer_start, uint32_t buffer_size,
802 uint32_t entry_point, uint32_t exit_point, void *arch_info)
803 {
804 int retval;
805 int timeout = 0;
806
807 /* Set up working area. First word is write pointer, second word is read pointer,
808 * rest is fifo data area. */
809 uint32_t wp_addr = buffer_start;
810 uint32_t rp_addr = buffer_start + 4;
811 uint32_t fifo_start_addr = buffer_start + 8;
812 uint32_t fifo_end_addr = buffer_start + buffer_size;
813
814 uint32_t wp = fifo_start_addr;
815 uint32_t rp = fifo_start_addr;
816
817 /* validate block_size is 2^n */
818 assert(!block_size || !(block_size & (block_size - 1)));
819
820 retval = target_write_u32(target, wp_addr, wp);
821 if (retval != ERROR_OK)
822 return retval;
823 retval = target_write_u32(target, rp_addr, rp);
824 if (retval != ERROR_OK)
825 return retval;
826
827 /* Start up algorithm on target and let it idle while writing the first chunk */
828 retval = target_start_algorithm(target, num_mem_params, mem_params,
829 num_reg_params, reg_params,
830 entry_point,
831 exit_point,
832 arch_info);
833
834 if (retval != ERROR_OK) {
835 LOG_ERROR("error starting target flash write algorithm");
836 return retval;
837 }
838
839 while (count > 0) {
840
841 retval = target_read_u32(target, rp_addr, &rp);
842 if (retval != ERROR_OK) {
843 LOG_ERROR("failed to get read pointer");
844 break;
845 }
846
847 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
848
849 if (rp == 0) {
850 LOG_ERROR("flash write algorithm aborted by target");
851 retval = ERROR_FLASH_OPERATION_FAILED;
852 break;
853 }
854
855 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
856 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
857 break;
858 }
859
860 /* Count the number of bytes available in the fifo without
861 * crossing the wrap around. Make sure to not fill it completely,
862 * because that would make wp == rp and that's the empty condition. */
863 uint32_t thisrun_bytes;
864 if (rp > wp)
865 thisrun_bytes = rp - wp - block_size;
866 else if (rp > fifo_start_addr)
867 thisrun_bytes = fifo_end_addr - wp;
868 else
869 thisrun_bytes = fifo_end_addr - wp - block_size;
870
871 if (thisrun_bytes == 0) {
872 /* Throttle polling a bit if transfer is (much) faster than flash
873 * programming. The exact delay shouldn't matter as long as it's
874 * less than buffer size / flash speed. This is very unlikely to
875 * run when using high latency connections such as USB. */
876 alive_sleep(10);
877
878 /* to stop an infinite loop on some targets check and increment a timeout
879 * this issue was observed on a stellaris using the new ICDI interface */
880 if (timeout++ >= 500) {
881 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
882 return ERROR_FLASH_OPERATION_FAILED;
883 }
884 continue;
885 }
886
887 /* reset our timeout */
888 timeout = 0;
889
890 /* Limit to the amount of data we actually want to write */
891 if (thisrun_bytes > count * block_size)
892 thisrun_bytes = count * block_size;
893
894 /* Write data to fifo */
895 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
896 if (retval != ERROR_OK)
897 break;
898
899 /* Update counters and wrap write pointer */
900 buffer += thisrun_bytes;
901 count -= thisrun_bytes / block_size;
902 wp += thisrun_bytes;
903 if (wp >= fifo_end_addr)
904 wp = fifo_start_addr;
905
906 /* Store updated write pointer to target */
907 retval = target_write_u32(target, wp_addr, wp);
908 if (retval != ERROR_OK)
909 break;
910 }
911
912 if (retval != ERROR_OK) {
913 /* abort flash write algorithm on target */
914 target_write_u32(target, wp_addr, 0);
915 }
916
917 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
918 num_reg_params, reg_params,
919 exit_point,
920 10000,
921 arch_info);
922
923 if (retval2 != ERROR_OK) {
924 LOG_ERROR("error waiting for target flash write algorithm");
925 retval = retval2;
926 }
927
928 return retval;
929 }
930
931 int target_read_memory(struct target *target,
932 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
933 {
934 if (!target_was_examined(target)) {
935 LOG_ERROR("Target not examined yet");
936 return ERROR_FAIL;
937 }
938 return target->type->read_memory(target, address, size, count, buffer);
939 }
940
941 int target_read_phys_memory(struct target *target,
942 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
943 {
944 if (!target_was_examined(target)) {
945 LOG_ERROR("Target not examined yet");
946 return ERROR_FAIL;
947 }
948 return target->type->read_phys_memory(target, address, size, count, buffer);
949 }
950
951 int target_write_memory(struct target *target,
952 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
953 {
954 if (!target_was_examined(target)) {
955 LOG_ERROR("Target not examined yet");
956 return ERROR_FAIL;
957 }
958 return target->type->write_memory(target, address, size, count, buffer);
959 }
960
961 int target_write_phys_memory(struct target *target,
962 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
963 {
964 if (!target_was_examined(target)) {
965 LOG_ERROR("Target not examined yet");
966 return ERROR_FAIL;
967 }
968 return target->type->write_phys_memory(target, address, size, count, buffer);
969 }
970
971 int target_bulk_write_memory(struct target *target,
972 uint32_t address, uint32_t count, const uint8_t *buffer)
973 {
974 return target->type->bulk_write_memory(target, address, count, buffer);
975 }
976
977 int target_add_breakpoint(struct target *target,
978 struct breakpoint *breakpoint)
979 {
980 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
981 LOG_WARNING("target %s is not halted", target_name(target));
982 return ERROR_TARGET_NOT_HALTED;
983 }
984 return target->type->add_breakpoint(target, breakpoint);
985 }
986
987 int target_add_context_breakpoint(struct target *target,
988 struct breakpoint *breakpoint)
989 {
990 if (target->state != TARGET_HALTED) {
991 LOG_WARNING("target %s is not halted", target_name(target));
992 return ERROR_TARGET_NOT_HALTED;
993 }
994 return target->type->add_context_breakpoint(target, breakpoint);
995 }
996
997 int target_add_hybrid_breakpoint(struct target *target,
998 struct breakpoint *breakpoint)
999 {
1000 if (target->state != TARGET_HALTED) {
1001 LOG_WARNING("target %s is not halted", target_name(target));
1002 return ERROR_TARGET_NOT_HALTED;
1003 }
1004 return target->type->add_hybrid_breakpoint(target, breakpoint);
1005 }
1006
1007 int target_remove_breakpoint(struct target *target,
1008 struct breakpoint *breakpoint)
1009 {
1010 return target->type->remove_breakpoint(target, breakpoint);
1011 }
1012
1013 int target_add_watchpoint(struct target *target,
1014 struct watchpoint *watchpoint)
1015 {
1016 if (target->state != TARGET_HALTED) {
1017 LOG_WARNING("target %s is not halted", target_name(target));
1018 return ERROR_TARGET_NOT_HALTED;
1019 }
1020 return target->type->add_watchpoint(target, watchpoint);
1021 }
1022 int target_remove_watchpoint(struct target *target,
1023 struct watchpoint *watchpoint)
1024 {
1025 return target->type->remove_watchpoint(target, watchpoint);
1026 }
1027
1028 int target_get_gdb_reg_list(struct target *target,
1029 struct reg **reg_list[], int *reg_list_size)
1030 {
1031 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1032 }
1033 int target_step(struct target *target,
1034 int current, uint32_t address, int handle_breakpoints)
1035 {
1036 return target->type->step(target, current, address, handle_breakpoints);
1037 }
1038
1039 /**
1040 * Reset the @c examined flag for the given target.
1041 * Pure paranoia -- targets are zeroed on allocation.
1042 */
1043 static void target_reset_examined(struct target *target)
1044 {
1045 target->examined = false;
1046 }
1047
1048 static int err_read_phys_memory(struct target *target, uint32_t address,
1049 uint32_t size, uint32_t count, uint8_t *buffer)
1050 {
1051 LOG_ERROR("Not implemented: %s", __func__);
1052 return ERROR_FAIL;
1053 }
1054
1055 static int err_write_phys_memory(struct target *target, uint32_t address,
1056 uint32_t size, uint32_t count, const uint8_t *buffer)
1057 {
1058 LOG_ERROR("Not implemented: %s", __func__);
1059 return ERROR_FAIL;
1060 }
1061
1062 static int handle_target(void *priv);
1063
1064 static int target_init_one(struct command_context *cmd_ctx,
1065 struct target *target)
1066 {
1067 target_reset_examined(target);
1068
1069 struct target_type *type = target->type;
1070 if (type->examine == NULL)
1071 type->examine = default_examine;
1072
1073 if (type->check_reset == NULL)
1074 type->check_reset = default_check_reset;
1075
1076 assert(type->init_target != NULL);
1077
1078 int retval = type->init_target(cmd_ctx, target);
1079 if (ERROR_OK != retval) {
1080 LOG_ERROR("target '%s' init failed", target_name(target));
1081 return retval;
1082 }
1083
1084 /* Sanity-check MMU support ... stub in what we must, to help
1085 * implement it in stages, but warn if we need to do so.
1086 */
1087 if (type->mmu) {
1088 if (type->write_phys_memory == NULL) {
1089 LOG_ERROR("type '%s' is missing write_phys_memory",
1090 type->name);
1091 type->write_phys_memory = err_write_phys_memory;
1092 }
1093 if (type->read_phys_memory == NULL) {
1094 LOG_ERROR("type '%s' is missing read_phys_memory",
1095 type->name);
1096 type->read_phys_memory = err_read_phys_memory;
1097 }
1098 if (type->virt2phys == NULL) {
1099 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1100 type->virt2phys = identity_virt2phys;
1101 }
1102 } else {
1103 /* Make sure no-MMU targets all behave the same: make no
1104 * distinction between physical and virtual addresses, and
1105 * ensure that virt2phys() is always an identity mapping.
1106 */
1107 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1108 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1109
1110 type->mmu = no_mmu;
1111 type->write_phys_memory = type->write_memory;
1112 type->read_phys_memory = type->read_memory;
1113 type->virt2phys = identity_virt2phys;
1114 }
1115
1116 if (target->type->read_buffer == NULL)
1117 target->type->read_buffer = target_read_buffer_default;
1118
1119 if (target->type->write_buffer == NULL)
1120 target->type->write_buffer = target_write_buffer_default;
1121
1122 return ERROR_OK;
1123 }
1124
1125 static int target_init(struct command_context *cmd_ctx)
1126 {
1127 struct target *target;
1128 int retval;
1129
1130 for (target = all_targets; target; target = target->next) {
1131 retval = target_init_one(cmd_ctx, target);
1132 if (ERROR_OK != retval)
1133 return retval;
1134 }
1135
1136 if (!all_targets)
1137 return ERROR_OK;
1138
1139 retval = target_register_user_commands(cmd_ctx);
1140 if (ERROR_OK != retval)
1141 return retval;
1142
1143 retval = target_register_timer_callback(&handle_target,
1144 polling_interval, 1, cmd_ctx->interp);
1145 if (ERROR_OK != retval)
1146 return retval;
1147
1148 return ERROR_OK;
1149 }
1150
1151 COMMAND_HANDLER(handle_target_init_command)
1152 {
1153 int retval;
1154
1155 if (CMD_ARGC != 0)
1156 return ERROR_COMMAND_SYNTAX_ERROR;
1157
1158 static bool target_initialized;
1159 if (target_initialized) {
1160 LOG_INFO("'target init' has already been called");
1161 return ERROR_OK;
1162 }
1163 target_initialized = true;
1164
1165 retval = command_run_line(CMD_CTX, "init_targets");
1166 if (ERROR_OK != retval)
1167 return retval;
1168
1169 retval = command_run_line(CMD_CTX, "init_board");
1170 if (ERROR_OK != retval)
1171 return retval;
1172
1173 LOG_DEBUG("Initializing targets...");
1174 return target_init(CMD_CTX);
1175 }
1176
1177 int target_register_event_callback(int (*callback)(struct target *target,
1178 enum target_event event, void *priv), void *priv)
1179 {
1180 struct target_event_callback **callbacks_p = &target_event_callbacks;
1181
1182 if (callback == NULL)
1183 return ERROR_COMMAND_SYNTAX_ERROR;
1184
1185 if (*callbacks_p) {
1186 while ((*callbacks_p)->next)
1187 callbacks_p = &((*callbacks_p)->next);
1188 callbacks_p = &((*callbacks_p)->next);
1189 }
1190
1191 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1192 (*callbacks_p)->callback = callback;
1193 (*callbacks_p)->priv = priv;
1194 (*callbacks_p)->next = NULL;
1195
1196 return ERROR_OK;
1197 }
1198
1199 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1200 {
1201 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1202 struct timeval now;
1203
1204 if (callback == NULL)
1205 return ERROR_COMMAND_SYNTAX_ERROR;
1206
1207 if (*callbacks_p) {
1208 while ((*callbacks_p)->next)
1209 callbacks_p = &((*callbacks_p)->next);
1210 callbacks_p = &((*callbacks_p)->next);
1211 }
1212
1213 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1214 (*callbacks_p)->callback = callback;
1215 (*callbacks_p)->periodic = periodic;
1216 (*callbacks_p)->time_ms = time_ms;
1217
1218 gettimeofday(&now, NULL);
1219 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1220 time_ms -= (time_ms % 1000);
1221 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1222 if ((*callbacks_p)->when.tv_usec > 1000000) {
1223 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1224 (*callbacks_p)->when.tv_sec += 1;
1225 }
1226
1227 (*callbacks_p)->priv = priv;
1228 (*callbacks_p)->next = NULL;
1229
1230 return ERROR_OK;
1231 }
1232
1233 int target_unregister_event_callback(int (*callback)(struct target *target,
1234 enum target_event event, void *priv), void *priv)
1235 {
1236 struct target_event_callback **p = &target_event_callbacks;
1237 struct target_event_callback *c = target_event_callbacks;
1238
1239 if (callback == NULL)
1240 return ERROR_COMMAND_SYNTAX_ERROR;
1241
1242 while (c) {
1243 struct target_event_callback *next = c->next;
1244 if ((c->callback == callback) && (c->priv == priv)) {
1245 *p = next;
1246 free(c);
1247 return ERROR_OK;
1248 } else
1249 p = &(c->next);
1250 c = next;
1251 }
1252
1253 return ERROR_OK;
1254 }
1255
1256 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1257 {
1258 struct target_timer_callback **p = &target_timer_callbacks;
1259 struct target_timer_callback *c = target_timer_callbacks;
1260
1261 if (callback == NULL)
1262 return ERROR_COMMAND_SYNTAX_ERROR;
1263
1264 while (c) {
1265 struct target_timer_callback *next = c->next;
1266 if ((c->callback == callback) && (c->priv == priv)) {
1267 *p = next;
1268 free(c);
1269 return ERROR_OK;
1270 } else
1271 p = &(c->next);
1272 c = next;
1273 }
1274
1275 return ERROR_OK;
1276 }
1277
1278 int target_call_event_callbacks(struct target *target, enum target_event event)
1279 {
1280 struct target_event_callback *callback = target_event_callbacks;
1281 struct target_event_callback *next_callback;
1282
1283 if (event == TARGET_EVENT_HALTED) {
1284 /* execute early halted first */
1285 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1286 }
1287
1288 LOG_DEBUG("target event %i (%s)", event,
1289 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1290
1291 target_handle_event(target, event);
1292
1293 while (callback) {
1294 next_callback = callback->next;
1295 callback->callback(target, event, callback->priv);
1296 callback = next_callback;
1297 }
1298
1299 return ERROR_OK;
1300 }
1301
1302 static int target_timer_callback_periodic_restart(
1303 struct target_timer_callback *cb, struct timeval *now)
1304 {
1305 int time_ms = cb->time_ms;
1306 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1307 time_ms -= (time_ms % 1000);
1308 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1309 if (cb->when.tv_usec > 1000000) {
1310 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1311 cb->when.tv_sec += 1;
1312 }
1313 return ERROR_OK;
1314 }
1315
1316 static int target_call_timer_callback(struct target_timer_callback *cb,
1317 struct timeval *now)
1318 {
1319 cb->callback(cb->priv);
1320
1321 if (cb->periodic)
1322 return target_timer_callback_periodic_restart(cb, now);
1323
1324 return target_unregister_timer_callback(cb->callback, cb->priv);
1325 }
1326
1327 static int target_call_timer_callbacks_check_time(int checktime)
1328 {
1329 keep_alive();
1330
1331 struct timeval now;
1332 gettimeofday(&now, NULL);
1333
1334 struct target_timer_callback *callback = target_timer_callbacks;
1335 while (callback) {
1336 /* cleaning up may unregister and free this callback */
1337 struct target_timer_callback *next_callback = callback->next;
1338
1339 bool call_it = callback->callback &&
1340 ((!checktime && callback->periodic) ||
1341 now.tv_sec > callback->when.tv_sec ||
1342 (now.tv_sec == callback->when.tv_sec &&
1343 now.tv_usec >= callback->when.tv_usec));
1344
1345 if (call_it) {
1346 int retval = target_call_timer_callback(callback, &now);
1347 if (retval != ERROR_OK)
1348 return retval;
1349 }
1350
1351 callback = next_callback;
1352 }
1353
1354 return ERROR_OK;
1355 }
1356
1357 int target_call_timer_callbacks(void)
1358 {
1359 return target_call_timer_callbacks_check_time(1);
1360 }
1361
1362 /* invoke periodic callbacks immediately */
1363 int target_call_timer_callbacks_now(void)
1364 {
1365 return target_call_timer_callbacks_check_time(0);
1366 }
1367
1368 /* Prints the working area layout for debug purposes */
1369 static void print_wa_layout(struct target *target)
1370 {
1371 struct working_area *c = target->working_areas;
1372
1373 while (c) {
1374 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1375 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1376 c->address, c->address + c->size - 1, c->size);
1377 c = c->next;
1378 }
1379 }
1380
1381 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1382 static void target_split_working_area(struct working_area *area, uint32_t size)
1383 {
1384 assert(area->free); /* Shouldn't split an allocated area */
1385 assert(size <= area->size); /* Caller should guarantee this */
1386
1387 /* Split only if not already the right size */
1388 if (size < area->size) {
1389 struct working_area *new_wa = malloc(sizeof(*new_wa));
1390
1391 if (new_wa == NULL)
1392 return;
1393
1394 new_wa->next = area->next;
1395 new_wa->size = area->size - size;
1396 new_wa->address = area->address + size;
1397 new_wa->backup = NULL;
1398 new_wa->user = NULL;
1399 new_wa->free = true;
1400
1401 area->next = new_wa;
1402 area->size = size;
1403
1404 /* If backup memory was allocated to this area, it has the wrong size
1405 * now so free it and it will be reallocated if/when needed */
1406 if (area->backup) {
1407 free(area->backup);
1408 area->backup = NULL;
1409 }
1410 }
1411 }
1412
1413 /* Merge all adjacent free areas into one */
1414 static void target_merge_working_areas(struct target *target)
1415 {
1416 struct working_area *c = target->working_areas;
1417
1418 while (c && c->next) {
1419 assert(c->next->address == c->address + c->size); /* This is an invariant */
1420
1421 /* Find two adjacent free areas */
1422 if (c->free && c->next->free) {
1423 /* Merge the last into the first */
1424 c->size += c->next->size;
1425
1426 /* Remove the last */
1427 struct working_area *to_be_freed = c->next;
1428 c->next = c->next->next;
1429 if (to_be_freed->backup)
1430 free(to_be_freed->backup);
1431 free(to_be_freed);
1432
1433 /* If backup memory was allocated to the remaining area, it's has
1434 * the wrong size now */
1435 if (c->backup) {
1436 free(c->backup);
1437 c->backup = NULL;
1438 }
1439 } else {
1440 c = c->next;
1441 }
1442 }
1443 }
1444
1445 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1446 {
1447 /* Reevaluate working area address based on MMU state*/
1448 if (target->working_areas == NULL) {
1449 int retval;
1450 int enabled;
1451
1452 retval = target->type->mmu(target, &enabled);
1453 if (retval != ERROR_OK)
1454 return retval;
1455
1456 if (!enabled) {
1457 if (target->working_area_phys_spec) {
1458 LOG_DEBUG("MMU disabled, using physical "
1459 "address for working memory 0x%08"PRIx32,
1460 target->working_area_phys);
1461 target->working_area = target->working_area_phys;
1462 } else {
1463 LOG_ERROR("No working memory available. "
1464 "Specify -work-area-phys to target.");
1465 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1466 }
1467 } else {
1468 if (target->working_area_virt_spec) {
1469 LOG_DEBUG("MMU enabled, using virtual "
1470 "address for working memory 0x%08"PRIx32,
1471 target->working_area_virt);
1472 target->working_area = target->working_area_virt;
1473 } else {
1474 LOG_ERROR("No working memory available. "
1475 "Specify -work-area-virt to target.");
1476 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1477 }
1478 }
1479
1480 /* Set up initial working area on first call */
1481 struct working_area *new_wa = malloc(sizeof(*new_wa));
1482 if (new_wa) {
1483 new_wa->next = NULL;
1484 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1485 new_wa->address = target->working_area;
1486 new_wa->backup = NULL;
1487 new_wa->user = NULL;
1488 new_wa->free = true;
1489 }
1490
1491 target->working_areas = new_wa;
1492 }
1493
1494 /* only allocate multiples of 4 byte */
1495 if (size % 4)
1496 size = (size + 3) & (~3UL);
1497
1498 struct working_area *c = target->working_areas;
1499
1500 /* Find the first large enough working area */
1501 while (c) {
1502 if (c->free && c->size >= size)
1503 break;
1504 c = c->next;
1505 }
1506
1507 if (c == NULL)
1508 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1509
1510 /* Split the working area into the requested size */
1511 target_split_working_area(c, size);
1512
1513 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1514
1515 if (target->backup_working_area) {
1516 if (c->backup == NULL) {
1517 c->backup = malloc(c->size);
1518 if (c->backup == NULL)
1519 return ERROR_FAIL;
1520 }
1521
1522 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1523 if (retval != ERROR_OK)
1524 return retval;
1525 }
1526
1527 /* mark as used, and return the new (reused) area */
1528 c->free = false;
1529 *area = c;
1530
1531 /* user pointer */
1532 c->user = area;
1533
1534 print_wa_layout(target);
1535
1536 return ERROR_OK;
1537 }
1538
1539 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1540 {
1541 int retval;
1542
1543 retval = target_alloc_working_area_try(target, size, area);
1544 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1545 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1546 return retval;
1547
1548 }
1549
1550 static int target_restore_working_area(struct target *target, struct working_area *area)
1551 {
1552 int retval = ERROR_OK;
1553
1554 if (target->backup_working_area && area->backup != NULL) {
1555 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1556 if (retval != ERROR_OK)
1557 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1558 area->size, area->address);
1559 }
1560
1561 return retval;
1562 }
1563
1564 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1565 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1566 {
1567 int retval = ERROR_OK;
1568
1569 if (area->free)
1570 return retval;
1571
1572 if (restore) {
1573 retval = target_restore_working_area(target, area);
1574 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1575 if (retval != ERROR_OK)
1576 return retval;
1577 }
1578
1579 area->free = true;
1580
1581 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1582 area->size, area->address);
1583
1584 /* mark user pointer invalid */
1585 /* TODO: Is this really safe? It points to some previous caller's memory.
1586 * How could we know that the area pointer is still in that place and not
1587 * some other vital data? What's the purpose of this, anyway? */
1588 *area->user = NULL;
1589 area->user = NULL;
1590
1591 target_merge_working_areas(target);
1592
1593 print_wa_layout(target);
1594
1595 return retval;
1596 }
1597
1598 int target_free_working_area(struct target *target, struct working_area *area)
1599 {
1600 return target_free_working_area_restore(target, area, 1);
1601 }
1602
1603 /* free resources and restore memory, if restoring memory fails,
1604 * free up resources anyway
1605 */
1606 static void target_free_all_working_areas_restore(struct target *target, int restore)
1607 {
1608 struct working_area *c = target->working_areas;
1609
1610 LOG_DEBUG("freeing all working areas");
1611
1612 /* Loop through all areas, restoring the allocated ones and marking them as free */
1613 while (c) {
1614 if (!c->free) {
1615 if (restore)
1616 target_restore_working_area(target, c);
1617 c->free = true;
1618 *c->user = NULL; /* Same as above */
1619 c->user = NULL;
1620 }
1621 c = c->next;
1622 }
1623
1624 /* Run a merge pass to combine all areas into one */
1625 target_merge_working_areas(target);
1626
1627 print_wa_layout(target);
1628 }
1629
1630 void target_free_all_working_areas(struct target *target)
1631 {
1632 target_free_all_working_areas_restore(target, 1);
1633 }
1634
1635 /* Find the largest number of bytes that can be allocated */
1636 uint32_t target_get_working_area_avail(struct target *target)
1637 {
1638 struct working_area *c = target->working_areas;
1639 uint32_t max_size = 0;
1640
1641 if (c == NULL)
1642 return target->working_area_size;
1643
1644 while (c) {
1645 if (c->free && max_size < c->size)
1646 max_size = c->size;
1647
1648 c = c->next;
1649 }
1650
1651 return max_size;
1652 }
1653
1654 int target_arch_state(struct target *target)
1655 {
1656 int retval;
1657 if (target == NULL) {
1658 LOG_USER("No target has been configured");
1659 return ERROR_OK;
1660 }
1661
1662 LOG_USER("target state: %s", target_state_name(target));
1663
1664 if (target->state != TARGET_HALTED)
1665 return ERROR_OK;
1666
1667 retval = target->type->arch_state(target);
1668 return retval;
1669 }
1670
1671 /* Single aligned words are guaranteed to use 16 or 32 bit access
1672 * mode respectively, otherwise data is handled as quickly as
1673 * possible
1674 */
1675 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1676 {
1677 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1678 (int)size, (unsigned)address);
1679
1680 if (!target_was_examined(target)) {
1681 LOG_ERROR("Target not examined yet");
1682 return ERROR_FAIL;
1683 }
1684
1685 if (size == 0)
1686 return ERROR_OK;
1687
1688 if ((address + size - 1) < address) {
1689 /* GDB can request this when e.g. PC is 0xfffffffc*/
1690 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1691 (unsigned)address,
1692 (unsigned)size);
1693 return ERROR_FAIL;
1694 }
1695
1696 return target->type->write_buffer(target, address, size, buffer);
1697 }
1698
1699 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1700 {
1701 int retval = ERROR_OK;
1702
1703 if (((address % 2) == 0) && (size == 2))
1704 return target_write_memory(target, address, 2, 1, buffer);
1705
1706 /* handle unaligned head bytes */
1707 if (address % 4) {
1708 uint32_t unaligned = 4 - (address % 4);
1709
1710 if (unaligned > size)
1711 unaligned = size;
1712
1713 retval = target_write_memory(target, address, 1, unaligned, buffer);
1714 if (retval != ERROR_OK)
1715 return retval;
1716
1717 buffer += unaligned;
1718 address += unaligned;
1719 size -= unaligned;
1720 }
1721
1722 /* handle aligned words */
1723 if (size >= 4) {
1724 int aligned = size - (size % 4);
1725
1726 /* use bulk writes above a certain limit. This may have to be changed */
1727 if (aligned > 128) {
1728 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1729 if (retval != ERROR_OK)
1730 return retval;
1731 } else {
1732 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1733 if (retval != ERROR_OK)
1734 return retval;
1735 }
1736
1737 buffer += aligned;
1738 address += aligned;
1739 size -= aligned;
1740 }
1741
1742 /* handle tail writes of less than 4 bytes */
1743 if (size > 0) {
1744 retval = target_write_memory(target, address, 1, size, buffer);
1745 if (retval != ERROR_OK)
1746 return retval;
1747 }
1748
1749 return retval;
1750 }
1751
1752 /* Single aligned words are guaranteed to use 16 or 32 bit access
1753 * mode respectively, otherwise data is handled as quickly as
1754 * possible
1755 */
1756 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1757 {
1758 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1759 (int)size, (unsigned)address);
1760
1761 if (!target_was_examined(target)) {
1762 LOG_ERROR("Target not examined yet");
1763 return ERROR_FAIL;
1764 }
1765
1766 if (size == 0)
1767 return ERROR_OK;
1768
1769 if ((address + size - 1) < address) {
1770 /* GDB can request this when e.g. PC is 0xfffffffc*/
1771 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1772 address,
1773 size);
1774 return ERROR_FAIL;
1775 }
1776
1777 return target->type->read_buffer(target, address, size, buffer);
1778 }
1779
1780 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1781 {
1782 int retval = ERROR_OK;
1783
1784 if (((address % 2) == 0) && (size == 2))
1785 return target_read_memory(target, address, 2, 1, buffer);
1786
1787 /* handle unaligned head bytes */
1788 if (address % 4) {
1789 uint32_t unaligned = 4 - (address % 4);
1790
1791 if (unaligned > size)
1792 unaligned = size;
1793
1794 retval = target_read_memory(target, address, 1, unaligned, buffer);
1795 if (retval != ERROR_OK)
1796 return retval;
1797
1798 buffer += unaligned;
1799 address += unaligned;
1800 size -= unaligned;
1801 }
1802
1803 /* handle aligned words */
1804 if (size >= 4) {
1805 int aligned = size - (size % 4);
1806
1807 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1808 if (retval != ERROR_OK)
1809 return retval;
1810
1811 buffer += aligned;
1812 address += aligned;
1813 size -= aligned;
1814 }
1815
1816 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1817 if (size >= 2) {
1818 int aligned = size - (size % 2);
1819 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1820 if (retval != ERROR_OK)
1821 return retval;
1822
1823 buffer += aligned;
1824 address += aligned;
1825 size -= aligned;
1826 }
1827 /* handle tail writes of less than 4 bytes */
1828 if (size > 0) {
1829 retval = target_read_memory(target, address, 1, size, buffer);
1830 if (retval != ERROR_OK)
1831 return retval;
1832 }
1833
1834 return ERROR_OK;
1835 }
1836
1837 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1838 {
1839 uint8_t *buffer;
1840 int retval;
1841 uint32_t i;
1842 uint32_t checksum = 0;
1843 if (!target_was_examined(target)) {
1844 LOG_ERROR("Target not examined yet");
1845 return ERROR_FAIL;
1846 }
1847
1848 retval = target->type->checksum_memory(target, address, size, &checksum);
1849 if (retval != ERROR_OK) {
1850 buffer = malloc(size);
1851 if (buffer == NULL) {
1852 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1853 return ERROR_COMMAND_SYNTAX_ERROR;
1854 }
1855 retval = target_read_buffer(target, address, size, buffer);
1856 if (retval != ERROR_OK) {
1857 free(buffer);
1858 return retval;
1859 }
1860
1861 /* convert to target endianness */
1862 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1863 uint32_t target_data;
1864 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1865 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1866 }
1867
1868 retval = image_calculate_checksum(buffer, size, &checksum);
1869 free(buffer);
1870 }
1871
1872 *crc = checksum;
1873
1874 return retval;
1875 }
1876
1877 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1878 {
1879 int retval;
1880 if (!target_was_examined(target)) {
1881 LOG_ERROR("Target not examined yet");
1882 return ERROR_FAIL;
1883 }
1884
1885 if (target->type->blank_check_memory == 0)
1886 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1887
1888 retval = target->type->blank_check_memory(target, address, size, blank);
1889
1890 return retval;
1891 }
1892
1893 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1894 {
1895 uint8_t value_buf[4];
1896 if (!target_was_examined(target)) {
1897 LOG_ERROR("Target not examined yet");
1898 return ERROR_FAIL;
1899 }
1900
1901 int retval = target_read_memory(target, address, 4, 1, value_buf);
1902
1903 if (retval == ERROR_OK) {
1904 *value = target_buffer_get_u32(target, value_buf);
1905 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1906 address,
1907 *value);
1908 } else {
1909 *value = 0x0;
1910 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1911 address);
1912 }
1913
1914 return retval;
1915 }
1916
1917 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1918 {
1919 uint8_t value_buf[2];
1920 if (!target_was_examined(target)) {
1921 LOG_ERROR("Target not examined yet");
1922 return ERROR_FAIL;
1923 }
1924
1925 int retval = target_read_memory(target, address, 2, 1, value_buf);
1926
1927 if (retval == ERROR_OK) {
1928 *value = target_buffer_get_u16(target, value_buf);
1929 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1930 address,
1931 *value);
1932 } else {
1933 *value = 0x0;
1934 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1935 address);
1936 }
1937
1938 return retval;
1939 }
1940
1941 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1942 {
1943 int retval = target_read_memory(target, address, 1, 1, value);
1944 if (!target_was_examined(target)) {
1945 LOG_ERROR("Target not examined yet");
1946 return ERROR_FAIL;
1947 }
1948
1949 if (retval == ERROR_OK) {
1950 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1951 address,
1952 *value);
1953 } else {
1954 *value = 0x0;
1955 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1956 address);
1957 }
1958
1959 return retval;
1960 }
1961
1962 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1963 {
1964 int retval;
1965 uint8_t value_buf[4];
1966 if (!target_was_examined(target)) {
1967 LOG_ERROR("Target not examined yet");
1968 return ERROR_FAIL;
1969 }
1970
1971 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1972 address,
1973 value);
1974
1975 target_buffer_set_u32(target, value_buf, value);
1976 retval = target_write_memory(target, address, 4, 1, value_buf);
1977 if (retval != ERROR_OK)
1978 LOG_DEBUG("failed: %i", retval);
1979
1980 return retval;
1981 }
1982
1983 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1984 {
1985 int retval;
1986 uint8_t value_buf[2];
1987 if (!target_was_examined(target)) {
1988 LOG_ERROR("Target not examined yet");
1989 return ERROR_FAIL;
1990 }
1991
1992 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1993 address,
1994 value);
1995
1996 target_buffer_set_u16(target, value_buf, value);
1997 retval = target_write_memory(target, address, 2, 1, value_buf);
1998 if (retval != ERROR_OK)
1999 LOG_DEBUG("failed: %i", retval);
2000
2001 return retval;
2002 }
2003
2004 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2005 {
2006 int retval;
2007 if (!target_was_examined(target)) {
2008 LOG_ERROR("Target not examined yet");
2009 return ERROR_FAIL;
2010 }
2011
2012 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2013 address, value);
2014
2015 retval = target_write_memory(target, address, 1, 1, &value);
2016 if (retval != ERROR_OK)
2017 LOG_DEBUG("failed: %i", retval);
2018
2019 return retval;
2020 }
2021
2022 static int find_target(struct command_context *cmd_ctx, const char *name)
2023 {
2024 struct target *target = get_target(name);
2025 if (target == NULL) {
2026 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2027 return ERROR_FAIL;
2028 }
2029 if (!target->tap->enabled) {
2030 LOG_USER("Target: TAP %s is disabled, "
2031 "can't be the current target\n",
2032 target->tap->dotted_name);
2033 return ERROR_FAIL;
2034 }
2035
2036 cmd_ctx->current_target = target->target_number;
2037 return ERROR_OK;
2038 }
2039
2040
2041 COMMAND_HANDLER(handle_targets_command)
2042 {
2043 int retval = ERROR_OK;
2044 if (CMD_ARGC == 1) {
2045 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2046 if (retval == ERROR_OK) {
2047 /* we're done! */
2048 return retval;
2049 }
2050 }
2051
2052 struct target *target = all_targets;
2053 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2054 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2055 while (target) {
2056 const char *state;
2057 char marker = ' ';
2058
2059 if (target->tap->enabled)
2060 state = target_state_name(target);
2061 else
2062 state = "tap-disabled";
2063
2064 if (CMD_CTX->current_target == target->target_number)
2065 marker = '*';
2066
2067 /* keep columns lined up to match the headers above */
2068 command_print(CMD_CTX,
2069 "%2d%c %-18s %-10s %-6s %-18s %s",
2070 target->target_number,
2071 marker,
2072 target_name(target),
2073 target_type_name(target),
2074 Jim_Nvp_value2name_simple(nvp_target_endian,
2075 target->endianness)->name,
2076 target->tap->dotted_name,
2077 state);
2078 target = target->next;
2079 }
2080
2081 return retval;
2082 }
2083
2084 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2085
2086 static int powerDropout;
2087 static int srstAsserted;
2088
2089 static int runPowerRestore;
2090 static int runPowerDropout;
2091 static int runSrstAsserted;
2092 static int runSrstDeasserted;
2093
2094 static int sense_handler(void)
2095 {
2096 static int prevSrstAsserted;
2097 static int prevPowerdropout;
2098
2099 int retval = jtag_power_dropout(&powerDropout);
2100 if (retval != ERROR_OK)
2101 return retval;
2102
2103 int powerRestored;
2104 powerRestored = prevPowerdropout && !powerDropout;
2105 if (powerRestored)
2106 runPowerRestore = 1;
2107
2108 long long current = timeval_ms();
2109 static long long lastPower;
2110 int waitMore = lastPower + 2000 > current;
2111 if (powerDropout && !waitMore) {
2112 runPowerDropout = 1;
2113 lastPower = current;
2114 }
2115
2116 retval = jtag_srst_asserted(&srstAsserted);
2117 if (retval != ERROR_OK)
2118 return retval;
2119
2120 int srstDeasserted;
2121 srstDeasserted = prevSrstAsserted && !srstAsserted;
2122
2123 static long long lastSrst;
2124 waitMore = lastSrst + 2000 > current;
2125 if (srstDeasserted && !waitMore) {
2126 runSrstDeasserted = 1;
2127 lastSrst = current;
2128 }
2129
2130 if (!prevSrstAsserted && srstAsserted)
2131 runSrstAsserted = 1;
2132
2133 prevSrstAsserted = srstAsserted;
2134 prevPowerdropout = powerDropout;
2135
2136 if (srstDeasserted || powerRestored) {
2137 /* Other than logging the event we can't do anything here.
2138 * Issuing a reset is a particularly bad idea as we might
2139 * be inside a reset already.
2140 */
2141 }
2142
2143 return ERROR_OK;
2144 }
2145
2146 /* process target state changes */
2147 static int handle_target(void *priv)
2148 {
2149 Jim_Interp *interp = (Jim_Interp *)priv;
2150 int retval = ERROR_OK;
2151
2152 if (!is_jtag_poll_safe()) {
2153 /* polling is disabled currently */
2154 return ERROR_OK;
2155 }
2156
2157 /* we do not want to recurse here... */
2158 static int recursive;
2159 if (!recursive) {
2160 recursive = 1;
2161 sense_handler();
2162 /* danger! running these procedures can trigger srst assertions and power dropouts.
2163 * We need to avoid an infinite loop/recursion here and we do that by
2164 * clearing the flags after running these events.
2165 */
2166 int did_something = 0;
2167 if (runSrstAsserted) {
2168 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2169 Jim_Eval(interp, "srst_asserted");
2170 did_something = 1;
2171 }
2172 if (runSrstDeasserted) {
2173 Jim_Eval(interp, "srst_deasserted");
2174 did_something = 1;
2175 }
2176 if (runPowerDropout) {
2177 LOG_INFO("Power dropout detected, running power_dropout proc.");
2178 Jim_Eval(interp, "power_dropout");
2179 did_something = 1;
2180 }
2181 if (runPowerRestore) {
2182 Jim_Eval(interp, "power_restore");
2183 did_something = 1;
2184 }
2185
2186 if (did_something) {
2187 /* clear detect flags */
2188 sense_handler();
2189 }
2190
2191 /* clear action flags */
2192
2193 runSrstAsserted = 0;
2194 runSrstDeasserted = 0;
2195 runPowerRestore = 0;
2196 runPowerDropout = 0;
2197
2198 recursive = 0;
2199 }
2200
2201 /* Poll targets for state changes unless that's globally disabled.
2202 * Skip targets that are currently disabled.
2203 */
2204 for (struct target *target = all_targets;
2205 is_jtag_poll_safe() && target;
2206 target = target->next) {
2207 if (!target->tap->enabled)
2208 continue;
2209
2210 if (target->backoff.times > target->backoff.count) {
2211 /* do not poll this time as we failed previously */
2212 target->backoff.count++;
2213 continue;
2214 }
2215 target->backoff.count = 0;
2216
2217 /* only poll target if we've got power and srst isn't asserted */
2218 if (!powerDropout && !srstAsserted) {
2219 /* polling may fail silently until the target has been examined */
2220 retval = target_poll(target);
2221 if (retval != ERROR_OK) {
2222 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2223 if (target->backoff.times * polling_interval < 5000) {
2224 target->backoff.times *= 2;
2225 target->backoff.times++;
2226 }
2227 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2228 target_name(target),
2229 target->backoff.times * polling_interval);
2230
2231 /* Tell GDB to halt the debugger. This allows the user to
2232 * run monitor commands to handle the situation.
2233 */
2234 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2235 return retval;
2236 }
2237 /* Since we succeeded, we reset backoff count */
2238 if (target->backoff.times > 0)
2239 LOG_USER("Polling target %s succeeded again", target_name(target));
2240 target->backoff.times = 0;
2241 }
2242 }
2243
2244 return retval;
2245 }
2246
2247 COMMAND_HANDLER(handle_reg_command)
2248 {
2249 struct target *target;
2250 struct reg *reg = NULL;
2251 unsigned count = 0;
2252 char *value;
2253
2254 LOG_DEBUG("-");
2255
2256 target = get_current_target(CMD_CTX);
2257
2258 /* list all available registers for the current target */
2259 if (CMD_ARGC == 0) {
2260 struct reg_cache *cache = target->reg_cache;
2261
2262 count = 0;
2263 while (cache) {
2264 unsigned i;
2265
2266 command_print(CMD_CTX, "===== %s", cache->name);
2267
2268 for (i = 0, reg = cache->reg_list;
2269 i < cache->num_regs;
2270 i++, reg++, count++) {
2271 /* only print cached values if they are valid */
2272 if (reg->valid) {
2273 value = buf_to_str(reg->value,
2274 reg->size, 16);
2275 command_print(CMD_CTX,
2276 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2277 count, reg->name,
2278 reg->size, value,
2279 reg->dirty
2280 ? " (dirty)"
2281 : "");
2282 free(value);
2283 } else {
2284 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2285 count, reg->name,
2286 reg->size) ;
2287 }
2288 }
2289 cache = cache->next;
2290 }
2291
2292 return ERROR_OK;
2293 }
2294
2295 /* access a single register by its ordinal number */
2296 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2297 unsigned num;
2298 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2299
2300 struct reg_cache *cache = target->reg_cache;
2301 count = 0;
2302 while (cache) {
2303 unsigned i;
2304 for (i = 0; i < cache->num_regs; i++) {
2305 if (count++ == num) {
2306 reg = &cache->reg_list[i];
2307 break;
2308 }
2309 }
2310 if (reg)
2311 break;
2312 cache = cache->next;
2313 }
2314
2315 if (!reg) {
2316 command_print(CMD_CTX, "%i is out of bounds, the current target "
2317 "has only %i registers (0 - %i)", num, count, count - 1);
2318 return ERROR_OK;
2319 }
2320 } else {
2321 /* access a single register by its name */
2322 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2323
2324 if (!reg) {
2325 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2326 return ERROR_OK;
2327 }
2328 }
2329
2330 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2331
2332 /* display a register */
2333 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2334 && (CMD_ARGV[1][0] <= '9')))) {
2335 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2336 reg->valid = 0;
2337
2338 if (reg->valid == 0)
2339 reg->type->get(reg);
2340 value = buf_to_str(reg->value, reg->size, 16);
2341 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2342 free(value);
2343 return ERROR_OK;
2344 }
2345
2346 /* set register value */
2347 if (CMD_ARGC == 2) {
2348 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2349 if (buf == NULL)
2350 return ERROR_FAIL;
2351 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2352
2353 reg->type->set(reg, buf);
2354
2355 value = buf_to_str(reg->value, reg->size, 16);
2356 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2357 free(value);
2358
2359 free(buf);
2360
2361 return ERROR_OK;
2362 }
2363
2364 return ERROR_COMMAND_SYNTAX_ERROR;
2365 }
2366
2367 COMMAND_HANDLER(handle_poll_command)
2368 {
2369 int retval = ERROR_OK;
2370 struct target *target = get_current_target(CMD_CTX);
2371
2372 if (CMD_ARGC == 0) {
2373 command_print(CMD_CTX, "background polling: %s",
2374 jtag_poll_get_enabled() ? "on" : "off");
2375 command_print(CMD_CTX, "TAP: %s (%s)",
2376 target->tap->dotted_name,
2377 target->tap->enabled ? "enabled" : "disabled");
2378 if (!target->tap->enabled)
2379 return ERROR_OK;
2380 retval = target_poll(target);
2381 if (retval != ERROR_OK)
2382 return retval;
2383 retval = target_arch_state(target);
2384 if (retval != ERROR_OK)
2385 return retval;
2386 } else if (CMD_ARGC == 1) {
2387 bool enable;
2388 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2389 jtag_poll_set_enabled(enable);
2390 } else
2391 return ERROR_COMMAND_SYNTAX_ERROR;
2392
2393 return retval;
2394 }
2395
2396 COMMAND_HANDLER(handle_wait_halt_command)
2397 {
2398 if (CMD_ARGC > 1)
2399 return ERROR_COMMAND_SYNTAX_ERROR;
2400
2401 unsigned ms = 5000;
2402 if (1 == CMD_ARGC) {
2403 int retval = parse_uint(CMD_ARGV[0], &ms);
2404 if (ERROR_OK != retval)
2405 return ERROR_COMMAND_SYNTAX_ERROR;
2406 /* convert seconds (given) to milliseconds (needed) */
2407 ms *= 1000;
2408 }
2409
2410 struct target *target = get_current_target(CMD_CTX);
2411 return target_wait_state(target, TARGET_HALTED, ms);
2412 }
2413
2414 /* wait for target state to change. The trick here is to have a low
2415 * latency for short waits and not to suck up all the CPU time
2416 * on longer waits.
2417 *
2418 * After 500ms, keep_alive() is invoked
2419 */
2420 int target_wait_state(struct target *target, enum target_state state, int ms)
2421 {
2422 int retval;
2423 long long then = 0, cur;
2424 int once = 1;
2425
2426 for (;;) {
2427 retval = target_poll(target);
2428 if (retval != ERROR_OK)
2429 return retval;
2430 if (target->state == state)
2431 break;
2432 cur = timeval_ms();
2433 if (once) {
2434 once = 0;
2435 then = timeval_ms();
2436 LOG_DEBUG("waiting for target %s...",
2437 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2438 }
2439
2440 if (cur-then > 500)
2441 keep_alive();
2442
2443 if ((cur-then) > ms) {
2444 LOG_ERROR("timed out while waiting for target %s",
2445 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2446 return ERROR_FAIL;
2447 }
2448 }
2449
2450 return ERROR_OK;
2451 }
2452
2453 COMMAND_HANDLER(handle_halt_command)
2454 {
2455 LOG_DEBUG("-");
2456
2457 struct target *target = get_current_target(CMD_CTX);
2458 int retval = target_halt(target);
2459 if (ERROR_OK != retval)
2460 return retval;
2461
2462 if (CMD_ARGC == 1) {
2463 unsigned wait_local;
2464 retval = parse_uint(CMD_ARGV[0], &wait_local);
2465 if (ERROR_OK != retval)
2466 return ERROR_COMMAND_SYNTAX_ERROR;
2467 if (!wait_local)
2468 return ERROR_OK;
2469 }
2470
2471 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2472 }
2473
2474 COMMAND_HANDLER(handle_soft_reset_halt_command)
2475 {
2476 struct target *target = get_current_target(CMD_CTX);
2477
2478 LOG_USER("requesting target halt and executing a soft reset");
2479
2480 target_soft_reset_halt(target);
2481
2482 return ERROR_OK;
2483 }
2484
2485 COMMAND_HANDLER(handle_reset_command)
2486 {
2487 if (CMD_ARGC > 1)
2488 return ERROR_COMMAND_SYNTAX_ERROR;
2489
2490 enum target_reset_mode reset_mode = RESET_RUN;
2491 if (CMD_ARGC == 1) {
2492 const Jim_Nvp *n;
2493 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2494 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2495 return ERROR_COMMAND_SYNTAX_ERROR;
2496 reset_mode = n->value;
2497 }
2498
2499 /* reset *all* targets */
2500 return target_process_reset(CMD_CTX, reset_mode);
2501 }
2502
2503
2504 COMMAND_HANDLER(handle_resume_command)
2505 {
2506 int current = 1;
2507 if (CMD_ARGC > 1)
2508 return ERROR_COMMAND_SYNTAX_ERROR;
2509
2510 struct target *target = get_current_target(CMD_CTX);
2511
2512 /* with no CMD_ARGV, resume from current pc, addr = 0,
2513 * with one arguments, addr = CMD_ARGV[0],
2514 * handle breakpoints, not debugging */
2515 uint32_t addr = 0;
2516 if (CMD_ARGC == 1) {
2517 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2518 current = 0;
2519 }
2520
2521 return target_resume(target, current, addr, 1, 0);
2522 }
2523
2524 COMMAND_HANDLER(handle_step_command)
2525 {
2526 if (CMD_ARGC > 1)
2527 return ERROR_COMMAND_SYNTAX_ERROR;
2528
2529 LOG_DEBUG("-");
2530
2531 /* with no CMD_ARGV, step from current pc, addr = 0,
2532 * with one argument addr = CMD_ARGV[0],
2533 * handle breakpoints, debugging */
2534 uint32_t addr = 0;
2535 int current_pc = 1;
2536 if (CMD_ARGC == 1) {
2537 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2538 current_pc = 0;
2539 }
2540
2541 struct target *target = get_current_target(CMD_CTX);
2542
2543 return target->type->step(target, current_pc, addr, 1);
2544 }
2545
2546 static void handle_md_output(struct command_context *cmd_ctx,
2547 struct target *target, uint32_t address, unsigned size,
2548 unsigned count, const uint8_t *buffer)
2549 {
2550 const unsigned line_bytecnt = 32;
2551 unsigned line_modulo = line_bytecnt / size;
2552
2553 char output[line_bytecnt * 4 + 1];
2554 unsigned output_len = 0;
2555
2556 const char *value_fmt;
2557 switch (size) {
2558 case 4:
2559 value_fmt = "%8.8x ";
2560 break;
2561 case 2:
2562 value_fmt = "%4.4x ";
2563 break;
2564 case 1:
2565 value_fmt = "%2.2x ";
2566 break;
2567 default:
2568 /* "can't happen", caller checked */
2569 LOG_ERROR("invalid memory read size: %u", size);
2570 return;
2571 }
2572
2573 for (unsigned i = 0; i < count; i++) {
2574 if (i % line_modulo == 0) {
2575 output_len += snprintf(output + output_len,
2576 sizeof(output) - output_len,
2577 "0x%8.8x: ",
2578 (unsigned)(address + (i*size)));
2579 }
2580
2581 uint32_t value = 0;
2582 const uint8_t *value_ptr = buffer + i * size;
2583 switch (size) {
2584 case 4:
2585 value = target_buffer_get_u32(target, value_ptr);
2586 break;
2587 case 2:
2588 value = target_buffer_get_u16(target, value_ptr);
2589 break;
2590 case 1:
2591 value = *value_ptr;
2592 }
2593 output_len += snprintf(output + output_len,
2594 sizeof(output) - output_len,
2595 value_fmt, value);
2596
2597 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2598 command_print(cmd_ctx, "%s", output);
2599 output_len = 0;
2600 }
2601 }
2602 }
2603
2604 COMMAND_HANDLER(handle_md_command)
2605 {
2606 if (CMD_ARGC < 1)
2607 return ERROR_COMMAND_SYNTAX_ERROR;
2608
2609 unsigned size = 0;
2610 switch (CMD_NAME[2]) {
2611 case 'w':
2612 size = 4;
2613 break;
2614 case 'h':
2615 size = 2;
2616 break;
2617 case 'b':
2618 size = 1;
2619 break;
2620 default:
2621 return ERROR_COMMAND_SYNTAX_ERROR;
2622 }
2623
2624 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2625 int (*fn)(struct target *target,
2626 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2627 if (physical) {
2628 CMD_ARGC--;
2629 CMD_ARGV++;
2630 fn = target_read_phys_memory;
2631 } else
2632 fn = target_read_memory;
2633 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2634 return ERROR_COMMAND_SYNTAX_ERROR;
2635
2636 uint32_t address;
2637 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2638
2639 unsigned count = 1;
2640 if (CMD_ARGC == 2)
2641 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2642
2643 uint8_t *buffer = calloc(count, size);
2644
2645 struct target *target = get_current_target(CMD_CTX);
2646 int retval = fn(target, address, size, count, buffer);
2647 if (ERROR_OK == retval)
2648 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2649
2650 free(buffer);
2651
2652 return retval;
2653 }
2654
2655 typedef int (*target_write_fn)(struct target *target,
2656 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2657
2658 static int target_write_memory_fast(struct target *target,
2659 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2660 {
2661 return target_write_buffer(target, address, size * count, buffer);
2662 }
2663
2664 static int target_fill_mem(struct target *target,
2665 uint32_t address,
2666 target_write_fn fn,
2667 unsigned data_size,
2668 /* value */
2669 uint32_t b,
2670 /* count */
2671 unsigned c)
2672 {
2673 /* We have to write in reasonably large chunks to be able
2674 * to fill large memory areas with any sane speed */
2675 const unsigned chunk_size = 16384;
2676 uint8_t *target_buf = malloc(chunk_size * data_size);
2677 if (target_buf == NULL) {
2678 LOG_ERROR("Out of memory");
2679 return ERROR_FAIL;
2680 }
2681
2682 for (unsigned i = 0; i < chunk_size; i++) {
2683 switch (data_size) {
2684 case 4:
2685 target_buffer_set_u32(target, target_buf + i * data_size, b);
2686 break;
2687 case 2:
2688 target_buffer_set_u16(target, target_buf + i * data_size, b);
2689 break;
2690 case 1:
2691 target_buffer_set_u8(target, target_buf + i * data_size, b);
2692 break;
2693 default:
2694 exit(-1);
2695 }
2696 }
2697
2698 int retval = ERROR_OK;
2699
2700 for (unsigned x = 0; x < c; x += chunk_size) {
2701 unsigned current;
2702 current = c - x;
2703 if (current > chunk_size)
2704 current = chunk_size;
2705 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2706 if (retval != ERROR_OK)
2707 break;
2708 /* avoid GDB timeouts */
2709 keep_alive();
2710 }
2711 free(target_buf);
2712
2713 return retval;
2714 }
2715
2716
2717 COMMAND_HANDLER(handle_mw_command)
2718 {
2719 if (CMD_ARGC < 2)
2720 return ERROR_COMMAND_SYNTAX_ERROR;
2721 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2722 target_write_fn fn;
2723 if (physical) {
2724 CMD_ARGC--;
2725 CMD_ARGV++;
2726 fn = target_write_phys_memory;
2727 } else
2728 fn = target_write_memory_fast;
2729 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2730 return ERROR_COMMAND_SYNTAX_ERROR;
2731
2732 uint32_t address;
2733 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2734
2735 uint32_t value;
2736 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2737
2738 unsigned count = 1;
2739 if (CMD_ARGC == 3)
2740 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2741
2742 struct target *target = get_current_target(CMD_CTX);
2743 unsigned wordsize;
2744 switch (CMD_NAME[2]) {
2745 case 'w':
2746 wordsize = 4;
2747 break;
2748 case 'h':
2749 wordsize = 2;
2750 break;
2751 case 'b':
2752 wordsize = 1;
2753 break;
2754 default:
2755 return ERROR_COMMAND_SYNTAX_ERROR;
2756 }
2757
2758 return target_fill_mem(target, address, fn, wordsize, value, count);
2759 }
2760
2761 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2762 uint32_t *min_address, uint32_t *max_address)
2763 {
2764 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2765 return ERROR_COMMAND_SYNTAX_ERROR;
2766
2767 /* a base address isn't always necessary,
2768 * default to 0x0 (i.e. don't relocate) */
2769 if (CMD_ARGC >= 2) {
2770 uint32_t addr;
2771 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2772 image->base_address = addr;
2773 image->base_address_set = 1;
2774 } else
2775 image->base_address_set = 0;
2776
2777 image->start_address_set = 0;
2778
2779 if (CMD_ARGC >= 4)
2780 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2781 if (CMD_ARGC == 5) {
2782 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2783 /* use size (given) to find max (required) */
2784 *max_address += *min_address;
2785 }
2786
2787 if (*min_address > *max_address)
2788 return ERROR_COMMAND_SYNTAX_ERROR;
2789
2790 return ERROR_OK;
2791 }
2792
2793 COMMAND_HANDLER(handle_load_image_command)
2794 {
2795 uint8_t *buffer;
2796 size_t buf_cnt;
2797 uint32_t image_size;
2798 uint32_t min_address = 0;
2799 uint32_t max_address = 0xffffffff;
2800 int i;
2801 struct image image;
2802
2803 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2804 &image, &min_address, &max_address);
2805 if (ERROR_OK != retval)
2806 return retval;
2807
2808 struct target *target = get_current_target(CMD_CTX);
2809
2810 struct duration bench;
2811 duration_start(&bench);
2812
2813 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2814 return ERROR_OK;
2815
2816 image_size = 0x0;
2817 retval = ERROR_OK;
2818 for (i = 0; i < image.num_sections; i++) {
2819 buffer = malloc(image.sections[i].size);
2820 if (buffer == NULL) {
2821 command_print(CMD_CTX,
2822 "error allocating buffer for section (%d bytes)",
2823 (int)(image.sections[i].size));
2824 break;
2825 }
2826
2827 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2828 if (retval != ERROR_OK) {
2829 free(buffer);
2830 break;
2831 }
2832
2833 uint32_t offset = 0;
2834 uint32_t length = buf_cnt;
2835
2836 /* DANGER!!! beware of unsigned comparision here!!! */
2837
2838 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2839 (image.sections[i].base_address < max_address)) {
2840
2841 if (image.sections[i].base_address < min_address) {
2842 /* clip addresses below */
2843 offset += min_address-image.sections[i].base_address;
2844 length -= offset;
2845 }
2846
2847 if (image.sections[i].base_address + buf_cnt > max_address)
2848 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2849
2850 retval = target_write_buffer(target,
2851 image.sections[i].base_address + offset, length, buffer + offset);
2852 if (retval != ERROR_OK) {
2853 free(buffer);
2854 break;
2855 }
2856 image_size += length;
2857 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2858 (unsigned int)length,
2859 image.sections[i].base_address + offset);
2860 }
2861
2862 free(buffer);
2863 }
2864
2865 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2866 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2867 "in %fs (%0.3f KiB/s)", image_size,
2868 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2869 }
2870
2871 image_close(&image);
2872
2873 return retval;
2874
2875 }
2876
2877 COMMAND_HANDLER(handle_dump_image_command)
2878 {
2879 struct fileio fileio;
2880 uint8_t *buffer;
2881 int retval, retvaltemp;
2882 uint32_t address, size;
2883 struct duration bench;
2884 struct target *target = get_current_target(CMD_CTX);
2885
2886 if (CMD_ARGC != 3)
2887 return ERROR_COMMAND_SYNTAX_ERROR;
2888
2889 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2890 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2891
2892 uint32_t buf_size = (size > 4096) ? 4096 : size;
2893 buffer = malloc(buf_size);
2894 if (!buffer)
2895 return ERROR_FAIL;
2896
2897 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2898 if (retval != ERROR_OK) {
2899 free(buffer);
2900 return retval;
2901 }
2902
2903 duration_start(&bench);
2904
2905 while (size > 0) {
2906 size_t size_written;
2907 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2908 retval = target_read_buffer(target, address, this_run_size, buffer);
2909 if (retval != ERROR_OK)
2910 break;
2911
2912 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2913 if (retval != ERROR_OK)
2914 break;
2915
2916 size -= this_run_size;
2917 address += this_run_size;
2918 }
2919
2920 free(buffer);
2921
2922 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2923 int filesize;
2924 retval = fileio_size(&fileio, &filesize);
2925 if (retval != ERROR_OK)
2926 return retval;
2927 command_print(CMD_CTX,
2928 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2929 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2930 }
2931
2932 retvaltemp = fileio_close(&fileio);
2933 if (retvaltemp != ERROR_OK)
2934 return retvaltemp;
2935
2936 return retval;
2937 }
2938
2939 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2940 {
2941 uint8_t *buffer;
2942 size_t buf_cnt;
2943 uint32_t image_size;
2944 int i;
2945 int retval;
2946 uint32_t checksum = 0;
2947 uint32_t mem_checksum = 0;
2948
2949 struct image image;
2950
2951 struct target *target = get_current_target(CMD_CTX);
2952
2953 if (CMD_ARGC < 1)
2954 return ERROR_COMMAND_SYNTAX_ERROR;
2955
2956 if (!target) {
2957 LOG_ERROR("no target selected");
2958 return ERROR_FAIL;
2959 }
2960
2961 struct duration bench;
2962 duration_start(&bench);
2963
2964 if (CMD_ARGC >= 2) {
2965 uint32_t addr;
2966 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2967 image.base_address = addr;
2968 image.base_address_set = 1;
2969 } else {
2970 image.base_address_set = 0;
2971 image.base_address = 0x0;
2972 }
2973
2974 image.start_address_set = 0;
2975
2976 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2977 if (retval != ERROR_OK)
2978 return retval;
2979
2980 image_size = 0x0;
2981 int diffs = 0;
2982 retval = ERROR_OK;
2983 for (i = 0; i < image.num_sections; i++) {
2984 buffer = malloc(image.sections[i].size);
2985 if (buffer == NULL) {
2986 command_print(CMD_CTX,
2987 "error allocating buffer for section (%d bytes)",
2988 (int)(image.sections[i].size));
2989 break;
2990 }
2991 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2992 if (retval != ERROR_OK) {
2993 free(buffer);
2994 break;
2995 }
2996
2997 if (verify) {
2998 /* calculate checksum of image */
2999 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3000 if (retval != ERROR_OK) {
3001 free(buffer);
3002 break;
3003 }
3004
3005 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3006 if (retval != ERROR_OK) {
3007 free(buffer);
3008 break;
3009 }
3010
3011 if (checksum != mem_checksum) {
3012 /* failed crc checksum, fall back to a binary compare */
3013 uint8_t *data;
3014
3015 if (diffs == 0)
3016 LOG_ERROR("checksum mismatch - attempting binary compare");
3017
3018 data = (uint8_t *)malloc(buf_cnt);
3019
3020 /* Can we use 32bit word accesses? */
3021 int size = 1;
3022 int count = buf_cnt;
3023 if ((count % 4) == 0) {
3024 size *= 4;
3025 count /= 4;
3026 }
3027 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3028 if (retval == ERROR_OK) {
3029 uint32_t t;
3030 for (t = 0; t < buf_cnt; t++) {
3031 if (data[t] != buffer[t]) {
3032 command_print(CMD_CTX,
3033 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3034 diffs,
3035 (unsigned)(t + image.sections[i].base_address),
3036 data[t],
3037 buffer[t]);
3038 if (diffs++ >= 127) {
3039 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3040 free(data);
3041 free(buffer);
3042 goto done;
3043 }
3044 }
3045 keep_alive();
3046 }
3047 }
3048 free(data);
3049 }
3050 } else {
3051 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3052 image.sections[i].base_address,
3053 buf_cnt);
3054 }
3055
3056 free(buffer);
3057 image_size += buf_cnt;
3058 }
3059 if (diffs > 0)
3060 command_print(CMD_CTX, "No more differences found.");
3061 done:
3062 if (diffs > 0)
3063 retval = ERROR_FAIL;
3064 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3065 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3066 "in %fs (%0.3f KiB/s)", image_size,
3067 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3068 }
3069
3070 image_close(&image);
3071
3072 return retval;
3073 }
3074
3075 COMMAND_HANDLER(handle_verify_image_command)
3076 {
3077 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3078 }
3079
3080 COMMAND_HANDLER(handle_test_image_command)
3081 {
3082 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3083 }
3084
3085 static int handle_bp_command_list(struct command_context *cmd_ctx)
3086 {
3087 struct target *target = get_current_target(cmd_ctx);
3088 struct breakpoint *breakpoint = target->breakpoints;
3089 while (breakpoint) {
3090 if (breakpoint->type == BKPT_SOFT) {
3091 char *buf = buf_to_str(breakpoint->orig_instr,
3092 breakpoint->length, 16);
3093 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3094 breakpoint->address,
3095 breakpoint->length,
3096 breakpoint->set, buf);
3097 free(buf);
3098 } else {
3099 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3100 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3101 breakpoint->asid,
3102 breakpoint->length, breakpoint->set);
3103 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3104 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3105 breakpoint->address,
3106 breakpoint->length, breakpoint->set);
3107 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3108 breakpoint->asid);
3109 } else
3110 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3111 breakpoint->address,
3112 breakpoint->length, breakpoint->set);
3113 }
3114
3115 breakpoint = breakpoint->next;
3116 }
3117 return ERROR_OK;
3118 }
3119
3120 static int handle_bp_command_set(struct command_context *cmd_ctx,
3121 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3122 {
3123 struct target *target = get_current_target(cmd_ctx);
3124
3125 if (asid == 0) {
3126 int retval = breakpoint_add(target, addr, length, hw);
3127 if (ERROR_OK == retval)
3128 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3129 else {
3130 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3131 return retval;
3132 }
3133 } else if (addr == 0) {
3134 int retval = context_breakpoint_add(target, asid, length, hw);
3135 if (ERROR_OK == retval)
3136 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3137 else {
3138 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3139 return retval;
3140 }
3141 } else {
3142 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3143 if (ERROR_OK == retval)
3144 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3145 else {
3146 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3147 return retval;
3148 }
3149 }
3150 return ERROR_OK;
3151 }
3152
3153 COMMAND_HANDLER(handle_bp_command)
3154 {
3155 uint32_t addr;
3156 uint32_t asid;
3157 uint32_t length;
3158 int hw = BKPT_SOFT;
3159
3160 switch (CMD_ARGC) {
3161 case 0:
3162 return handle_bp_command_list(CMD_CTX);
3163
3164 case 2:
3165 asid = 0;
3166 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3167 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3168 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3169
3170 case 3:
3171 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3172 hw = BKPT_HARD;