1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target
*target
, uint32_t address
,
62 uint32_t count
, uint8_t *buffer
);
63 static int target_write_buffer_default(struct target
*target
, uint32_t address
,
64 uint32_t count
, const uint8_t *buffer
);
65 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
66 int argc
, Jim_Obj
* const *argv
);
67 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
68 int argc
, Jim_Obj
* const *argv
);
69 static int target_register_user_commands(struct command_context
*cmd_ctx
);
70 static int target_get_gdb_fileio_info_default(struct target
*target
,
71 struct gdb_fileio_info
*fileio_info
);
72 static int target_gdb_fileio_end_default(struct target
*target
, int retcode
,
73 int fileio_errno
, bool ctrl_c
);
74 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
75 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
);
78 extern struct target_type arm7tdmi_target
;
79 extern struct target_type arm720t_target
;
80 extern struct target_type arm9tdmi_target
;
81 extern struct target_type arm920t_target
;
82 extern struct target_type arm966e_target
;
83 extern struct target_type arm946e_target
;
84 extern struct target_type arm926ejs_target
;
85 extern struct target_type fa526_target
;
86 extern struct target_type feroceon_target
;
87 extern struct target_type dragonite_target
;
88 extern struct target_type xscale_target
;
89 extern struct target_type cortexm_target
;
90 extern struct target_type cortexa_target
;
91 extern struct target_type cortexr4_target
;
92 extern struct target_type arm11_target
;
93 extern struct target_type ls1_sap_target
;
94 extern struct target_type mips_m4k_target
;
95 extern struct target_type avr_target
;
96 extern struct target_type dsp563xx_target
;
97 extern struct target_type dsp5680xx_target
;
98 extern struct target_type testee_target
;
99 extern struct target_type avr32_ap7k_target
;
100 extern struct target_type hla_target
;
101 extern struct target_type nds32_v2_target
;
102 extern struct target_type nds32_v3_target
;
103 extern struct target_type nds32_v3m_target
;
104 extern struct target_type or1k_target
;
105 extern struct target_type quark_x10xx_target
;
106 extern struct target_type quark_d20xx_target
;
108 static struct target_type
*target_types
[] = {
141 struct target
*all_targets
;
142 static struct target_event_callback
*target_event_callbacks
;
143 static struct target_timer_callback
*target_timer_callbacks
;
144 LIST_HEAD(target_reset_callback_list
);
145 LIST_HEAD(target_trace_callback_list
);
146 static const int polling_interval
= 100;
148 static const Jim_Nvp nvp_assert
[] = {
149 { .name
= "assert", NVP_ASSERT
},
150 { .name
= "deassert", NVP_DEASSERT
},
151 { .name
= "T", NVP_ASSERT
},
152 { .name
= "F", NVP_DEASSERT
},
153 { .name
= "t", NVP_ASSERT
},
154 { .name
= "f", NVP_DEASSERT
},
155 { .name
= NULL
, .value
= -1 }
158 static const Jim_Nvp nvp_error_target
[] = {
159 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
160 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
161 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
162 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
163 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
164 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
165 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
166 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
167 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
168 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
169 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
170 { .value
= -1, .name
= NULL
}
173 static const char *target_strerror_safe(int err
)
177 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
184 static const Jim_Nvp nvp_target_event
[] = {
186 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
187 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
188 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
189 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
190 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
192 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
193 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
195 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
196 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
197 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
198 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
199 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
200 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
201 { .value
= TARGET_EVENT_RESET_HALT_PRE
, .name
= "reset-halt-pre" },
202 { .value
= TARGET_EVENT_RESET_HALT_POST
, .name
= "reset-halt-post" },
203 { .value
= TARGET_EVENT_RESET_WAIT_PRE
, .name
= "reset-wait-pre" },
204 { .value
= TARGET_EVENT_RESET_WAIT_POST
, .name
= "reset-wait-post" },
205 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
206 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
208 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
209 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
211 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
212 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
214 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
215 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
217 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
218 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
220 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
221 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
223 { .value
= TARGET_EVENT_TRACE_CONFIG
, .name
= "trace-config" },
225 { .name
= NULL
, .value
= -1 }
228 static const Jim_Nvp nvp_target_state
[] = {
229 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
230 { .name
= "running", .value
= TARGET_RUNNING
},
231 { .name
= "halted", .value
= TARGET_HALTED
},
232 { .name
= "reset", .value
= TARGET_RESET
},
233 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
234 { .name
= NULL
, .value
= -1 },
237 static const Jim_Nvp nvp_target_debug_reason
[] = {
238 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
239 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
240 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
241 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
242 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
243 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
244 { .name
= "program-exit" , .value
= DBG_REASON_EXIT
},
245 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
246 { .name
= NULL
, .value
= -1 },
249 static const Jim_Nvp nvp_target_endian
[] = {
250 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
251 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
252 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
253 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
254 { .name
= NULL
, .value
= -1 },
257 static const Jim_Nvp nvp_reset_modes
[] = {
258 { .name
= "unknown", .value
= RESET_UNKNOWN
},
259 { .name
= "run" , .value
= RESET_RUN
},
260 { .name
= "halt" , .value
= RESET_HALT
},
261 { .name
= "init" , .value
= RESET_INIT
},
262 { .name
= NULL
, .value
= -1 },
265 const char *debug_reason_name(struct target
*t
)
269 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
270 t
->debug_reason
)->name
;
272 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
273 cp
= "(*BUG*unknown*BUG*)";
278 const char *target_state_name(struct target
*t
)
281 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
283 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
284 cp
= "(*BUG*unknown*BUG*)";
287 if (!target_was_examined(t
) && t
->defer_examine
)
288 cp
= "examine deferred";
293 const char *target_event_name(enum target_event event
)
296 cp
= Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
;
298 LOG_ERROR("Invalid target event: %d", (int)(event
));
299 cp
= "(*BUG*unknown*BUG*)";
304 const char *target_reset_mode_name(enum target_reset_mode reset_mode
)
307 cp
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
;
309 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode
));
310 cp
= "(*BUG*unknown*BUG*)";
315 /* determine the number of the new target */
316 static int new_target_number(void)
321 /* number is 0 based */
325 if (x
< t
->target_number
)
326 x
= t
->target_number
;
332 /* read a uint64_t from a buffer in target memory endianness */
333 uint64_t target_buffer_get_u64(struct target
*target
, const uint8_t *buffer
)
335 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
336 return le_to_h_u64(buffer
);
338 return be_to_h_u64(buffer
);
341 /* read a uint32_t from a buffer in target memory endianness */
342 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
344 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
345 return le_to_h_u32(buffer
);
347 return be_to_h_u32(buffer
);
350 /* read a uint24_t from a buffer in target memory endianness */
351 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
353 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
354 return le_to_h_u24(buffer
);
356 return be_to_h_u24(buffer
);
359 /* read a uint16_t from a buffer in target memory endianness */
360 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
362 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
363 return le_to_h_u16(buffer
);
365 return be_to_h_u16(buffer
);
368 /* read a uint8_t from a buffer in target memory endianness */
369 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
371 return *buffer
& 0x0ff;
374 /* write a uint64_t to a buffer in target memory endianness */
375 void target_buffer_set_u64(struct target
*target
, uint8_t *buffer
, uint64_t value
)
377 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
378 h_u64_to_le(buffer
, value
);
380 h_u64_to_be(buffer
, value
);
383 /* write a uint32_t to a buffer in target memory endianness */
384 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
386 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
387 h_u32_to_le(buffer
, value
);
389 h_u32_to_be(buffer
, value
);
392 /* write a uint24_t to a buffer in target memory endianness */
393 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
395 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
396 h_u24_to_le(buffer
, value
);
398 h_u24_to_be(buffer
, value
);
401 /* write a uint16_t to a buffer in target memory endianness */
402 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
404 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
405 h_u16_to_le(buffer
, value
);
407 h_u16_to_be(buffer
, value
);
410 /* write a uint8_t to a buffer in target memory endianness */
411 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
416 /* write a uint64_t array to a buffer in target memory endianness */
417 void target_buffer_get_u64_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint64_t *dstbuf
)
420 for (i
= 0; i
< count
; i
++)
421 dstbuf
[i
] = target_buffer_get_u64(target
, &buffer
[i
* 8]);
424 /* write a uint32_t array to a buffer in target memory endianness */
425 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
428 for (i
= 0; i
< count
; i
++)
429 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
432 /* write a uint16_t array to a buffer in target memory endianness */
433 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
436 for (i
= 0; i
< count
; i
++)
437 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
440 /* write a uint64_t array to a buffer in target memory endianness */
441 void target_buffer_set_u64_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint64_t *srcbuf
)
444 for (i
= 0; i
< count
; i
++)
445 target_buffer_set_u64(target
, &buffer
[i
* 8], srcbuf
[i
]);
448 /* write a uint32_t array to a buffer in target memory endianness */
449 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint32_t *srcbuf
)
452 for (i
= 0; i
< count
; i
++)
453 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
456 /* write a uint16_t array to a buffer in target memory endianness */
457 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint16_t *srcbuf
)
460 for (i
= 0; i
< count
; i
++)
461 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
464 /* return a pointer to a configured target; id is name or number */
465 struct target
*get_target(const char *id
)
467 struct target
*target
;
469 /* try as tcltarget name */
470 for (target
= all_targets
; target
; target
= target
->next
) {
471 if (target_name(target
) == NULL
)
473 if (strcmp(id
, target_name(target
)) == 0)
477 /* It's OK to remove this fallback sometime after August 2010 or so */
479 /* no match, try as number */
481 if (parse_uint(id
, &num
) != ERROR_OK
)
484 for (target
= all_targets
; target
; target
= target
->next
) {
485 if (target
->target_number
== (int)num
) {
486 LOG_WARNING("use '%s' as target identifier, not '%u'",
487 target_name(target
), num
);
495 /* returns a pointer to the n-th configured target */
496 struct target
*get_target_by_num(int num
)
498 struct target
*target
= all_targets
;
501 if (target
->target_number
== num
)
503 target
= target
->next
;
509 struct target
*get_current_target(struct command_context
*cmd_ctx
)
511 struct target
*target
= get_target_by_num(cmd_ctx
->current_target
);
513 if (target
== NULL
) {
514 LOG_ERROR("BUG: current_target out of bounds");
521 int target_poll(struct target
*target
)
525 /* We can't poll until after examine */
526 if (!target_was_examined(target
)) {
527 /* Fail silently lest we pollute the log */
531 retval
= target
->type
->poll(target
);
532 if (retval
!= ERROR_OK
)
535 if (target
->halt_issued
) {
536 if (target
->state
== TARGET_HALTED
)
537 target
->halt_issued
= false;
539 int64_t t
= timeval_ms() - target
->halt_issued_time
;
540 if (t
> DEFAULT_HALT_TIMEOUT
) {
541 target
->halt_issued
= false;
542 LOG_INFO("Halt timed out, wake up GDB.");
543 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
551 int target_halt(struct target
*target
)
554 /* We can't poll until after examine */
555 if (!target_was_examined(target
)) {
556 LOG_ERROR("Target not examined yet");
560 retval
= target
->type
->halt(target
);
561 if (retval
!= ERROR_OK
)
564 target
->halt_issued
= true;
565 target
->halt_issued_time
= timeval_ms();
571 * Make the target (re)start executing using its saved execution
572 * context (possibly with some modifications).
574 * @param target Which target should start executing.
575 * @param current True to use the target's saved program counter instead
576 * of the address parameter
577 * @param address Optionally used as the program counter.
578 * @param handle_breakpoints True iff breakpoints at the resumption PC
579 * should be skipped. (For example, maybe execution was stopped by
580 * such a breakpoint, in which case it would be counterprodutive to
582 * @param debug_execution False if all working areas allocated by OpenOCD
583 * should be released and/or restored to their original contents.
584 * (This would for example be true to run some downloaded "helper"
585 * algorithm code, which resides in one such working buffer and uses
586 * another for data storage.)
588 * @todo Resolve the ambiguity about what the "debug_execution" flag
589 * signifies. For example, Target implementations don't agree on how
590 * it relates to invalidation of the register cache, or to whether
591 * breakpoints and watchpoints should be enabled. (It would seem wrong
592 * to enable breakpoints when running downloaded "helper" algorithms
593 * (debug_execution true), since the breakpoints would be set to match
594 * target firmware being debugged, not the helper algorithm.... and
595 * enabling them could cause such helpers to malfunction (for example,
596 * by overwriting data with a breakpoint instruction. On the other
597 * hand the infrastructure for running such helpers might use this
598 * procedure but rely on hardware breakpoint to detect termination.)
600 int target_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
604 /* We can't poll until after examine */
605 if (!target_was_examined(target
)) {
606 LOG_ERROR("Target not examined yet");
610 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
612 /* note that resume *must* be asynchronous. The CPU can halt before
613 * we poll. The CPU can even halt at the current PC as a result of
614 * a software breakpoint being inserted by (a bug?) the application.
616 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
617 if (retval
!= ERROR_OK
)
620 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
625 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
630 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
631 if (n
->name
== NULL
) {
632 LOG_ERROR("invalid reset mode");
636 struct target
*target
;
637 for (target
= all_targets
; target
; target
= target
->next
)
638 target_call_reset_callbacks(target
, reset_mode
);
640 /* disable polling during reset to make reset event scripts
641 * more predictable, i.e. dr/irscan & pathmove in events will
642 * not have JTAG operations injected into the middle of a sequence.
644 bool save_poll
= jtag_poll_get_enabled();
646 jtag_poll_set_enabled(false);
648 sprintf(buf
, "ocd_process_reset %s", n
->name
);
649 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
651 jtag_poll_set_enabled(save_poll
);
653 if (retval
!= JIM_OK
) {
654 Jim_MakeErrorMessage(cmd_ctx
->interp
);
655 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
659 /* We want any events to be processed before the prompt */
660 retval
= target_call_timer_callbacks_now();
662 for (target
= all_targets
; target
; target
= target
->next
) {
663 target
->type
->check_reset(target
);
664 target
->running_alg
= false;
670 static int identity_virt2phys(struct target
*target
,
671 uint32_t virtual, uint32_t *physical
)
677 static int no_mmu(struct target
*target
, int *enabled
)
683 static int default_examine(struct target
*target
)
685 target_set_examined(target
);
689 /* no check by default */
690 static int default_check_reset(struct target
*target
)
695 int target_examine_one(struct target
*target
)
697 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
699 int retval
= target
->type
->examine(target
);
700 if (retval
!= ERROR_OK
)
703 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
708 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
710 struct target
*target
= priv
;
712 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
715 jtag_unregister_event_callback(jtag_enable_callback
, target
);
717 return target_examine_one(target
);
720 /* Targets that correctly implement init + examine, i.e.
721 * no communication with target during init:
725 int target_examine(void)
727 int retval
= ERROR_OK
;
728 struct target
*target
;
730 for (target
= all_targets
; target
; target
= target
->next
) {
731 /* defer examination, but don't skip it */
732 if (!target
->tap
->enabled
) {
733 jtag_register_event_callback(jtag_enable_callback
,
738 if (target
->defer_examine
)
741 retval
= target_examine_one(target
);
742 if (retval
!= ERROR_OK
)
748 const char *target_type_name(struct target
*target
)
750 return target
->type
->name
;
753 static int target_soft_reset_halt(struct target
*target
)
755 if (!target_was_examined(target
)) {
756 LOG_ERROR("Target not examined yet");
759 if (!target
->type
->soft_reset_halt
) {
760 LOG_ERROR("Target %s does not support soft_reset_halt",
761 target_name(target
));
764 return target
->type
->soft_reset_halt(target
);
768 * Downloads a target-specific native code algorithm to the target,
769 * and executes it. * Note that some targets may need to set up, enable,
770 * and tear down a breakpoint (hard or * soft) to detect algorithm
771 * termination, while others may support lower overhead schemes where
772 * soft breakpoints embedded in the algorithm automatically terminate the
775 * @param target used to run the algorithm
776 * @param arch_info target-specific description of the algorithm.
778 int target_run_algorithm(struct target
*target
,
779 int num_mem_params
, struct mem_param
*mem_params
,
780 int num_reg_params
, struct reg_param
*reg_param
,
781 uint32_t entry_point
, uint32_t exit_point
,
782 int timeout_ms
, void *arch_info
)
784 int retval
= ERROR_FAIL
;
786 if (!target_was_examined(target
)) {
787 LOG_ERROR("Target not examined yet");
790 if (!target
->type
->run_algorithm
) {
791 LOG_ERROR("Target type '%s' does not support %s",
792 target_type_name(target
), __func__
);
796 target
->running_alg
= true;
797 retval
= target
->type
->run_algorithm(target
,
798 num_mem_params
, mem_params
,
799 num_reg_params
, reg_param
,
800 entry_point
, exit_point
, timeout_ms
, arch_info
);
801 target
->running_alg
= false;
808 * Downloads a target-specific native code algorithm to the target,
809 * executes and leaves it running.
811 * @param target used to run the algorithm
812 * @param arch_info target-specific description of the algorithm.
814 int target_start_algorithm(struct target
*target
,
815 int num_mem_params
, struct mem_param
*mem_params
,
816 int num_reg_params
, struct reg_param
*reg_params
,
817 uint32_t entry_point
, uint32_t exit_point
,
820 int retval
= ERROR_FAIL
;
822 if (!target_was_examined(target
)) {
823 LOG_ERROR("Target not examined yet");
826 if (!target
->type
->start_algorithm
) {
827 LOG_ERROR("Target type '%s' does not support %s",
828 target_type_name(target
), __func__
);
831 if (target
->running_alg
) {
832 LOG_ERROR("Target is already running an algorithm");
836 target
->running_alg
= true;
837 retval
= target
->type
->start_algorithm(target
,
838 num_mem_params
, mem_params
,
839 num_reg_params
, reg_params
,
840 entry_point
, exit_point
, arch_info
);
847 * Waits for an algorithm started with target_start_algorithm() to complete.
849 * @param target used to run the algorithm
850 * @param arch_info target-specific description of the algorithm.
852 int target_wait_algorithm(struct target
*target
,
853 int num_mem_params
, struct mem_param
*mem_params
,
854 int num_reg_params
, struct reg_param
*reg_params
,
855 uint32_t exit_point
, int timeout_ms
,
858 int retval
= ERROR_FAIL
;
860 if (!target
->type
->wait_algorithm
) {
861 LOG_ERROR("Target type '%s' does not support %s",
862 target_type_name(target
), __func__
);
865 if (!target
->running_alg
) {
866 LOG_ERROR("Target is not running an algorithm");
870 retval
= target
->type
->wait_algorithm(target
,
871 num_mem_params
, mem_params
,
872 num_reg_params
, reg_params
,
873 exit_point
, timeout_ms
, arch_info
);
874 if (retval
!= ERROR_TARGET_TIMEOUT
)
875 target
->running_alg
= false;
882 * Executes a target-specific native code algorithm in the target.
883 * It differs from target_run_algorithm in that the algorithm is asynchronous.
884 * Because of this it requires an compliant algorithm:
885 * see contrib/loaders/flash/stm32f1x.S for example.
887 * @param target used to run the algorithm
890 int target_run_flash_async_algorithm(struct target
*target
,
891 const uint8_t *buffer
, uint32_t count
, int block_size
,
892 int num_mem_params
, struct mem_param
*mem_params
,
893 int num_reg_params
, struct reg_param
*reg_params
,
894 uint32_t buffer_start
, uint32_t buffer_size
,
895 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
900 const uint8_t *buffer_orig
= buffer
;
902 /* Set up working area. First word is write pointer, second word is read pointer,
903 * rest is fifo data area. */
904 uint32_t wp_addr
= buffer_start
;
905 uint32_t rp_addr
= buffer_start
+ 4;
906 uint32_t fifo_start_addr
= buffer_start
+ 8;
907 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
909 uint32_t wp
= fifo_start_addr
;
910 uint32_t rp
= fifo_start_addr
;
912 /* validate block_size is 2^n */
913 assert(!block_size
|| !(block_size
& (block_size
- 1)));
915 retval
= target_write_u32(target
, wp_addr
, wp
);
916 if (retval
!= ERROR_OK
)
918 retval
= target_write_u32(target
, rp_addr
, rp
);
919 if (retval
!= ERROR_OK
)
922 /* Start up algorithm on target and let it idle while writing the first chunk */
923 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
924 num_reg_params
, reg_params
,
929 if (retval
!= ERROR_OK
) {
930 LOG_ERROR("error starting target flash write algorithm");
936 retval
= target_read_u32(target
, rp_addr
, &rp
);
937 if (retval
!= ERROR_OK
) {
938 LOG_ERROR("failed to get read pointer");
942 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
,
943 (size_t) (buffer
- buffer_orig
), count
, wp
, rp
);
946 LOG_ERROR("flash write algorithm aborted by target");
947 retval
= ERROR_FLASH_OPERATION_FAILED
;
951 if (((rp
- fifo_start_addr
) & (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
952 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
956 /* Count the number of bytes available in the fifo without
957 * crossing the wrap around. Make sure to not fill it completely,
958 * because that would make wp == rp and that's the empty condition. */
959 uint32_t thisrun_bytes
;
961 thisrun_bytes
= rp
- wp
- block_size
;
962 else if (rp
> fifo_start_addr
)
963 thisrun_bytes
= fifo_end_addr
- wp
;
965 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
967 if (thisrun_bytes
== 0) {
968 /* Throttle polling a bit if transfer is (much) faster than flash
969 * programming. The exact delay shouldn't matter as long as it's
970 * less than buffer size / flash speed. This is very unlikely to
971 * run when using high latency connections such as USB. */
974 /* to stop an infinite loop on some targets check and increment a timeout
975 * this issue was observed on a stellaris using the new ICDI interface */
976 if (timeout
++ >= 500) {
977 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
978 return ERROR_FLASH_OPERATION_FAILED
;
983 /* reset our timeout */
986 /* Limit to the amount of data we actually want to write */
987 if (thisrun_bytes
> count
* block_size
)
988 thisrun_bytes
= count
* block_size
;
990 /* Write data to fifo */
991 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
992 if (retval
!= ERROR_OK
)
995 /* Update counters and wrap write pointer */
996 buffer
+= thisrun_bytes
;
997 count
-= thisrun_bytes
/ block_size
;
999 if (wp
>= fifo_end_addr
)
1000 wp
= fifo_start_addr
;
1002 /* Store updated write pointer to target */
1003 retval
= target_write_u32(target
, wp_addr
, wp
);
1004 if (retval
!= ERROR_OK
)
1008 if (retval
!= ERROR_OK
) {
1009 /* abort flash write algorithm on target */
1010 target_write_u32(target
, wp_addr
, 0);
1013 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
1014 num_reg_params
, reg_params
,
1019 if (retval2
!= ERROR_OK
) {
1020 LOG_ERROR("error waiting for target flash write algorithm");
1024 if (retval
== ERROR_OK
) {
1025 /* check if algorithm set rp = 0 after fifo writer loop finished */
1026 retval
= target_read_u32(target
, rp_addr
, &rp
);
1027 if (retval
== ERROR_OK
&& rp
== 0) {
1028 LOG_ERROR("flash write algorithm aborted by target");
1029 retval
= ERROR_FLASH_OPERATION_FAILED
;
1036 int target_read_memory(struct target
*target
,
1037 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1039 if (!target_was_examined(target
)) {
1040 LOG_ERROR("Target not examined yet");
1043 if (!target
->type
->read_memory
) {
1044 LOG_ERROR("Target %s doesn't support read_memory", target_name(target
));
1047 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
1050 int target_read_phys_memory(struct target
*target
,
1051 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1053 if (!target_was_examined(target
)) {
1054 LOG_ERROR("Target not examined yet");
1057 if (!target
->type
->read_phys_memory
) {
1058 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target
));
1061 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
1064 int target_write_memory(struct target
*target
,
1065 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1067 if (!target_was_examined(target
)) {
1068 LOG_ERROR("Target not examined yet");
1071 if (!target
->type
->write_memory
) {
1072 LOG_ERROR("Target %s doesn't support write_memory", target_name(target
));
1075 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
1078 int target_write_phys_memory(struct target
*target
,
1079 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1081 if (!target_was_examined(target
)) {
1082 LOG_ERROR("Target not examined yet");
1085 if (!target
->type
->write_phys_memory
) {
1086 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target
));
1089 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
1092 int target_add_breakpoint(struct target
*target
,
1093 struct breakpoint
*breakpoint
)
1095 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
1096 LOG_WARNING("target %s is not halted", target_name(target
));
1097 return ERROR_TARGET_NOT_HALTED
;
1099 return target
->type
->add_breakpoint(target
, breakpoint
);
1102 int target_add_context_breakpoint(struct target
*target
,
1103 struct breakpoint
*breakpoint
)
1105 if (target
->state
!= TARGET_HALTED
) {
1106 LOG_WARNING("target %s is not halted", target_name(target
));
1107 return ERROR_TARGET_NOT_HALTED
;
1109 return target
->type
->add_context_breakpoint(target
, breakpoint
);
1112 int target_add_hybrid_breakpoint(struct target
*target
,
1113 struct breakpoint
*breakpoint
)
1115 if (target
->state
!= TARGET_HALTED
) {
1116 LOG_WARNING("target %s is not halted", target_name(target
));
1117 return ERROR_TARGET_NOT_HALTED
;
1119 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1122 int target_remove_breakpoint(struct target
*target
,
1123 struct breakpoint
*breakpoint
)
1125 return target
->type
->remove_breakpoint(target
, breakpoint
);
1128 int target_add_watchpoint(struct target
*target
,
1129 struct watchpoint
*watchpoint
)
1131 if (target
->state
!= TARGET_HALTED
) {
1132 LOG_WARNING("target %s is not halted", target_name(target
));
1133 return ERROR_TARGET_NOT_HALTED
;
1135 return target
->type
->add_watchpoint(target
, watchpoint
);
1137 int target_remove_watchpoint(struct target
*target
,
1138 struct watchpoint
*watchpoint
)
1140 return target
->type
->remove_watchpoint(target
, watchpoint
);
1142 int target_hit_watchpoint(struct target
*target
,
1143 struct watchpoint
**hit_watchpoint
)
1145 if (target
->state
!= TARGET_HALTED
) {
1146 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1147 return ERROR_TARGET_NOT_HALTED
;
1150 if (target
->type
->hit_watchpoint
== NULL
) {
1151 /* For backward compatible, if hit_watchpoint is not implemented,
1152 * return ERROR_FAIL such that gdb_server will not take the nonsense
1157 return target
->type
->hit_watchpoint(target
, hit_watchpoint
);
1160 int target_get_gdb_reg_list(struct target
*target
,
1161 struct reg
**reg_list
[], int *reg_list_size
,
1162 enum target_register_class reg_class
)
1164 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
, reg_class
);
1166 int target_step(struct target
*target
,
1167 int current
, uint32_t address
, int handle_breakpoints
)
1169 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1172 int target_get_gdb_fileio_info(struct target
*target
, struct gdb_fileio_info
*fileio_info
)
1174 if (target
->state
!= TARGET_HALTED
) {
1175 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1176 return ERROR_TARGET_NOT_HALTED
;
1178 return target
->type
->get_gdb_fileio_info(target
, fileio_info
);
1181 int target_gdb_fileio_end(struct target
*target
, int retcode
, int fileio_errno
, bool ctrl_c
)
1183 if (target
->state
!= TARGET_HALTED
) {
1184 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1185 return ERROR_TARGET_NOT_HALTED
;
1187 return target
->type
->gdb_fileio_end(target
, retcode
, fileio_errno
, ctrl_c
);
1190 int target_profiling(struct target
*target
, uint32_t *samples
,
1191 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1193 if (target
->state
!= TARGET_HALTED
) {
1194 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1195 return ERROR_TARGET_NOT_HALTED
;
1197 return target
->type
->profiling(target
, samples
, max_num_samples
,
1198 num_samples
, seconds
);
1202 * Reset the @c examined flag for the given target.
1203 * Pure paranoia -- targets are zeroed on allocation.
1205 static void target_reset_examined(struct target
*target
)
1207 target
->examined
= false;
1210 static int handle_target(void *priv
);
1212 static int target_init_one(struct command_context
*cmd_ctx
,
1213 struct target
*target
)
1215 target_reset_examined(target
);
1217 struct target_type
*type
= target
->type
;
1218 if (type
->examine
== NULL
)
1219 type
->examine
= default_examine
;
1221 if (type
->check_reset
== NULL
)
1222 type
->check_reset
= default_check_reset
;
1224 assert(type
->init_target
!= NULL
);
1226 int retval
= type
->init_target(cmd_ctx
, target
);
1227 if (ERROR_OK
!= retval
) {
1228 LOG_ERROR("target '%s' init failed", target_name(target
));
1232 /* Sanity-check MMU support ... stub in what we must, to help
1233 * implement it in stages, but warn if we need to do so.
1236 if (type
->virt2phys
== NULL
) {
1237 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1238 type
->virt2phys
= identity_virt2phys
;
1241 /* Make sure no-MMU targets all behave the same: make no
1242 * distinction between physical and virtual addresses, and
1243 * ensure that virt2phys() is always an identity mapping.
1245 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1246 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1249 type
->write_phys_memory
= type
->write_memory
;
1250 type
->read_phys_memory
= type
->read_memory
;
1251 type
->virt2phys
= identity_virt2phys
;
1254 if (target
->type
->read_buffer
== NULL
)
1255 target
->type
->read_buffer
= target_read_buffer_default
;
1257 if (target
->type
->write_buffer
== NULL
)
1258 target
->type
->write_buffer
= target_write_buffer_default
;
1260 if (target
->type
->get_gdb_fileio_info
== NULL
)
1261 target
->type
->get_gdb_fileio_info
= target_get_gdb_fileio_info_default
;
1263 if (target
->type
->gdb_fileio_end
== NULL
)
1264 target
->type
->gdb_fileio_end
= target_gdb_fileio_end_default
;
1266 if (target
->type
->profiling
== NULL
)
1267 target
->type
->profiling
= target_profiling_default
;
1272 static int target_init(struct command_context
*cmd_ctx
)
1274 struct target
*target
;
1277 for (target
= all_targets
; target
; target
= target
->next
) {
1278 retval
= target_init_one(cmd_ctx
, target
);
1279 if (ERROR_OK
!= retval
)
1286 retval
= target_register_user_commands(cmd_ctx
);
1287 if (ERROR_OK
!= retval
)
1290 retval
= target_register_timer_callback(&handle_target
,
1291 polling_interval
, 1, cmd_ctx
->interp
);
1292 if (ERROR_OK
!= retval
)
1298 COMMAND_HANDLER(handle_target_init_command
)
1303 return ERROR_COMMAND_SYNTAX_ERROR
;
1305 static bool target_initialized
;
1306 if (target_initialized
) {
1307 LOG_INFO("'target init' has already been called");
1310 target_initialized
= true;
1312 retval
= command_run_line(CMD_CTX
, "init_targets");
1313 if (ERROR_OK
!= retval
)
1316 retval
= command_run_line(CMD_CTX
, "init_target_events");
1317 if (ERROR_OK
!= retval
)
1320 retval
= command_run_line(CMD_CTX
, "init_board");
1321 if (ERROR_OK
!= retval
)
1324 LOG_DEBUG("Initializing targets...");
1325 return target_init(CMD_CTX
);
1328 int target_register_event_callback(int (*callback
)(struct target
*target
,
1329 enum target_event event
, void *priv
), void *priv
)
1331 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1333 if (callback
== NULL
)
1334 return ERROR_COMMAND_SYNTAX_ERROR
;
1337 while ((*callbacks_p
)->next
)
1338 callbacks_p
= &((*callbacks_p
)->next
);
1339 callbacks_p
= &((*callbacks_p
)->next
);
1342 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1343 (*callbacks_p
)->callback
= callback
;
1344 (*callbacks_p
)->priv
= priv
;
1345 (*callbacks_p
)->next
= NULL
;
1350 int target_register_reset_callback(int (*callback
)(struct target
*target
,
1351 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1353 struct target_reset_callback
*entry
;
1355 if (callback
== NULL
)
1356 return ERROR_COMMAND_SYNTAX_ERROR
;
1358 entry
= malloc(sizeof(struct target_reset_callback
));
1359 if (entry
== NULL
) {
1360 LOG_ERROR("error allocating buffer for reset callback entry");
1361 return ERROR_COMMAND_SYNTAX_ERROR
;
1364 entry
->callback
= callback
;
1366 list_add(&entry
->list
, &target_reset_callback_list
);
1372 int target_register_trace_callback(int (*callback
)(struct target
*target
,
1373 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1375 struct target_trace_callback
*entry
;
1377 if (callback
== NULL
)
1378 return ERROR_COMMAND_SYNTAX_ERROR
;
1380 entry
= malloc(sizeof(struct target_trace_callback
));
1381 if (entry
== NULL
) {
1382 LOG_ERROR("error allocating buffer for trace callback entry");
1383 return ERROR_COMMAND_SYNTAX_ERROR
;
1386 entry
->callback
= callback
;
1388 list_add(&entry
->list
, &target_trace_callback_list
);
1394 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1396 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1399 if (callback
== NULL
)
1400 return ERROR_COMMAND_SYNTAX_ERROR
;
1403 while ((*callbacks_p
)->next
)
1404 callbacks_p
= &((*callbacks_p
)->next
);
1405 callbacks_p
= &((*callbacks_p
)->next
);
1408 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1409 (*callbacks_p
)->callback
= callback
;
1410 (*callbacks_p
)->periodic
= periodic
;
1411 (*callbacks_p
)->time_ms
= time_ms
;
1412 (*callbacks_p
)->removed
= false;
1414 gettimeofday(&now
, NULL
);
1415 (*callbacks_p
)->when
.tv_usec
= now
.tv_usec
+ (time_ms
% 1000) * 1000;
1416 time_ms
-= (time_ms
% 1000);
1417 (*callbacks_p
)->when
.tv_sec
= now
.tv_sec
+ (time_ms
/ 1000);
1418 if ((*callbacks_p
)->when
.tv_usec
> 1000000) {
1419 (*callbacks_p
)->when
.tv_usec
= (*callbacks_p
)->when
.tv_usec
- 1000000;
1420 (*callbacks_p
)->when
.tv_sec
+= 1;
1423 (*callbacks_p
)->priv
= priv
;
1424 (*callbacks_p
)->next
= NULL
;
1429 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1430 enum target_event event
, void *priv
), void *priv
)
1432 struct target_event_callback
**p
= &target_event_callbacks
;
1433 struct target_event_callback
*c
= target_event_callbacks
;
1435 if (callback
== NULL
)
1436 return ERROR_COMMAND_SYNTAX_ERROR
;
1439 struct target_event_callback
*next
= c
->next
;
1440 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1452 int target_unregister_reset_callback(int (*callback
)(struct target
*target
,
1453 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1455 struct target_reset_callback
*entry
;
1457 if (callback
== NULL
)
1458 return ERROR_COMMAND_SYNTAX_ERROR
;
1460 list_for_each_entry(entry
, &target_reset_callback_list
, list
) {
1461 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1462 list_del(&entry
->list
);
1471 int target_unregister_trace_callback(int (*callback
)(struct target
*target
,
1472 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1474 struct target_trace_callback
*entry
;
1476 if (callback
== NULL
)
1477 return ERROR_COMMAND_SYNTAX_ERROR
;
1479 list_for_each_entry(entry
, &target_trace_callback_list
, list
) {
1480 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1481 list_del(&entry
->list
);
1490 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1492 if (callback
== NULL
)
1493 return ERROR_COMMAND_SYNTAX_ERROR
;
1495 for (struct target_timer_callback
*c
= target_timer_callbacks
;
1497 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1506 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1508 struct target_event_callback
*callback
= target_event_callbacks
;
1509 struct target_event_callback
*next_callback
;
1511 if (event
== TARGET_EVENT_HALTED
) {
1512 /* execute early halted first */
1513 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1516 LOG_DEBUG("target event %i (%s)", event
,
1517 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1519 target_handle_event(target
, event
);
1522 next_callback
= callback
->next
;
1523 callback
->callback(target
, event
, callback
->priv
);
1524 callback
= next_callback
;
1530 int target_call_reset_callbacks(struct target
*target
, enum target_reset_mode reset_mode
)
1532 struct target_reset_callback
*callback
;
1534 LOG_DEBUG("target reset %i (%s)", reset_mode
,
1535 Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
);
1537 list_for_each_entry(callback
, &target_reset_callback_list
, list
)
1538 callback
->callback(target
, reset_mode
, callback
->priv
);
1543 int target_call_trace_callbacks(struct target
*target
, size_t len
, uint8_t *data
)
1545 struct target_trace_callback
*callback
;
1547 list_for_each_entry(callback
, &target_trace_callback_list
, list
)
1548 callback
->callback(target
, len
, data
, callback
->priv
);
1553 static int target_timer_callback_periodic_restart(
1554 struct target_timer_callback
*cb
, struct timeval
*now
)
1556 int time_ms
= cb
->time_ms
;
1557 cb
->when
.tv_usec
= now
->tv_usec
+ (time_ms
% 1000) * 1000;
1558 time_ms
-= (time_ms
% 1000);
1559 cb
->when
.tv_sec
= now
->tv_sec
+ time_ms
/ 1000;
1560 if (cb
->when
.tv_usec
> 1000000) {
1561 cb
->when
.tv_usec
= cb
->when
.tv_usec
- 1000000;
1562 cb
->when
.tv_sec
+= 1;
1567 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1568 struct timeval
*now
)
1570 cb
->callback(cb
->priv
);
1573 return target_timer_callback_periodic_restart(cb
, now
);
1575 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1578 static int target_call_timer_callbacks_check_time(int checktime
)
1580 static bool callback_processing
;
1582 /* Do not allow nesting */
1583 if (callback_processing
)
1586 callback_processing
= true;
1591 gettimeofday(&now
, NULL
);
1593 /* Store an address of the place containing a pointer to the
1594 * next item; initially, that's a standalone "root of the
1595 * list" variable. */
1596 struct target_timer_callback
**callback
= &target_timer_callbacks
;
1598 if ((*callback
)->removed
) {
1599 struct target_timer_callback
*p
= *callback
;
1600 *callback
= (*callback
)->next
;
1605 bool call_it
= (*callback
)->callback
&&
1606 ((!checktime
&& (*callback
)->periodic
) ||
1607 now
.tv_sec
> (*callback
)->when
.tv_sec
||
1608 (now
.tv_sec
== (*callback
)->when
.tv_sec
&&
1609 now
.tv_usec
>= (*callback
)->when
.tv_usec
));
1612 target_call_timer_callback(*callback
, &now
);
1614 callback
= &(*callback
)->next
;
1617 callback_processing
= false;
1621 int target_call_timer_callbacks(void)
1623 return target_call_timer_callbacks_check_time(1);
1626 /* invoke periodic callbacks immediately */
1627 int target_call_timer_callbacks_now(void)
1629 return target_call_timer_callbacks_check_time(0);
1632 /* Prints the working area layout for debug purposes */
1633 static void print_wa_layout(struct target
*target
)
1635 struct working_area
*c
= target
->working_areas
;
1638 LOG_DEBUG("%c%c 0x%08"PRIx32
"-0x%08"PRIx32
" (%"PRIu32
" bytes)",
1639 c
->backup ?
'b' : ' ', c
->free ?
' ' : '*',
1640 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1645 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1646 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1648 assert(area
->free
); /* Shouldn't split an allocated area */
1649 assert(size
<= area
->size
); /* Caller should guarantee this */
1651 /* Split only if not already the right size */
1652 if (size
< area
->size
) {
1653 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1658 new_wa
->next
= area
->next
;
1659 new_wa
->size
= area
->size
- size
;
1660 new_wa
->address
= area
->address
+ size
;
1661 new_wa
->backup
= NULL
;
1662 new_wa
->user
= NULL
;
1663 new_wa
->free
= true;
1665 area
->next
= new_wa
;
1668 /* If backup memory was allocated to this area, it has the wrong size
1669 * now so free it and it will be reallocated if/when needed */
1672 area
->backup
= NULL
;
1677 /* Merge all adjacent free areas into one */
1678 static void target_merge_working_areas(struct target
*target
)
1680 struct working_area
*c
= target
->working_areas
;
1682 while (c
&& c
->next
) {
1683 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1685 /* Find two adjacent free areas */
1686 if (c
->free
&& c
->next
->free
) {
1687 /* Merge the last into the first */
1688 c
->size
+= c
->next
->size
;
1690 /* Remove the last */
1691 struct working_area
*to_be_freed
= c
->next
;
1692 c
->next
= c
->next
->next
;
1693 if (to_be_freed
->backup
)
1694 free(to_be_freed
->backup
);
1697 /* If backup memory was allocated to the remaining area, it's has
1698 * the wrong size now */
1709 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1711 /* Reevaluate working area address based on MMU state*/
1712 if (target
->working_areas
== NULL
) {
1716 retval
= target
->type
->mmu(target
, &enabled
);
1717 if (retval
!= ERROR_OK
)
1721 if (target
->working_area_phys_spec
) {
1722 LOG_DEBUG("MMU disabled, using physical "
1723 "address for working memory 0x%08"PRIx32
,
1724 target
->working_area_phys
);
1725 target
->working_area
= target
->working_area_phys
;
1727 LOG_ERROR("No working memory available. "
1728 "Specify -work-area-phys to target.");
1729 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1732 if (target
->working_area_virt_spec
) {
1733 LOG_DEBUG("MMU enabled, using virtual "
1734 "address for working memory 0x%08"PRIx32
,
1735 target
->working_area_virt
);
1736 target
->working_area
= target
->working_area_virt
;
1738 LOG_ERROR("No working memory available. "
1739 "Specify -work-area-virt to target.");
1740 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1744 /* Set up initial working area on first call */
1745 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1747 new_wa
->next
= NULL
;
1748 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1749 new_wa
->address
= target
->working_area
;
1750 new_wa
->backup
= NULL
;
1751 new_wa
->user
= NULL
;
1752 new_wa
->free
= true;
1755 target
->working_areas
= new_wa
;
1758 /* only allocate multiples of 4 byte */
1760 size
= (size
+ 3) & (~3UL);
1762 struct working_area
*c
= target
->working_areas
;
1764 /* Find the first large enough working area */
1766 if (c
->free
&& c
->size
>= size
)
1772 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1774 /* Split the working area into the requested size */
1775 target_split_working_area(c
, size
);
1777 LOG_DEBUG("allocated new working area of %"PRIu32
" bytes at address 0x%08"PRIx32
, size
, c
->address
);
1779 if (target
->backup_working_area
) {
1780 if (c
->backup
== NULL
) {
1781 c
->backup
= malloc(c
->size
);
1782 if (c
->backup
== NULL
)
1786 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1787 if (retval
!= ERROR_OK
)
1791 /* mark as used, and return the new (reused) area */
1798 print_wa_layout(target
);
1803 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1807 retval
= target_alloc_working_area_try(target
, size
, area
);
1808 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1809 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1814 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1816 int retval
= ERROR_OK
;
1818 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1819 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1820 if (retval
!= ERROR_OK
)
1821 LOG_ERROR("failed to restore %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1822 area
->size
, area
->address
);
1828 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1829 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1831 int retval
= ERROR_OK
;
1837 retval
= target_restore_working_area(target
, area
);
1838 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1839 if (retval
!= ERROR_OK
)
1845 LOG_DEBUG("freed %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1846 area
->size
, area
->address
);
1848 /* mark user pointer invalid */
1849 /* TODO: Is this really safe? It points to some previous caller's memory.
1850 * How could we know that the area pointer is still in that place and not
1851 * some other vital data? What's the purpose of this, anyway? */
1855 target_merge_working_areas(target
);
1857 print_wa_layout(target
);
1862 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1864 return target_free_working_area_restore(target
, area
, 1);
1867 void target_quit(void)
1869 struct target_event_callback
*pe
= target_event_callbacks
;
1871 struct target_event_callback
*t
= pe
->next
;
1875 target_event_callbacks
= NULL
;
1877 struct target_timer_callback
*pt
= target_timer_callbacks
;
1879 struct target_timer_callback
*t
= pt
->next
;
1883 target_timer_callbacks
= NULL
;
1885 for (struct target
*target
= all_targets
;
1886 target
; target
= target
->next
) {
1887 if (target
->type
->deinit_target
)
1888 target
->type
->deinit_target(target
);
1892 /* free resources and restore memory, if restoring memory fails,
1893 * free up resources anyway
1895 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1897 struct working_area
*c
= target
->working_areas
;
1899 LOG_DEBUG("freeing all working areas");
1901 /* Loop through all areas, restoring the allocated ones and marking them as free */
1905 target_restore_working_area(target
, c
);
1907 *c
->user
= NULL
; /* Same as above */
1913 /* Run a merge pass to combine all areas into one */
1914 target_merge_working_areas(target
);
1916 print_wa_layout(target
);
1919 void target_free_all_working_areas(struct target
*target
)
1921 target_free_all_working_areas_restore(target
, 1);
1924 /* Find the largest number of bytes that can be allocated */
1925 uint32_t target_get_working_area_avail(struct target
*target
)
1927 struct working_area
*c
= target
->working_areas
;
1928 uint32_t max_size
= 0;
1931 return target
->working_area_size
;
1934 if (c
->free
&& max_size
< c
->size
)
1943 int target_arch_state(struct target
*target
)
1946 if (target
== NULL
) {
1947 LOG_WARNING("No target has been configured");
1951 if (target
->state
!= TARGET_HALTED
)
1954 retval
= target
->type
->arch_state(target
);
1958 static int target_get_gdb_fileio_info_default(struct target
*target
,
1959 struct gdb_fileio_info
*fileio_info
)
1961 /* If target does not support semi-hosting function, target
1962 has no need to provide .get_gdb_fileio_info callback.
1963 It just return ERROR_FAIL and gdb_server will return "Txx"
1964 as target halted every time. */
1968 static int target_gdb_fileio_end_default(struct target
*target
,
1969 int retcode
, int fileio_errno
, bool ctrl_c
)
1974 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
1975 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1977 struct timeval timeout
, now
;
1979 gettimeofday(&timeout
, NULL
);
1980 timeval_add_time(&timeout
, seconds
, 0);
1982 LOG_INFO("Starting profiling. Halting and resuming the"
1983 " target as often as we can...");
1985 uint32_t sample_count
= 0;
1986 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1987 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
1989 int retval
= ERROR_OK
;
1991 target_poll(target
);
1992 if (target
->state
== TARGET_HALTED
) {
1993 uint32_t t
= buf_get_u32(reg
->value
, 0, 32);
1994 samples
[sample_count
++] = t
;
1995 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1996 retval
= target_resume(target
, 1, 0, 0, 0);
1997 target_poll(target
);
1998 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1999 } else if (target
->state
== TARGET_RUNNING
) {
2000 /* We want to quickly sample the PC. */
2001 retval
= target_halt(target
);
2003 LOG_INFO("Target not halted or running");
2008 if (retval
!= ERROR_OK
)
2011 gettimeofday(&now
, NULL
);
2012 if ((sample_count
>= max_num_samples
) ||
2013 ((now
.tv_sec
>= timeout
.tv_sec
) && (now
.tv_usec
>= timeout
.tv_usec
))) {
2014 LOG_INFO("Profiling completed. %" PRIu32
" samples.", sample_count
);
2019 *num_samples
= sample_count
;
2023 /* Single aligned words are guaranteed to use 16 or 32 bit access
2024 * mode respectively, otherwise data is handled as quickly as
2027 int target_write_buffer(struct target
*target
, uint32_t address
, uint32_t size
, const uint8_t *buffer
)
2029 LOG_DEBUG("writing buffer of %" PRIi32
" byte at 0x%8.8" PRIx32
,
2032 if (!target_was_examined(target
)) {
2033 LOG_ERROR("Target not examined yet");
2040 if ((address
+ size
- 1) < address
) {
2041 /* GDB can request this when e.g. PC is 0xfffffffc */
2042 LOG_ERROR("address + size wrapped (0x%08" PRIx32
", 0x%08" PRIx32
")",
2048 return target
->type
->write_buffer(target
, address
, size
, buffer
);
2051 static int target_write_buffer_default(struct target
*target
, uint32_t address
, uint32_t count
, const uint8_t *buffer
)
2055 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2056 * will have something to do with the size we leave to it. */
2057 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2058 if (address
& size
) {
2059 int retval
= target_write_memory(target
, address
, size
, 1, buffer
);
2060 if (retval
!= ERROR_OK
)
2068 /* Write the data with as large access size as possible. */
2069 for (; size
> 0; size
/= 2) {
2070 uint32_t aligned
= count
- count
% size
;
2072 int retval
= target_write_memory(target
, address
, size
, aligned
/ size
, buffer
);
2073 if (retval
!= ERROR_OK
)
2084 /* Single aligned words are guaranteed to use 16 or 32 bit access
2085 * mode respectively, otherwise data is handled as quickly as
2088 int target_read_buffer(struct target
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
2090 LOG_DEBUG("reading buffer of %" PRIi32
" byte at 0x%8.8" PRIx32
,
2093 if (!target_was_examined(target
)) {
2094 LOG_ERROR("Target not examined yet");
2101 if ((address
+ size
- 1) < address
) {
2102 /* GDB can request this when e.g. PC is 0xfffffffc */
2103 LOG_ERROR("address + size wrapped (0x%08" PRIx32
", 0x%08" PRIx32
")",
2109 return target
->type
->read_buffer(target
, address
, size
, buffer
);
2112 static int target_read_buffer_default(struct target
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
2116 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2117 * will have something to do with the size we leave to it. */
2118 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2119 if (address
& size
) {
2120 int retval
= target_read_memory(target
, address
, size
, 1, buffer
);
2121 if (retval
!= ERROR_OK
)
2129 /* Read the data with as large access size as possible. */
2130 for (; size
> 0; size
/= 2) {
2131 uint32_t aligned
= count
- count
% size
;
2133 int retval
= target_read_memory(target
, address
, size
, aligned
/ size
, buffer
);
2134 if (retval
!= ERROR_OK
)
2145 int target_checksum_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* crc
)
2150 uint32_t checksum
= 0;
2151 if (!target_was_examined(target
)) {
2152 LOG_ERROR("Target not examined yet");
2156 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
2157 if (retval
!= ERROR_OK
) {
2158 buffer
= malloc(size
);
2159 if (buffer
== NULL
) {
2160 LOG_ERROR("error allocating buffer for section (%" PRId32
" bytes)", size
);
2161 return ERROR_COMMAND_SYNTAX_ERROR
;
2163 retval
= target_read_buffer(target
, address
, size
, buffer
);
2164 if (retval
!= ERROR_OK
) {
2169 /* convert to target endianness */
2170 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
2171 uint32_t target_data
;
2172 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
2173 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
2176 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
2185 int target_blank_check_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* blank
,
2186 uint8_t erased_value
)
2189 if (!target_was_examined(target
)) {
2190 LOG_ERROR("Target not examined yet");
2194 if (target
->type
->blank_check_memory
== 0)
2195 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2197 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
, erased_value
);
2202 int target_read_u64(struct target
*target
, uint64_t address
, uint64_t *value
)
2204 uint8_t value_buf
[8];
2205 if (!target_was_examined(target
)) {
2206 LOG_ERROR("Target not examined yet");
2210 int retval
= target_read_memory(target
, address
, 8, 1, value_buf
);
2212 if (retval
== ERROR_OK
) {
2213 *value
= target_buffer_get_u64(target
, value_buf
);
2214 LOG_DEBUG("address: 0x%" PRIx64
", value: 0x%16.16" PRIx64
"",
2219 LOG_DEBUG("address: 0x%" PRIx64
" failed",
2226 int target_read_u32(struct target
*target
, uint32_t address
, uint32_t *value
)
2228 uint8_t value_buf
[4];
2229 if (!target_was_examined(target
)) {
2230 LOG_ERROR("Target not examined yet");
2234 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
2236 if (retval
== ERROR_OK
) {
2237 *value
= target_buffer_get_u32(target
, value_buf
);
2238 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
2243 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2250 int target_read_u16(struct target
*target
, uint32_t address
, uint16_t *value
)
2252 uint8_t value_buf
[2];
2253 if (!target_was_examined(target
)) {
2254 LOG_ERROR("Target not examined yet");
2258 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
2260 if (retval
== ERROR_OK
) {
2261 *value
= target_buffer_get_u16(target
, value_buf
);
2262 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%4.4" PRIx16
,
2267 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2274 int target_read_u8(struct target
*target
, uint32_t address
, uint8_t *value
)
2276 if (!target_was_examined(target
)) {
2277 LOG_ERROR("Target not examined yet");
2281 int retval
= target_read_memory(target
, address
, 1, 1, value
);
2283 if (retval
== ERROR_OK
) {
2284 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2" PRIx8
,
2289 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2296 int target_write_u64(struct target
*target
, uint64_t address
, uint64_t value
)
2299 uint8_t value_buf
[8];
2300 if (!target_was_examined(target
)) {
2301 LOG_ERROR("Target not examined yet");
2305 LOG_DEBUG("address: 0x%" PRIx64
", value: 0x%16.16" PRIx64
"",
2309 target_buffer_set_u64(target
, value_buf
, value
);
2310 retval
= target_write_memory(target
, address
, 8, 1, value_buf
);
2311 if (retval
!= ERROR_OK
)
2312 LOG_DEBUG("failed: %i", retval
);
2317 int target_write_u32(struct target
*target
, uint32_t address
, uint32_t value
)
2320 uint8_t value_buf
[4];
2321 if (!target_was_examined(target
)) {
2322 LOG_ERROR("Target not examined yet");
2326 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
2330 target_buffer_set_u32(target
, value_buf
, value
);
2331 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
2332 if (retval
!= ERROR_OK
)
2333 LOG_DEBUG("failed: %i", retval
);
2338 int target_write_u16(struct target
*target
, uint32_t address
, uint16_t value
)
2341 uint8_t value_buf
[2];
2342 if (!target_was_examined(target
)) {
2343 LOG_ERROR("Target not examined yet");
2347 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx16
,
2351 target_buffer_set_u16(target
, value_buf
, value
);
2352 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
2353 if (retval
!= ERROR_OK
)
2354 LOG_DEBUG("failed: %i", retval
);
2359 int target_write_u8(struct target
*target
, uint32_t address
, uint8_t value
)
2362 if (!target_was_examined(target
)) {
2363 LOG_ERROR("Target not examined yet");
2367 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2" PRIx8
,
2370 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2371 if (retval
!= ERROR_OK
)
2372 LOG_DEBUG("failed: %i", retval
);
2377 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2379 struct target
*target
= get_target(name
);
2380 if (target
== NULL
) {
2381 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2384 if (!target
->tap
->enabled
) {
2385 LOG_USER("Target: TAP %s is disabled, "
2386 "can't be the current target\n",
2387 target
->tap
->dotted_name
);
2391 cmd_ctx
->current_target
= target
->target_number
;
2396 COMMAND_HANDLER(handle_targets_command
)
2398 int retval
= ERROR_OK
;
2399 if (CMD_ARGC
== 1) {
2400 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2401 if (retval
== ERROR_OK
) {
2407 struct target
*target
= all_targets
;
2408 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2409 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2414 if (target
->tap
->enabled
)
2415 state
= target_state_name(target
);
2417 state
= "tap-disabled";
2419 if (CMD_CTX
->current_target
== target
->target_number
)
2422 /* keep columns lined up to match the headers above */
2423 command_print(CMD_CTX
,
2424 "%2d%c %-18s %-10s %-6s %-18s %s",
2425 target
->target_number
,
2427 target_name(target
),
2428 target_type_name(target
),
2429 Jim_Nvp_value2name_simple(nvp_target_endian
,
2430 target
->endianness
)->name
,
2431 target
->tap
->dotted_name
,
2433 target
= target
->next
;
2439 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2441 static int powerDropout
;
2442 static int srstAsserted
;
2444 static int runPowerRestore
;
2445 static int runPowerDropout
;
2446 static int runSrstAsserted
;
2447 static int runSrstDeasserted
;
2449 static int sense_handler(void)
2451 static int prevSrstAsserted
;
2452 static int prevPowerdropout
;
2454 int retval
= jtag_power_dropout(&powerDropout
);
2455 if (retval
!= ERROR_OK
)
2459 powerRestored
= prevPowerdropout
&& !powerDropout
;
2461 runPowerRestore
= 1;
2463 int64_t current
= timeval_ms();
2464 static int64_t lastPower
;
2465 bool waitMore
= lastPower
+ 2000 > current
;
2466 if (powerDropout
&& !waitMore
) {
2467 runPowerDropout
= 1;
2468 lastPower
= current
;
2471 retval
= jtag_srst_asserted(&srstAsserted
);
2472 if (retval
!= ERROR_OK
)
2476 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2478 static int64_t lastSrst
;
2479 waitMore
= lastSrst
+ 2000 > current
;
2480 if (srstDeasserted
&& !waitMore
) {
2481 runSrstDeasserted
= 1;
2485 if (!prevSrstAsserted
&& srstAsserted
)
2486 runSrstAsserted
= 1;
2488 prevSrstAsserted
= srstAsserted
;
2489 prevPowerdropout
= powerDropout
;
2491 if (srstDeasserted
|| powerRestored
) {
2492 /* Other than logging the event we can't do anything here.
2493 * Issuing a reset is a particularly bad idea as we might
2494 * be inside a reset already.
2501 /* process target state changes */
2502 static int handle_target(void *priv
)
2504 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2505 int retval
= ERROR_OK
;
2507 if (!is_jtag_poll_safe()) {
2508 /* polling is disabled currently */
2512 /* we do not want to recurse here... */
2513 static int recursive
;
2517 /* danger! running these procedures can trigger srst assertions and power dropouts.
2518 * We need to avoid an infinite loop/recursion here and we do that by
2519 * clearing the flags after running these events.
2521 int did_something
= 0;
2522 if (runSrstAsserted
) {
2523 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2524 Jim_Eval(interp
, "srst_asserted");
2527 if (runSrstDeasserted
) {
2528 Jim_Eval(interp
, "srst_deasserted");
2531 if (runPowerDropout
) {
2532 LOG_INFO("Power dropout detected, running power_dropout proc.");
2533 Jim_Eval(interp
, "power_dropout");
2536 if (runPowerRestore
) {
2537 Jim_Eval(interp
, "power_restore");
2541 if (did_something
) {
2542 /* clear detect flags */
2546 /* clear action flags */
2548 runSrstAsserted
= 0;
2549 runSrstDeasserted
= 0;
2550 runPowerRestore
= 0;
2551 runPowerDropout
= 0;
2556 /* Poll targets for state changes unless that's globally disabled.
2557 * Skip targets that are currently disabled.
2559 for (struct target
*target
= all_targets
;
2560 is_jtag_poll_safe() && target
;
2561 target
= target
->next
) {
2563 if (!target_was_examined(target
))
2566 if (!target
->tap
->enabled
)
2569 if (target
->backoff
.times
> target
->backoff
.count
) {
2570 /* do not poll this time as we failed previously */
2571 target
->backoff
.count
++;
2574 target
->backoff
.count
= 0;
2576 /* only poll target if we've got power and srst isn't asserted */
2577 if (!powerDropout
&& !srstAsserted
) {
2578 /* polling may fail silently until the target has been examined */
2579 retval
= target_poll(target
);
2580 if (retval
!= ERROR_OK
) {
2581 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2582 if (target
->backoff
.times
* polling_interval
< 5000) {
2583 target
->backoff
.times
*= 2;
2584 target
->backoff
.times
++;
2587 /* Tell GDB to halt the debugger. This allows the user to
2588 * run monitor commands to handle the situation.
2590 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2592 if (target
->backoff
.times
> 0) {
2593 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target
));
2594 target_reset_examined(target
);
2595 retval
= target_examine_one(target
);
2596 /* Target examination could have failed due to unstable connection,
2597 * but we set the examined flag anyway to repoll it later */
2598 if (retval
!= ERROR_OK
) {
2599 target
->examined
= true;
2600 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2601 target
->backoff
.times
* polling_interval
);
2606 /* Since we succeeded, we reset backoff count */
2607 target
->backoff
.times
= 0;
2614 COMMAND_HANDLER(handle_reg_command
)
2616 struct target
*target
;
2617 struct reg
*reg
= NULL
;
2623 target
= get_current_target(CMD_CTX
);
2625 /* list all available registers for the current target */
2626 if (CMD_ARGC
== 0) {
2627 struct reg_cache
*cache
= target
->reg_cache
;
2633 command_print(CMD_CTX
, "===== %s", cache
->name
);
2635 for (i
= 0, reg
= cache
->reg_list
;
2636 i
< cache
->num_regs
;
2637 i
++, reg
++, count
++) {
2638 /* only print cached values if they are valid */
2640 value
= buf_to_str(reg
->value
,
2642 command_print(CMD_CTX
,
2643 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2651 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2656 cache
= cache
->next
;
2662 /* access a single register by its ordinal number */
2663 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2665 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2667 struct reg_cache
*cache
= target
->reg_cache
;
2671 for (i
= 0; i
< cache
->num_regs
; i
++) {
2672 if (count
++ == num
) {
2673 reg
= &cache
->reg_list
[i
];
2679 cache
= cache
->next
;
2683 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2684 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2688 /* access a single register by its name */
2689 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2692 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2697 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2699 /* display a register */
2700 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2701 && (CMD_ARGV
[1][0] <= '9')))) {
2702 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2705 if (reg
->valid
== 0)
2706 reg
->type
->get(reg
);
2707 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2708 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2713 /* set register value */
2714 if (CMD_ARGC
== 2) {
2715 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2718 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2720 reg
->type
->set(reg
, buf
);
2722 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2723 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2731 return ERROR_COMMAND_SYNTAX_ERROR
;
2734 COMMAND_HANDLER(handle_poll_command
)
2736 int retval
= ERROR_OK
;
2737 struct target
*target
= get_current_target(CMD_CTX
);
2739 if (CMD_ARGC
== 0) {
2740 command_print(CMD_CTX
, "background polling: %s",
2741 jtag_poll_get_enabled() ?
"on" : "off");
2742 command_print(CMD_CTX
, "TAP: %s (%s)",
2743 target
->tap
->dotted_name
,
2744 target
->tap
->enabled ?
"enabled" : "disabled");
2745 if (!target
->tap
->enabled
)
2747 retval
= target_poll(target
);
2748 if (retval
!= ERROR_OK
)
2750 retval
= target_arch_state(target
);
2751 if (retval
!= ERROR_OK
)
2753 } else if (CMD_ARGC
== 1) {
2755 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2756 jtag_poll_set_enabled(enable
);
2758 return ERROR_COMMAND_SYNTAX_ERROR
;
2763 COMMAND_HANDLER(handle_wait_halt_command
)
2766 return ERROR_COMMAND_SYNTAX_ERROR
;
2768 unsigned ms
= DEFAULT_HALT_TIMEOUT
;
2769 if (1 == CMD_ARGC
) {
2770 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2771 if (ERROR_OK
!= retval
)
2772 return ERROR_COMMAND_SYNTAX_ERROR
;
2775 struct target
*target
= get_current_target(CMD_CTX
);
2776 return target_wait_state(target
, TARGET_HALTED
, ms
);
2779 /* wait for target state to change. The trick here is to have a low
2780 * latency for short waits and not to suck up all the CPU time
2783 * After 500ms, keep_alive() is invoked
2785 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2788 int64_t then
= 0, cur
;
2792 retval
= target_poll(target
);
2793 if (retval
!= ERROR_OK
)
2795 if (target
->state
== state
)
2800 then
= timeval_ms();
2801 LOG_DEBUG("waiting for target %s...",
2802 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2808 if ((cur
-then
) > ms
) {
2809 LOG_ERROR("timed out while waiting for target %s",
2810 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2818 COMMAND_HANDLER(handle_halt_command
)
2822 struct target
*target
= get_current_target(CMD_CTX
);
2823 int retval
= target_halt(target
);
2824 if (ERROR_OK
!= retval
)
2827 if (CMD_ARGC
== 1) {
2828 unsigned wait_local
;
2829 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
2830 if (ERROR_OK
!= retval
)
2831 return ERROR_COMMAND_SYNTAX_ERROR
;
2836 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2839 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2841 struct target
*target
= get_current_target(CMD_CTX
);
2843 LOG_USER("requesting target halt and executing a soft reset");
2845 target_soft_reset_halt(target
);
2850 COMMAND_HANDLER(handle_reset_command
)
2853 return ERROR_COMMAND_SYNTAX_ERROR
;
2855 enum target_reset_mode reset_mode
= RESET_RUN
;
2856 if (CMD_ARGC
== 1) {
2858 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
2859 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
2860 return ERROR_COMMAND_SYNTAX_ERROR
;
2861 reset_mode
= n
->value
;
2864 /* reset *all* targets */
2865 return target_process_reset(CMD_CTX
, reset_mode
);
2869 COMMAND_HANDLER(handle_resume_command
)
2873 return ERROR_COMMAND_SYNTAX_ERROR
;
2875 struct target
*target
= get_current_target(CMD_CTX
);
2877 /* with no CMD_ARGV, resume from current pc, addr = 0,
2878 * with one arguments, addr = CMD_ARGV[0],
2879 * handle breakpoints, not debugging */
2881 if (CMD_ARGC
== 1) {
2882 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2886 return target_resume(target
, current
, addr
, 1, 0);
2889 COMMAND_HANDLER(handle_step_command
)
2892 return ERROR_COMMAND_SYNTAX_ERROR
;
2896 /* with no CMD_ARGV, step from current pc, addr = 0,
2897 * with one argument addr = CMD_ARGV[0],
2898 * handle breakpoints, debugging */
2901 if (CMD_ARGC
== 1) {
2902 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2906 struct target
*target
= get_current_target(CMD_CTX
);
2908 return target
->type
->step(target
, current_pc
, addr
, 1);
2911 static void handle_md_output(struct command_context
*cmd_ctx
,
2912 struct target
*target
, uint32_t address
, unsigned size
,
2913 unsigned count
, const uint8_t *buffer
)
2915 const unsigned line_bytecnt
= 32;
2916 unsigned line_modulo
= line_bytecnt
/ size
;
2918 char output
[line_bytecnt
* 4 + 1];
2919 unsigned output_len
= 0;
2921 const char *value_fmt
;
2924 value_fmt
= "%8.8x ";
2927 value_fmt
= "%4.4x ";
2930 value_fmt
= "%2.2x ";
2933 /* "can't happen", caller checked */
2934 LOG_ERROR("invalid memory read size: %u", size
);
2938 for (unsigned i
= 0; i
< count
; i
++) {
2939 if (i
% line_modulo
== 0) {
2940 output_len
+= snprintf(output
+ output_len
,
2941 sizeof(output
) - output_len
,
2943 (unsigned)(address
+ (i
*size
)));
2947 const uint8_t *value_ptr
= buffer
+ i
* size
;
2950 value
= target_buffer_get_u32(target
, value_ptr
);
2953 value
= target_buffer_get_u16(target
, value_ptr
);
2958 output_len
+= snprintf(output
+ output_len
,
2959 sizeof(output
) - output_len
,
2962 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
2963 command_print(cmd_ctx
, "%s", output
);
2969 COMMAND_HANDLER(handle_md_command
)
2972 return ERROR_COMMAND_SYNTAX_ERROR
;
2975 switch (CMD_NAME
[2]) {
2986 return ERROR_COMMAND_SYNTAX_ERROR
;
2989 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2990 int (*fn
)(struct target
*target
,
2991 uint32_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
2995 fn
= target_read_phys_memory
;
2997 fn
= target_read_memory
;
2998 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
2999 return ERROR_COMMAND_SYNTAX_ERROR
;
3002 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
3006 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[1], count
);
3008 uint8_t *buffer
= calloc(count
, size
);
3010 struct target
*target
= get_current_target(CMD_CTX
);
3011 int retval
= fn(target
, address
, size
, count
, buffer
);
3012 if (ERROR_OK
== retval
)
3013 handle_md_output(CMD_CTX
, target
, address
, size
, count
, buffer
);
3020 typedef int (*target_write_fn
)(struct target
*target
,
3021 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
);
3023 static int target_fill_mem(struct target
*target
,
3032 /* We have to write in reasonably large chunks to be able
3033 * to fill large memory areas with any sane speed */
3034 const unsigned chunk_size
= 16384;
3035 uint8_t *target_buf
= malloc(chunk_size
* data_size
);
3036 if (target_buf
== NULL
) {
3037 LOG_ERROR("Out of memory");
3041 for (unsigned i
= 0; i
< chunk_size
; i
++) {
3042 switch (data_size
) {
3044 target_buffer_set_u32(target
, target_buf
+ i
* data_size
, b
);
3047 target_buffer_set_u16(target
, target_buf
+ i
* data_size
, b
);
3050 target_buffer_set_u8(target
, target_buf
+ i
* data_size
, b
);
3057 int retval
= ERROR_OK
;
3059 for (unsigned x
= 0; x
< c
; x
+= chunk_size
) {
3062 if (current
> chunk_size
)
3063 current
= chunk_size
;
3064 retval
= fn(target
, address
+ x
* data_size
, data_size
, current
, target_buf
);
3065 if (retval
!= ERROR_OK
)
3067 /* avoid GDB timeouts */
3076 COMMAND_HANDLER(handle_mw_command
)
3079 return ERROR_COMMAND_SYNTAX_ERROR
;
3080 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
3085 fn
= target_write_phys_memory
;
3087 fn
= target_write_memory
;
3088 if ((CMD_ARGC
< 2) || (CMD_ARGC
> 3))
3089 return ERROR_COMMAND_SYNTAX_ERROR
;
3092 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
3095 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
3099 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[2], count
);
3101 struct target
*target
= get_current_target(CMD_CTX
);
3103 switch (CMD_NAME
[2]) {
3114 return ERROR_COMMAND_SYNTAX_ERROR
;
3117 return target_fill_mem(target
, address
, fn
, wordsize
, value
, count
);
3120 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV
, struct image
*image
,
3121 uint32_t *min_address
, uint32_t *max_address
)
3123 if (CMD_ARGC
< 1 || CMD_ARGC
> 5)
3124 return ERROR_COMMAND_SYNTAX_ERROR
;
3126 /* a base address isn't always necessary,
3127 * default to 0x0 (i.e. don't relocate) */
3128 if (CMD_ARGC
>= 2) {
3130 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
3131 image
->base_address
= addr
;
3132 image
->base_address_set
= 1;
3134 image
->base_address_set
= 0;
3136 image
->start_address_set
= 0;
3139 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], *min_address
);
3140 if (CMD_ARGC
== 5) {
3141 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], *max_address
);
3142 /* use size (given) to find max (required) */
3143 *max_address
+= *min_address
;
3146 if (*min_address
> *max_address
)
3147 return ERROR_COMMAND_SYNTAX_ERROR
;
3152 COMMAND_HANDLER(handle_load_image_command
)
3156 uint32_t image_size
;
3157 uint32_t min_address
= 0;
3158 uint32_t max_address
= 0xffffffff;
3162 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
3163 &image
, &min_address
, &max_address
);
3164 if (ERROR_OK
!= retval
)
3167 struct target
*target
= get_current_target(CMD_CTX
);
3169 struct duration bench
;
3170 duration_start(&bench
);
3172 if (image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
) != ERROR_OK
)
3177 for (i
= 0; i
< image
.num_sections
; i
++) {
3178 buffer
= malloc(image
.sections
[i
].size
);
3179 if (buffer
== NULL
) {
3180 command_print(CMD_CTX
,
3181 "error allocating buffer for section (%d bytes)",
3182 (int)(image
.sections
[i
].size
));
3183 retval
= ERROR_FAIL
;
3187 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3188 if (retval
!= ERROR_OK
) {
3193 uint32_t offset
= 0;
3194 uint32_t length
= buf_cnt
;
3196 /* DANGER!!! beware of unsigned comparision here!!! */
3198 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
3199 (image
.sections
[i
].base_address
< max_address
)) {
3201 if (image
.sections
[i
].base_address
< min_address
) {
3202 /* clip addresses below */
3203 offset
+= min_address
-image
.sections
[i
].base_address
;
3207 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
3208 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
3210 retval
= target_write_buffer(target
,
3211 image
.sections
[i
].base_address
+ offset
, length
, buffer
+ offset
);
3212 if (retval
!= ERROR_OK
) {
3216 image_size
+= length
;
3217 command_print(CMD_CTX
, "%u bytes written at address 0x%8.8" PRIx32
"",
3218 (unsigned int)length
,
3219 image
.sections
[i
].base_address
+ offset
);
3225 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3226 command_print(CMD_CTX
, "downloaded %" PRIu32
" bytes "
3227 "in %fs (%0.3f KiB/s)", image_size
,
3228 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3231 image_close(&image
);
3237 COMMAND_HANDLER(handle_dump_image_command
)
3239 struct fileio
*fileio
;
3241 int retval
, retvaltemp
;
3242 uint32_t address
, size
;
3243 struct duration bench
;
3244 struct target
*target
= get_current_target(CMD_CTX
);
3247 return ERROR_COMMAND_SYNTAX_ERROR
;
3249 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], address
);
3250 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], size
);
3252 uint32_t buf_size
= (size
> 4096) ?
4096 : size
;
3253 buffer
= malloc(buf_size
);
3257 retval
= fileio_open(&fileio
, CMD_ARGV
[0], FILEIO_WRITE
, FILEIO_BINARY
);
3258 if (retval
!= ERROR_OK
) {
3263 duration_start(&bench
);
3266 size_t size_written
;
3267 uint32_t this_run_size
= (size
> buf_size
) ? buf_size
: size
;
3268 retval
= target_read_buffer(target
, address
, this_run_size
, buffer
);
3269 if (retval
!= ERROR_OK
)
3272 retval
= fileio_write(fileio
, this_run_size
, buffer
, &size_written
);
3273 if (retval
!= ERROR_OK
)
3276 size
-= this_run_size
;
3277 address
+= this_run_size
;
3282 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3284 retval
= fileio_size(fileio
, &filesize
);
3285 if (retval
!= ERROR_OK
)
3287 command_print(CMD_CTX
,
3288 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize
,
3289 duration_elapsed(&bench
), duration_kbps(&bench
, filesize
));
3292 retvaltemp
= fileio_close(fileio
);
3293 if (retvaltemp
!= ERROR_OK
)
3302 IMAGE_CHECKSUM_ONLY
= 2
3305 static COMMAND_HELPER(handle_verify_image_command_internal
, enum verify_mode verify
)
3309 uint32_t image_size
;
3312 uint32_t checksum
= 0;
3313 uint32_t mem_checksum
= 0;
3317 struct target
*target
= get_current_target(CMD_CTX
);
3320 return ERROR_COMMAND_SYNTAX_ERROR
;
3323 LOG_ERROR("no target selected");
3327 struct duration bench
;
3328 duration_start(&bench
);
3330 if (CMD_ARGC
>= 2) {
3332 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
3333 image
.base_address
= addr
;
3334 image
.base_address_set
= 1;
3336 image
.base_address_set
= 0;
3337 image
.base_address
= 0x0;
3340 image
.start_address_set
= 0;
3342 retval
= image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
== 3) ? CMD_ARGV
[2] : NULL
);
3343 if (retval
!= ERROR_OK
)
3349 for (i
= 0; i
< image
.num_sections
; i
++) {
3350 buffer
= malloc(image
.sections
[i
].size
);
3351 if (buffer
== NULL
) {
3352 command_print(CMD_CTX
,
3353 "error allocating buffer for section (%d bytes)",
3354 (int)(image
.sections
[i
].size
));
3357 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3358 if (retval
!= ERROR_OK
) {
3363 if (verify
>= IMAGE_VERIFY
) {
3364 /* calculate checksum of image */
3365 retval
= image_calculate_checksum(buffer
, buf_cnt
, &checksum
);
3366 if (retval
!= ERROR_OK
) {
3371 retval
= target_checksum_memory(target
, image
.sections
[i
].base_address
, buf_cnt
, &mem_checksum
);
3372 if (retval
!= ERROR_OK
) {
3376 if ((checksum
!= mem_checksum
) && (verify
== IMAGE_CHECKSUM_ONLY
)) {
3377 LOG_ERROR("checksum mismatch");
3379 retval
= ERROR_FAIL
;
3382 if (checksum
!= mem_checksum
) {
3383 /* failed crc checksum, fall back to a binary compare */
3387 LOG_ERROR("checksum mismatch - attempting binary compare");
3389 data
= malloc(buf_cnt
);
3391 /* Can we use 32bit word accesses? */
3393 int count
= buf_cnt
;
3394 if ((count
% 4) == 0) {
3398 retval
= target_read_memory(target
, image
.sections
[i
].base_address
, size
, count
, data
);
3399 if (retval
== ERROR_OK
) {
3401 for (t
= 0; t
< buf_cnt
; t
++) {
3402 if (data
[t
] != buffer
[t
]) {
3403 command_print(CMD_CTX
,
3404 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3406 (unsigned)(t
+ image
.sections
[i
].base_address
),
3409 if (diffs
++ >= 127) {
3410 command_print(CMD_CTX
, "More than 128 errors, the rest are not printed.");
3422 command_print(CMD_CTX
, "address 0x%08" PRIx32
" length 0x%08zx",
3423 image
.sections
[i
].base_address
,
3428 image_size
+= buf_cnt
;
3431 command_print(CMD_CTX
, "No more differences found.");
3434 retval
= ERROR_FAIL
;
3435 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3436 command_print(CMD_CTX
, "verified %" PRIu32
" bytes "
3437 "in %fs (%0.3f KiB/s)", image_size
,
3438 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3441 image_close(&image
);
3446 COMMAND_HANDLER(handle_verify_image_checksum_command
)
3448 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, IMAGE_CHECKSUM_ONLY
);
3451 COMMAND_HANDLER(handle_verify_image_command
)
3453 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, IMAGE_VERIFY
);
3456 COMMAND_HANDLER(handle_test_image_command
)
3458 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, IMAGE_TEST
);
3461 static int handle_bp_command_list(struct command_context
*cmd_ctx
)
3463 struct target
*target
= get_current_target(cmd_ctx
);
3464 struct breakpoint
*breakpoint
= target
->breakpoints
;
3465 while (breakpoint
) {
3466 if (breakpoint
->type
== BKPT_SOFT
) {
3467 char *buf
= buf_to_str(breakpoint
->orig_instr
,
3468 breakpoint
->length
, 16);
3469 command_print(cmd_ctx
, "IVA breakpoint: 0x%8.8" PRIx32
", 0x%x, %i, 0x%s",
3470 breakpoint
->address
,
3472 breakpoint
->set
, buf
);
3475 if ((breakpoint
->address
== 0) && (breakpoint
->asid
!= 0))
3476 command_print(cmd_ctx
, "Context breakpoint: 0x%8.8" PRIx32
", 0x%x, %i",
3478 breakpoint
->length
, breakpoint
->set
);
3479 else if ((breakpoint
->address
!= 0) && (breakpoint
->asid
!= 0)) {
3480 command_print(cmd_ctx
, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3481 breakpoint
->address
,
3482 breakpoint
->length
, breakpoint
->set
);
3483 command_print(cmd_ctx
, "\t|--->linked with ContextID: 0x%8.8" PRIx32
,
3486 command_print(cmd_ctx
, "Breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3487 breakpoint
->address
,
3488 breakpoint
->length
, breakpoint
->set
);
3491 breakpoint
= breakpoint
->next
;
3496 static int handle_bp_command_set(struct command_context
*cmd_ctx
,
3497 uint32_t addr
, uint32_t asid
, uint32_t length
, int hw
)
3499 struct target
*target
= get_current_target(cmd_ctx
);
3503 retval
= breakpoint_add(target
, addr
, length
, hw
);
3504 if (ERROR_OK
== retval
)
3505 command_print(cmd_ctx
, "breakpoint set at 0x%8.8" PRIx32
"", addr
);
3507 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3510 } else if (addr
== 0) {
3511 if (target
->type
->add_context_breakpoint
== NULL
) {
3512 LOG_WARNING("Context breakpoint not available");
3515 retval
= context_breakpoint_add(target
, asid
, length
, hw
);
3516 if (ERROR_OK
== retval
)
3517 command_print(cmd_ctx
, "Context breakpoint set at 0x%8.8" PRIx32
"", asid
);
3519 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3523 if (target
->type
->add_hybrid_breakpoint
== NULL
) {
3524 LOG_WARNING("Hybrid breakpoint not available");
3527 retval
= hybrid_breakpoint_add(target
, addr
, asid
, length
, hw
);
3528 if (ERROR_OK
== retval
)
3529 command_print(cmd_ctx
, "Hybrid breakpoint set at 0x%8.8" PRIx32
"", asid
);
3531 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3538 COMMAND_HANDLER(handle_bp_command
)
3547 return handle_bp_command_list(CMD_CTX
);
3551 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3552 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3553 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3556 if (strcmp(CMD_ARGV
[2], "hw") == 0) {
3558 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3560 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3563 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3564 } else if (strcmp(CMD_ARGV
[2], "hw_ctx") == 0) {
3566 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], asid
);
3567 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3569 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3574 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3575 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], asid
);
3576 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], length
);
3577 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3580 return ERROR_COMMAND_SYNTAX_ERROR
;
3584 COMMAND_HANDLER(handle_rbp_command
)
3587 return ERROR_COMMAND_SYNTAX_ERROR
;
3590 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3592 struct target
*target
= get_current_target(CMD_CTX
);
3593 breakpoint_remove(target
, addr
);
3598 COMMAND_HANDLER(handle_wp_command
)
3600 struct target
*target
= get_current_target(CMD_CTX
);
3602 if (CMD_ARGC
== 0) {
3603 struct watchpoint
*watchpoint
= target
->watchpoints
;
3605 while (watchpoint
) {
3606 command_print(CMD_CTX
, "address: 0x%8.8" PRIx32
3607 ", len: 0x%8.8" PRIx32
3608 ", r/w/a: %i, value: 0x%8.8" PRIx32
3609 ", mask: 0x%8.8" PRIx32
,
3610 watchpoint
->address
,
3612 (int)watchpoint
->rw
,
3615 watchpoint
= watchpoint
->next
;
3620 enum watchpoint_rw type
= WPT_ACCESS
;
3622 uint32_t length
= 0;
3623 uint32_t data_value
= 0x0;
3624 uint32_t data_mask
= 0xffffffff;
3628 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], data_mask
);
3631 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], data_value
);
3634 switch (CMD_ARGV
[2][0]) {
3645 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV
[2][0]);
3646 return ERROR_COMMAND_SYNTAX_ERROR
;
3650 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3651 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3655 return ERROR_COMMAND_SYNTAX_ERROR
;