c8a3ce4d8e8288d3c1168889249d2c0903b8a25a
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, uint32_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106 extern struct target_type quark_d20xx_target;
107
108 static struct target_type *target_types[] = {
109 &arm7tdmi_target,
110 &arm9tdmi_target,
111 &arm920t_target,
112 &arm720t_target,
113 &arm966e_target,
114 &arm946e_target,
115 &arm926ejs_target,
116 &fa526_target,
117 &feroceon_target,
118 &dragonite_target,
119 &xscale_target,
120 &cortexm_target,
121 &cortexa_target,
122 &cortexr4_target,
123 &arm11_target,
124 &ls1_sap_target,
125 &mips_m4k_target,
126 &avr_target,
127 &dsp563xx_target,
128 &dsp5680xx_target,
129 &testee_target,
130 &avr32_ap7k_target,
131 &hla_target,
132 &nds32_v2_target,
133 &nds32_v3_target,
134 &nds32_v3m_target,
135 &or1k_target,
136 &quark_x10xx_target,
137 &quark_d20xx_target,
138 NULL,
139 };
140
141 struct target *all_targets;
142 static struct target_event_callback *target_event_callbacks;
143 static struct target_timer_callback *target_timer_callbacks;
144 LIST_HEAD(target_reset_callback_list);
145 LIST_HEAD(target_trace_callback_list);
146 static const int polling_interval = 100;
147
148 static const Jim_Nvp nvp_assert[] = {
149 { .name = "assert", NVP_ASSERT },
150 { .name = "deassert", NVP_DEASSERT },
151 { .name = "T", NVP_ASSERT },
152 { .name = "F", NVP_DEASSERT },
153 { .name = "t", NVP_ASSERT },
154 { .name = "f", NVP_DEASSERT },
155 { .name = NULL, .value = -1 }
156 };
157
158 static const Jim_Nvp nvp_error_target[] = {
159 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
160 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
161 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
162 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
163 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
164 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
165 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
166 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
167 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
168 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
169 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
170 { .value = -1, .name = NULL }
171 };
172
173 static const char *target_strerror_safe(int err)
174 {
175 const Jim_Nvp *n;
176
177 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
178 if (n->name == NULL)
179 return "unknown";
180 else
181 return n->name;
182 }
183
184 static const Jim_Nvp nvp_target_event[] = {
185
186 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
187 { .value = TARGET_EVENT_HALTED, .name = "halted" },
188 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
189 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
190 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
191
192 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
193 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
194
195 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
196 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
197 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
198 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
199 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
200 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
201 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
202 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
203 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
204 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
205 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
206 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
207
208 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
209 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
210
211 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
212 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
213
214 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
215 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
216
217 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
218 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
219
220 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
221 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
222
223 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
224
225 { .name = NULL, .value = -1 }
226 };
227
228 static const Jim_Nvp nvp_target_state[] = {
229 { .name = "unknown", .value = TARGET_UNKNOWN },
230 { .name = "running", .value = TARGET_RUNNING },
231 { .name = "halted", .value = TARGET_HALTED },
232 { .name = "reset", .value = TARGET_RESET },
233 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
234 { .name = NULL, .value = -1 },
235 };
236
237 static const Jim_Nvp nvp_target_debug_reason[] = {
238 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
239 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
240 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
241 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
242 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
243 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
244 { .name = "program-exit" , .value = DBG_REASON_EXIT },
245 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
246 { .name = NULL, .value = -1 },
247 };
248
249 static const Jim_Nvp nvp_target_endian[] = {
250 { .name = "big", .value = TARGET_BIG_ENDIAN },
251 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
252 { .name = "be", .value = TARGET_BIG_ENDIAN },
253 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
254 { .name = NULL, .value = -1 },
255 };
256
257 static const Jim_Nvp nvp_reset_modes[] = {
258 { .name = "unknown", .value = RESET_UNKNOWN },
259 { .name = "run" , .value = RESET_RUN },
260 { .name = "halt" , .value = RESET_HALT },
261 { .name = "init" , .value = RESET_INIT },
262 { .name = NULL , .value = -1 },
263 };
264
265 const char *debug_reason_name(struct target *t)
266 {
267 const char *cp;
268
269 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
270 t->debug_reason)->name;
271 if (!cp) {
272 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
273 cp = "(*BUG*unknown*BUG*)";
274 }
275 return cp;
276 }
277
278 const char *target_state_name(struct target *t)
279 {
280 const char *cp;
281 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
282 if (!cp) {
283 LOG_ERROR("Invalid target state: %d", (int)(t->state));
284 cp = "(*BUG*unknown*BUG*)";
285 }
286
287 if (!target_was_examined(t) && t->defer_examine)
288 cp = "examine deferred";
289
290 return cp;
291 }
292
293 const char *target_event_name(enum target_event event)
294 {
295 const char *cp;
296 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
297 if (!cp) {
298 LOG_ERROR("Invalid target event: %d", (int)(event));
299 cp = "(*BUG*unknown*BUG*)";
300 }
301 return cp;
302 }
303
304 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
305 {
306 const char *cp;
307 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
308 if (!cp) {
309 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
310 cp = "(*BUG*unknown*BUG*)";
311 }
312 return cp;
313 }
314
315 /* determine the number of the new target */
316 static int new_target_number(void)
317 {
318 struct target *t;
319 int x;
320
321 /* number is 0 based */
322 x = -1;
323 t = all_targets;
324 while (t) {
325 if (x < t->target_number)
326 x = t->target_number;
327 t = t->next;
328 }
329 return x + 1;
330 }
331
332 /* read a uint64_t from a buffer in target memory endianness */
333 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
334 {
335 if (target->endianness == TARGET_LITTLE_ENDIAN)
336 return le_to_h_u64(buffer);
337 else
338 return be_to_h_u64(buffer);
339 }
340
341 /* read a uint32_t from a buffer in target memory endianness */
342 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
343 {
344 if (target->endianness == TARGET_LITTLE_ENDIAN)
345 return le_to_h_u32(buffer);
346 else
347 return be_to_h_u32(buffer);
348 }
349
350 /* read a uint24_t from a buffer in target memory endianness */
351 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
352 {
353 if (target->endianness == TARGET_LITTLE_ENDIAN)
354 return le_to_h_u24(buffer);
355 else
356 return be_to_h_u24(buffer);
357 }
358
359 /* read a uint16_t from a buffer in target memory endianness */
360 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
361 {
362 if (target->endianness == TARGET_LITTLE_ENDIAN)
363 return le_to_h_u16(buffer);
364 else
365 return be_to_h_u16(buffer);
366 }
367
368 /* read a uint8_t from a buffer in target memory endianness */
369 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
370 {
371 return *buffer & 0x0ff;
372 }
373
374 /* write a uint64_t to a buffer in target memory endianness */
375 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
376 {
377 if (target->endianness == TARGET_LITTLE_ENDIAN)
378 h_u64_to_le(buffer, value);
379 else
380 h_u64_to_be(buffer, value);
381 }
382
383 /* write a uint32_t to a buffer in target memory endianness */
384 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
385 {
386 if (target->endianness == TARGET_LITTLE_ENDIAN)
387 h_u32_to_le(buffer, value);
388 else
389 h_u32_to_be(buffer, value);
390 }
391
392 /* write a uint24_t to a buffer in target memory endianness */
393 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
394 {
395 if (target->endianness == TARGET_LITTLE_ENDIAN)
396 h_u24_to_le(buffer, value);
397 else
398 h_u24_to_be(buffer, value);
399 }
400
401 /* write a uint16_t to a buffer in target memory endianness */
402 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
403 {
404 if (target->endianness == TARGET_LITTLE_ENDIAN)
405 h_u16_to_le(buffer, value);
406 else
407 h_u16_to_be(buffer, value);
408 }
409
410 /* write a uint8_t to a buffer in target memory endianness */
411 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
412 {
413 *buffer = value;
414 }
415
416 /* write a uint64_t array to a buffer in target memory endianness */
417 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
418 {
419 uint32_t i;
420 for (i = 0; i < count; i++)
421 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
422 }
423
424 /* write a uint32_t array to a buffer in target memory endianness */
425 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
426 {
427 uint32_t i;
428 for (i = 0; i < count; i++)
429 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
430 }
431
432 /* write a uint16_t array to a buffer in target memory endianness */
433 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
434 {
435 uint32_t i;
436 for (i = 0; i < count; i++)
437 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
438 }
439
440 /* write a uint64_t array to a buffer in target memory endianness */
441 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
442 {
443 uint32_t i;
444 for (i = 0; i < count; i++)
445 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
446 }
447
448 /* write a uint32_t array to a buffer in target memory endianness */
449 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
450 {
451 uint32_t i;
452 for (i = 0; i < count; i++)
453 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
454 }
455
456 /* write a uint16_t array to a buffer in target memory endianness */
457 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
458 {
459 uint32_t i;
460 for (i = 0; i < count; i++)
461 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
462 }
463
464 /* return a pointer to a configured target; id is name or number */
465 struct target *get_target(const char *id)
466 {
467 struct target *target;
468
469 /* try as tcltarget name */
470 for (target = all_targets; target; target = target->next) {
471 if (target_name(target) == NULL)
472 continue;
473 if (strcmp(id, target_name(target)) == 0)
474 return target;
475 }
476
477 /* It's OK to remove this fallback sometime after August 2010 or so */
478
479 /* no match, try as number */
480 unsigned num;
481 if (parse_uint(id, &num) != ERROR_OK)
482 return NULL;
483
484 for (target = all_targets; target; target = target->next) {
485 if (target->target_number == (int)num) {
486 LOG_WARNING("use '%s' as target identifier, not '%u'",
487 target_name(target), num);
488 return target;
489 }
490 }
491
492 return NULL;
493 }
494
495 /* returns a pointer to the n-th configured target */
496 struct target *get_target_by_num(int num)
497 {
498 struct target *target = all_targets;
499
500 while (target) {
501 if (target->target_number == num)
502 return target;
503 target = target->next;
504 }
505
506 return NULL;
507 }
508
509 struct target *get_current_target(struct command_context *cmd_ctx)
510 {
511 struct target *target = get_target_by_num(cmd_ctx->current_target);
512
513 if (target == NULL) {
514 LOG_ERROR("BUG: current_target out of bounds");
515 exit(-1);
516 }
517
518 return target;
519 }
520
521 int target_poll(struct target *target)
522 {
523 int retval;
524
525 /* We can't poll until after examine */
526 if (!target_was_examined(target)) {
527 /* Fail silently lest we pollute the log */
528 return ERROR_FAIL;
529 }
530
531 retval = target->type->poll(target);
532 if (retval != ERROR_OK)
533 return retval;
534
535 if (target->halt_issued) {
536 if (target->state == TARGET_HALTED)
537 target->halt_issued = false;
538 else {
539 int64_t t = timeval_ms() - target->halt_issued_time;
540 if (t > DEFAULT_HALT_TIMEOUT) {
541 target->halt_issued = false;
542 LOG_INFO("Halt timed out, wake up GDB.");
543 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
544 }
545 }
546 }
547
548 return ERROR_OK;
549 }
550
551 int target_halt(struct target *target)
552 {
553 int retval;
554 /* We can't poll until after examine */
555 if (!target_was_examined(target)) {
556 LOG_ERROR("Target not examined yet");
557 return ERROR_FAIL;
558 }
559
560 retval = target->type->halt(target);
561 if (retval != ERROR_OK)
562 return retval;
563
564 target->halt_issued = true;
565 target->halt_issued_time = timeval_ms();
566
567 return ERROR_OK;
568 }
569
570 /**
571 * Make the target (re)start executing using its saved execution
572 * context (possibly with some modifications).
573 *
574 * @param target Which target should start executing.
575 * @param current True to use the target's saved program counter instead
576 * of the address parameter
577 * @param address Optionally used as the program counter.
578 * @param handle_breakpoints True iff breakpoints at the resumption PC
579 * should be skipped. (For example, maybe execution was stopped by
580 * such a breakpoint, in which case it would be counterprodutive to
581 * let it re-trigger.
582 * @param debug_execution False if all working areas allocated by OpenOCD
583 * should be released and/or restored to their original contents.
584 * (This would for example be true to run some downloaded "helper"
585 * algorithm code, which resides in one such working buffer and uses
586 * another for data storage.)
587 *
588 * @todo Resolve the ambiguity about what the "debug_execution" flag
589 * signifies. For example, Target implementations don't agree on how
590 * it relates to invalidation of the register cache, or to whether
591 * breakpoints and watchpoints should be enabled. (It would seem wrong
592 * to enable breakpoints when running downloaded "helper" algorithms
593 * (debug_execution true), since the breakpoints would be set to match
594 * target firmware being debugged, not the helper algorithm.... and
595 * enabling them could cause such helpers to malfunction (for example,
596 * by overwriting data with a breakpoint instruction. On the other
597 * hand the infrastructure for running such helpers might use this
598 * procedure but rely on hardware breakpoint to detect termination.)
599 */
600 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
601 {
602 int retval;
603
604 /* We can't poll until after examine */
605 if (!target_was_examined(target)) {
606 LOG_ERROR("Target not examined yet");
607 return ERROR_FAIL;
608 }
609
610 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
611
612 /* note that resume *must* be asynchronous. The CPU can halt before
613 * we poll. The CPU can even halt at the current PC as a result of
614 * a software breakpoint being inserted by (a bug?) the application.
615 */
616 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
617 if (retval != ERROR_OK)
618 return retval;
619
620 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
621
622 return retval;
623 }
624
625 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
626 {
627 char buf[100];
628 int retval;
629 Jim_Nvp *n;
630 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
631 if (n->name == NULL) {
632 LOG_ERROR("invalid reset mode");
633 return ERROR_FAIL;
634 }
635
636 struct target *target;
637 for (target = all_targets; target; target = target->next)
638 target_call_reset_callbacks(target, reset_mode);
639
640 /* disable polling during reset to make reset event scripts
641 * more predictable, i.e. dr/irscan & pathmove in events will
642 * not have JTAG operations injected into the middle of a sequence.
643 */
644 bool save_poll = jtag_poll_get_enabled();
645
646 jtag_poll_set_enabled(false);
647
648 sprintf(buf, "ocd_process_reset %s", n->name);
649 retval = Jim_Eval(cmd_ctx->interp, buf);
650
651 jtag_poll_set_enabled(save_poll);
652
653 if (retval != JIM_OK) {
654 Jim_MakeErrorMessage(cmd_ctx->interp);
655 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
656 return ERROR_FAIL;
657 }
658
659 /* We want any events to be processed before the prompt */
660 retval = target_call_timer_callbacks_now();
661
662 for (target = all_targets; target; target = target->next) {
663 target->type->check_reset(target);
664 target->running_alg = false;
665 }
666
667 return retval;
668 }
669
670 static int identity_virt2phys(struct target *target,
671 uint32_t virtual, uint32_t *physical)
672 {
673 *physical = virtual;
674 return ERROR_OK;
675 }
676
677 static int no_mmu(struct target *target, int *enabled)
678 {
679 *enabled = 0;
680 return ERROR_OK;
681 }
682
683 static int default_examine(struct target *target)
684 {
685 target_set_examined(target);
686 return ERROR_OK;
687 }
688
689 /* no check by default */
690 static int default_check_reset(struct target *target)
691 {
692 return ERROR_OK;
693 }
694
695 int target_examine_one(struct target *target)
696 {
697 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
698
699 int retval = target->type->examine(target);
700 if (retval != ERROR_OK)
701 return retval;
702
703 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
704
705 return ERROR_OK;
706 }
707
708 static int jtag_enable_callback(enum jtag_event event, void *priv)
709 {
710 struct target *target = priv;
711
712 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
713 return ERROR_OK;
714
715 jtag_unregister_event_callback(jtag_enable_callback, target);
716
717 return target_examine_one(target);
718 }
719
720 /* Targets that correctly implement init + examine, i.e.
721 * no communication with target during init:
722 *
723 * XScale
724 */
725 int target_examine(void)
726 {
727 int retval = ERROR_OK;
728 struct target *target;
729
730 for (target = all_targets; target; target = target->next) {
731 /* defer examination, but don't skip it */
732 if (!target->tap->enabled) {
733 jtag_register_event_callback(jtag_enable_callback,
734 target);
735 continue;
736 }
737
738 if (target->defer_examine)
739 continue;
740
741 retval = target_examine_one(target);
742 if (retval != ERROR_OK)
743 return retval;
744 }
745 return retval;
746 }
747
748 const char *target_type_name(struct target *target)
749 {
750 return target->type->name;
751 }
752
753 static int target_soft_reset_halt(struct target *target)
754 {
755 if (!target_was_examined(target)) {
756 LOG_ERROR("Target not examined yet");
757 return ERROR_FAIL;
758 }
759 if (!target->type->soft_reset_halt) {
760 LOG_ERROR("Target %s does not support soft_reset_halt",
761 target_name(target));
762 return ERROR_FAIL;
763 }
764 return target->type->soft_reset_halt(target);
765 }
766
767 /**
768 * Downloads a target-specific native code algorithm to the target,
769 * and executes it. * Note that some targets may need to set up, enable,
770 * and tear down a breakpoint (hard or * soft) to detect algorithm
771 * termination, while others may support lower overhead schemes where
772 * soft breakpoints embedded in the algorithm automatically terminate the
773 * algorithm.
774 *
775 * @param target used to run the algorithm
776 * @param arch_info target-specific description of the algorithm.
777 */
778 int target_run_algorithm(struct target *target,
779 int num_mem_params, struct mem_param *mem_params,
780 int num_reg_params, struct reg_param *reg_param,
781 uint32_t entry_point, uint32_t exit_point,
782 int timeout_ms, void *arch_info)
783 {
784 int retval = ERROR_FAIL;
785
786 if (!target_was_examined(target)) {
787 LOG_ERROR("Target not examined yet");
788 goto done;
789 }
790 if (!target->type->run_algorithm) {
791 LOG_ERROR("Target type '%s' does not support %s",
792 target_type_name(target), __func__);
793 goto done;
794 }
795
796 target->running_alg = true;
797 retval = target->type->run_algorithm(target,
798 num_mem_params, mem_params,
799 num_reg_params, reg_param,
800 entry_point, exit_point, timeout_ms, arch_info);
801 target->running_alg = false;
802
803 done:
804 return retval;
805 }
806
807 /**
808 * Downloads a target-specific native code algorithm to the target,
809 * executes and leaves it running.
810 *
811 * @param target used to run the algorithm
812 * @param arch_info target-specific description of the algorithm.
813 */
814 int target_start_algorithm(struct target *target,
815 int num_mem_params, struct mem_param *mem_params,
816 int num_reg_params, struct reg_param *reg_params,
817 uint32_t entry_point, uint32_t exit_point,
818 void *arch_info)
819 {
820 int retval = ERROR_FAIL;
821
822 if (!target_was_examined(target)) {
823 LOG_ERROR("Target not examined yet");
824 goto done;
825 }
826 if (!target->type->start_algorithm) {
827 LOG_ERROR("Target type '%s' does not support %s",
828 target_type_name(target), __func__);
829 goto done;
830 }
831 if (target->running_alg) {
832 LOG_ERROR("Target is already running an algorithm");
833 goto done;
834 }
835
836 target->running_alg = true;
837 retval = target->type->start_algorithm(target,
838 num_mem_params, mem_params,
839 num_reg_params, reg_params,
840 entry_point, exit_point, arch_info);
841
842 done:
843 return retval;
844 }
845
846 /**
847 * Waits for an algorithm started with target_start_algorithm() to complete.
848 *
849 * @param target used to run the algorithm
850 * @param arch_info target-specific description of the algorithm.
851 */
852 int target_wait_algorithm(struct target *target,
853 int num_mem_params, struct mem_param *mem_params,
854 int num_reg_params, struct reg_param *reg_params,
855 uint32_t exit_point, int timeout_ms,
856 void *arch_info)
857 {
858 int retval = ERROR_FAIL;
859
860 if (!target->type->wait_algorithm) {
861 LOG_ERROR("Target type '%s' does not support %s",
862 target_type_name(target), __func__);
863 goto done;
864 }
865 if (!target->running_alg) {
866 LOG_ERROR("Target is not running an algorithm");
867 goto done;
868 }
869
870 retval = target->type->wait_algorithm(target,
871 num_mem_params, mem_params,
872 num_reg_params, reg_params,
873 exit_point, timeout_ms, arch_info);
874 if (retval != ERROR_TARGET_TIMEOUT)
875 target->running_alg = false;
876
877 done:
878 return retval;
879 }
880
881 /**
882 * Executes a target-specific native code algorithm in the target.
883 * It differs from target_run_algorithm in that the algorithm is asynchronous.
884 * Because of this it requires an compliant algorithm:
885 * see contrib/loaders/flash/stm32f1x.S for example.
886 *
887 * @param target used to run the algorithm
888 */
889
890 int target_run_flash_async_algorithm(struct target *target,
891 const uint8_t *buffer, uint32_t count, int block_size,
892 int num_mem_params, struct mem_param *mem_params,
893 int num_reg_params, struct reg_param *reg_params,
894 uint32_t buffer_start, uint32_t buffer_size,
895 uint32_t entry_point, uint32_t exit_point, void *arch_info)
896 {
897 int retval;
898 int timeout = 0;
899
900 const uint8_t *buffer_orig = buffer;
901
902 /* Set up working area. First word is write pointer, second word is read pointer,
903 * rest is fifo data area. */
904 uint32_t wp_addr = buffer_start;
905 uint32_t rp_addr = buffer_start + 4;
906 uint32_t fifo_start_addr = buffer_start + 8;
907 uint32_t fifo_end_addr = buffer_start + buffer_size;
908
909 uint32_t wp = fifo_start_addr;
910 uint32_t rp = fifo_start_addr;
911
912 /* validate block_size is 2^n */
913 assert(!block_size || !(block_size & (block_size - 1)));
914
915 retval = target_write_u32(target, wp_addr, wp);
916 if (retval != ERROR_OK)
917 return retval;
918 retval = target_write_u32(target, rp_addr, rp);
919 if (retval != ERROR_OK)
920 return retval;
921
922 /* Start up algorithm on target and let it idle while writing the first chunk */
923 retval = target_start_algorithm(target, num_mem_params, mem_params,
924 num_reg_params, reg_params,
925 entry_point,
926 exit_point,
927 arch_info);
928
929 if (retval != ERROR_OK) {
930 LOG_ERROR("error starting target flash write algorithm");
931 return retval;
932 }
933
934 while (count > 0) {
935
936 retval = target_read_u32(target, rp_addr, &rp);
937 if (retval != ERROR_OK) {
938 LOG_ERROR("failed to get read pointer");
939 break;
940 }
941
942 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
943 (size_t) (buffer - buffer_orig), count, wp, rp);
944
945 if (rp == 0) {
946 LOG_ERROR("flash write algorithm aborted by target");
947 retval = ERROR_FLASH_OPERATION_FAILED;
948 break;
949 }
950
951 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
952 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
953 break;
954 }
955
956 /* Count the number of bytes available in the fifo without
957 * crossing the wrap around. Make sure to not fill it completely,
958 * because that would make wp == rp and that's the empty condition. */
959 uint32_t thisrun_bytes;
960 if (rp > wp)
961 thisrun_bytes = rp - wp - block_size;
962 else if (rp > fifo_start_addr)
963 thisrun_bytes = fifo_end_addr - wp;
964 else
965 thisrun_bytes = fifo_end_addr - wp - block_size;
966
967 if (thisrun_bytes == 0) {
968 /* Throttle polling a bit if transfer is (much) faster than flash
969 * programming. The exact delay shouldn't matter as long as it's
970 * less than buffer size / flash speed. This is very unlikely to
971 * run when using high latency connections such as USB. */
972 alive_sleep(10);
973
974 /* to stop an infinite loop on some targets check and increment a timeout
975 * this issue was observed on a stellaris using the new ICDI interface */
976 if (timeout++ >= 500) {
977 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
978 return ERROR_FLASH_OPERATION_FAILED;
979 }
980 continue;
981 }
982
983 /* reset our timeout */
984 timeout = 0;
985
986 /* Limit to the amount of data we actually want to write */
987 if (thisrun_bytes > count * block_size)
988 thisrun_bytes = count * block_size;
989
990 /* Write data to fifo */
991 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
992 if (retval != ERROR_OK)
993 break;
994
995 /* Update counters and wrap write pointer */
996 buffer += thisrun_bytes;
997 count -= thisrun_bytes / block_size;
998 wp += thisrun_bytes;
999 if (wp >= fifo_end_addr)
1000 wp = fifo_start_addr;
1001
1002 /* Store updated write pointer to target */
1003 retval = target_write_u32(target, wp_addr, wp);
1004 if (retval != ERROR_OK)
1005 break;
1006 }
1007
1008 if (retval != ERROR_OK) {
1009 /* abort flash write algorithm on target */
1010 target_write_u32(target, wp_addr, 0);
1011 }
1012
1013 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1014 num_reg_params, reg_params,
1015 exit_point,
1016 10000,
1017 arch_info);
1018
1019 if (retval2 != ERROR_OK) {
1020 LOG_ERROR("error waiting for target flash write algorithm");
1021 retval = retval2;
1022 }
1023
1024 if (retval == ERROR_OK) {
1025 /* check if algorithm set rp = 0 after fifo writer loop finished */
1026 retval = target_read_u32(target, rp_addr, &rp);
1027 if (retval == ERROR_OK && rp == 0) {
1028 LOG_ERROR("flash write algorithm aborted by target");
1029 retval = ERROR_FLASH_OPERATION_FAILED;
1030 }
1031 }
1032
1033 return retval;
1034 }
1035
1036 int target_read_memory(struct target *target,
1037 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1038 {
1039 if (!target_was_examined(target)) {
1040 LOG_ERROR("Target not examined yet");
1041 return ERROR_FAIL;
1042 }
1043 if (!target->type->read_memory) {
1044 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1045 return ERROR_FAIL;
1046 }
1047 return target->type->read_memory(target, address, size, count, buffer);
1048 }
1049
1050 int target_read_phys_memory(struct target *target,
1051 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1052 {
1053 if (!target_was_examined(target)) {
1054 LOG_ERROR("Target not examined yet");
1055 return ERROR_FAIL;
1056 }
1057 if (!target->type->read_phys_memory) {
1058 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1059 return ERROR_FAIL;
1060 }
1061 return target->type->read_phys_memory(target, address, size, count, buffer);
1062 }
1063
1064 int target_write_memory(struct target *target,
1065 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1066 {
1067 if (!target_was_examined(target)) {
1068 LOG_ERROR("Target not examined yet");
1069 return ERROR_FAIL;
1070 }
1071 if (!target->type->write_memory) {
1072 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1073 return ERROR_FAIL;
1074 }
1075 return target->type->write_memory(target, address, size, count, buffer);
1076 }
1077
1078 int target_write_phys_memory(struct target *target,
1079 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1080 {
1081 if (!target_was_examined(target)) {
1082 LOG_ERROR("Target not examined yet");
1083 return ERROR_FAIL;
1084 }
1085 if (!target->type->write_phys_memory) {
1086 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1087 return ERROR_FAIL;
1088 }
1089 return target->type->write_phys_memory(target, address, size, count, buffer);
1090 }
1091
1092 int target_add_breakpoint(struct target *target,
1093 struct breakpoint *breakpoint)
1094 {
1095 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1096 LOG_WARNING("target %s is not halted", target_name(target));
1097 return ERROR_TARGET_NOT_HALTED;
1098 }
1099 return target->type->add_breakpoint(target, breakpoint);
1100 }
1101
1102 int target_add_context_breakpoint(struct target *target,
1103 struct breakpoint *breakpoint)
1104 {
1105 if (target->state != TARGET_HALTED) {
1106 LOG_WARNING("target %s is not halted", target_name(target));
1107 return ERROR_TARGET_NOT_HALTED;
1108 }
1109 return target->type->add_context_breakpoint(target, breakpoint);
1110 }
1111
1112 int target_add_hybrid_breakpoint(struct target *target,
1113 struct breakpoint *breakpoint)
1114 {
1115 if (target->state != TARGET_HALTED) {
1116 LOG_WARNING("target %s is not halted", target_name(target));
1117 return ERROR_TARGET_NOT_HALTED;
1118 }
1119 return target->type->add_hybrid_breakpoint(target, breakpoint);
1120 }
1121
1122 int target_remove_breakpoint(struct target *target,
1123 struct breakpoint *breakpoint)
1124 {
1125 return target->type->remove_breakpoint(target, breakpoint);
1126 }
1127
1128 int target_add_watchpoint(struct target *target,
1129 struct watchpoint *watchpoint)
1130 {
1131 if (target->state != TARGET_HALTED) {
1132 LOG_WARNING("target %s is not halted", target_name(target));
1133 return ERROR_TARGET_NOT_HALTED;
1134 }
1135 return target->type->add_watchpoint(target, watchpoint);
1136 }
1137 int target_remove_watchpoint(struct target *target,
1138 struct watchpoint *watchpoint)
1139 {
1140 return target->type->remove_watchpoint(target, watchpoint);
1141 }
1142 int target_hit_watchpoint(struct target *target,
1143 struct watchpoint **hit_watchpoint)
1144 {
1145 if (target->state != TARGET_HALTED) {
1146 LOG_WARNING("target %s is not halted", target->cmd_name);
1147 return ERROR_TARGET_NOT_HALTED;
1148 }
1149
1150 if (target->type->hit_watchpoint == NULL) {
1151 /* For backward compatible, if hit_watchpoint is not implemented,
1152 * return ERROR_FAIL such that gdb_server will not take the nonsense
1153 * information. */
1154 return ERROR_FAIL;
1155 }
1156
1157 return target->type->hit_watchpoint(target, hit_watchpoint);
1158 }
1159
1160 int target_get_gdb_reg_list(struct target *target,
1161 struct reg **reg_list[], int *reg_list_size,
1162 enum target_register_class reg_class)
1163 {
1164 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1165 }
1166 int target_step(struct target *target,
1167 int current, uint32_t address, int handle_breakpoints)
1168 {
1169 return target->type->step(target, current, address, handle_breakpoints);
1170 }
1171
1172 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1173 {
1174 if (target->state != TARGET_HALTED) {
1175 LOG_WARNING("target %s is not halted", target->cmd_name);
1176 return ERROR_TARGET_NOT_HALTED;
1177 }
1178 return target->type->get_gdb_fileio_info(target, fileio_info);
1179 }
1180
1181 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1182 {
1183 if (target->state != TARGET_HALTED) {
1184 LOG_WARNING("target %s is not halted", target->cmd_name);
1185 return ERROR_TARGET_NOT_HALTED;
1186 }
1187 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1188 }
1189
1190 int target_profiling(struct target *target, uint32_t *samples,
1191 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1192 {
1193 if (target->state != TARGET_HALTED) {
1194 LOG_WARNING("target %s is not halted", target->cmd_name);
1195 return ERROR_TARGET_NOT_HALTED;
1196 }
1197 return target->type->profiling(target, samples, max_num_samples,
1198 num_samples, seconds);
1199 }
1200
1201 /**
1202 * Reset the @c examined flag for the given target.
1203 * Pure paranoia -- targets are zeroed on allocation.
1204 */
1205 static void target_reset_examined(struct target *target)
1206 {
1207 target->examined = false;
1208 }
1209
1210 static int handle_target(void *priv);
1211
1212 static int target_init_one(struct command_context *cmd_ctx,
1213 struct target *target)
1214 {
1215 target_reset_examined(target);
1216
1217 struct target_type *type = target->type;
1218 if (type->examine == NULL)
1219 type->examine = default_examine;
1220
1221 if (type->check_reset == NULL)
1222 type->check_reset = default_check_reset;
1223
1224 assert(type->init_target != NULL);
1225
1226 int retval = type->init_target(cmd_ctx, target);
1227 if (ERROR_OK != retval) {
1228 LOG_ERROR("target '%s' init failed", target_name(target));
1229 return retval;
1230 }
1231
1232 /* Sanity-check MMU support ... stub in what we must, to help
1233 * implement it in stages, but warn if we need to do so.
1234 */
1235 if (type->mmu) {
1236 if (type->virt2phys == NULL) {
1237 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1238 type->virt2phys = identity_virt2phys;
1239 }
1240 } else {
1241 /* Make sure no-MMU targets all behave the same: make no
1242 * distinction between physical and virtual addresses, and
1243 * ensure that virt2phys() is always an identity mapping.
1244 */
1245 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1246 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1247
1248 type->mmu = no_mmu;
1249 type->write_phys_memory = type->write_memory;
1250 type->read_phys_memory = type->read_memory;
1251 type->virt2phys = identity_virt2phys;
1252 }
1253
1254 if (target->type->read_buffer == NULL)
1255 target->type->read_buffer = target_read_buffer_default;
1256
1257 if (target->type->write_buffer == NULL)
1258 target->type->write_buffer = target_write_buffer_default;
1259
1260 if (target->type->get_gdb_fileio_info == NULL)
1261 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1262
1263 if (target->type->gdb_fileio_end == NULL)
1264 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1265
1266 if (target->type->profiling == NULL)
1267 target->type->profiling = target_profiling_default;
1268
1269 return ERROR_OK;
1270 }
1271
1272 static int target_init(struct command_context *cmd_ctx)
1273 {
1274 struct target *target;
1275 int retval;
1276
1277 for (target = all_targets; target; target = target->next) {
1278 retval = target_init_one(cmd_ctx, target);
1279 if (ERROR_OK != retval)
1280 return retval;
1281 }
1282
1283 if (!all_targets)
1284 return ERROR_OK;
1285
1286 retval = target_register_user_commands(cmd_ctx);
1287 if (ERROR_OK != retval)
1288 return retval;
1289
1290 retval = target_register_timer_callback(&handle_target,
1291 polling_interval, 1, cmd_ctx->interp);
1292 if (ERROR_OK != retval)
1293 return retval;
1294
1295 return ERROR_OK;
1296 }
1297
1298 COMMAND_HANDLER(handle_target_init_command)
1299 {
1300 int retval;
1301
1302 if (CMD_ARGC != 0)
1303 return ERROR_COMMAND_SYNTAX_ERROR;
1304
1305 static bool target_initialized;
1306 if (target_initialized) {
1307 LOG_INFO("'target init' has already been called");
1308 return ERROR_OK;
1309 }
1310 target_initialized = true;
1311
1312 retval = command_run_line(CMD_CTX, "init_targets");
1313 if (ERROR_OK != retval)
1314 return retval;
1315
1316 retval = command_run_line(CMD_CTX, "init_target_events");
1317 if (ERROR_OK != retval)
1318 return retval;
1319
1320 retval = command_run_line(CMD_CTX, "init_board");
1321 if (ERROR_OK != retval)
1322 return retval;
1323
1324 LOG_DEBUG("Initializing targets...");
1325 return target_init(CMD_CTX);
1326 }
1327
1328 int target_register_event_callback(int (*callback)(struct target *target,
1329 enum target_event event, void *priv), void *priv)
1330 {
1331 struct target_event_callback **callbacks_p = &target_event_callbacks;
1332
1333 if (callback == NULL)
1334 return ERROR_COMMAND_SYNTAX_ERROR;
1335
1336 if (*callbacks_p) {
1337 while ((*callbacks_p)->next)
1338 callbacks_p = &((*callbacks_p)->next);
1339 callbacks_p = &((*callbacks_p)->next);
1340 }
1341
1342 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1343 (*callbacks_p)->callback = callback;
1344 (*callbacks_p)->priv = priv;
1345 (*callbacks_p)->next = NULL;
1346
1347 return ERROR_OK;
1348 }
1349
1350 int target_register_reset_callback(int (*callback)(struct target *target,
1351 enum target_reset_mode reset_mode, void *priv), void *priv)
1352 {
1353 struct target_reset_callback *entry;
1354
1355 if (callback == NULL)
1356 return ERROR_COMMAND_SYNTAX_ERROR;
1357
1358 entry = malloc(sizeof(struct target_reset_callback));
1359 if (entry == NULL) {
1360 LOG_ERROR("error allocating buffer for reset callback entry");
1361 return ERROR_COMMAND_SYNTAX_ERROR;
1362 }
1363
1364 entry->callback = callback;
1365 entry->priv = priv;
1366 list_add(&entry->list, &target_reset_callback_list);
1367
1368
1369 return ERROR_OK;
1370 }
1371
1372 int target_register_trace_callback(int (*callback)(struct target *target,
1373 size_t len, uint8_t *data, void *priv), void *priv)
1374 {
1375 struct target_trace_callback *entry;
1376
1377 if (callback == NULL)
1378 return ERROR_COMMAND_SYNTAX_ERROR;
1379
1380 entry = malloc(sizeof(struct target_trace_callback));
1381 if (entry == NULL) {
1382 LOG_ERROR("error allocating buffer for trace callback entry");
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1384 }
1385
1386 entry->callback = callback;
1387 entry->priv = priv;
1388 list_add(&entry->list, &target_trace_callback_list);
1389
1390
1391 return ERROR_OK;
1392 }
1393
1394 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1395 {
1396 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1397 struct timeval now;
1398
1399 if (callback == NULL)
1400 return ERROR_COMMAND_SYNTAX_ERROR;
1401
1402 if (*callbacks_p) {
1403 while ((*callbacks_p)->next)
1404 callbacks_p = &((*callbacks_p)->next);
1405 callbacks_p = &((*callbacks_p)->next);
1406 }
1407
1408 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1409 (*callbacks_p)->callback = callback;
1410 (*callbacks_p)->periodic = periodic;
1411 (*callbacks_p)->time_ms = time_ms;
1412 (*callbacks_p)->removed = false;
1413
1414 gettimeofday(&now, NULL);
1415 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1416 time_ms -= (time_ms % 1000);
1417 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1418 if ((*callbacks_p)->when.tv_usec > 1000000) {
1419 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1420 (*callbacks_p)->when.tv_sec += 1;
1421 }
1422
1423 (*callbacks_p)->priv = priv;
1424 (*callbacks_p)->next = NULL;
1425
1426 return ERROR_OK;
1427 }
1428
1429 int target_unregister_event_callback(int (*callback)(struct target *target,
1430 enum target_event event, void *priv), void *priv)
1431 {
1432 struct target_event_callback **p = &target_event_callbacks;
1433 struct target_event_callback *c = target_event_callbacks;
1434
1435 if (callback == NULL)
1436 return ERROR_COMMAND_SYNTAX_ERROR;
1437
1438 while (c) {
1439 struct target_event_callback *next = c->next;
1440 if ((c->callback == callback) && (c->priv == priv)) {
1441 *p = next;
1442 free(c);
1443 return ERROR_OK;
1444 } else
1445 p = &(c->next);
1446 c = next;
1447 }
1448
1449 return ERROR_OK;
1450 }
1451
1452 int target_unregister_reset_callback(int (*callback)(struct target *target,
1453 enum target_reset_mode reset_mode, void *priv), void *priv)
1454 {
1455 struct target_reset_callback *entry;
1456
1457 if (callback == NULL)
1458 return ERROR_COMMAND_SYNTAX_ERROR;
1459
1460 list_for_each_entry(entry, &target_reset_callback_list, list) {
1461 if (entry->callback == callback && entry->priv == priv) {
1462 list_del(&entry->list);
1463 free(entry);
1464 break;
1465 }
1466 }
1467
1468 return ERROR_OK;
1469 }
1470
1471 int target_unregister_trace_callback(int (*callback)(struct target *target,
1472 size_t len, uint8_t *data, void *priv), void *priv)
1473 {
1474 struct target_trace_callback *entry;
1475
1476 if (callback == NULL)
1477 return ERROR_COMMAND_SYNTAX_ERROR;
1478
1479 list_for_each_entry(entry, &target_trace_callback_list, list) {
1480 if (entry->callback == callback && entry->priv == priv) {
1481 list_del(&entry->list);
1482 free(entry);
1483 break;
1484 }
1485 }
1486
1487 return ERROR_OK;
1488 }
1489
1490 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1491 {
1492 if (callback == NULL)
1493 return ERROR_COMMAND_SYNTAX_ERROR;
1494
1495 for (struct target_timer_callback *c = target_timer_callbacks;
1496 c; c = c->next) {
1497 if ((c->callback == callback) && (c->priv == priv)) {
1498 c->removed = true;
1499 return ERROR_OK;
1500 }
1501 }
1502
1503 return ERROR_FAIL;
1504 }
1505
1506 int target_call_event_callbacks(struct target *target, enum target_event event)
1507 {
1508 struct target_event_callback *callback = target_event_callbacks;
1509 struct target_event_callback *next_callback;
1510
1511 if (event == TARGET_EVENT_HALTED) {
1512 /* execute early halted first */
1513 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1514 }
1515
1516 LOG_DEBUG("target event %i (%s)", event,
1517 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1518
1519 target_handle_event(target, event);
1520
1521 while (callback) {
1522 next_callback = callback->next;
1523 callback->callback(target, event, callback->priv);
1524 callback = next_callback;
1525 }
1526
1527 return ERROR_OK;
1528 }
1529
1530 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1531 {
1532 struct target_reset_callback *callback;
1533
1534 LOG_DEBUG("target reset %i (%s)", reset_mode,
1535 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1536
1537 list_for_each_entry(callback, &target_reset_callback_list, list)
1538 callback->callback(target, reset_mode, callback->priv);
1539
1540 return ERROR_OK;
1541 }
1542
1543 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1544 {
1545 struct target_trace_callback *callback;
1546
1547 list_for_each_entry(callback, &target_trace_callback_list, list)
1548 callback->callback(target, len, data, callback->priv);
1549
1550 return ERROR_OK;
1551 }
1552
1553 static int target_timer_callback_periodic_restart(
1554 struct target_timer_callback *cb, struct timeval *now)
1555 {
1556 int time_ms = cb->time_ms;
1557 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1558 time_ms -= (time_ms % 1000);
1559 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1560 if (cb->when.tv_usec > 1000000) {
1561 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1562 cb->when.tv_sec += 1;
1563 }
1564 return ERROR_OK;
1565 }
1566
1567 static int target_call_timer_callback(struct target_timer_callback *cb,
1568 struct timeval *now)
1569 {
1570 cb->callback(cb->priv);
1571
1572 if (cb->periodic)
1573 return target_timer_callback_periodic_restart(cb, now);
1574
1575 return target_unregister_timer_callback(cb->callback, cb->priv);
1576 }
1577
1578 static int target_call_timer_callbacks_check_time(int checktime)
1579 {
1580 static bool callback_processing;
1581
1582 /* Do not allow nesting */
1583 if (callback_processing)
1584 return ERROR_OK;
1585
1586 callback_processing = true;
1587
1588 keep_alive();
1589
1590 struct timeval now;
1591 gettimeofday(&now, NULL);
1592
1593 /* Store an address of the place containing a pointer to the
1594 * next item; initially, that's a standalone "root of the
1595 * list" variable. */
1596 struct target_timer_callback **callback = &target_timer_callbacks;
1597 while (*callback) {
1598 if ((*callback)->removed) {
1599 struct target_timer_callback *p = *callback;
1600 *callback = (*callback)->next;
1601 free(p);
1602 continue;
1603 }
1604
1605 bool call_it = (*callback)->callback &&
1606 ((!checktime && (*callback)->periodic) ||
1607 now.tv_sec > (*callback)->when.tv_sec ||
1608 (now.tv_sec == (*callback)->when.tv_sec &&
1609 now.tv_usec >= (*callback)->when.tv_usec));
1610
1611 if (call_it)
1612 target_call_timer_callback(*callback, &now);
1613
1614 callback = &(*callback)->next;
1615 }
1616
1617 callback_processing = false;
1618 return ERROR_OK;
1619 }
1620
1621 int target_call_timer_callbacks(void)
1622 {
1623 return target_call_timer_callbacks_check_time(1);
1624 }
1625
1626 /* invoke periodic callbacks immediately */
1627 int target_call_timer_callbacks_now(void)
1628 {
1629 return target_call_timer_callbacks_check_time(0);
1630 }
1631
1632 /* Prints the working area layout for debug purposes */
1633 static void print_wa_layout(struct target *target)
1634 {
1635 struct working_area *c = target->working_areas;
1636
1637 while (c) {
1638 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1639 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1640 c->address, c->address + c->size - 1, c->size);
1641 c = c->next;
1642 }
1643 }
1644
1645 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1646 static void target_split_working_area(struct working_area *area, uint32_t size)
1647 {
1648 assert(area->free); /* Shouldn't split an allocated area */
1649 assert(size <= area->size); /* Caller should guarantee this */
1650
1651 /* Split only if not already the right size */
1652 if (size < area->size) {
1653 struct working_area *new_wa = malloc(sizeof(*new_wa));
1654
1655 if (new_wa == NULL)
1656 return;
1657
1658 new_wa->next = area->next;
1659 new_wa->size = area->size - size;
1660 new_wa->address = area->address + size;
1661 new_wa->backup = NULL;
1662 new_wa->user = NULL;
1663 new_wa->free = true;
1664
1665 area->next = new_wa;
1666 area->size = size;
1667
1668 /* If backup memory was allocated to this area, it has the wrong size
1669 * now so free it and it will be reallocated if/when needed */
1670 if (area->backup) {
1671 free(area->backup);
1672 area->backup = NULL;
1673 }
1674 }
1675 }
1676
1677 /* Merge all adjacent free areas into one */
1678 static void target_merge_working_areas(struct target *target)
1679 {
1680 struct working_area *c = target->working_areas;
1681
1682 while (c && c->next) {
1683 assert(c->next->address == c->address + c->size); /* This is an invariant */
1684
1685 /* Find two adjacent free areas */
1686 if (c->free && c->next->free) {
1687 /* Merge the last into the first */
1688 c->size += c->next->size;
1689
1690 /* Remove the last */
1691 struct working_area *to_be_freed = c->next;
1692 c->next = c->next->next;
1693 if (to_be_freed->backup)
1694 free(to_be_freed->backup);
1695 free(to_be_freed);
1696
1697 /* If backup memory was allocated to the remaining area, it's has
1698 * the wrong size now */
1699 if (c->backup) {
1700 free(c->backup);
1701 c->backup = NULL;
1702 }
1703 } else {
1704 c = c->next;
1705 }
1706 }
1707 }
1708
1709 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1710 {
1711 /* Reevaluate working area address based on MMU state*/
1712 if (target->working_areas == NULL) {
1713 int retval;
1714 int enabled;
1715
1716 retval = target->type->mmu(target, &enabled);
1717 if (retval != ERROR_OK)
1718 return retval;
1719
1720 if (!enabled) {
1721 if (target->working_area_phys_spec) {
1722 LOG_DEBUG("MMU disabled, using physical "
1723 "address for working memory 0x%08"PRIx32,
1724 target->working_area_phys);
1725 target->working_area = target->working_area_phys;
1726 } else {
1727 LOG_ERROR("No working memory available. "
1728 "Specify -work-area-phys to target.");
1729 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1730 }
1731 } else {
1732 if (target->working_area_virt_spec) {
1733 LOG_DEBUG("MMU enabled, using virtual "
1734 "address for working memory 0x%08"PRIx32,
1735 target->working_area_virt);
1736 target->working_area = target->working_area_virt;
1737 } else {
1738 LOG_ERROR("No working memory available. "
1739 "Specify -work-area-virt to target.");
1740 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1741 }
1742 }
1743
1744 /* Set up initial working area on first call */
1745 struct working_area *new_wa = malloc(sizeof(*new_wa));
1746 if (new_wa) {
1747 new_wa->next = NULL;
1748 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1749 new_wa->address = target->working_area;
1750 new_wa->backup = NULL;
1751 new_wa->user = NULL;
1752 new_wa->free = true;
1753 }
1754
1755 target->working_areas = new_wa;
1756 }
1757
1758 /* only allocate multiples of 4 byte */
1759 if (size % 4)
1760 size = (size + 3) & (~3UL);
1761
1762 struct working_area *c = target->working_areas;
1763
1764 /* Find the first large enough working area */
1765 while (c) {
1766 if (c->free && c->size >= size)
1767 break;
1768 c = c->next;
1769 }
1770
1771 if (c == NULL)
1772 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1773
1774 /* Split the working area into the requested size */
1775 target_split_working_area(c, size);
1776
1777 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1778
1779 if (target->backup_working_area) {
1780 if (c->backup == NULL) {
1781 c->backup = malloc(c->size);
1782 if (c->backup == NULL)
1783 return ERROR_FAIL;
1784 }
1785
1786 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1787 if (retval != ERROR_OK)
1788 return retval;
1789 }
1790
1791 /* mark as used, and return the new (reused) area */
1792 c->free = false;
1793 *area = c;
1794
1795 /* user pointer */
1796 c->user = area;
1797
1798 print_wa_layout(target);
1799
1800 return ERROR_OK;
1801 }
1802
1803 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1804 {
1805 int retval;
1806
1807 retval = target_alloc_working_area_try(target, size, area);
1808 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1809 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1810 return retval;
1811
1812 }
1813
1814 static int target_restore_working_area(struct target *target, struct working_area *area)
1815 {
1816 int retval = ERROR_OK;
1817
1818 if (target->backup_working_area && area->backup != NULL) {
1819 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1820 if (retval != ERROR_OK)
1821 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1822 area->size, area->address);
1823 }
1824
1825 return retval;
1826 }
1827
1828 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1829 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1830 {
1831 int retval = ERROR_OK;
1832
1833 if (area->free)
1834 return retval;
1835
1836 if (restore) {
1837 retval = target_restore_working_area(target, area);
1838 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1839 if (retval != ERROR_OK)
1840 return retval;
1841 }
1842
1843 area->free = true;
1844
1845 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1846 area->size, area->address);
1847
1848 /* mark user pointer invalid */
1849 /* TODO: Is this really safe? It points to some previous caller's memory.
1850 * How could we know that the area pointer is still in that place and not
1851 * some other vital data? What's the purpose of this, anyway? */
1852 *area->user = NULL;
1853 area->user = NULL;
1854
1855 target_merge_working_areas(target);
1856
1857 print_wa_layout(target);
1858
1859 return retval;
1860 }
1861
1862 int target_free_working_area(struct target *target, struct working_area *area)
1863 {
1864 return target_free_working_area_restore(target, area, 1);
1865 }
1866
1867 void target_quit(void)
1868 {
1869 struct target_event_callback *pe = target_event_callbacks;
1870 while (pe) {
1871 struct target_event_callback *t = pe->next;
1872 free(pe);
1873 pe = t;
1874 }
1875 target_event_callbacks = NULL;
1876
1877 struct target_timer_callback *pt = target_timer_callbacks;
1878 while (pt) {
1879 struct target_timer_callback *t = pt->next;
1880 free(pt);
1881 pt = t;
1882 }
1883 target_timer_callbacks = NULL;
1884
1885 for (struct target *target = all_targets;
1886 target; target = target->next) {
1887 if (target->type->deinit_target)
1888 target->type->deinit_target(target);
1889 }
1890 }
1891
1892 /* free resources and restore memory, if restoring memory fails,
1893 * free up resources anyway
1894 */
1895 static void target_free_all_working_areas_restore(struct target *target, int restore)
1896 {
1897 struct working_area *c = target->working_areas;
1898
1899 LOG_DEBUG("freeing all working areas");
1900
1901 /* Loop through all areas, restoring the allocated ones and marking them as free */
1902 while (c) {
1903 if (!c->free) {
1904 if (restore)
1905 target_restore_working_area(target, c);
1906 c->free = true;
1907 *c->user = NULL; /* Same as above */
1908 c->user = NULL;
1909 }
1910 c = c->next;
1911 }
1912
1913 /* Run a merge pass to combine all areas into one */
1914 target_merge_working_areas(target);
1915
1916 print_wa_layout(target);
1917 }
1918
1919 void target_free_all_working_areas(struct target *target)
1920 {
1921 target_free_all_working_areas_restore(target, 1);
1922 }
1923
1924 /* Find the largest number of bytes that can be allocated */
1925 uint32_t target_get_working_area_avail(struct target *target)
1926 {
1927 struct working_area *c = target->working_areas;
1928 uint32_t max_size = 0;
1929
1930 if (c == NULL)
1931 return target->working_area_size;
1932
1933 while (c) {
1934 if (c->free && max_size < c->size)
1935 max_size = c->size;
1936
1937 c = c->next;
1938 }
1939
1940 return max_size;
1941 }
1942
1943 int target_arch_state(struct target *target)
1944 {
1945 int retval;
1946 if (target == NULL) {
1947 LOG_WARNING("No target has been configured");
1948 return ERROR_OK;
1949 }
1950
1951 if (target->state != TARGET_HALTED)
1952 return ERROR_OK;
1953
1954 retval = target->type->arch_state(target);
1955 return retval;
1956 }
1957
1958 static int target_get_gdb_fileio_info_default(struct target *target,
1959 struct gdb_fileio_info *fileio_info)
1960 {
1961 /* If target does not support semi-hosting function, target
1962 has no need to provide .get_gdb_fileio_info callback.
1963 It just return ERROR_FAIL and gdb_server will return "Txx"
1964 as target halted every time. */
1965 return ERROR_FAIL;
1966 }
1967
1968 static int target_gdb_fileio_end_default(struct target *target,
1969 int retcode, int fileio_errno, bool ctrl_c)
1970 {
1971 return ERROR_OK;
1972 }
1973
1974 static int target_profiling_default(struct target *target, uint32_t *samples,
1975 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1976 {
1977 struct timeval timeout, now;
1978
1979 gettimeofday(&timeout, NULL);
1980 timeval_add_time(&timeout, seconds, 0);
1981
1982 LOG_INFO("Starting profiling. Halting and resuming the"
1983 " target as often as we can...");
1984
1985 uint32_t sample_count = 0;
1986 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1987 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1988
1989 int retval = ERROR_OK;
1990 for (;;) {
1991 target_poll(target);
1992 if (target->state == TARGET_HALTED) {
1993 uint32_t t = buf_get_u32(reg->value, 0, 32);
1994 samples[sample_count++] = t;
1995 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1996 retval = target_resume(target, 1, 0, 0, 0);
1997 target_poll(target);
1998 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1999 } else if (target->state == TARGET_RUNNING) {
2000 /* We want to quickly sample the PC. */
2001 retval = target_halt(target);
2002 } else {
2003 LOG_INFO("Target not halted or running");
2004 retval = ERROR_OK;
2005 break;
2006 }
2007
2008 if (retval != ERROR_OK)
2009 break;
2010
2011 gettimeofday(&now, NULL);
2012 if ((sample_count >= max_num_samples) ||
2013 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2014 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2015 break;
2016 }
2017 }
2018
2019 *num_samples = sample_count;
2020 return retval;
2021 }
2022
2023 /* Single aligned words are guaranteed to use 16 or 32 bit access
2024 * mode respectively, otherwise data is handled as quickly as
2025 * possible
2026 */
2027 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
2028 {
2029 LOG_DEBUG("writing buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2030 size, address);
2031
2032 if (!target_was_examined(target)) {
2033 LOG_ERROR("Target not examined yet");
2034 return ERROR_FAIL;
2035 }
2036
2037 if (size == 0)
2038 return ERROR_OK;
2039
2040 if ((address + size - 1) < address) {
2041 /* GDB can request this when e.g. PC is 0xfffffffc */
2042 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2043 address,
2044 size);
2045 return ERROR_FAIL;
2046 }
2047
2048 return target->type->write_buffer(target, address, size, buffer);
2049 }
2050
2051 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2052 {
2053 uint32_t size;
2054
2055 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2056 * will have something to do with the size we leave to it. */
2057 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2058 if (address & size) {
2059 int retval = target_write_memory(target, address, size, 1, buffer);
2060 if (retval != ERROR_OK)
2061 return retval;
2062 address += size;
2063 count -= size;
2064 buffer += size;
2065 }
2066 }
2067
2068 /* Write the data with as large access size as possible. */
2069 for (; size > 0; size /= 2) {
2070 uint32_t aligned = count - count % size;
2071 if (aligned > 0) {
2072 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2073 if (retval != ERROR_OK)
2074 return retval;
2075 address += aligned;
2076 count -= aligned;
2077 buffer += aligned;
2078 }
2079 }
2080
2081 return ERROR_OK;
2082 }
2083
2084 /* Single aligned words are guaranteed to use 16 or 32 bit access
2085 * mode respectively, otherwise data is handled as quickly as
2086 * possible
2087 */
2088 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2089 {
2090 LOG_DEBUG("reading buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
2091 size, address);
2092
2093 if (!target_was_examined(target)) {
2094 LOG_ERROR("Target not examined yet");
2095 return ERROR_FAIL;
2096 }
2097
2098 if (size == 0)
2099 return ERROR_OK;
2100
2101 if ((address + size - 1) < address) {
2102 /* GDB can request this when e.g. PC is 0xfffffffc */
2103 LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2104 address,
2105 size);
2106 return ERROR_FAIL;
2107 }
2108
2109 return target->type->read_buffer(target, address, size, buffer);
2110 }
2111
2112 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2113 {
2114 uint32_t size;
2115
2116 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2117 * will have something to do with the size we leave to it. */
2118 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2119 if (address & size) {
2120 int retval = target_read_memory(target, address, size, 1, buffer);
2121 if (retval != ERROR_OK)
2122 return retval;
2123 address += size;
2124 count -= size;
2125 buffer += size;
2126 }
2127 }
2128
2129 /* Read the data with as large access size as possible. */
2130 for (; size > 0; size /= 2) {
2131 uint32_t aligned = count - count % size;
2132 if (aligned > 0) {
2133 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2134 if (retval != ERROR_OK)
2135 return retval;
2136 address += aligned;
2137 count -= aligned;
2138 buffer += aligned;
2139 }
2140 }
2141
2142 return ERROR_OK;
2143 }
2144
2145 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2146 {
2147 uint8_t *buffer;
2148 int retval;
2149 uint32_t i;
2150 uint32_t checksum = 0;
2151 if (!target_was_examined(target)) {
2152 LOG_ERROR("Target not examined yet");
2153 return ERROR_FAIL;
2154 }
2155
2156 retval = target->type->checksum_memory(target, address, size, &checksum);
2157 if (retval != ERROR_OK) {
2158 buffer = malloc(size);
2159 if (buffer == NULL) {
2160 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2161 return ERROR_COMMAND_SYNTAX_ERROR;
2162 }
2163 retval = target_read_buffer(target, address, size, buffer);
2164 if (retval != ERROR_OK) {
2165 free(buffer);
2166 return retval;
2167 }
2168
2169 /* convert to target endianness */
2170 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2171 uint32_t target_data;
2172 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2173 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2174 }
2175
2176 retval = image_calculate_checksum(buffer, size, &checksum);
2177 free(buffer);
2178 }
2179
2180 *crc = checksum;
2181
2182 return retval;
2183 }
2184
2185 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank,
2186 uint8_t erased_value)
2187 {
2188 int retval;
2189 if (!target_was_examined(target)) {
2190 LOG_ERROR("Target not examined yet");
2191 return ERROR_FAIL;
2192 }
2193
2194 if (target->type->blank_check_memory == 0)
2195 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2196
2197 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2198
2199 return retval;
2200 }
2201
2202 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2203 {
2204 uint8_t value_buf[8];
2205 if (!target_was_examined(target)) {
2206 LOG_ERROR("Target not examined yet");
2207 return ERROR_FAIL;
2208 }
2209
2210 int retval = target_read_memory(target, address, 8, 1, value_buf);
2211
2212 if (retval == ERROR_OK) {
2213 *value = target_buffer_get_u64(target, value_buf);
2214 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2215 address,
2216 *value);
2217 } else {
2218 *value = 0x0;
2219 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2220 address);
2221 }
2222
2223 return retval;
2224 }
2225
2226 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2227 {
2228 uint8_t value_buf[4];
2229 if (!target_was_examined(target)) {
2230 LOG_ERROR("Target not examined yet");
2231 return ERROR_FAIL;
2232 }
2233
2234 int retval = target_read_memory(target, address, 4, 1, value_buf);
2235
2236 if (retval == ERROR_OK) {
2237 *value = target_buffer_get_u32(target, value_buf);
2238 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2239 address,
2240 *value);
2241 } else {
2242 *value = 0x0;
2243 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2244 address);
2245 }
2246
2247 return retval;
2248 }
2249
2250 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2251 {
2252 uint8_t value_buf[2];
2253 if (!target_was_examined(target)) {
2254 LOG_ERROR("Target not examined yet");
2255 return ERROR_FAIL;
2256 }
2257
2258 int retval = target_read_memory(target, address, 2, 1, value_buf);
2259
2260 if (retval == ERROR_OK) {
2261 *value = target_buffer_get_u16(target, value_buf);
2262 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4" PRIx16,
2263 address,
2264 *value);
2265 } else {
2266 *value = 0x0;
2267 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2268 address);
2269 }
2270
2271 return retval;
2272 }
2273
2274 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2275 {
2276 if (!target_was_examined(target)) {
2277 LOG_ERROR("Target not examined yet");
2278 return ERROR_FAIL;
2279 }
2280
2281 int retval = target_read_memory(target, address, 1, 1, value);
2282
2283 if (retval == ERROR_OK) {
2284 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2285 address,
2286 *value);
2287 } else {
2288 *value = 0x0;
2289 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2290 address);
2291 }
2292
2293 return retval;
2294 }
2295
2296 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2297 {
2298 int retval;
2299 uint8_t value_buf[8];
2300 if (!target_was_examined(target)) {
2301 LOG_ERROR("Target not examined yet");
2302 return ERROR_FAIL;
2303 }
2304
2305 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2306 address,
2307 value);
2308
2309 target_buffer_set_u64(target, value_buf, value);
2310 retval = target_write_memory(target, address, 8, 1, value_buf);
2311 if (retval != ERROR_OK)
2312 LOG_DEBUG("failed: %i", retval);
2313
2314 return retval;
2315 }
2316
2317 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2318 {
2319 int retval;
2320 uint8_t value_buf[4];
2321 if (!target_was_examined(target)) {
2322 LOG_ERROR("Target not examined yet");
2323 return ERROR_FAIL;
2324 }
2325
2326 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2327 address,
2328 value);
2329
2330 target_buffer_set_u32(target, value_buf, value);
2331 retval = target_write_memory(target, address, 4, 1, value_buf);
2332 if (retval != ERROR_OK)
2333 LOG_DEBUG("failed: %i", retval);
2334
2335 return retval;
2336 }
2337
2338 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2339 {
2340 int retval;
2341 uint8_t value_buf[2];
2342 if (!target_was_examined(target)) {
2343 LOG_ERROR("Target not examined yet");
2344 return ERROR_FAIL;
2345 }
2346
2347 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx16,
2348 address,
2349 value);
2350
2351 target_buffer_set_u16(target, value_buf, value);
2352 retval = target_write_memory(target, address, 2, 1, value_buf);
2353 if (retval != ERROR_OK)
2354 LOG_DEBUG("failed: %i", retval);
2355
2356 return retval;
2357 }
2358
2359 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2360 {
2361 int retval;
2362 if (!target_was_examined(target)) {
2363 LOG_ERROR("Target not examined yet");
2364 return ERROR_FAIL;
2365 }
2366
2367 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
2368 address, value);
2369
2370 retval = target_write_memory(target, address, 1, 1, &value);
2371 if (retval != ERROR_OK)
2372 LOG_DEBUG("failed: %i", retval);
2373
2374 return retval;
2375 }
2376
2377 static int find_target(struct command_context *cmd_ctx, const char *name)
2378 {
2379 struct target *target = get_target(name);
2380 if (target == NULL) {
2381 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2382 return ERROR_FAIL;
2383 }
2384 if (!target->tap->enabled) {
2385 LOG_USER("Target: TAP %s is disabled, "
2386 "can't be the current target\n",
2387 target->tap->dotted_name);
2388 return ERROR_FAIL;
2389 }
2390
2391 cmd_ctx->current_target = target->target_number;
2392 return ERROR_OK;
2393 }
2394
2395
2396 COMMAND_HANDLER(handle_targets_command)
2397 {
2398 int retval = ERROR_OK;
2399 if (CMD_ARGC == 1) {
2400 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2401 if (retval == ERROR_OK) {
2402 /* we're done! */
2403 return retval;
2404 }
2405 }
2406
2407 struct target *target = all_targets;
2408 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2409 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2410 while (target) {
2411 const char *state;
2412 char marker = ' ';
2413
2414 if (target->tap->enabled)
2415 state = target_state_name(target);
2416 else
2417 state = "tap-disabled";
2418
2419 if (CMD_CTX->current_target == target->target_number)
2420 marker = '*';
2421
2422 /* keep columns lined up to match the headers above */
2423 command_print(CMD_CTX,
2424 "%2d%c %-18s %-10s %-6s %-18s %s",
2425 target->target_number,
2426 marker,
2427 target_name(target),
2428 target_type_name(target),
2429 Jim_Nvp_value2name_simple(nvp_target_endian,
2430 target->endianness)->name,
2431 target->tap->dotted_name,
2432 state);
2433 target = target->next;
2434 }
2435
2436 return retval;
2437 }
2438
2439 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2440
2441 static int powerDropout;
2442 static int srstAsserted;
2443
2444 static int runPowerRestore;
2445 static int runPowerDropout;
2446 static int runSrstAsserted;
2447 static int runSrstDeasserted;
2448
2449 static int sense_handler(void)
2450 {
2451 static int prevSrstAsserted;
2452 static int prevPowerdropout;
2453
2454 int retval = jtag_power_dropout(&powerDropout);
2455 if (retval != ERROR_OK)
2456 return retval;
2457
2458 int powerRestored;
2459 powerRestored = prevPowerdropout && !powerDropout;
2460 if (powerRestored)
2461 runPowerRestore = 1;
2462
2463 int64_t current = timeval_ms();
2464 static int64_t lastPower;
2465 bool waitMore = lastPower + 2000 > current;
2466 if (powerDropout && !waitMore) {
2467 runPowerDropout = 1;
2468 lastPower = current;
2469 }
2470
2471 retval = jtag_srst_asserted(&srstAsserted);
2472 if (retval != ERROR_OK)
2473 return retval;
2474
2475 int srstDeasserted;
2476 srstDeasserted = prevSrstAsserted && !srstAsserted;
2477
2478 static int64_t lastSrst;
2479 waitMore = lastSrst + 2000 > current;
2480 if (srstDeasserted && !waitMore) {
2481 runSrstDeasserted = 1;
2482 lastSrst = current;
2483 }
2484
2485 if (!prevSrstAsserted && srstAsserted)
2486 runSrstAsserted = 1;
2487
2488 prevSrstAsserted = srstAsserted;
2489 prevPowerdropout = powerDropout;
2490
2491 if (srstDeasserted || powerRestored) {
2492 /* Other than logging the event we can't do anything here.
2493 * Issuing a reset is a particularly bad idea as we might
2494 * be inside a reset already.
2495 */
2496 }
2497
2498 return ERROR_OK;
2499 }
2500
2501 /* process target state changes */
2502 static int handle_target(void *priv)
2503 {
2504 Jim_Interp *interp = (Jim_Interp *)priv;
2505 int retval = ERROR_OK;
2506
2507 if (!is_jtag_poll_safe()) {
2508 /* polling is disabled currently */
2509 return ERROR_OK;
2510 }
2511
2512 /* we do not want to recurse here... */
2513 static int recursive;
2514 if (!recursive) {
2515 recursive = 1;
2516 sense_handler();
2517 /* danger! running these procedures can trigger srst assertions and power dropouts.
2518 * We need to avoid an infinite loop/recursion here and we do that by
2519 * clearing the flags after running these events.
2520 */
2521 int did_something = 0;
2522 if (runSrstAsserted) {
2523 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2524 Jim_Eval(interp, "srst_asserted");
2525 did_something = 1;
2526 }
2527 if (runSrstDeasserted) {
2528 Jim_Eval(interp, "srst_deasserted");
2529 did_something = 1;
2530 }
2531 if (runPowerDropout) {
2532 LOG_INFO("Power dropout detected, running power_dropout proc.");
2533 Jim_Eval(interp, "power_dropout");
2534 did_something = 1;
2535 }
2536 if (runPowerRestore) {
2537 Jim_Eval(interp, "power_restore");
2538 did_something = 1;
2539 }
2540
2541 if (did_something) {
2542 /* clear detect flags */
2543 sense_handler();
2544 }
2545
2546 /* clear action flags */
2547
2548 runSrstAsserted = 0;
2549 runSrstDeasserted = 0;
2550 runPowerRestore = 0;
2551 runPowerDropout = 0;
2552
2553 recursive = 0;
2554 }
2555
2556 /* Poll targets for state changes unless that's globally disabled.
2557 * Skip targets that are currently disabled.
2558 */
2559 for (struct target *target = all_targets;
2560 is_jtag_poll_safe() && target;
2561 target = target->next) {
2562
2563 if (!target_was_examined(target))
2564 continue;
2565
2566 if (!target->tap->enabled)
2567 continue;
2568
2569 if (target->backoff.times > target->backoff.count) {
2570 /* do not poll this time as we failed previously */
2571 target->backoff.count++;
2572 continue;
2573 }
2574 target->backoff.count = 0;
2575
2576 /* only poll target if we've got power and srst isn't asserted */
2577 if (!powerDropout && !srstAsserted) {
2578 /* polling may fail silently until the target has been examined */
2579 retval = target_poll(target);
2580 if (retval != ERROR_OK) {
2581 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2582 if (target->backoff.times * polling_interval < 5000) {
2583 target->backoff.times *= 2;
2584 target->backoff.times++;
2585 }
2586
2587 /* Tell GDB to halt the debugger. This allows the user to
2588 * run monitor commands to handle the situation.
2589 */
2590 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2591 }
2592 if (target->backoff.times > 0) {
2593 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2594 target_reset_examined(target);
2595 retval = target_examine_one(target);
2596 /* Target examination could have failed due to unstable connection,
2597 * but we set the examined flag anyway to repoll it later */
2598 if (retval != ERROR_OK) {
2599 target->examined = true;
2600 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2601 target->backoff.times * polling_interval);
2602 return retval;
2603 }
2604 }
2605
2606 /* Since we succeeded, we reset backoff count */
2607 target->backoff.times = 0;
2608 }
2609 }
2610
2611 return retval;
2612 }
2613
2614 COMMAND_HANDLER(handle_reg_command)
2615 {
2616 struct target *target;
2617 struct reg *reg = NULL;
2618 unsigned count = 0;
2619 char *value;
2620
2621 LOG_DEBUG("-");
2622
2623 target = get_current_target(CMD_CTX);
2624
2625 /* list all available registers for the current target */
2626 if (CMD_ARGC == 0) {
2627 struct reg_cache *cache = target->reg_cache;
2628
2629 count = 0;
2630 while (cache) {
2631 unsigned i;
2632
2633 command_print(CMD_CTX, "===== %s", cache->name);
2634
2635 for (i = 0, reg = cache->reg_list;
2636 i < cache->num_regs;
2637 i++, reg++, count++) {
2638 /* only print cached values if they are valid */
2639 if (reg->valid) {
2640 value = buf_to_str(reg->value,
2641 reg->size, 16);
2642 command_print(CMD_CTX,
2643 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2644 count, reg->name,
2645 reg->size, value,
2646 reg->dirty
2647 ? " (dirty)"
2648 : "");
2649 free(value);
2650 } else {
2651 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2652 count, reg->name,
2653 reg->size) ;
2654 }
2655 }
2656 cache = cache->next;
2657 }
2658
2659 return ERROR_OK;
2660 }
2661
2662 /* access a single register by its ordinal number */
2663 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2664 unsigned num;
2665 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2666
2667 struct reg_cache *cache = target->reg_cache;
2668 count = 0;
2669 while (cache) {
2670 unsigned i;
2671 for (i = 0; i < cache->num_regs; i++) {
2672 if (count++ == num) {
2673 reg = &cache->reg_list[i];
2674 break;
2675 }
2676 }
2677 if (reg)
2678 break;
2679 cache = cache->next;
2680 }
2681
2682 if (!reg) {
2683 command_print(CMD_CTX, "%i is out of bounds, the current target "
2684 "has only %i registers (0 - %i)", num, count, count - 1);
2685 return ERROR_OK;
2686 }
2687 } else {
2688 /* access a single register by its name */
2689 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2690
2691 if (!reg) {
2692 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2693 return ERROR_OK;
2694 }
2695 }
2696
2697 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2698
2699 /* display a register */
2700 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2701 && (CMD_ARGV[1][0] <= '9')))) {
2702 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2703 reg->valid = 0;
2704
2705 if (reg->valid == 0)
2706 reg->type->get(reg);
2707 value = buf_to_str(reg->value, reg->size, 16);
2708 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2709 free(value);
2710 return ERROR_OK;
2711 }
2712
2713 /* set register value */
2714 if (CMD_ARGC == 2) {
2715 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2716 if (buf == NULL)
2717 return ERROR_FAIL;
2718 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2719
2720 reg->type->set(reg, buf);
2721
2722 value = buf_to_str(reg->value, reg->size, 16);
2723 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2724 free(value);
2725
2726 free(buf);
2727
2728 return ERROR_OK;
2729 }
2730
2731 return ERROR_COMMAND_SYNTAX_ERROR;
2732 }
2733
2734 COMMAND_HANDLER(handle_poll_command)
2735 {
2736 int retval = ERROR_OK;
2737 struct target *target = get_current_target(CMD_CTX);
2738
2739 if (CMD_ARGC == 0) {
2740 command_print(CMD_CTX, "background polling: %s",
2741 jtag_poll_get_enabled() ? "on" : "off");
2742 command_print(CMD_CTX, "TAP: %s (%s)",
2743 target->tap->dotted_name,
2744 target->tap->enabled ? "enabled" : "disabled");
2745 if (!target->tap->enabled)
2746 return ERROR_OK;
2747 retval = target_poll(target);
2748 if (retval != ERROR_OK)
2749 return retval;
2750 retval = target_arch_state(target);
2751 if (retval != ERROR_OK)
2752 return retval;
2753 } else if (CMD_ARGC == 1) {
2754 bool enable;
2755 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2756 jtag_poll_set_enabled(enable);
2757 } else
2758 return ERROR_COMMAND_SYNTAX_ERROR;
2759
2760 return retval;
2761 }
2762
2763 COMMAND_HANDLER(handle_wait_halt_command)
2764 {
2765 if (CMD_ARGC > 1)
2766 return ERROR_COMMAND_SYNTAX_ERROR;
2767
2768 unsigned ms = DEFAULT_HALT_TIMEOUT;
2769 if (1 == CMD_ARGC) {
2770 int retval = parse_uint(CMD_ARGV[0], &ms);
2771 if (ERROR_OK != retval)
2772 return ERROR_COMMAND_SYNTAX_ERROR;
2773 }
2774
2775 struct target *target = get_current_target(CMD_CTX);
2776 return target_wait_state(target, TARGET_HALTED, ms);
2777 }
2778
2779 /* wait for target state to change. The trick here is to have a low
2780 * latency for short waits and not to suck up all the CPU time
2781 * on longer waits.
2782 *
2783 * After 500ms, keep_alive() is invoked
2784 */
2785 int target_wait_state(struct target *target, enum target_state state, int ms)
2786 {
2787 int retval;
2788 int64_t then = 0, cur;
2789 bool once = true;
2790
2791 for (;;) {
2792 retval = target_poll(target);
2793 if (retval != ERROR_OK)
2794 return retval;
2795 if (target->state == state)
2796 break;
2797 cur = timeval_ms();
2798 if (once) {
2799 once = false;
2800 then = timeval_ms();
2801 LOG_DEBUG("waiting for target %s...",
2802 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2803 }
2804
2805 if (cur-then > 500)
2806 keep_alive();
2807
2808 if ((cur-then) > ms) {
2809 LOG_ERROR("timed out while waiting for target %s",
2810 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2811 return ERROR_FAIL;
2812 }
2813 }
2814
2815 return ERROR_OK;
2816 }
2817
2818 COMMAND_HANDLER(handle_halt_command)
2819 {
2820 LOG_DEBUG("-");
2821
2822 struct target *target = get_current_target(CMD_CTX);
2823 int retval = target_halt(target);
2824 if (ERROR_OK != retval)
2825 return retval;
2826
2827 if (CMD_ARGC == 1) {
2828 unsigned wait_local;
2829 retval = parse_uint(CMD_ARGV[0], &wait_local);
2830 if (ERROR_OK != retval)
2831 return ERROR_COMMAND_SYNTAX_ERROR;
2832 if (!wait_local)
2833 return ERROR_OK;
2834 }
2835
2836 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2837 }
2838
2839 COMMAND_HANDLER(handle_soft_reset_halt_command)
2840 {
2841 struct target *target = get_current_target(CMD_CTX);
2842
2843 LOG_USER("requesting target halt and executing a soft reset");
2844
2845 target_soft_reset_halt(target);
2846
2847 return ERROR_OK;
2848 }
2849
2850 COMMAND_HANDLER(handle_reset_command)
2851 {
2852 if (CMD_ARGC > 1)
2853 return ERROR_COMMAND_SYNTAX_ERROR;
2854
2855 enum target_reset_mode reset_mode = RESET_RUN;
2856 if (CMD_ARGC == 1) {
2857 const Jim_Nvp *n;
2858 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2859 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2860 return ERROR_COMMAND_SYNTAX_ERROR;
2861 reset_mode = n->value;
2862 }
2863
2864 /* reset *all* targets */
2865 return target_process_reset(CMD_CTX, reset_mode);
2866 }
2867
2868
2869 COMMAND_HANDLER(handle_resume_command)
2870 {
2871 int current = 1;
2872 if (CMD_ARGC > 1)
2873 return ERROR_COMMAND_SYNTAX_ERROR;
2874
2875 struct target *target = get_current_target(CMD_CTX);
2876
2877 /* with no CMD_ARGV, resume from current pc, addr = 0,
2878 * with one arguments, addr = CMD_ARGV[0],
2879 * handle breakpoints, not debugging */
2880 uint32_t addr = 0;
2881 if (CMD_ARGC == 1) {
2882 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2883 current = 0;
2884 }
2885
2886 return target_resume(target, current, addr, 1, 0);
2887 }
2888
2889 COMMAND_HANDLER(handle_step_command)
2890 {
2891 if (CMD_ARGC > 1)
2892 return ERROR_COMMAND_SYNTAX_ERROR;
2893
2894 LOG_DEBUG("-");
2895
2896 /* with no CMD_ARGV, step from current pc, addr = 0,
2897 * with one argument addr = CMD_ARGV[0],
2898 * handle breakpoints, debugging */
2899 uint32_t addr = 0;
2900 int current_pc = 1;
2901 if (CMD_ARGC == 1) {
2902 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2903 current_pc = 0;
2904 }
2905
2906 struct target *target = get_current_target(CMD_CTX);
2907
2908 return target->type->step(target, current_pc, addr, 1);
2909 }
2910
2911 static void handle_md_output(struct command_context *cmd_ctx,
2912 struct target *target, uint32_t address, unsigned size,
2913 unsigned count, const uint8_t *buffer)
2914 {
2915 const unsigned line_bytecnt = 32;
2916 unsigned line_modulo = line_bytecnt / size;
2917
2918 char output[line_bytecnt * 4 + 1];
2919 unsigned output_len = 0;
2920
2921 const char *value_fmt;
2922 switch (size) {
2923 case 4:
2924 value_fmt = "%8.8x ";
2925 break;
2926 case 2:
2927 value_fmt = "%4.4x ";
2928 break;
2929 case 1:
2930 value_fmt = "%2.2x ";
2931 break;
2932 default:
2933 /* "can't happen", caller checked */
2934 LOG_ERROR("invalid memory read size: %u", size);
2935 return;
2936 }
2937
2938 for (unsigned i = 0; i < count; i++) {
2939 if (i % line_modulo == 0) {
2940 output_len += snprintf(output + output_len,
2941 sizeof(output) - output_len,
2942 "0x%8.8x: ",
2943 (unsigned)(address + (i*size)));
2944 }
2945
2946 uint32_t value = 0;
2947 const uint8_t *value_ptr = buffer + i * size;
2948 switch (size) {
2949 case 4:
2950 value = target_buffer_get_u32(target, value_ptr);
2951 break;
2952 case 2:
2953 value = target_buffer_get_u16(target, value_ptr);
2954 break;
2955 case 1:
2956 value = *value_ptr;
2957 }
2958 output_len += snprintf(output + output_len,
2959 sizeof(output) - output_len,
2960 value_fmt, value);
2961
2962 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2963 command_print(cmd_ctx, "%s", output);
2964 output_len = 0;
2965 }
2966 }
2967 }
2968
2969 COMMAND_HANDLER(handle_md_command)
2970 {
2971 if (CMD_ARGC < 1)
2972 return ERROR_COMMAND_SYNTAX_ERROR;
2973
2974 unsigned size = 0;
2975 switch (CMD_NAME[2]) {
2976 case 'w':
2977 size = 4;
2978 break;
2979 case 'h':
2980 size = 2;
2981 break;
2982 case 'b':
2983 size = 1;
2984 break;
2985 default:
2986 return ERROR_COMMAND_SYNTAX_ERROR;
2987 }
2988
2989 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2990 int (*fn)(struct target *target,
2991 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2992 if (physical) {
2993 CMD_ARGC--;
2994 CMD_ARGV++;
2995 fn = target_read_phys_memory;
2996 } else
2997 fn = target_read_memory;
2998 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2999 return ERROR_COMMAND_SYNTAX_ERROR;
3000
3001 uint32_t address;
3002 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3003
3004 unsigned count = 1;
3005 if (CMD_ARGC == 2)
3006 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3007
3008 uint8_t *buffer = calloc(count, size);
3009
3010 struct target *target = get_current_target(CMD_CTX);
3011 int retval = fn(target, address, size, count, buffer);
3012 if (ERROR_OK == retval)
3013 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3014
3015 free(buffer);
3016
3017 return retval;
3018 }
3019
3020 typedef int (*target_write_fn)(struct target *target,
3021 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3022
3023 static int target_fill_mem(struct target *target,
3024 uint32_t address,
3025 target_write_fn fn,
3026 unsigned data_size,
3027 /* value */
3028 uint32_t b,
3029 /* count */
3030 unsigned c)
3031 {
3032 /* We have to write in reasonably large chunks to be able
3033 * to fill large memory areas with any sane speed */
3034 const unsigned chunk_size = 16384;
3035 uint8_t *target_buf = malloc(chunk_size * data_size);
3036 if (target_buf == NULL) {
3037 LOG_ERROR("Out of memory");
3038 return ERROR_FAIL;
3039 }
3040
3041 for (unsigned i = 0; i < chunk_size; i++) {
3042 switch (data_size) {
3043 case 4:
3044 target_buffer_set_u32(target, target_buf + i * data_size, b);
3045 break;
3046 case 2:
3047 target_buffer_set_u16(target, target_buf + i * data_size, b);
3048 break;
3049 case 1:
3050 target_buffer_set_u8(target, target_buf + i * data_size, b);
3051 break;
3052 default:
3053 exit(-1);
3054 }
3055 }
3056
3057 int retval = ERROR_OK;
3058
3059 for (unsigned x = 0; x < c; x += chunk_size) {
3060 unsigned current;
3061 current = c - x;
3062 if (current > chunk_size)
3063 current = chunk_size;
3064 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3065 if (retval != ERROR_OK)
3066 break;
3067 /* avoid GDB timeouts */
3068 keep_alive();
3069 }
3070 free(target_buf);
3071
3072 return retval;
3073 }
3074
3075
3076 COMMAND_HANDLER(handle_mw_command)
3077 {
3078 if (CMD_ARGC < 2)
3079 return ERROR_COMMAND_SYNTAX_ERROR;
3080 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3081 target_write_fn fn;
3082 if (physical) {
3083 CMD_ARGC--;
3084 CMD_ARGV++;
3085 fn = target_write_phys_memory;
3086 } else
3087 fn = target_write_memory;
3088 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3089 return ERROR_COMMAND_SYNTAX_ERROR;
3090
3091 uint32_t address;
3092 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3093
3094 uint32_t value;
3095 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3096
3097 unsigned count = 1;
3098 if (CMD_ARGC == 3)
3099 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3100
3101 struct target *target = get_current_target(CMD_CTX);
3102 unsigned wordsize;
3103 switch (CMD_NAME[2]) {
3104 case 'w':
3105 wordsize = 4;
3106 break;
3107 case 'h':
3108 wordsize = 2;
3109 break;
3110 case 'b':
3111 wordsize = 1;
3112 break;
3113 default:
3114 return ERROR_COMMAND_SYNTAX_ERROR;
3115 }
3116
3117 return target_fill_mem(target, address, fn, wordsize, value, count);
3118 }
3119
3120 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3121 uint32_t *min_address, uint32_t *max_address)
3122 {
3123 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3124 return ERROR_COMMAND_SYNTAX_ERROR;
3125
3126 /* a base address isn't always necessary,
3127 * default to 0x0 (i.e. don't relocate) */
3128 if (CMD_ARGC >= 2) {
3129 uint32_t addr;
3130 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3131 image->base_address = addr;
3132 image->base_address_set = 1;
3133 } else
3134 image->base_address_set = 0;
3135
3136 image->start_address_set = 0;
3137
3138 if (CMD_ARGC >= 4)
3139 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3140 if (CMD_ARGC == 5) {
3141 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3142 /* use size (given) to find max (required) */
3143 *max_address += *min_address;
3144 }
3145
3146 if (*min_address > *max_address)
3147 return ERROR_COMMAND_SYNTAX_ERROR;
3148
3149 return ERROR_OK;
3150 }
3151
3152 COMMAND_HANDLER(handle_load_image_command)
3153 {
3154 uint8_t *buffer;
3155 size_t buf_cnt;
3156 uint32_t image_size;
3157 uint32_t min_address = 0;
3158 uint32_t max_address = 0xffffffff;
3159 int i;
3160 struct image image;
3161
3162 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3163 &image, &min_address, &max_address);
3164 if (ERROR_OK != retval)
3165 return retval;
3166
3167 struct target *target = get_current_target(CMD_CTX);
3168
3169 struct duration bench;
3170 duration_start(&bench);
3171
3172 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3173 return ERROR_FAIL;
3174
3175 image_size = 0x0;
3176 retval = ERROR_OK;
3177 for (i = 0; i < image.num_sections; i++) {
3178 buffer = malloc(image.sections[i].size);
3179 if (buffer == NULL) {
3180 command_print(CMD_CTX,
3181 "error allocating buffer for section (%d bytes)",
3182 (int)(image.sections[i].size));
3183 retval = ERROR_FAIL;
3184 break;
3185 }
3186
3187 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3188 if (retval != ERROR_OK) {
3189 free(buffer);
3190 break;
3191 }
3192
3193 uint32_t offset = 0;
3194 uint32_t length = buf_cnt;
3195
3196 /* DANGER!!! beware of unsigned comparision here!!! */
3197
3198 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3199 (image.sections[i].base_address < max_address)) {
3200
3201 if (image.sections[i].base_address < min_address) {
3202 /* clip addresses below */
3203 offset += min_address-image.sections[i].base_address;
3204 length -= offset;
3205 }
3206
3207 if (image.sections[i].base_address + buf_cnt > max_address)
3208 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3209
3210 retval = target_write_buffer(target,
3211 image.sections[i].base_address + offset, length, buffer + offset);
3212 if (retval != ERROR_OK) {
3213 free(buffer);
3214 break;
3215 }
3216 image_size += length;
3217 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3218 (unsigned int)length,
3219 image.sections[i].base_address + offset);
3220 }
3221
3222 free(buffer);
3223 }
3224
3225 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3226 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3227 "in %fs (%0.3f KiB/s)", image_size,
3228 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3229 }
3230
3231 image_close(&image);
3232
3233 return retval;
3234
3235 }
3236
3237 COMMAND_HANDLER(handle_dump_image_command)
3238 {
3239 struct fileio *fileio;
3240 uint8_t *buffer;
3241 int retval, retvaltemp;
3242 uint32_t address, size;
3243 struct duration bench;
3244 struct target *target = get_current_target(CMD_CTX);
3245
3246 if (CMD_ARGC != 3)
3247 return ERROR_COMMAND_SYNTAX_ERROR;
3248
3249 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3250 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3251
3252 uint32_t buf_size = (size > 4096) ? 4096 : size;
3253 buffer = malloc(buf_size);
3254 if (!buffer)
3255 return ERROR_FAIL;
3256
3257 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3258 if (retval != ERROR_OK) {
3259 free(buffer);
3260 return retval;
3261 }
3262
3263 duration_start(&bench);
3264
3265 while (size > 0) {
3266 size_t size_written;
3267 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3268 retval = target_read_buffer(target, address, this_run_size, buffer);
3269 if (retval != ERROR_OK)
3270 break;
3271
3272 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3273 if (retval != ERROR_OK)
3274 break;
3275
3276 size -= this_run_size;
3277 address += this_run_size;
3278 }
3279
3280 free(buffer);
3281
3282 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3283 size_t filesize;
3284 retval = fileio_size(fileio, &filesize);
3285 if (retval != ERROR_OK)
3286 return retval;
3287 command_print(CMD_CTX,
3288 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3289 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3290 }
3291
3292 retvaltemp = fileio_close(fileio);
3293 if (retvaltemp != ERROR_OK)
3294 return retvaltemp;
3295
3296 return retval;
3297 }
3298
3299 enum verify_mode {
3300 IMAGE_TEST = 0,
3301 IMAGE_VERIFY = 1,
3302 IMAGE_CHECKSUM_ONLY = 2
3303 };
3304
3305 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3306 {
3307 uint8_t *buffer;
3308 size_t buf_cnt;
3309 uint32_t image_size;
3310 int i;
3311 int retval;
3312 uint32_t checksum = 0;
3313 uint32_t mem_checksum = 0;
3314
3315 struct image image;
3316
3317 struct target *target = get_current_target(CMD_CTX);
3318
3319 if (CMD_ARGC < 1)
3320 return ERROR_COMMAND_SYNTAX_ERROR;
3321
3322 if (!target) {
3323 LOG_ERROR("no target selected");
3324 return ERROR_FAIL;
3325 }
3326
3327 struct duration bench;
3328 duration_start(&bench);
3329
3330 if (CMD_ARGC >= 2) {
3331 uint32_t addr;
3332 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3333 image.base_address = addr;
3334 image.base_address_set = 1;
3335 } else {
3336 image.base_address_set = 0;
3337 image.base_address = 0x0;
3338 }
3339
3340 image.start_address_set = 0;
3341
3342 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3343 if (retval != ERROR_OK)
3344 return retval;
3345
3346 image_size = 0x0;
3347 int diffs = 0;
3348 retval = ERROR_OK;
3349 for (i = 0; i < image.num_sections; i++) {
3350 buffer = malloc(image.sections[i].size);
3351 if (buffer == NULL) {
3352 command_print(CMD_CTX,
3353 "error allocating buffer for section (%d bytes)",
3354 (int)(image.sections[i].size));
3355 break;
3356 }
3357 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3358 if (retval != ERROR_OK) {
3359 free(buffer);
3360 break;
3361 }
3362
3363 if (verify >= IMAGE_VERIFY) {
3364 /* calculate checksum of image */
3365 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3366 if (retval != ERROR_OK) {
3367 free(buffer);
3368 break;
3369 }
3370
3371 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3372 if (retval != ERROR_OK) {
3373 free(buffer);
3374 break;
3375 }
3376 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3377 LOG_ERROR("checksum mismatch");
3378 free(buffer);
3379 retval = ERROR_FAIL;
3380 goto done;
3381 }
3382 if (checksum != mem_checksum) {
3383 /* failed crc checksum, fall back to a binary compare */
3384 uint8_t *data;
3385
3386 if (diffs == 0)
3387 LOG_ERROR("checksum mismatch - attempting binary compare");
3388
3389 data = malloc(buf_cnt);
3390
3391 /* Can we use 32bit word accesses? */
3392 int size = 1;
3393 int count = buf_cnt;
3394 if ((count % 4) == 0) {
3395 size *= 4;
3396 count /= 4;
3397 }
3398 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3399 if (retval == ERROR_OK) {
3400 uint32_t t;
3401 for (t = 0; t < buf_cnt; t++) {
3402 if (data[t] != buffer[t]) {
3403 command_print(CMD_CTX,
3404 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3405 diffs,
3406 (unsigned)(t + image.sections[i].base_address),
3407 data[t],
3408 buffer[t]);
3409 if (diffs++ >= 127) {
3410 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3411 free(data);
3412 free(buffer);
3413 goto done;
3414 }
3415 }
3416 keep_alive();
3417 }
3418 }
3419 free(data);
3420 }
3421 } else {
3422 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3423 image.sections[i].base_address,
3424 buf_cnt);
3425 }
3426
3427 free(buffer);
3428 image_size += buf_cnt;
3429 }
3430 if (diffs > 0)
3431 command_print(CMD_CTX, "No more differences found.");
3432 done:
3433 if (diffs > 0)
3434 retval = ERROR_FAIL;
3435 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3436 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3437 "in %fs (%0.3f KiB/s)", image_size,
3438 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3439 }
3440
3441 image_close(&image);
3442
3443 return retval;
3444 }
3445
3446 COMMAND_HANDLER(handle_verify_image_checksum_command)
3447 {
3448 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3449 }
3450
3451 COMMAND_HANDLER(handle_verify_image_command)
3452 {
3453 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3454 }
3455
3456 COMMAND_HANDLER(handle_test_image_command)
3457 {
3458 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3459 }
3460
3461 static int handle_bp_command_list(struct command_context *cmd_ctx)
3462 {
3463 struct target *target = get_current_target(cmd_ctx);
3464 struct breakpoint *breakpoint = target->breakpoints;
3465 while (breakpoint) {
3466 if (breakpoint->type == BKPT_SOFT) {
3467 char *buf = buf_to_str(breakpoint->orig_instr,
3468 breakpoint->length, 16);
3469 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3470 breakpoint->address,
3471 breakpoint->length,
3472 breakpoint->set, buf);
3473 free(buf);
3474 } else {
3475 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3476 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3477 breakpoint->asid,
3478 breakpoint->length, breakpoint->set);
3479 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3480 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3481 breakpoint->address,
3482 breakpoint->length, breakpoint->set);
3483 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3484 breakpoint->asid);
3485 } else
3486 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3487 breakpoint->address,
3488 breakpoint->length, breakpoint->set);
3489 }
3490
3491 breakpoint = breakpoint->next;
3492 }
3493 return ERROR_OK;
3494 }
3495
3496 static int handle_bp_command_set(struct command_context *cmd_ctx,
3497 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3498 {
3499 struct target *target = get_current_target(cmd_ctx);
3500 int retval;
3501
3502 if (asid == 0) {
3503 retval = breakpoint_add(target, addr, length, hw);
3504 if (ERROR_OK == retval)
3505 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3506 else {
3507 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3508 return retval;
3509 }
3510 } else if (addr == 0) {
3511 if (target->type->add_context_breakpoint == NULL) {
3512 LOG_WARNING("Context breakpoint not available");
3513 return ERROR_OK;
3514 }
3515 retval = context_breakpoint_add(target, asid, length, hw);
3516 if (ERROR_OK == retval)
3517 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3518 else {
3519 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3520 return retval;
3521 }
3522 } else {
3523 if (target->type->add_hybrid_breakpoint == NULL) {
3524 LOG_WARNING("Hybrid breakpoint not available");
3525 return ERROR_OK;
3526 }
3527 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3528 if (ERROR_OK == retval)
3529 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3530 else {
3531 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3532 return retval;
3533 }
3534 }
3535 return ERROR_OK;
3536 }
3537
3538 COMMAND_HANDLER(handle_bp_command)
3539 {
3540 uint32_t addr;
3541 uint32_t asid;
3542 uint32_t length;
3543 int hw = BKPT_SOFT;
3544
3545 switch (CMD_ARGC) {
3546 case 0:
3547 return handle_bp_command_list(CMD_CTX);
3548
3549 case 2:
3550 asid = 0;
3551 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3552 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3553 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3554
3555 case 3:
3556 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3557 hw = BKPT_HARD;
3558 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3559
3560 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3561
3562 asid = 0;
3563 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3564 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3565 hw = BKPT_HARD;
3566 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3567 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3568 addr = 0;
3569 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3570 }
3571
3572 case 4:
3573 hw = BKPT_HARD;
3574 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3575 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3576 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3577 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3578
3579 default:
3580 return ERROR_COMMAND_SYNTAX_ERROR;
3581 }
3582 }
3583
3584 COMMAND_HANDLER(handle_rbp_command)
3585 {
3586 if (CMD_ARGC != 1)
3587 return ERROR_COMMAND_SYNTAX_ERROR;
3588
3589 uint32_t addr;
3590 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3591
3592 struct target *target = get_current_target(CMD_CTX);
3593 breakpoint_remove(target, addr);
3594
3595 return ERROR_OK;
3596 }
3597
3598 COMMAND_HANDLER(handle_wp_command)
3599 {
3600 struct target *target = get_current_target(CMD_CTX);
3601
3602 if (CMD_ARGC == 0) {
3603 struct watchpoint *watchpoint = target->watchpoints;
3604
3605 while (watchpoint) {
3606 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3607 ", len: 0x%8.8" PRIx32
3608 ", r/w/a: %i, value: 0x%8.8" PRIx32
3609 ", mask: 0x%8.8" PRIx32,
3610 watchpoint->address,
3611 watchpoint->length,
3612 (int)watchpoint->rw,
3613 watchpoint->value,
3614 watchpoint->mask);
3615 watchpoint = watchpoint->next;
3616 }
3617 return ERROR_OK;
3618 }
3619
3620 enum watchpoint_rw type = WPT_ACCESS;
3621 uint32_t addr = 0;
3622 uint32_t length = 0;
3623 uint32_t data_value = 0x0;
3624 uint32_t data_mask = 0xffffffff;
3625
3626 switch (CMD_ARGC) {
3627 case 5:
3628 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3629 /* fall through */
3630 case 4:
3631 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3632 /* fall through */
3633 case 3:
3634 switch (CMD_ARGV[2][0]) {
3635 case 'r':
3636 type = WPT_READ;
3637 break;
3638 case 'w':
3639 type = WPT_WRITE;
3640 break;
3641 case 'a':
3642 type = WPT_ACCESS;
3643 break;
3644 default:
3645 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3646 return ERROR_COMMAND_SYNTAX_ERROR;
3647 }
3648 /* fall through */
3649 case 2:
3650 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3651 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3652 break;
3653
3654 default:
3655 return ERROR_COMMAND_SYNTAX_ERROR;
3656 }
3657
3658 int retval =