7e3975695404dfc5cb5e3b7587fb29010abe5639
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
68
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type arm11_target;
84 extern struct target_type mips_m4k_target;
85 extern struct target_type avr_target;
86 extern struct target_type dsp563xx_target;
87 extern struct target_type dsp5680xx_target;
88 extern struct target_type testee_target;
89 extern struct target_type avr32_ap7k_target;
90 extern struct target_type hla_target;
91
92 static struct target_type *target_types[] = {
93 &arm7tdmi_target,
94 &arm9tdmi_target,
95 &arm920t_target,
96 &arm720t_target,
97 &arm966e_target,
98 &arm946e_target,
99 &arm926ejs_target,
100 &fa526_target,
101 &feroceon_target,
102 &dragonite_target,
103 &xscale_target,
104 &cortexm3_target,
105 &cortexa8_target,
106 &arm11_target,
107 &mips_m4k_target,
108 &avr_target,
109 &dsp563xx_target,
110 &dsp5680xx_target,
111 &testee_target,
112 &avr32_ap7k_target,
113 &hla_target,
114 NULL,
115 };
116
117 struct target *all_targets;
118 static struct target_event_callback *target_event_callbacks;
119 static struct target_timer_callback *target_timer_callbacks;
120 static const int polling_interval = 100;
121
122 static const Jim_Nvp nvp_assert[] = {
123 { .name = "assert", NVP_ASSERT },
124 { .name = "deassert", NVP_DEASSERT },
125 { .name = "T", NVP_ASSERT },
126 { .name = "F", NVP_DEASSERT },
127 { .name = "t", NVP_ASSERT },
128 { .name = "f", NVP_DEASSERT },
129 { .name = NULL, .value = -1 }
130 };
131
132 static const Jim_Nvp nvp_error_target[] = {
133 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
134 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
135 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
136 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
137 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
138 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
139 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
140 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
141 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
142 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
143 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
144 { .value = -1, .name = NULL }
145 };
146
147 static const char *target_strerror_safe(int err)
148 {
149 const Jim_Nvp *n;
150
151 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
152 if (n->name == NULL)
153 return "unknown";
154 else
155 return n->name;
156 }
157
158 static const Jim_Nvp nvp_target_event[] = {
159
160 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
161 { .value = TARGET_EVENT_HALTED, .name = "halted" },
162 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
163 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
164 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
165
166 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
167 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
168
169 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
170 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
171 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
172 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
173 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
174 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
176 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
177 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
178 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
179 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
180 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
181
182 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
193
194 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
196
197 { .name = NULL, .value = -1 }
198 };
199
200 static const Jim_Nvp nvp_target_state[] = {
201 { .name = "unknown", .value = TARGET_UNKNOWN },
202 { .name = "running", .value = TARGET_RUNNING },
203 { .name = "halted", .value = TARGET_HALTED },
204 { .name = "reset", .value = TARGET_RESET },
205 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
206 { .name = NULL, .value = -1 },
207 };
208
209 static const Jim_Nvp nvp_target_debug_reason[] = {
210 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
211 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
212 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
213 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
214 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
215 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
216 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
217 { .name = NULL, .value = -1 },
218 };
219
220 static const Jim_Nvp nvp_target_endian[] = {
221 { .name = "big", .value = TARGET_BIG_ENDIAN },
222 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
223 { .name = "be", .value = TARGET_BIG_ENDIAN },
224 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
225 { .name = NULL, .value = -1 },
226 };
227
228 static const Jim_Nvp nvp_reset_modes[] = {
229 { .name = "unknown", .value = RESET_UNKNOWN },
230 { .name = "run" , .value = RESET_RUN },
231 { .name = "halt" , .value = RESET_HALT },
232 { .name = "init" , .value = RESET_INIT },
233 { .name = NULL , .value = -1 },
234 };
235
236 const char *debug_reason_name(struct target *t)
237 {
238 const char *cp;
239
240 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
241 t->debug_reason)->name;
242 if (!cp) {
243 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
244 cp = "(*BUG*unknown*BUG*)";
245 }
246 return cp;
247 }
248
249 const char *target_state_name(struct target *t)
250 {
251 const char *cp;
252 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
253 if (!cp) {
254 LOG_ERROR("Invalid target state: %d", (int)(t->state));
255 cp = "(*BUG*unknown*BUG*)";
256 }
257 return cp;
258 }
259
260 /* determine the number of the new target */
261 static int new_target_number(void)
262 {
263 struct target *t;
264 int x;
265
266 /* number is 0 based */
267 x = -1;
268 t = all_targets;
269 while (t) {
270 if (x < t->target_number)
271 x = t->target_number;
272 t = t->next;
273 }
274 return x + 1;
275 }
276
277 /* read a uint32_t from a buffer in target memory endianness */
278 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
279 {
280 if (target->endianness == TARGET_LITTLE_ENDIAN)
281 return le_to_h_u32(buffer);
282 else
283 return be_to_h_u32(buffer);
284 }
285
286 /* read a uint24_t from a buffer in target memory endianness */
287 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
288 {
289 if (target->endianness == TARGET_LITTLE_ENDIAN)
290 return le_to_h_u24(buffer);
291 else
292 return be_to_h_u24(buffer);
293 }
294
295 /* read a uint16_t from a buffer in target memory endianness */
296 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
297 {
298 if (target->endianness == TARGET_LITTLE_ENDIAN)
299 return le_to_h_u16(buffer);
300 else
301 return be_to_h_u16(buffer);
302 }
303
304 /* read a uint8_t from a buffer in target memory endianness */
305 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
306 {
307 return *buffer & 0x0ff;
308 }
309
310 /* write a uint32_t to a buffer in target memory endianness */
311 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
312 {
313 if (target->endianness == TARGET_LITTLE_ENDIAN)
314 h_u32_to_le(buffer, value);
315 else
316 h_u32_to_be(buffer, value);
317 }
318
319 /* write a uint24_t to a buffer in target memory endianness */
320 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
321 {
322 if (target->endianness == TARGET_LITTLE_ENDIAN)
323 h_u24_to_le(buffer, value);
324 else
325 h_u24_to_be(buffer, value);
326 }
327
328 /* write a uint16_t to a buffer in target memory endianness */
329 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
330 {
331 if (target->endianness == TARGET_LITTLE_ENDIAN)
332 h_u16_to_le(buffer, value);
333 else
334 h_u16_to_be(buffer, value);
335 }
336
337 /* write a uint8_t to a buffer in target memory endianness */
338 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
339 {
340 *buffer = value;
341 }
342
343 /* write a uint32_t array to a buffer in target memory endianness */
344 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
345 {
346 uint32_t i;
347 for (i = 0; i < count; i++)
348 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
349 }
350
351 /* write a uint16_t array to a buffer in target memory endianness */
352 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
353 {
354 uint32_t i;
355 for (i = 0; i < count; i++)
356 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
357 }
358
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
361 {
362 uint32_t i;
363 for (i = 0; i < count; i++)
364 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
365 }
366
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
369 {
370 uint32_t i;
371 for (i = 0; i < count; i++)
372 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
373 }
374
375 /* return a pointer to a configured target; id is name or number */
376 struct target *get_target(const char *id)
377 {
378 struct target *target;
379
380 /* try as tcltarget name */
381 for (target = all_targets; target; target = target->next) {
382 if (target_name(target) == NULL)
383 continue;
384 if (strcmp(id, target_name(target)) == 0)
385 return target;
386 }
387
388 /* It's OK to remove this fallback sometime after August 2010 or so */
389
390 /* no match, try as number */
391 unsigned num;
392 if (parse_uint(id, &num) != ERROR_OK)
393 return NULL;
394
395 for (target = all_targets; target; target = target->next) {
396 if (target->target_number == (int)num) {
397 LOG_WARNING("use '%s' as target identifier, not '%u'",
398 target_name(target), num);
399 return target;
400 }
401 }
402
403 return NULL;
404 }
405
406 /* returns a pointer to the n-th configured target */
407 static struct target *get_target_by_num(int num)
408 {
409 struct target *target = all_targets;
410
411 while (target) {
412 if (target->target_number == num)
413 return target;
414 target = target->next;
415 }
416
417 return NULL;
418 }
419
420 struct target *get_current_target(struct command_context *cmd_ctx)
421 {
422 struct target *target = get_target_by_num(cmd_ctx->current_target);
423
424 if (target == NULL) {
425 LOG_ERROR("BUG: current_target out of bounds");
426 exit(-1);
427 }
428
429 return target;
430 }
431
432 int target_poll(struct target *target)
433 {
434 int retval;
435
436 /* We can't poll until after examine */
437 if (!target_was_examined(target)) {
438 /* Fail silently lest we pollute the log */
439 return ERROR_FAIL;
440 }
441
442 retval = target->type->poll(target);
443 if (retval != ERROR_OK)
444 return retval;
445
446 if (target->halt_issued) {
447 if (target->state == TARGET_HALTED)
448 target->halt_issued = false;
449 else {
450 long long t = timeval_ms() - target->halt_issued_time;
451 if (t > 1000) {
452 target->halt_issued = false;
453 LOG_INFO("Halt timed out, wake up GDB.");
454 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
455 }
456 }
457 }
458
459 return ERROR_OK;
460 }
461
462 int target_halt(struct target *target)
463 {
464 int retval;
465 /* We can't poll until after examine */
466 if (!target_was_examined(target)) {
467 LOG_ERROR("Target not examined yet");
468 return ERROR_FAIL;
469 }
470
471 retval = target->type->halt(target);
472 if (retval != ERROR_OK)
473 return retval;
474
475 target->halt_issued = true;
476 target->halt_issued_time = timeval_ms();
477
478 return ERROR_OK;
479 }
480
481 /**
482 * Make the target (re)start executing using its saved execution
483 * context (possibly with some modifications).
484 *
485 * @param target Which target should start executing.
486 * @param current True to use the target's saved program counter instead
487 * of the address parameter
488 * @param address Optionally used as the program counter.
489 * @param handle_breakpoints True iff breakpoints at the resumption PC
490 * should be skipped. (For example, maybe execution was stopped by
491 * such a breakpoint, in which case it would be counterprodutive to
492 * let it re-trigger.
493 * @param debug_execution False if all working areas allocated by OpenOCD
494 * should be released and/or restored to their original contents.
495 * (This would for example be true to run some downloaded "helper"
496 * algorithm code, which resides in one such working buffer and uses
497 * another for data storage.)
498 *
499 * @todo Resolve the ambiguity about what the "debug_execution" flag
500 * signifies. For example, Target implementations don't agree on how
501 * it relates to invalidation of the register cache, or to whether
502 * breakpoints and watchpoints should be enabled. (It would seem wrong
503 * to enable breakpoints when running downloaded "helper" algorithms
504 * (debug_execution true), since the breakpoints would be set to match
505 * target firmware being debugged, not the helper algorithm.... and
506 * enabling them could cause such helpers to malfunction (for example,
507 * by overwriting data with a breakpoint instruction. On the other
508 * hand the infrastructure for running such helpers might use this
509 * procedure but rely on hardware breakpoint to detect termination.)
510 */
511 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
512 {
513 int retval;
514
515 /* We can't poll until after examine */
516 if (!target_was_examined(target)) {
517 LOG_ERROR("Target not examined yet");
518 return ERROR_FAIL;
519 }
520
521 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
522
523 /* note that resume *must* be asynchronous. The CPU can halt before
524 * we poll. The CPU can even halt at the current PC as a result of
525 * a software breakpoint being inserted by (a bug?) the application.
526 */
527 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
528 if (retval != ERROR_OK)
529 return retval;
530
531 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
532
533 return retval;
534 }
535
536 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
537 {
538 char buf[100];
539 int retval;
540 Jim_Nvp *n;
541 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
542 if (n->name == NULL) {
543 LOG_ERROR("invalid reset mode");
544 return ERROR_FAIL;
545 }
546
547 /* disable polling during reset to make reset event scripts
548 * more predictable, i.e. dr/irscan & pathmove in events will
549 * not have JTAG operations injected into the middle of a sequence.
550 */
551 bool save_poll = jtag_poll_get_enabled();
552
553 jtag_poll_set_enabled(false);
554
555 sprintf(buf, "ocd_process_reset %s", n->name);
556 retval = Jim_Eval(cmd_ctx->interp, buf);
557
558 jtag_poll_set_enabled(save_poll);
559
560 if (retval != JIM_OK) {
561 Jim_MakeErrorMessage(cmd_ctx->interp);
562 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
563 return ERROR_FAIL;
564 }
565
566 /* We want any events to be processed before the prompt */
567 retval = target_call_timer_callbacks_now();
568
569 struct target *target;
570 for (target = all_targets; target; target = target->next)
571 target->type->check_reset(target);
572
573 return retval;
574 }
575
576 static int identity_virt2phys(struct target *target,
577 uint32_t virtual, uint32_t *physical)
578 {
579 *physical = virtual;
580 return ERROR_OK;
581 }
582
583 static int no_mmu(struct target *target, int *enabled)
584 {
585 *enabled = 0;
586 return ERROR_OK;
587 }
588
589 static int default_examine(struct target *target)
590 {
591 target_set_examined(target);
592 return ERROR_OK;
593 }
594
595 /* no check by default */
596 static int default_check_reset(struct target *target)
597 {
598 return ERROR_OK;
599 }
600
601 int target_examine_one(struct target *target)
602 {
603 return target->type->examine(target);
604 }
605
606 static int jtag_enable_callback(enum jtag_event event, void *priv)
607 {
608 struct target *target = priv;
609
610 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
611 return ERROR_OK;
612
613 jtag_unregister_event_callback(jtag_enable_callback, target);
614
615 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
616
617 int retval = target_examine_one(target);
618 if (retval != ERROR_OK)
619 return retval;
620
621 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
622
623 return retval;
624 }
625
626 /* Targets that correctly implement init + examine, i.e.
627 * no communication with target during init:
628 *
629 * XScale
630 */
631 int target_examine(void)
632 {
633 int retval = ERROR_OK;
634 struct target *target;
635
636 for (target = all_targets; target; target = target->next) {
637 /* defer examination, but don't skip it */
638 if (!target->tap->enabled) {
639 jtag_register_event_callback(jtag_enable_callback,
640 target);
641 continue;
642 }
643
644 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
645
646 retval = target_examine_one(target);
647 if (retval != ERROR_OK)
648 return retval;
649
650 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
651 }
652 return retval;
653 }
654
655 const char *target_type_name(struct target *target)
656 {
657 return target->type->name;
658 }
659
660 static int target_write_memory_imp(struct target *target, uint32_t address,
661 uint32_t size, uint32_t count, const uint8_t *buffer)
662 {
663 if (!target_was_examined(target)) {
664 LOG_ERROR("Target not examined yet");
665 return ERROR_FAIL;
666 }
667 return target->type->write_memory_imp(target, address, size, count, buffer);
668 }
669
670 static int target_read_memory_imp(struct target *target, uint32_t address,
671 uint32_t size, uint32_t count, uint8_t *buffer)
672 {
673 if (!target_was_examined(target)) {
674 LOG_ERROR("Target not examined yet");
675 return ERROR_FAIL;
676 }
677 return target->type->read_memory_imp(target, address, size, count, buffer);
678 }
679
680 static int target_soft_reset_halt(struct target *target)
681 {
682 if (!target_was_examined(target)) {
683 LOG_ERROR("Target not examined yet");
684 return ERROR_FAIL;
685 }
686 if (!target->type->soft_reset_halt) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target));
689 return ERROR_FAIL;
690 }
691 return target->type->soft_reset_halt(target);
692 }
693
694 /**
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
700 * algorithm.
701 *
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
704 */
705 int target_run_algorithm(struct target *target,
706 int num_mem_params, struct mem_param *mem_params,
707 int num_reg_params, struct reg_param *reg_param,
708 uint32_t entry_point, uint32_t exit_point,
709 int timeout_ms, void *arch_info)
710 {
711 int retval = ERROR_FAIL;
712
713 if (!target_was_examined(target)) {
714 LOG_ERROR("Target not examined yet");
715 goto done;
716 }
717 if (!target->type->run_algorithm) {
718 LOG_ERROR("Target type '%s' does not support %s",
719 target_type_name(target), __func__);
720 goto done;
721 }
722
723 target->running_alg = true;
724 retval = target->type->run_algorithm(target,
725 num_mem_params, mem_params,
726 num_reg_params, reg_param,
727 entry_point, exit_point, timeout_ms, arch_info);
728 target->running_alg = false;
729
730 done:
731 return retval;
732 }
733
734 /**
735 * Downloads a target-specific native code algorithm to the target,
736 * executes and leaves it running.
737 *
738 * @param target used to run the algorithm
739 * @param arch_info target-specific description of the algorithm.
740 */
741 int target_start_algorithm(struct target *target,
742 int num_mem_params, struct mem_param *mem_params,
743 int num_reg_params, struct reg_param *reg_params,
744 uint32_t entry_point, uint32_t exit_point,
745 void *arch_info)
746 {
747 int retval = ERROR_FAIL;
748
749 if (!target_was_examined(target)) {
750 LOG_ERROR("Target not examined yet");
751 goto done;
752 }
753 if (!target->type->start_algorithm) {
754 LOG_ERROR("Target type '%s' does not support %s",
755 target_type_name(target), __func__);
756 goto done;
757 }
758 if (target->running_alg) {
759 LOG_ERROR("Target is already running an algorithm");
760 goto done;
761 }
762
763 target->running_alg = true;
764 retval = target->type->start_algorithm(target,
765 num_mem_params, mem_params,
766 num_reg_params, reg_params,
767 entry_point, exit_point, arch_info);
768
769 done:
770 return retval;
771 }
772
773 /**
774 * Waits for an algorithm started with target_start_algorithm() to complete.
775 *
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
778 */
779 int target_wait_algorithm(struct target *target,
780 int num_mem_params, struct mem_param *mem_params,
781 int num_reg_params, struct reg_param *reg_params,
782 uint32_t exit_point, int timeout_ms,
783 void *arch_info)
784 {
785 int retval = ERROR_FAIL;
786
787 if (!target->type->wait_algorithm) {
788 LOG_ERROR("Target type '%s' does not support %s",
789 target_type_name(target), __func__);
790 goto done;
791 }
792 if (!target->running_alg) {
793 LOG_ERROR("Target is not running an algorithm");
794 goto done;
795 }
796
797 retval = target->type->wait_algorithm(target,
798 num_mem_params, mem_params,
799 num_reg_params, reg_params,
800 exit_point, timeout_ms, arch_info);
801 if (retval != ERROR_TARGET_TIMEOUT)
802 target->running_alg = false;
803
804 done:
805 return retval;
806 }
807
808 /**
809 * Executes a target-specific native code algorithm in the target.
810 * It differs from target_run_algorithm in that the algorithm is asynchronous.
811 * Because of this it requires an compliant algorithm:
812 * see contrib/loaders/flash/stm32f1x.S for example.
813 *
814 * @param target used to run the algorithm
815 */
816
817 int target_run_flash_async_algorithm(struct target *target,
818 uint8_t *buffer, uint32_t count, int block_size,
819 int num_mem_params, struct mem_param *mem_params,
820 int num_reg_params, struct reg_param *reg_params,
821 uint32_t buffer_start, uint32_t buffer_size,
822 uint32_t entry_point, uint32_t exit_point, void *arch_info)
823 {
824 int retval;
825 int timeout = 0;
826
827 /* Set up working area. First word is write pointer, second word is read pointer,
828 * rest is fifo data area. */
829 uint32_t wp_addr = buffer_start;
830 uint32_t rp_addr = buffer_start + 4;
831 uint32_t fifo_start_addr = buffer_start + 8;
832 uint32_t fifo_end_addr = buffer_start + buffer_size;
833
834 uint32_t wp = fifo_start_addr;
835 uint32_t rp = fifo_start_addr;
836
837 /* validate block_size is 2^n */
838 assert(!block_size || !(block_size & (block_size - 1)));
839
840 retval = target_write_u32(target, wp_addr, wp);
841 if (retval != ERROR_OK)
842 return retval;
843 retval = target_write_u32(target, rp_addr, rp);
844 if (retval != ERROR_OK)
845 return retval;
846
847 /* Start up algorithm on target and let it idle while writing the first chunk */
848 retval = target_start_algorithm(target, num_mem_params, mem_params,
849 num_reg_params, reg_params,
850 entry_point,
851 exit_point,
852 arch_info);
853
854 if (retval != ERROR_OK) {
855 LOG_ERROR("error starting target flash write algorithm");
856 return retval;
857 }
858
859 while (count > 0) {
860
861 retval = target_read_u32(target, rp_addr, &rp);
862 if (retval != ERROR_OK) {
863 LOG_ERROR("failed to get read pointer");
864 break;
865 }
866
867 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
868
869 if (rp == 0) {
870 LOG_ERROR("flash write algorithm aborted by target");
871 retval = ERROR_FLASH_OPERATION_FAILED;
872 break;
873 }
874
875 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
876 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
877 break;
878 }
879
880 /* Count the number of bytes available in the fifo without
881 * crossing the wrap around. Make sure to not fill it completely,
882 * because that would make wp == rp and that's the empty condition. */
883 uint32_t thisrun_bytes;
884 if (rp > wp)
885 thisrun_bytes = rp - wp - block_size;
886 else if (rp > fifo_start_addr)
887 thisrun_bytes = fifo_end_addr - wp;
888 else
889 thisrun_bytes = fifo_end_addr - wp - block_size;
890
891 if (thisrun_bytes == 0) {
892 /* Throttle polling a bit if transfer is (much) faster than flash
893 * programming. The exact delay shouldn't matter as long as it's
894 * less than buffer size / flash speed. This is very unlikely to
895 * run when using high latency connections such as USB. */
896 alive_sleep(10);
897
898 /* to stop an infinite loop on some targets check and increment a timeout
899 * this issue was observed on a stellaris using the new ICDI interface */
900 if (timeout++ >= 500) {
901 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
902 return ERROR_FLASH_OPERATION_FAILED;
903 }
904 continue;
905 }
906
907 /* reset our timeout */
908 timeout = 0;
909
910 /* Limit to the amount of data we actually want to write */
911 if (thisrun_bytes > count * block_size)
912 thisrun_bytes = count * block_size;
913
914 /* Write data to fifo */
915 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
916 if (retval != ERROR_OK)
917 break;
918
919 /* Update counters and wrap write pointer */
920 buffer += thisrun_bytes;
921 count -= thisrun_bytes / block_size;
922 wp += thisrun_bytes;
923 if (wp >= fifo_end_addr)
924 wp = fifo_start_addr;
925
926 /* Store updated write pointer to target */
927 retval = target_write_u32(target, wp_addr, wp);
928 if (retval != ERROR_OK)
929 break;
930 }
931
932 if (retval != ERROR_OK) {
933 /* abort flash write algorithm on target */
934 target_write_u32(target, wp_addr, 0);
935 }
936
937 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
938 num_reg_params, reg_params,
939 exit_point,
940 10000,
941 arch_info);
942
943 if (retval2 != ERROR_OK) {
944 LOG_ERROR("error waiting for target flash write algorithm");
945 retval = retval2;
946 }
947
948 return retval;
949 }
950
951 int target_read_memory(struct target *target,
952 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
953 {
954 return target->type->read_memory(target, address, size, count, buffer);
955 }
956
957 static int target_read_phys_memory(struct target *target,
958 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
959 {
960 return target->type->read_phys_memory(target, address, size, count, buffer);
961 }
962
963 int target_write_memory(struct target *target,
964 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
965 {
966 return target->type->write_memory(target, address, size, count, buffer);
967 }
968
969 static int target_write_phys_memory(struct target *target,
970 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
971 {
972 return target->type->write_phys_memory(target, address, size, count, buffer);
973 }
974
975 int target_bulk_write_memory(struct target *target,
976 uint32_t address, uint32_t count, const uint8_t *buffer)
977 {
978 return target->type->bulk_write_memory(target, address, count, buffer);
979 }
980
981 int target_add_breakpoint(struct target *target,
982 struct breakpoint *breakpoint)
983 {
984 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
985 LOG_WARNING("target %s is not halted", target_name(target));
986 return ERROR_TARGET_NOT_HALTED;
987 }
988 return target->type->add_breakpoint(target, breakpoint);
989 }
990
991 int target_add_context_breakpoint(struct target *target,
992 struct breakpoint *breakpoint)
993 {
994 if (target->state != TARGET_HALTED) {
995 LOG_WARNING("target %s is not halted", target_name(target));
996 return ERROR_TARGET_NOT_HALTED;
997 }
998 return target->type->add_context_breakpoint(target, breakpoint);
999 }
1000
1001 int target_add_hybrid_breakpoint(struct target *target,
1002 struct breakpoint *breakpoint)
1003 {
1004 if (target->state != TARGET_HALTED) {
1005 LOG_WARNING("target %s is not halted", target_name(target));
1006 return ERROR_TARGET_NOT_HALTED;
1007 }
1008 return target->type->add_hybrid_breakpoint(target, breakpoint);
1009 }
1010
1011 int target_remove_breakpoint(struct target *target,
1012 struct breakpoint *breakpoint)
1013 {
1014 return target->type->remove_breakpoint(target, breakpoint);
1015 }
1016
1017 int target_add_watchpoint(struct target *target,
1018 struct watchpoint *watchpoint)
1019 {
1020 if (target->state != TARGET_HALTED) {
1021 LOG_WARNING("target %s is not halted", target_name(target));
1022 return ERROR_TARGET_NOT_HALTED;
1023 }
1024 return target->type->add_watchpoint(target, watchpoint);
1025 }
1026 int target_remove_watchpoint(struct target *target,
1027 struct watchpoint *watchpoint)
1028 {
1029 return target->type->remove_watchpoint(target, watchpoint);
1030 }
1031
1032 int target_get_gdb_reg_list(struct target *target,
1033 struct reg **reg_list[], int *reg_list_size)
1034 {
1035 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1036 }
1037 int target_step(struct target *target,
1038 int current, uint32_t address, int handle_breakpoints)
1039 {
1040 return target->type->step(target, current, address, handle_breakpoints);
1041 }
1042
1043 /**
1044 * Reset the @c examined flag for the given target.
1045 * Pure paranoia -- targets are zeroed on allocation.
1046 */
1047 static void target_reset_examined(struct target *target)
1048 {
1049 target->examined = false;
1050 }
1051
1052 static int err_read_phys_memory(struct target *target, uint32_t address,
1053 uint32_t size, uint32_t count, uint8_t *buffer)
1054 {
1055 LOG_ERROR("Not implemented: %s", __func__);
1056 return ERROR_FAIL;
1057 }
1058
1059 static int err_write_phys_memory(struct target *target, uint32_t address,
1060 uint32_t size, uint32_t count, const uint8_t *buffer)
1061 {
1062 LOG_ERROR("Not implemented: %s", __func__);
1063 return ERROR_FAIL;
1064 }
1065
1066 static int handle_target(void *priv);
1067
1068 static int target_init_one(struct command_context *cmd_ctx,
1069 struct target *target)
1070 {
1071 target_reset_examined(target);
1072
1073 struct target_type *type = target->type;
1074 if (type->examine == NULL)
1075 type->examine = default_examine;
1076
1077 if (type->check_reset == NULL)
1078 type->check_reset = default_check_reset;
1079
1080 assert(type->init_target != NULL);
1081
1082 int retval = type->init_target(cmd_ctx, target);
1083 if (ERROR_OK != retval) {
1084 LOG_ERROR("target '%s' init failed", target_name(target));
1085 return retval;
1086 }
1087
1088 /**
1089 * @todo get rid of those *memory_imp() methods, now that all
1090 * callers are using target_*_memory() accessors ... and make
1091 * sure the "physical" paths handle the same issues.
1092 */
1093 /* a non-invasive way(in terms of patches) to add some code that
1094 * runs before the type->write/read_memory implementation
1095 */
1096 type->write_memory_imp = target->type->write_memory;
1097 type->write_memory = target_write_memory_imp;
1098
1099 type->read_memory_imp = target->type->read_memory;
1100 type->read_memory = target_read_memory_imp;
1101
1102 /* Sanity-check MMU support ... stub in what we must, to help
1103 * implement it in stages, but warn if we need to do so.
1104 */
1105 if (type->mmu) {
1106 if (type->write_phys_memory == NULL) {
1107 LOG_ERROR("type '%s' is missing write_phys_memory",
1108 type->name);
1109 type->write_phys_memory = err_write_phys_memory;
1110 }
1111 if (type->read_phys_memory == NULL) {
1112 LOG_ERROR("type '%s' is missing read_phys_memory",
1113 type->name);
1114 type->read_phys_memory = err_read_phys_memory;
1115 }
1116 if (type->virt2phys == NULL) {
1117 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1118 type->virt2phys = identity_virt2phys;
1119 }
1120 } else {
1121 /* Make sure no-MMU targets all behave the same: make no
1122 * distinction between physical and virtual addresses, and
1123 * ensure that virt2phys() is always an identity mapping.
1124 */
1125 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1126 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1127
1128 type->mmu = no_mmu;
1129 type->write_phys_memory = type->write_memory;
1130 type->read_phys_memory = type->read_memory;
1131 type->virt2phys = identity_virt2phys;
1132 }
1133
1134 if (target->type->read_buffer == NULL)
1135 target->type->read_buffer = target_read_buffer_default;
1136
1137 if (target->type->write_buffer == NULL)
1138 target->type->write_buffer = target_write_buffer_default;
1139
1140 return ERROR_OK;
1141 }
1142
1143 static int target_init(struct command_context *cmd_ctx)
1144 {
1145 struct target *target;
1146 int retval;
1147
1148 for (target = all_targets; target; target = target->next) {
1149 retval = target_init_one(cmd_ctx, target);
1150 if (ERROR_OK != retval)
1151 return retval;
1152 }
1153
1154 if (!all_targets)
1155 return ERROR_OK;
1156
1157 retval = target_register_user_commands(cmd_ctx);
1158 if (ERROR_OK != retval)
1159 return retval;
1160
1161 retval = target_register_timer_callback(&handle_target,
1162 polling_interval, 1, cmd_ctx->interp);
1163 if (ERROR_OK != retval)
1164 return retval;
1165
1166 return ERROR_OK;
1167 }
1168
1169 COMMAND_HANDLER(handle_target_init_command)
1170 {
1171 int retval;
1172
1173 if (CMD_ARGC != 0)
1174 return ERROR_COMMAND_SYNTAX_ERROR;
1175
1176 static bool target_initialized;
1177 if (target_initialized) {
1178 LOG_INFO("'target init' has already been called");
1179 return ERROR_OK;
1180 }
1181 target_initialized = true;
1182
1183 retval = command_run_line(CMD_CTX, "init_targets");
1184 if (ERROR_OK != retval)
1185 return retval;
1186
1187 retval = command_run_line(CMD_CTX, "init_board");
1188 if (ERROR_OK != retval)
1189 return retval;
1190
1191 LOG_DEBUG("Initializing targets...");
1192 return target_init(CMD_CTX);
1193 }
1194
1195 int target_register_event_callback(int (*callback)(struct target *target,
1196 enum target_event event, void *priv), void *priv)
1197 {
1198 struct target_event_callback **callbacks_p = &target_event_callbacks;
1199
1200 if (callback == NULL)
1201 return ERROR_COMMAND_SYNTAX_ERROR;
1202
1203 if (*callbacks_p) {
1204 while ((*callbacks_p)->next)
1205 callbacks_p = &((*callbacks_p)->next);
1206 callbacks_p = &((*callbacks_p)->next);
1207 }
1208
1209 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1210 (*callbacks_p)->callback = callback;
1211 (*callbacks_p)->priv = priv;
1212 (*callbacks_p)->next = NULL;
1213
1214 return ERROR_OK;
1215 }
1216
1217 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1218 {
1219 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1220 struct timeval now;
1221
1222 if (callback == NULL)
1223 return ERROR_COMMAND_SYNTAX_ERROR;
1224
1225 if (*callbacks_p) {
1226 while ((*callbacks_p)->next)
1227 callbacks_p = &((*callbacks_p)->next);
1228 callbacks_p = &((*callbacks_p)->next);
1229 }
1230
1231 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1232 (*callbacks_p)->callback = callback;
1233 (*callbacks_p)->periodic = periodic;
1234 (*callbacks_p)->time_ms = time_ms;
1235
1236 gettimeofday(&now, NULL);
1237 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1238 time_ms -= (time_ms % 1000);
1239 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1240 if ((*callbacks_p)->when.tv_usec > 1000000) {
1241 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1242 (*callbacks_p)->when.tv_sec += 1;
1243 }
1244
1245 (*callbacks_p)->priv = priv;
1246 (*callbacks_p)->next = NULL;
1247
1248 return ERROR_OK;
1249 }
1250
1251 int target_unregister_event_callback(int (*callback)(struct target *target,
1252 enum target_event event, void *priv), void *priv)
1253 {
1254 struct target_event_callback **p = &target_event_callbacks;
1255 struct target_event_callback *c = target_event_callbacks;
1256
1257 if (callback == NULL)
1258 return ERROR_COMMAND_SYNTAX_ERROR;
1259
1260 while (c) {
1261 struct target_event_callback *next = c->next;
1262 if ((c->callback == callback) && (c->priv == priv)) {
1263 *p = next;
1264 free(c);
1265 return ERROR_OK;
1266 } else
1267 p = &(c->next);
1268 c = next;
1269 }
1270
1271 return ERROR_OK;
1272 }
1273
1274 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1275 {
1276 struct target_timer_callback **p = &target_timer_callbacks;
1277 struct target_timer_callback *c = target_timer_callbacks;
1278
1279 if (callback == NULL)
1280 return ERROR_COMMAND_SYNTAX_ERROR;
1281
1282 while (c) {
1283 struct target_timer_callback *next = c->next;
1284 if ((c->callback == callback) && (c->priv == priv)) {
1285 *p = next;
1286 free(c);
1287 return ERROR_OK;
1288 } else
1289 p = &(c->next);
1290 c = next;
1291 }
1292
1293 return ERROR_OK;
1294 }
1295
1296 int target_call_event_callbacks(struct target *target, enum target_event event)
1297 {
1298 struct target_event_callback *callback = target_event_callbacks;
1299 struct target_event_callback *next_callback;
1300
1301 if (event == TARGET_EVENT_HALTED) {
1302 /* execute early halted first */
1303 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1304 }
1305
1306 LOG_DEBUG("target event %i (%s)", event,
1307 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1308
1309 target_handle_event(target, event);
1310
1311 while (callback) {
1312 next_callback = callback->next;
1313 callback->callback(target, event, callback->priv);
1314 callback = next_callback;
1315 }
1316
1317 return ERROR_OK;
1318 }
1319
1320 static int target_timer_callback_periodic_restart(
1321 struct target_timer_callback *cb, struct timeval *now)
1322 {
1323 int time_ms = cb->time_ms;
1324 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1325 time_ms -= (time_ms % 1000);
1326 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1327 if (cb->when.tv_usec > 1000000) {
1328 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1329 cb->when.tv_sec += 1;
1330 }
1331 return ERROR_OK;
1332 }
1333
1334 static int target_call_timer_callback(struct target_timer_callback *cb,
1335 struct timeval *now)
1336 {
1337 cb->callback(cb->priv);
1338
1339 if (cb->periodic)
1340 return target_timer_callback_periodic_restart(cb, now);
1341
1342 return target_unregister_timer_callback(cb->callback, cb->priv);
1343 }
1344
1345 static int target_call_timer_callbacks_check_time(int checktime)
1346 {
1347 keep_alive();
1348
1349 struct timeval now;
1350 gettimeofday(&now, NULL);
1351
1352 struct target_timer_callback *callback = target_timer_callbacks;
1353 while (callback) {
1354 /* cleaning up may unregister and free this callback */
1355 struct target_timer_callback *next_callback = callback->next;
1356
1357 bool call_it = callback->callback &&
1358 ((!checktime && callback->periodic) ||
1359 now.tv_sec > callback->when.tv_sec ||
1360 (now.tv_sec == callback->when.tv_sec &&
1361 now.tv_usec >= callback->when.tv_usec));
1362
1363 if (call_it) {
1364 int retval = target_call_timer_callback(callback, &now);
1365 if (retval != ERROR_OK)
1366 return retval;
1367 }
1368
1369 callback = next_callback;
1370 }
1371
1372 return ERROR_OK;
1373 }
1374
1375 int target_call_timer_callbacks(void)
1376 {
1377 return target_call_timer_callbacks_check_time(1);
1378 }
1379
1380 /* invoke periodic callbacks immediately */
1381 int target_call_timer_callbacks_now(void)
1382 {
1383 return target_call_timer_callbacks_check_time(0);
1384 }
1385
1386 /* Prints the working area layout for debug purposes */
1387 static void print_wa_layout(struct target *target)
1388 {
1389 struct working_area *c = target->working_areas;
1390
1391 while (c) {
1392 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1393 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1394 c->address, c->address + c->size - 1, c->size);
1395 c = c->next;
1396 }
1397 }
1398
1399 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1400 static void target_split_working_area(struct working_area *area, uint32_t size)
1401 {
1402 assert(area->free); /* Shouldn't split an allocated area */
1403 assert(size <= area->size); /* Caller should guarantee this */
1404
1405 /* Split only if not already the right size */
1406 if (size < area->size) {
1407 struct working_area *new_wa = malloc(sizeof(*new_wa));
1408
1409 if (new_wa == NULL)
1410 return;
1411
1412 new_wa->next = area->next;
1413 new_wa->size = area->size - size;
1414 new_wa->address = area->address + size;
1415 new_wa->backup = NULL;
1416 new_wa->user = NULL;
1417 new_wa->free = true;
1418
1419 area->next = new_wa;
1420 area->size = size;
1421
1422 /* If backup memory was allocated to this area, it has the wrong size
1423 * now so free it and it will be reallocated if/when needed */
1424 if (area->backup) {
1425 free(area->backup);
1426 area->backup = NULL;
1427 }
1428 }
1429 }
1430
1431 /* Merge all adjacent free areas into one */
1432 static void target_merge_working_areas(struct target *target)
1433 {
1434 struct working_area *c = target->working_areas;
1435
1436 while (c && c->next) {
1437 assert(c->next->address == c->address + c->size); /* This is an invariant */
1438
1439 /* Find two adjacent free areas */
1440 if (c->free && c->next->free) {
1441 /* Merge the last into the first */
1442 c->size += c->next->size;
1443
1444 /* Remove the last */
1445 struct working_area *to_be_freed = c->next;
1446 c->next = c->next->next;
1447 if (to_be_freed->backup)
1448 free(to_be_freed->backup);
1449 free(to_be_freed);
1450
1451 /* If backup memory was allocated to the remaining area, it's has
1452 * the wrong size now */
1453 if (c->backup) {
1454 free(c->backup);
1455 c->backup = NULL;
1456 }
1457 } else {
1458 c = c->next;
1459 }
1460 }
1461 }
1462
1463 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1464 {
1465 /* Reevaluate working area address based on MMU state*/
1466 if (target->working_areas == NULL) {
1467 int retval;
1468 int enabled;
1469
1470 retval = target->type->mmu(target, &enabled);
1471 if (retval != ERROR_OK)
1472 return retval;
1473
1474 if (!enabled) {
1475 if (target->working_area_phys_spec) {
1476 LOG_DEBUG("MMU disabled, using physical "
1477 "address for working memory 0x%08"PRIx32,
1478 target->working_area_phys);
1479 target->working_area = target->working_area_phys;
1480 } else {
1481 LOG_ERROR("No working memory available. "
1482 "Specify -work-area-phys to target.");
1483 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1484 }
1485 } else {
1486 if (target->working_area_virt_spec) {
1487 LOG_DEBUG("MMU enabled, using virtual "
1488 "address for working memory 0x%08"PRIx32,
1489 target->working_area_virt);
1490 target->working_area = target->working_area_virt;
1491 } else {
1492 LOG_ERROR("No working memory available. "
1493 "Specify -work-area-virt to target.");
1494 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1495 }
1496 }
1497
1498 /* Set up initial working area on first call */
1499 struct working_area *new_wa = malloc(sizeof(*new_wa));
1500 if (new_wa) {
1501 new_wa->next = NULL;
1502 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1503 new_wa->address = target->working_area;
1504 new_wa->backup = NULL;
1505 new_wa->user = NULL;
1506 new_wa->free = true;
1507 }
1508
1509 target->working_areas = new_wa;
1510 }
1511
1512 /* only allocate multiples of 4 byte */
1513 if (size % 4)
1514 size = (size + 3) & (~3UL);
1515
1516 struct working_area *c = target->working_areas;
1517
1518 /* Find the first large enough working area */
1519 while (c) {
1520 if (c->free && c->size >= size)
1521 break;
1522 c = c->next;
1523 }
1524
1525 if (c == NULL)
1526 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1527
1528 /* Split the working area into the requested size */
1529 target_split_working_area(c, size);
1530
1531 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1532
1533 if (target->backup_working_area) {
1534 if (c->backup == NULL) {
1535 c->backup = malloc(c->size);
1536 if (c->backup == NULL)
1537 return ERROR_FAIL;
1538 }
1539
1540 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1541 if (retval != ERROR_OK)
1542 return retval;
1543 }
1544
1545 /* mark as used, and return the new (reused) area */
1546 c->free = false;
1547 *area = c;
1548
1549 /* user pointer */
1550 c->user = area;
1551
1552 print_wa_layout(target);
1553
1554 return ERROR_OK;
1555 }
1556
1557 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1558 {
1559 int retval;
1560
1561 retval = target_alloc_working_area_try(target, size, area);
1562 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1563 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1564 return retval;
1565
1566 }
1567
1568 static int target_restore_working_area(struct target *target, struct working_area *area)
1569 {
1570 int retval = ERROR_OK;
1571
1572 if (target->backup_working_area && area->backup != NULL) {
1573 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1574 if (retval != ERROR_OK)
1575 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1576 area->size, area->address);
1577 }
1578
1579 return retval;
1580 }
1581
1582 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1583 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1584 {
1585 int retval = ERROR_OK;
1586
1587 if (area->free)
1588 return retval;
1589
1590 if (restore) {
1591 retval = target_restore_working_area(target, area);
1592 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1593 if (retval != ERROR_OK)
1594 return retval;
1595 }
1596
1597 area->free = true;
1598
1599 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1600 area->size, area->address);
1601
1602 /* mark user pointer invalid */
1603 /* TODO: Is this really safe? It points to some previous caller's memory.
1604 * How could we know that the area pointer is still in that place and not
1605 * some other vital data? What's the purpose of this, anyway? */
1606 *area->user = NULL;
1607 area->user = NULL;
1608
1609 target_merge_working_areas(target);
1610
1611 print_wa_layout(target);
1612
1613 return retval;
1614 }
1615
1616 int target_free_working_area(struct target *target, struct working_area *area)
1617 {
1618 return target_free_working_area_restore(target, area, 1);
1619 }
1620
1621 /* free resources and restore memory, if restoring memory fails,
1622 * free up resources anyway
1623 */
1624 static void target_free_all_working_areas_restore(struct target *target, int restore)
1625 {
1626 struct working_area *c = target->working_areas;
1627
1628 LOG_DEBUG("freeing all working areas");
1629
1630 /* Loop through all areas, restoring the allocated ones and marking them as free */
1631 while (c) {
1632 if (!c->free) {
1633 if (restore)
1634 target_restore_working_area(target, c);
1635 c->free = true;
1636 *c->user = NULL; /* Same as above */
1637 c->user = NULL;
1638 }
1639 c = c->next;
1640 }
1641
1642 /* Run a merge pass to combine all areas into one */
1643 target_merge_working_areas(target);
1644
1645 print_wa_layout(target);
1646 }
1647
1648 void target_free_all_working_areas(struct target *target)
1649 {
1650 target_free_all_working_areas_restore(target, 1);
1651 }
1652
1653 /* Find the largest number of bytes that can be allocated */
1654 uint32_t target_get_working_area_avail(struct target *target)
1655 {
1656 struct working_area *c = target->working_areas;
1657 uint32_t max_size = 0;
1658
1659 if (c == NULL)
1660 return target->working_area_size;
1661
1662 while (c) {
1663 if (c->free && max_size < c->size)
1664 max_size = c->size;
1665
1666 c = c->next;
1667 }
1668
1669 return max_size;
1670 }
1671
1672 int target_arch_state(struct target *target)
1673 {
1674 int retval;
1675 if (target == NULL) {
1676 LOG_USER("No target has been configured");
1677 return ERROR_OK;
1678 }
1679
1680 LOG_USER("target state: %s", target_state_name(target));
1681
1682 if (target->state != TARGET_HALTED)
1683 return ERROR_OK;
1684
1685 retval = target->type->arch_state(target);
1686 return retval;
1687 }
1688
1689 /* Single aligned words are guaranteed to use 16 or 32 bit access
1690 * mode respectively, otherwise data is handled as quickly as
1691 * possible
1692 */
1693 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1694 {
1695 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1696 (int)size, (unsigned)address);
1697
1698 if (!target_was_examined(target)) {
1699 LOG_ERROR("Target not examined yet");
1700 return ERROR_FAIL;
1701 }
1702
1703 if (size == 0)
1704 return ERROR_OK;
1705
1706 if ((address + size - 1) < address) {
1707 /* GDB can request this when e.g. PC is 0xfffffffc*/
1708 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1709 (unsigned)address,
1710 (unsigned)size);
1711 return ERROR_FAIL;
1712 }
1713
1714 return target->type->write_buffer(target, address, size, buffer);
1715 }
1716
1717 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1718 {
1719 int retval = ERROR_OK;
1720
1721 if (((address % 2) == 0) && (size == 2))
1722 return target_write_memory(target, address, 2, 1, buffer);
1723
1724 /* handle unaligned head bytes */
1725 if (address % 4) {
1726 uint32_t unaligned = 4 - (address % 4);
1727
1728 if (unaligned > size)
1729 unaligned = size;
1730
1731 retval = target_write_memory(target, address, 1, unaligned, buffer);
1732 if (retval != ERROR_OK)
1733 return retval;
1734
1735 buffer += unaligned;
1736 address += unaligned;
1737 size -= unaligned;
1738 }
1739
1740 /* handle aligned words */
1741 if (size >= 4) {
1742 int aligned = size - (size % 4);
1743
1744 /* use bulk writes above a certain limit. This may have to be changed */
1745 if (aligned > 128) {
1746 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1747 if (retval != ERROR_OK)
1748 return retval;
1749 } else {
1750 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1751 if (retval != ERROR_OK)
1752 return retval;
1753 }
1754
1755 buffer += aligned;
1756 address += aligned;
1757 size -= aligned;
1758 }
1759
1760 /* handle tail writes of less than 4 bytes */
1761 if (size > 0) {
1762 retval = target_write_memory(target, address, 1, size, buffer);
1763 if (retval != ERROR_OK)
1764 return retval;
1765 }
1766
1767 return retval;
1768 }
1769
1770 /* Single aligned words are guaranteed to use 16 or 32 bit access
1771 * mode respectively, otherwise data is handled as quickly as
1772 * possible
1773 */
1774 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1775 {
1776 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1777 (int)size, (unsigned)address);
1778
1779 if (!target_was_examined(target)) {
1780 LOG_ERROR("Target not examined yet");
1781 return ERROR_FAIL;
1782 }
1783
1784 if (size == 0)
1785 return ERROR_OK;
1786
1787 if ((address + size - 1) < address) {
1788 /* GDB can request this when e.g. PC is 0xfffffffc*/
1789 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1790 address,
1791 size);
1792 return ERROR_FAIL;
1793 }
1794
1795 return target->type->read_buffer(target, address, size, buffer);
1796 }
1797
1798 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1799 {
1800 int retval = ERROR_OK;
1801
1802 if (((address % 2) == 0) && (size == 2))
1803 return target_read_memory(target, address, 2, 1, buffer);
1804
1805 /* handle unaligned head bytes */
1806 if (address % 4) {
1807 uint32_t unaligned = 4 - (address % 4);
1808
1809 if (unaligned > size)
1810 unaligned = size;
1811
1812 retval = target_read_memory(target, address, 1, unaligned, buffer);
1813 if (retval != ERROR_OK)
1814 return retval;
1815
1816 buffer += unaligned;
1817 address += unaligned;
1818 size -= unaligned;
1819 }
1820
1821 /* handle aligned words */
1822 if (size >= 4) {
1823 int aligned = size - (size % 4);
1824
1825 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1826 if (retval != ERROR_OK)
1827 return retval;
1828
1829 buffer += aligned;
1830 address += aligned;
1831 size -= aligned;
1832 }
1833
1834 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1835 if (size >= 2) {
1836 int aligned = size - (size % 2);
1837 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1838 if (retval != ERROR_OK)
1839 return retval;
1840
1841 buffer += aligned;
1842 address += aligned;
1843 size -= aligned;
1844 }
1845 /* handle tail writes of less than 4 bytes */
1846 if (size > 0) {
1847 retval = target_read_memory(target, address, 1, size, buffer);
1848 if (retval != ERROR_OK)
1849 return retval;
1850 }
1851
1852 return ERROR_OK;
1853 }
1854
1855 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1856 {
1857 uint8_t *buffer;
1858 int retval;
1859 uint32_t i;
1860 uint32_t checksum = 0;
1861 if (!target_was_examined(target)) {
1862 LOG_ERROR("Target not examined yet");
1863 return ERROR_FAIL;
1864 }
1865
1866 retval = target->type->checksum_memory(target, address, size, &checksum);
1867 if (retval != ERROR_OK) {
1868 buffer = malloc(size);
1869 if (buffer == NULL) {
1870 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1871 return ERROR_COMMAND_SYNTAX_ERROR;
1872 }
1873 retval = target_read_buffer(target, address, size, buffer);
1874 if (retval != ERROR_OK) {
1875 free(buffer);
1876 return retval;
1877 }
1878
1879 /* convert to target endianness */
1880 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1881 uint32_t target_data;
1882 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1883 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1884 }
1885
1886 retval = image_calculate_checksum(buffer, size, &checksum);
1887 free(buffer);
1888 }
1889
1890 *crc = checksum;
1891
1892 return retval;
1893 }
1894
1895 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1896 {
1897 int retval;
1898 if (!target_was_examined(target)) {
1899 LOG_ERROR("Target not examined yet");
1900 return ERROR_FAIL;
1901 }
1902
1903 if (target->type->blank_check_memory == 0)
1904 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1905
1906 retval = target->type->blank_check_memory(target, address, size, blank);
1907
1908 return retval;
1909 }
1910
1911 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1912 {
1913 uint8_t value_buf[4];
1914 if (!target_was_examined(target)) {
1915 LOG_ERROR("Target not examined yet");
1916 return ERROR_FAIL;
1917 }
1918
1919 int retval = target_read_memory(target, address, 4, 1, value_buf);
1920
1921 if (retval == ERROR_OK) {
1922 *value = target_buffer_get_u32(target, value_buf);
1923 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1924 address,
1925 *value);
1926 } else {
1927 *value = 0x0;
1928 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1929 address);
1930 }
1931
1932 return retval;
1933 }
1934
1935 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1936 {
1937 uint8_t value_buf[2];
1938 if (!target_was_examined(target)) {
1939 LOG_ERROR("Target not examined yet");
1940 return ERROR_FAIL;
1941 }
1942
1943 int retval = target_read_memory(target, address, 2, 1, value_buf);
1944
1945 if (retval == ERROR_OK) {
1946 *value = target_buffer_get_u16(target, value_buf);
1947 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1948 address,
1949 *value);
1950 } else {
1951 *value = 0x0;
1952 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1953 address);
1954 }
1955
1956 return retval;
1957 }
1958
1959 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1960 {
1961 int retval = target_read_memory(target, address, 1, 1, value);
1962 if (!target_was_examined(target)) {
1963 LOG_ERROR("Target not examined yet");
1964 return ERROR_FAIL;
1965 }
1966
1967 if (retval == ERROR_OK) {
1968 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1969 address,
1970 *value);
1971 } else {
1972 *value = 0x0;
1973 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1974 address);
1975 }
1976
1977 return retval;
1978 }
1979
1980 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1981 {
1982 int retval;
1983 uint8_t value_buf[4];
1984 if (!target_was_examined(target)) {
1985 LOG_ERROR("Target not examined yet");
1986 return ERROR_FAIL;
1987 }
1988
1989 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1990 address,
1991 value);
1992
1993 target_buffer_set_u32(target, value_buf, value);
1994 retval = target_write_memory(target, address, 4, 1, value_buf);
1995 if (retval != ERROR_OK)
1996 LOG_DEBUG("failed: %i", retval);
1997
1998 return retval;
1999 }
2000
2001 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2002 {
2003 int retval;
2004 uint8_t value_buf[2];
2005 if (!target_was_examined(target)) {
2006 LOG_ERROR("Target not examined yet");
2007 return ERROR_FAIL;
2008 }
2009
2010 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2011 address,
2012 value);
2013
2014 target_buffer_set_u16(target, value_buf, value);
2015 retval = target_write_memory(target, address, 2, 1, value_buf);
2016 if (retval != ERROR_OK)
2017 LOG_DEBUG("failed: %i", retval);
2018
2019 return retval;
2020 }
2021
2022 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2023 {
2024 int retval;
2025 if (!target_was_examined(target)) {
2026 LOG_ERROR("Target not examined yet");
2027 return ERROR_FAIL;
2028 }
2029
2030 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2031 address, value);
2032
2033 retval = target_write_memory(target, address, 1, 1, &value);
2034 if (retval != ERROR_OK)
2035 LOG_DEBUG("failed: %i", retval);
2036
2037 return retval;
2038 }
2039
2040 static int find_target(struct command_context *cmd_ctx, const char *name)
2041 {
2042 struct target *target = get_target(name);
2043 if (target == NULL) {
2044 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2045 return ERROR_FAIL;
2046 }
2047 if (!target->tap->enabled) {
2048 LOG_USER("Target: TAP %s is disabled, "
2049 "can't be the current target\n",
2050 target->tap->dotted_name);
2051 return ERROR_FAIL;
2052 }
2053
2054 cmd_ctx->current_target = target->target_number;
2055 return ERROR_OK;
2056 }
2057
2058
2059 COMMAND_HANDLER(handle_targets_command)
2060 {
2061 int retval = ERROR_OK;
2062 if (CMD_ARGC == 1) {
2063 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2064 if (retval == ERROR_OK) {
2065 /* we're done! */
2066 return retval;
2067 }
2068 }
2069
2070 struct target *target = all_targets;
2071 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2072 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2073 while (target) {
2074 const char *state;
2075 char marker = ' ';
2076
2077 if (target->tap->enabled)
2078 state = target_state_name(target);
2079 else
2080 state = "tap-disabled";
2081
2082 if (CMD_CTX->current_target == target->target_number)
2083 marker = '*';
2084
2085 /* keep columns lined up to match the headers above */
2086 command_print(CMD_CTX,
2087 "%2d%c %-18s %-10s %-6s %-18s %s",
2088 target->target_number,
2089 marker,
2090 target_name(target),
2091 target_type_name(target),
2092 Jim_Nvp_value2name_simple(nvp_target_endian,
2093 target->endianness)->name,
2094 target->tap->dotted_name,
2095 state);
2096 target = target->next;
2097 }
2098
2099 return retval;
2100 }
2101
2102 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2103
2104 static int powerDropout;
2105 static int srstAsserted;
2106
2107 static int runPowerRestore;
2108 static int runPowerDropout;
2109 static int runSrstAsserted;
2110 static int runSrstDeasserted;
2111
2112 static int sense_handler(void)
2113 {
2114 static int prevSrstAsserted;
2115 static int prevPowerdropout;
2116
2117 int retval = jtag_power_dropout(&powerDropout);
2118 if (retval != ERROR_OK)
2119 return retval;
2120
2121 int powerRestored;
2122 powerRestored = prevPowerdropout && !powerDropout;
2123 if (powerRestored)
2124 runPowerRestore = 1;
2125
2126 long long current = timeval_ms();
2127 static long long lastPower;
2128 int waitMore = lastPower + 2000 > current;
2129 if (powerDropout && !waitMore) {
2130 runPowerDropout = 1;
2131 lastPower = current;
2132 }
2133
2134 retval = jtag_srst_asserted(&srstAsserted);
2135 if (retval != ERROR_OK)
2136 return retval;
2137
2138 int srstDeasserted;
2139 srstDeasserted = prevSrstAsserted && !srstAsserted;
2140
2141 static long long lastSrst;
2142 waitMore = lastSrst + 2000 > current;
2143 if (srstDeasserted && !waitMore) {
2144 runSrstDeasserted = 1;
2145 lastSrst = current;
2146 }
2147
2148 if (!prevSrstAsserted && srstAsserted)
2149 runSrstAsserted = 1;
2150
2151 prevSrstAsserted = srstAsserted;
2152 prevPowerdropout = powerDropout;
2153
2154 if (srstDeasserted || powerRestored) {
2155 /* Other than logging the event we can't do anything here.
2156 * Issuing a reset is a particularly bad idea as we might
2157 * be inside a reset already.
2158 */
2159 }
2160
2161 return ERROR_OK;
2162 }
2163
2164 /* process target state changes */
2165 static int handle_target(void *priv)
2166 {
2167 Jim_Interp *interp = (Jim_Interp *)priv;
2168 int retval = ERROR_OK;
2169
2170 if (!is_jtag_poll_safe()) {
2171 /* polling is disabled currently */
2172 return ERROR_OK;
2173 }
2174
2175 /* we do not want to recurse here... */
2176 static int recursive;
2177 if (!recursive) {
2178 recursive = 1;
2179 sense_handler();
2180 /* danger! running these procedures can trigger srst assertions and power dropouts.
2181 * We need to avoid an infinite loop/recursion here and we do that by
2182 * clearing the flags after running these events.
2183 */
2184 int did_something = 0;
2185 if (runSrstAsserted) {
2186 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2187 Jim_Eval(interp, "srst_asserted");
2188 did_something = 1;
2189 }
2190 if (runSrstDeasserted) {
2191 Jim_Eval(interp, "srst_deasserted");
2192 did_something = 1;
2193 }
2194 if (runPowerDropout) {
2195 LOG_INFO("Power dropout detected, running power_dropout proc.");
2196 Jim_Eval(interp, "power_dropout");
2197 did_something = 1;
2198 }
2199 if (runPowerRestore) {
2200 Jim_Eval(interp, "power_restore");
2201 did_something = 1;
2202 }
2203
2204 if (did_something) {
2205 /* clear detect flags */
2206 sense_handler();
2207 }
2208
2209 /* clear action flags */
2210
2211 runSrstAsserted = 0;
2212 runSrstDeasserted = 0;
2213 runPowerRestore = 0;
2214 runPowerDropout = 0;
2215
2216 recursive = 0;
2217 }
2218
2219 /* Poll targets for state changes unless that's globally disabled.
2220 * Skip targets that are currently disabled.
2221 */
2222 for (struct target *target = all_targets;
2223 is_jtag_poll_safe() && target;
2224 target = target->next) {
2225 if (!target->tap->enabled)
2226 continue;
2227
2228 if (target->backoff.times > target->backoff.count) {
2229 /* do not poll this time as we failed previously */
2230 target->backoff.count++;
2231 continue;
2232 }
2233 target->backoff.count = 0;
2234
2235 /* only poll target if we've got power and srst isn't asserted */
2236 if (!powerDropout && !srstAsserted) {
2237 /* polling may fail silently until the target has been examined */
2238 retval = target_poll(target);
2239 if (retval != ERROR_OK) {
2240 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2241 if (target->backoff.times * polling_interval < 5000) {
2242 target->backoff.times *= 2;
2243 target->backoff.times++;
2244 }
2245 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2246 target_name(target),
2247 target->backoff.times * polling_interval);
2248
2249 /* Tell GDB to halt the debugger. This allows the user to
2250 * run monitor commands to handle the situation.
2251 */
2252 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2253 return retval;
2254 }
2255 /* Since we succeeded, we reset backoff count */
2256 if (target->backoff.times > 0)
2257 LOG_USER("Polling target %s succeeded again", target_name(target));
2258 target->backoff.times = 0;
2259 }
2260 }
2261
2262 return retval;
2263 }
2264
2265 COMMAND_HANDLER(handle_reg_command)
2266 {
2267 struct target *target;
2268 struct reg *reg = NULL;
2269 unsigned count = 0;
2270 char *value;
2271
2272 LOG_DEBUG("-");
2273
2274 target = get_current_target(CMD_CTX);
2275
2276 /* list all available registers for the current target */
2277 if (CMD_ARGC == 0) {
2278 struct reg_cache *cache = target->reg_cache;
2279
2280 count = 0;
2281 while (cache) {
2282 unsigned i;
2283
2284 command_print(CMD_CTX, "===== %s", cache->name);
2285
2286 for (i = 0, reg = cache->reg_list;
2287 i < cache->num_regs;
2288 i++, reg++, count++) {
2289 /* only print cached values if they are valid */
2290 if (reg->valid) {
2291 value = buf_to_str(reg->value,
2292 reg->size, 16);
2293 command_print(CMD_CTX,
2294 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2295 count, reg->name,
2296 reg->size, value,
2297 reg->dirty
2298 ? " (dirty)"
2299 : "");
2300 free(value);
2301 } else {
2302 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2303 count, reg->name,
2304 reg->size) ;
2305 }
2306 }
2307 cache = cache->next;
2308 }
2309
2310 return ERROR_OK;
2311 }
2312
2313 /* access a single register by its ordinal number */
2314 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2315 unsigned num;
2316 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2317
2318 struct reg_cache *cache = target->reg_cache;
2319 count = 0;
2320 while (cache) {
2321 unsigned i;
2322 for (i = 0; i < cache->num_regs; i++) {
2323 if (count++ == num) {
2324 reg = &cache->reg_list[i];
2325 break;
2326 }
2327 }
2328 if (reg)
2329 break;
2330 cache = cache->next;
2331 }
2332
2333 if (!reg) {
2334 command_print(CMD_CTX, "%i is out of bounds, the current target "
2335 "has only %i registers (0 - %i)", num, count, count - 1);
2336 return ERROR_OK;
2337 }
2338 } else {
2339 /* access a single register by its name */
2340 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2341
2342 if (!reg) {
2343 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2344 return ERROR_OK;
2345 }
2346 }
2347
2348 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2349
2350 /* display a register */
2351 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2352 && (CMD_ARGV[1][0] <= '9')))) {
2353 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2354 reg->valid = 0;
2355
2356 if (reg->valid == 0)
2357 reg->type->get(reg);
2358 value = buf_to_str(reg->value, reg->size, 16);
2359 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2360 free(value);
2361 return ERROR_OK;
2362 }
2363
2364 /* set register value */
2365 if (CMD_ARGC == 2) {
2366 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2367 if (buf == NULL)
2368 return ERROR_FAIL;
2369 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2370
2371 reg->type->set(reg, buf);
2372
2373 value = buf_to_str(reg->value, reg->size, 16);
2374 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2375 free(value);
2376
2377 free(buf);
2378
2379 return ERROR_OK;
2380 }
2381
2382 return ERROR_COMMAND_SYNTAX_ERROR;
2383 }
2384
2385 COMMAND_HANDLER(handle_poll_command)
2386 {
2387 int retval = ERROR_OK;
2388 struct target *target = get_current_target(CMD_CTX);
2389
2390 if (CMD_ARGC == 0) {
2391 command_print(CMD_CTX, "background polling: %s",
2392 jtag_poll_get_enabled() ? "on" : "off");
2393 command_print(CMD_CTX, "TAP: %s (%s)",
2394 target->tap->dotted_name,
2395 target->tap->enabled ? "enabled" : "disabled");
2396 if (!target->tap->enabled)
2397 return ERROR_OK;
2398 retval = target_poll(target);
2399 if (retval != ERROR_OK)
2400 return retval;
2401 retval = target_arch_state(target);
2402 if (retval != ERROR_OK)
2403 return retval;
2404 } else if (CMD_ARGC == 1) {
2405 bool enable;
2406 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2407 jtag_poll_set_enabled(enable);
2408 } else
2409 return ERROR_COMMAND_SYNTAX_ERROR;
2410
2411 return retval;
2412 }
2413
2414 COMMAND_HANDLER(handle_wait_halt_command)
2415 {
2416 if (CMD_ARGC > 1)
2417 return ERROR_COMMAND_SYNTAX_ERROR;
2418
2419 unsigned ms = 5000;
2420 if (1 == CMD_ARGC) {
2421 int retval = parse_uint(CMD_ARGV[0], &ms);
2422 if (ERROR_OK != retval)
2423 return ERROR_COMMAND_SYNTAX_ERROR;
2424 /* convert seconds (given) to milliseconds (needed) */
2425 ms *= 1000;
2426 }
2427
2428 struct target *target = get_current_target(CMD_CTX);
2429 return target_wait_state(target, TARGET_HALTED, ms);
2430 }
2431
2432 /* wait for target state to change. The trick here is to have a low
2433 * latency for short waits and not to suck up all the CPU time
2434 * on longer waits.
2435 *
2436 * After 500ms, keep_alive() is invoked
2437 */
2438 int target_wait_state(struct target *target, enum target_state state, int ms)
2439 {
2440 int retval;
2441 long long then = 0, cur;
2442 int once = 1;
2443
2444 for (;;) {
2445 retval = target_poll(target);
2446 if (retval != ERROR_OK)
2447 return retval;
2448 if (target->state == state)
2449 break;
2450 cur = timeval_ms();
2451 if (once) {
2452 once = 0;
2453 then = timeval_ms();
2454 LOG_DEBUG("waiting for target %s...",
2455 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2456 }
2457
2458 if (cur-then > 500)
2459 keep_alive();
2460
2461 if ((cur-then) > ms) {
2462 LOG_ERROR("timed out while waiting for target %s",
2463 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2464 return ERROR_FAIL;
2465 }
2466 }
2467
2468 return ERROR_OK;
2469 }
2470
2471 COMMAND_HANDLER(handle_halt_command)
2472 {
2473 LOG_DEBUG("-");
2474
2475 struct target *target = get_current_target(CMD_CTX);
2476 int retval = target_halt(target);
2477 if (ERROR_OK != retval)
2478 return retval;
2479
2480 if (CMD_ARGC == 1) {
2481 unsigned wait_local;
2482 retval = parse_uint(CMD_ARGV[0], &wait_local);
2483 if (ERROR_OK != retval)
2484 return ERROR_COMMAND_SYNTAX_ERROR;
2485 if (!wait_local)
2486 return ERROR_OK;
2487 }
2488
2489 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2490 }
2491
2492 COMMAND_HANDLER(handle_soft_reset_halt_command)
2493 {
2494 struct target *target = get_current_target(CMD_CTX);
2495
2496 LOG_USER("requesting target halt and executing a soft reset");
2497
2498 target_soft_reset_halt(target);
2499
2500 return ERROR_OK;
2501 }
2502
2503 COMMAND_HANDLER(handle_reset_command)
2504 {
2505 if (CMD_ARGC > 1)
2506 return ERROR_COMMAND_SYNTAX_ERROR;
2507
2508 enum target_reset_mode reset_mode = RESET_RUN;
2509 if (CMD_ARGC == 1) {
2510 const Jim_Nvp *n;
2511 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2512 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2513 return ERROR_COMMAND_SYNTAX_ERROR;
2514 reset_mode = n->value;
2515 }
2516
2517 /* reset *all* targets */
2518 return target_process_reset(CMD_CTX, reset_mode);
2519 }
2520
2521
2522 COMMAND_HANDLER(handle_resume_command)
2523 {
2524 int current = 1;
2525 if (CMD_ARGC > 1)
2526 return ERROR_COMMAND_SYNTAX_ERROR;
2527
2528 struct target *target = get_current_target(CMD_CTX);
2529
2530 /* with no CMD_ARGV, resume from current pc, addr = 0,
2531 * with one arguments, addr = CMD_ARGV[0],
2532 * handle breakpoints, not debugging */
2533 uint32_t addr = 0;
2534 if (CMD_ARGC == 1) {
2535 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2536 current = 0;
2537 }
2538
2539 return target_resume(target, current, addr, 1, 0);
2540 }
2541
2542 COMMAND_HANDLER(handle_step_command)
2543 {
2544 if (CMD_ARGC > 1)
2545 return ERROR_COMMAND_SYNTAX_ERROR;
2546
2547 LOG_DEBUG("-");
2548
2549 /* with no CMD_ARGV, step from current pc, addr = 0,
2550 * with one argument addr = CMD_ARGV[0],
2551 * handle breakpoints, debugging */
2552 uint32_t addr = 0;
2553 int current_pc = 1;
2554 if (CMD_ARGC == 1) {
2555 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2556 current_pc = 0;
2557 }
2558
2559 struct target *target = get_current_target(CMD_CTX);
2560
2561 return target->type->step(target, current_pc, addr, 1);
2562 }
2563
2564 static void handle_md_output(struct command_context *cmd_ctx,
2565 struct target *target, uint32_t address, unsigned size,
2566 unsigned count, const uint8_t *buffer)
2567 {
2568 const unsigned line_bytecnt = 32;
2569 unsigned line_modulo = line_bytecnt / size;
2570
2571 char output[line_bytecnt * 4 + 1];
2572 unsigned output_len = 0;
2573
2574 const char *value_fmt;
2575 switch (size) {
2576 case 4:
2577 value_fmt = "%8.8x ";
2578 break;
2579 case 2:
2580 value_fmt = "%4.4x ";
2581 break;
2582 case 1:
2583 value_fmt = "%2.2x ";
2584 break;
2585 default:
2586 /* "can't happen", caller checked */
2587 LOG_ERROR("invalid memory read size: %u", size);
2588 return;
2589 }
2590
2591 for (unsigned i = 0; i < count; i++) {
2592 if (i % line_modulo == 0) {
2593 output_len += snprintf(output + output_len,
2594 sizeof(output) - output_len,
2595 "0x%8.8x: ",
2596 (unsigned)(address + (i*size)));
2597 }
2598
2599 uint32_t value = 0;
2600 const uint8_t *value_ptr = buffer + i * size;
2601 switch (size) {
2602 case 4:
2603 value = target_buffer_get_u32(target, value_ptr);
2604 break;
2605 case 2:
2606 value = target_buffer_get_u16(target, value_ptr);
2607 break;
2608 case 1:
2609 value = *value_ptr;
2610 }
2611 output_len += snprintf(output + output_len,
2612 sizeof(output) - output_len,
2613 value_fmt, value);
2614
2615 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2616 command_print(cmd_ctx, "%s", output);
2617 output_len = 0;
2618 }
2619 }
2620 }
2621
2622 COMMAND_HANDLER(handle_md_command)
2623 {
2624 if (CMD_ARGC < 1)
2625 return ERROR_COMMAND_SYNTAX_ERROR;
2626
2627 unsigned size = 0;
2628 switch (CMD_NAME[2]) {
2629 case 'w':
2630 size = 4;
2631 break;
2632 case 'h':
2633 size = 2;
2634 break;
2635 case 'b':
2636 size = 1;
2637 break;
2638 default:
2639 return ERROR_COMMAND_SYNTAX_ERROR;
2640 }
2641
2642 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2643 int (*fn)(struct target *target,
2644 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2645 if (physical) {
2646 CMD_ARGC--;
2647 CMD_ARGV++;
2648 fn = target_read_phys_memory;
2649 } else
2650 fn = target_read_memory;
2651 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2652 return ERROR_COMMAND_SYNTAX_ERROR;
2653
2654 uint32_t address;
2655 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2656
2657 unsigned count = 1;
2658 if (CMD_ARGC == 2)
2659 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2660
2661 uint8_t *buffer = calloc(count, size);
2662
2663 struct target *target = get_current_target(CMD_CTX);
2664 int retval = fn(target, address, size, count, buffer);
2665 if (ERROR_OK == retval)
2666 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2667
2668 free(buffer);
2669
2670 return retval;
2671 }
2672
2673 typedef int (*target_write_fn)(struct target *target,
2674 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2675
2676 static int target_write_memory_fast(struct target *target,
2677 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2678 {
2679 return target_write_buffer(target, address, size * count, buffer);
2680 }
2681
2682 static int target_fill_mem(struct target *target,
2683 uint32_t address,
2684 target_write_fn fn,
2685 unsigned data_size,
2686 /* value */
2687 uint32_t b,
2688 /* count */
2689 unsigned c)
2690 {
2691 /* We have to write in reasonably large chunks to be able
2692 * to fill large memory areas with any sane speed */
2693 const unsigned chunk_size = 16384;
2694 uint8_t *target_buf = malloc(chunk_size * data_size);
2695 if (target_buf == NULL) {
2696 LOG_ERROR("Out of memory");
2697 return ERROR_FAIL;
2698 }
2699
2700 for (unsigned i = 0; i < chunk_size; i++) {
2701 switch (data_size) {
2702 case 4:
2703 target_buffer_set_u32(target, target_buf + i * data_size, b);
2704 break;
2705 case 2:
2706 target_buffer_set_u16(target, target_buf + i * data_size, b);
2707 break;
2708 case 1:
2709 target_buffer_set_u8(target, target_buf + i * data_size, b);
2710 break;
2711 default:
2712 exit(-1);
2713 }
2714 }
2715
2716 int retval = ERROR_OK;
2717
2718 for (unsigned x = 0; x < c; x += chunk_size) {
2719 unsigned current;
2720 current = c - x;
2721 if (current > chunk_size)
2722 current = chunk_size;
2723 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2724 if (retval != ERROR_OK)
2725 break;
2726 /* avoid GDB timeouts */
2727 keep_alive();
2728 }
2729 free(target_buf);
2730
2731 return retval;
2732 }
2733
2734
2735 COMMAND_HANDLER(handle_mw_command)
2736 {
2737 if (CMD_ARGC < 2)
2738 return ERROR_COMMAND_SYNTAX_ERROR;
2739 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2740 target_write_fn fn;
2741 if (physical) {
2742 CMD_ARGC--;
2743 CMD_ARGV++;
2744 fn = target_write_phys_memory;
2745 } else
2746 fn = target_write_memory_fast;
2747 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2748 return ERROR_COMMAND_SYNTAX_ERROR;
2749
2750 uint32_t address;
2751 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2752
2753 uint32_t value;
2754 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2755
2756 unsigned count = 1;
2757 if (CMD_ARGC == 3)
2758 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2759
2760 struct target *target = get_current_target(CMD_CTX);
2761 unsigned wordsize;
2762 switch (CMD_NAME[2]) {
2763 case 'w':
2764 wordsize = 4;
2765 break;
2766 case 'h':
2767 wordsize = 2;
2768 break;
2769 case 'b':
2770 wordsize = 1;
2771 break;
2772 default:
2773 return ERROR_COMMAND_SYNTAX_ERROR;
2774 }
2775
2776 return target_fill_mem(target, address, fn, wordsize, value, count);
2777 }
2778
2779 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2780 uint32_t *min_address, uint32_t *max_address)
2781 {
2782 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2783 return ERROR_COMMAND_SYNTAX_ERROR;
2784
2785 /* a base address isn't always necessary,
2786 * default to 0x0 (i.e. don't relocate) */
2787 if (CMD_ARGC >= 2) {
2788 uint32_t addr;
2789 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2790 image->base_address = addr;
2791 image->base_address_set = 1;
2792 } else
2793 image->base_address_set = 0;
2794
2795 image->start_address_set = 0;
2796
2797 if (CMD_ARGC >= 4)
2798 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2799 if (CMD_ARGC == 5) {
2800 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2801 /* use size (given) to find max (required) */
2802 *max_address += *min_address;
2803 }
2804
2805 if (*min_address > *max_address)
2806 return ERROR_COMMAND_SYNTAX_ERROR;
2807
2808 return ERROR_OK;
2809 }
2810
2811 COMMAND_HANDLER(handle_load_image_command)
2812 {
2813 uint8_t *buffer;
2814 size_t buf_cnt;
2815 uint32_t image_size;
2816 uint32_t min_address = 0;
2817 uint32_t max_address = 0xffffffff;
2818 int i;
2819 struct image image;
2820
2821 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2822 &image, &min_address, &max_address);
2823 if (ERROR_OK != retval)
2824 return retval;
2825
2826 struct target *target = get_current_target(CMD_CTX);
2827
2828 struct duration bench;
2829 duration_start(&bench);
2830
2831 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2832 return ERROR_OK;
2833
2834 image_size = 0x0;
2835 retval = ERROR_OK;
2836 for (i = 0; i < image.num_sections; i++) {
2837 buffer = malloc(image.sections[i].size);
2838 if (buffer == NULL) {
2839 command_print(CMD_CTX,
2840 "error allocating buffer for section (%d bytes)",
2841 (int)(image.sections[i].size));
2842 break;
2843 }
2844
2845 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2846 if (retval != ERROR_OK) {
2847 free(buffer);
2848 break;
2849 }
2850
2851 uint32_t offset = 0;
2852 uint32_t length = buf_cnt;
2853
2854 /* DANGER!!! beware of unsigned comparision here!!! */
2855
2856 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2857 (image.sections[i].base_address < max_address)) {
2858
2859 if (image.sections[i].base_address < min_address) {
2860 /* clip addresses below */
2861 offset += min_address-image.sections[i].base_address;
2862 length -= offset;
2863 }
2864
2865 if (image.sections[i].base_address + buf_cnt > max_address)
2866 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2867
2868 retval = target_write_buffer(target,
2869 image.sections[i].base_address + offset, length, buffer + offset);
2870 if (retval != ERROR_OK) {
2871 free(buffer);
2872 break;
2873 }
2874 image_size += length;
2875 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2876 (unsigned int)length,
2877 image.sections[i].base_address + offset);
2878 }
2879
2880 free(buffer);
2881 }
2882
2883 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2884 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2885 "in %fs (%0.3f KiB/s)", image_size,
2886 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2887 }
2888
2889 image_close(&image);
2890
2891 return retval;
2892
2893 }
2894
2895 COMMAND_HANDLER(handle_dump_image_command)
2896 {
2897 struct fileio fileio;
2898 uint8_t *buffer;
2899 int retval, retvaltemp;
2900 uint32_t address, size;
2901 struct duration bench;
2902 struct target *target = get_current_target(CMD_CTX);
2903
2904 if (CMD_ARGC != 3)
2905 return ERROR_COMMAND_SYNTAX_ERROR;
2906
2907 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2908 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2909
2910 uint32_t buf_size = (size > 4096) ? 4096 : size;
2911 buffer = malloc(buf_size);
2912 if (!buffer)
2913 return ERROR_FAIL;
2914
2915 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2916 if (retval != ERROR_OK) {
2917 free(buffer);
2918 return retval;
2919 }
2920
2921 duration_start(&bench);
2922
2923 while (size > 0) {
2924 size_t size_written;
2925 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2926 retval = target_read_buffer(target, address, this_run_size, buffer);
2927 if (retval != ERROR_OK)
2928 break;
2929
2930 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2931 if (retval != ERROR_OK)
2932 break;
2933
2934 size -= this_run_size;
2935 address += this_run_size;
2936 }
2937
2938 free(buffer);
2939
2940 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2941 int filesize;
2942 retval = fileio_size(&fileio, &filesize);
2943 if (retval != ERROR_OK)
2944 return retval;
2945 command_print(CMD_CTX,
2946 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2947 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2948 }
2949
2950 retvaltemp = fileio_close(&fileio);
2951 if (retvaltemp != ERROR_OK)
2952 return retvaltemp;
2953
2954 return retval;
2955 }
2956
2957 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2958 {
2959 uint8_t *buffer;
2960 size_t buf_cnt;
2961 uint32_t image_size;
2962 int i;
2963 int retval;
2964 uint32_t checksum = 0;
2965 uint32_t mem_checksum = 0;
2966
2967 struct image image;
2968
2969 struct target *target = get_current_target(CMD_CTX);
2970
2971 if (CMD_ARGC < 1)
2972 return ERROR_COMMAND_SYNTAX_ERROR;
2973
2974 if (!target) {
2975 LOG_ERROR("no target selected");
2976 return ERROR_FAIL;
2977 }
2978
2979 struct duration bench;
2980 duration_start(&bench);
2981
2982 if (CMD_ARGC >= 2) {
2983 uint32_t addr;
2984 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2985 image.base_address = addr;
2986 image.base_address_set = 1;
2987 } else {
2988 image.base_address_set = 0;
2989 image.base_address = 0x0;
2990 }
2991
2992 image.start_address_set = 0;
2993
2994 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2995 if (retval != ERROR_OK)
2996 return retval;
2997
2998 image_size = 0x0;
2999 int diffs = 0;
3000 retval = ERROR_OK;
3001 for (i = 0; i < image.num_sections; i++) {
3002 buffer = malloc(image.sections[i].size);
3003 if (buffer == NULL) {
3004 command_print(CMD_CTX,
3005 "error allocating buffer for section (%d bytes)",
3006 (int)(image.sections[i].size));
3007 break;
3008 }
3009 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3010 if (retval != ERROR_OK) {
3011 free(buffer);
3012 break;
3013 }
3014
3015 if (verify) {
3016 /* calculate checksum of image */
3017 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3018 if (retval != ERROR_OK) {
3019 free(buffer);
3020 break;
3021 }
3022
3023 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3024 if (retval != ERROR_OK) {
3025 free(buffer);
3026 break;
3027 }
3028
3029 if (checksum != mem_checksum) {
3030 /* failed crc checksum, fall back to a binary compare */
3031 uint8_t *data;
3032
3033 if (diffs == 0)
3034 LOG_ERROR("checksum mismatch - attempting binary compare");
3035
3036 data = (uint8_t *)malloc(buf_cnt);
3037
3038 /* Can we use 32bit word accesses? */
3039 int size = 1;
3040 int count = buf_cnt;
3041 if ((count % 4) == 0) {
3042 size *= 4;
3043 count /= 4;
3044 }
3045 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3046 if (retval == ERROR_OK) {
3047 uint32_t t;
3048 for (t = 0; t < buf_cnt; t++) {
3049 if (data[t] != buffer[t]) {
3050 command_print(CMD_CTX,
3051 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3052 diffs,
3053 (unsigned)(t + image.sections[i].base_address),
3054 data[t],
3055 buffer[t]);
3056 if (diffs++ >= 127) {
3057 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3058 free(data);
3059 free(buffer);
3060 goto done;
3061 }
3062 }
3063 keep_alive();
3064 }
3065 }
3066 free(data);
3067 }
3068 } else {
3069 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3070 image.sections[i].base_address,
3071 buf_cnt);
3072 }
3073
3074 free(buffer);
3075 image_size += buf_cnt;
3076 }
3077 if (diffs > 0)
3078 command_print(CMD_CTX, "No more differences found.");
3079 done:
3080 if (diffs > 0)
3081 retval = ERROR_FAIL;
3082 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3083 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3084 "in %fs (%0.3f KiB/s)", image_size,
3085 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3086 }
3087
3088 image_close(&image);
3089
3090 return retval;
3091 }
3092
3093 COMMAND_HANDLER(handle_verify_image_command)
3094 {
3095 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3096 }
3097
3098 COMMAND_HANDLER(handle_test_image_command)
3099 {
3100 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3101 }
3102
3103 static int handle_bp_command_list(struct command_context *cmd_ctx)
3104 {
3105 struct target *target = get_current_target(cmd_ctx);
3106 struct breakpoint *breakpoint = target->breakpoints;
3107 while (breakpoint) {
3108 if (breakpoint->type == BKPT_SOFT) {
3109 char *buf = buf_to_str(breakpoint->orig_instr,
3110 breakpoint->length, 16);
3111 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3112 breakpoint->address,
3113 breakpoint->length,
3114 breakpoint->set, buf);
3115 free(buf);
3116 } else {
3117 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3118 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3119 breakpoint->asid,
3120 breakpoint->length, breakpoint->set);
3121 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3122 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3123 breakpoint->address,
3124 breakpoint->length, breakpoint->set);
3125 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3126 breakpoint->asid);
3127 } else
3128 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3129 breakpoint->address,
3130 breakpoint->length, breakpoint->set);
3131 }
3132
3133 breakpoint = breakpoint->next;
3134 }
3135 return ERROR_OK;
3136 }
3137
3138 static int handle_bp_command_set(struct command_context *cmd_ctx,
3139 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3140 {
3141 struct target *target = get_current_target(cmd_ctx);
3142
3143 if (asid == 0) {
3144 int retval = breakpoint_add(target, addr, length, hw);
3145 if (ERROR_OK == retval)
3146 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3147 else {
3148 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3149 return retval;
3150 }
3151 } else if (addr == 0) {
3152 int retval = context_breakpoint_add(target, asid, length, hw);
3153 if (ERROR_OK == retval)
3154 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3155 else {
3156 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3157 return retval;
3158 }
3159 } else {
3160 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3161 if (ERROR_OK == retval)
3162 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3163 else {
3164 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3165 return retval;
3166 }
3167 }
3168 return ERROR_OK;
3169 }
3170
3171 COMMAND_HANDLER(handle_bp_command)
3172 {
3173 uint32_t addr;
3174 uint32_t asid;
3175 uint32_t length;
3176 int hw = BKPT_SOFT;
3177
3178 switch (CMD_ARGC) {
3179 case 0:
3180 return handle_bp_command_list(CMD_CTX);
3181
3182 case 2:
3183 asid = 0;
3184 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3185 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3186 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3187
3188 case 3:
3189 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3190 hw = BKPT_HARD;
3191 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3192
3193 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3194
3195 asid = 0;
3196 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3197 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3198 hw = BKPT_HARD;
3199 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3200 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3201 addr = 0;
3202 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3203 }
3204
3205 case 4:
3206 hw = BKPT_HARD;
3207 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3208 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3209 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3210 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3211
3212 default:
3213 return ERROR_COMMAND_SYNTAX_ERROR;
3214 }
3215 }
3216
3217 COMMAND_HANDLER(handle_rbp_command)
3218 {
3219 if (CMD_ARGC != 1)
3220 return ERROR_COMMAND_SYNTAX_ERROR;
3221
3222 uint32_t addr;
3223 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3224
3225 struct target *target = get_current_target(CMD_CTX);
3226 breakpoint_remove(target, addr);
3227
3228 return ERROR_OK;
3229 }
3230
3231 COMMAND_HANDLER(handle_wp_command)
3232 {
3233 struct target *target = get_current_target(CMD_CTX);
3234
3235 if (CMD_ARGC == 0) {
3236 struct watchpoint *watchpoint = target->watchpoints;
3237
3238 while (watchpoint) {
3239 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3240 ", len: 0x%8.8" PRIx32
3241 ", r/w/a: %i, value: 0x%8.8" PRIx32
3242 ", mask: 0x%8.8" PRIx32,
3243 watchpoint->address,
3244 watchpoint->length,
3245 (int)watchpoint->rw,
3246 watchpoint->value,
3247 watchpoint->mask);
3248 watchpoint = watchpoint->next;
3249 }
3250 return ERROR_OK;
3251 }
3252
3253 enum watchpoint_rw type = WPT_ACCESS;
3254 uint32_t addr = 0;
3255 uint32_t length = 0;
3256 uint32_t data_value = 0x0;
3257 uint32_t data_mask = 0xffffffff;
3258
3259 switch (CMD_ARGC) {
3260 case 5:
3261 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3262 /* fall through */
3263 case 4:
3264 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3265 /* fall through */
3266 case 3:
3267 switch (CMD_ARGV[2][0]) {
3268 case 'r':
3269 type = WPT_READ;
3270 break;
3271 case 'w':
3272 type = WPT_WRITE;
3273 break;
3274 case 'a':
3275 type = WPT_ACCESS;
3276 break;
3277 default:
3278 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3279 return ERROR_COMMAND_SYNTAX_ERROR;
3280 }
3281 /* fall through */
3282 case 2:
3283 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3284 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3285 break;
3286
3287 default:
3288 return ERROR_COMMAND_SYNTAX_ERROR;
3289 }
3290
3291 int retval = watchpoint_add(target, addr, length, type,
3292 data_value, data_mask);
3293 if (ERROR_OK != retval)
3294 LOG_ERROR("Failure setting watchpoints");
3295
3296 return retval;
3297 }
3298
3299 COMMAND_HANDLER(handle_rwp_command)
3300 {
3301 if (CMD_ARGC != 1)
3302 return ERROR_COMMAND_SYNTAX_ERROR;
3303
3304 uint32_t addr;
3305 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3306
3307 struct target *target = get_current_target(CMD_CTX);
3308 watchpoint_remove(target, addr);
3309
3310 return ERROR_OK;
3311 }
3312
3313 /**
3314 * Translate a virtual address to a physical address.
3315 *
3316 * The low-level target implementation must have logged a detailed error
3317 * which is forwarded to telnet/GDB session.
3318 */
3319 COMMAND_HANDLER(handle_virt2phys_command)
3320 {
3321 if (CMD_ARGC != 1)
3322 return ERROR_COMMAND_SYNTAX_ERROR;
3323
3324 uint32_t va;
3325 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3326 uint32_t pa;
3327
3328 struct target *target = get_current_target(CMD_CTX);
3329 int retval = target->type->virt2phys(target, va, &pa);
3330 if (retval == ERROR_OK)
3331 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3332
3333 return retval;
3334 }
3335
3336 static void writeData(FILE *f, const void *data, size_t len)
3337 {
3338 size_t written = fwrite(data, 1, len, f);
3339 if (written != len)
3340 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3341 }
3342
3343 static void writeLong(FILE *f, int l)
3344 {
3345 int i;
3346 for (i = 0; i < 4; i++) {
3347 char c = (l >> (i*8))&0xff;
3348 writeData(f, &c, 1);
3349 }
3350
3351 }
3352
3353 static void writeString(FILE *f, char *s)
3354 {
3355 writeData(f, s, strlen(s));
3356 }
3357
3358 /* Dump a gmon.out histogram file. */
3359 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3360 {
3361 uint32_t i;
3362 FILE *f = fopen(filename, "w");
3363 if (f == NULL)
3364 return;
3365 writeString(f, "gmon");
3366 writeLong(f, 0x00000001); /* Version */
3367 writeLong(f, 0); /* padding */
3368 writeLong(f, 0); /* padding */
3369 writeLong(f, 0); /* padding */
3370
3371 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3372 writeData(f, &zero, 1);
3373
3374 /* figure out bucket size */
3375 uint32_t min = samples[0];
3376 uint32_t max = samples[0];
3377 for (i = 0; i < sampleNum; i++) {
3378 if (min > samples[i])
3379 min = samples[i];
3380 if (max < samples[i])
3381 max = samples[i];
3382 }
3383
3384 int addressSpace = (max - min + 1);
3385 assert(addressSpace >= 2);
3386
3387 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3388 uint32_t length = addressSpace;
3389 if (length > maxBuckets)
3390 length = maxBuckets;
3391 int *buckets = malloc(sizeof(int)*length);
3392 if (buckets == NULL) {
3393 fclose(f);
3394 return;
3395 }
3396 memset(buckets, 0, sizeof(int) * length);
3397 for (i = 0; i < sampleNum; i++) {
3398 uint32_t address = samples[i];
3399 long long a = address - min;
3400 long long b = length - 1;
3401 long long c = addressSpace - 1;
3402 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3403 buckets[index_t]++;
3404 }
3405
3406 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3407 writeLong(f, min); /* low_pc */
3408 writeLong(f, max); /* high_pc */
3409 writeLong(f, length); /* # of samples */
3410 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3411 writeString(f, "seconds");
3412 for (i = 0; i < (15-strlen("seconds")); i++)
3413 writeData(f, &zero, 1);
3414 writeString(f, "s");
3415
3416 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3417
3418 char *data = malloc(2 * length);
3419 if (data != NULL) {
3420 for (i = 0; i < length; i++) {
3421 int val;
3422 val = buckets[i];
3423 if (val > 65535)
3424 val = 65535;
3425 data[i * 2] = val&0xff;
3426 data[i * 2 + 1] = (val >> 8) & 0xff;
3427 }
3428 free(buckets);
3429 writeData(f, data, length * 2);
3430 free(data);
3431 } else
3432 free(buckets);
3433
3434 fclose(f);
3435 }
3436
3437 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3438 * which will be used as a random sampling of PC */
3439 COMMAND_HANDLER(handle_profile_command)
3440 {
3441 struct target *target = get_current_target(CMD_CTX);
3442 struct timeval timeout, now;
3443
3444 gettimeofday(&timeout, NULL);
3445 if (CMD_ARGC != 2)
3446 return ERROR_COMMAND_SYNTAX_ERROR;
3447 unsigned offset;
3448 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3449
3450 timeval_add_time(&timeout, offset, 0);
3451
3452 /**
3453 * @todo: Some cores let us sample the PC without the
3454 * annoying halt/resume step; for example, ARMv7 PCSR.
3455 * Provide a way to use that more efficient mechanism.
3456 */
3457
3458 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3459
3460 static const int maxSample = 10000;
3461 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3462 if (samples == NULL)
3463 return ERROR_OK;
3464
3465 int numSamples = 0;
3466 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3467 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3468
3469 int retval = ERROR_OK;
3470 for (;;) {
3471 target_poll(target);
3472 if (target->state == TARGET_HALTED) {
3473 uint32_t t = *((uint32_t *)reg->value);
3474 samples[numSamples++] = t;
3475 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3476 retval = target_resume(target, 1, 0, 0, 0);
3477 target_poll(target);
3478 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3479 } else if (target->state == TARGET_RUNNING) {
3480 /* We want to quickly sample the PC. */
3481 retval = target_halt(target);
3482 if (retval != ERROR_OK) {
3483 free(samples);
3484 return retval;
3485 }
3486 } else {
3487 command_print(CMD_CTX, "Target not halted or running");
3488 retval = ERROR_OK;
3489 break;
3490 }
3491 if (retval != ERROR_OK)
3492 break;
3493
3494 gettimeofday(&now, NULL);
3495 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3496 && (now.tv_usec >= timeout.tv_usec))) {
3497 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3498 retval = target_poll(target);
3499 if (retval != ERROR_OK) {
3500 free(samples);
3501 return retval;
3502 }
3503 if (target->state == TARGET_HALTED) {
3504 /* current pc, addr = 0, do not handle
3505 * breakpoints, not debugging */
3506 target_resume(target, 1, 0, 0, 0);
3507 }
3508 retval = target_poll(target);
3509 if (retval != ERROR_OK) {
3510 free(samples);
3511 return retval;
3512 }
3513 writeGmon(samples, numSamples, CMD_ARGV[1]);
3514 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3515 break;
3516 }
3517 }
3518 free(samples);
3519
3520 return retval;
3521 }
3522
3523 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3524 {
3525 char *namebuf;
3526 Jim_Obj *nameObjPtr, *valObjPtr;
3527 int result;
3528
3529 namebuf = alloc_printf("%s(%d)", varname, idx);
3530 if (!namebuf)
3531 return JIM_ERR;
3532
3533 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3534 valObjPtr = Jim_NewIntObj(interp, val);
3535 if (!nameObjPtr || !valObjPtr) {
3536 free(namebuf);
3537 return JIM_ERR;
3538 }
3539
3540 Jim_IncrRefCount(nameObjPtr);
3541 Jim_IncrRefCount(valObjPtr);
3542 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3543 Jim_DecrRefCount(interp, nameObjPtr);
3544 Jim_DecrRefCount(interp, valObjPtr);
3545 free(namebuf);
3546 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3547 return result;
3548 }
3549
3550 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3551 {
3552 struct command_context *context;
3553 struct target *target;
3554
3555 context = current_command_context(interp);
3556 assert(context != NULL);
3557
3558 target = get_current_target(context);
3559 if (target == NULL) {
3560 LOG_ERROR("mem2array: no current target");
3561 return JIM_ERR;
3562 }
3563
3564 return target_mem2array(interp, target, argc - 1, argv + 1);
3565 }
3566
3567 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3568 {
3569 long l;
3570 uint32_t width;
3571 int len;
3572 uint32_t addr;
3573 uint32_t count;
3574 uint32_t v;
3575 const char *varname;
3576 int n, e, retval;
3577 uint32_t i;
3578
3579 /* argv[1] = name of array to receive the data
3580 * argv[2] = desired width
3581 * argv[3] = memory address
3582 * argv[4] = count of times to read
3583 */
3584 if (argc != 4) {
3585 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3586 return JIM_ERR;
3587 }
3588 varname = Jim_GetString(argv[0], &len);
3589 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3590
3591 e = Jim_GetLong(interp, argv[1], &l);
3592 width = l;
3593 if (e != JIM_OK)
3594 return e;
3595
3596 e = Jim_GetLong(interp, argv[2], &l);
3597 addr = l;
3598 if (e != JIM_OK)
3599 return e;
3600 e = Jim_GetLong(interp, argv[3], &l);
3601 len = l;
3602 if (e != JIM_OK)
3603 return e;
3604 switch (width) {
3605 case 8:
3606 width = 1;
3607 break;
3608 case 16:
3609 width = 2;
3610 break;
3611 case 32:
3612 width = 4;
3613 break;
3614 default:
3615 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3616 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3617 return JIM_ERR;
3618 }
3619 if (len == 0) {
3620 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3621 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3622 return JIM_ERR;
3623 }
3624 if ((addr + (len * width)) < addr) {
3625 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3626 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3627 return JIM_ERR;
3628 }
3629 /* absurd transfer size? */
3630 if (len > 65536) {
3631 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3632 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3633 return JIM_ERR;
3634 }
3635
3636 if ((width == 1) ||
3637 ((width == 2) && ((addr & 1) == 0)) ||
3638 ((width == 4) && ((addr & 3) == 0))) {
3639 /* all is well */
3640 } else {
3641 char buf[100];
3642 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3643 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3644 addr,
3645 width);
3646 Jim_AppendStrings<