7ab13b020476669b9b6f3493d0629082caa873e3
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110
111 static struct target_type *target_types[] = {
112 &arm7tdmi_target,
113 &arm9tdmi_target,
114 &arm920t_target,
115 &arm720t_target,
116 &arm966e_target,
117 &arm946e_target,
118 &arm926ejs_target,
119 &fa526_target,
120 &feroceon_target,
121 &dragonite_target,
122 &xscale_target,
123 &cortexm_target,
124 &cortexa_target,
125 &cortexr4_target,
126 &arm11_target,
127 &ls1_sap_target,
128 &mips_m4k_target,
129 &avr_target,
130 &dsp563xx_target,
131 &dsp5680xx_target,
132 &testee_target,
133 &avr32_ap7k_target,
134 &hla_target,
135 &nds32_v2_target,
136 &nds32_v3_target,
137 &nds32_v3m_target,
138 &or1k_target,
139 &quark_x10xx_target,
140 &quark_d20xx_target,
141 &stm8_target,
142 #if BUILD_TARGET64
143 &aarch64_target,
144 #endif
145 NULL,
146 };
147
148 struct target *all_targets;
149 static struct target_event_callback *target_event_callbacks;
150 static struct target_timer_callback *target_timer_callbacks;
151 LIST_HEAD(target_reset_callback_list);
152 LIST_HEAD(target_trace_callback_list);
153 static const int polling_interval = 100;
154
155 static const Jim_Nvp nvp_assert[] = {
156 { .name = "assert", NVP_ASSERT },
157 { .name = "deassert", NVP_DEASSERT },
158 { .name = "T", NVP_ASSERT },
159 { .name = "F", NVP_DEASSERT },
160 { .name = "t", NVP_ASSERT },
161 { .name = "f", NVP_DEASSERT },
162 { .name = NULL, .value = -1 }
163 };
164
165 static const Jim_Nvp nvp_error_target[] = {
166 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
167 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
168 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
169 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
170 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
171 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
172 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
173 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
174 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
175 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
176 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
177 { .value = -1, .name = NULL }
178 };
179
180 static const char *target_strerror_safe(int err)
181 {
182 const Jim_Nvp *n;
183
184 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
185 if (n->name == NULL)
186 return "unknown";
187 else
188 return n->name;
189 }
190
191 static const Jim_Nvp nvp_target_event[] = {
192
193 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
194 { .value = TARGET_EVENT_HALTED, .name = "halted" },
195 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
196 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
198
199 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
200 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
201
202 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
203 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
204 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
205 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
207 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
208 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
209 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
210
211 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
212 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
213
214 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
215 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
216
217 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
218 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
219
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
221 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
222
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
224 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
225
226 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
227
228 { .name = NULL, .value = -1 }
229 };
230
231 static const Jim_Nvp nvp_target_state[] = {
232 { .name = "unknown", .value = TARGET_UNKNOWN },
233 { .name = "running", .value = TARGET_RUNNING },
234 { .name = "halted", .value = TARGET_HALTED },
235 { .name = "reset", .value = TARGET_RESET },
236 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
237 { .name = NULL, .value = -1 },
238 };
239
240 static const Jim_Nvp nvp_target_debug_reason[] = {
241 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
242 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
243 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
244 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
245 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
246 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
247 { .name = "program-exit" , .value = DBG_REASON_EXIT },
248 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
249 { .name = NULL, .value = -1 },
250 };
251
252 static const Jim_Nvp nvp_target_endian[] = {
253 { .name = "big", .value = TARGET_BIG_ENDIAN },
254 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
255 { .name = "be", .value = TARGET_BIG_ENDIAN },
256 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
257 { .name = NULL, .value = -1 },
258 };
259
260 static const Jim_Nvp nvp_reset_modes[] = {
261 { .name = "unknown", .value = RESET_UNKNOWN },
262 { .name = "run" , .value = RESET_RUN },
263 { .name = "halt" , .value = RESET_HALT },
264 { .name = "init" , .value = RESET_INIT },
265 { .name = NULL , .value = -1 },
266 };
267
268 const char *debug_reason_name(struct target *t)
269 {
270 const char *cp;
271
272 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
273 t->debug_reason)->name;
274 if (!cp) {
275 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
276 cp = "(*BUG*unknown*BUG*)";
277 }
278 return cp;
279 }
280
281 const char *target_state_name(struct target *t)
282 {
283 const char *cp;
284 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
285 if (!cp) {
286 LOG_ERROR("Invalid target state: %d", (int)(t->state));
287 cp = "(*BUG*unknown*BUG*)";
288 }
289
290 if (!target_was_examined(t) && t->defer_examine)
291 cp = "examine deferred";
292
293 return cp;
294 }
295
296 const char *target_event_name(enum target_event event)
297 {
298 const char *cp;
299 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
300 if (!cp) {
301 LOG_ERROR("Invalid target event: %d", (int)(event));
302 cp = "(*BUG*unknown*BUG*)";
303 }
304 return cp;
305 }
306
307 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
308 {
309 const char *cp;
310 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
311 if (!cp) {
312 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
313 cp = "(*BUG*unknown*BUG*)";
314 }
315 return cp;
316 }
317
318 /* determine the number of the new target */
319 static int new_target_number(void)
320 {
321 struct target *t;
322 int x;
323
324 /* number is 0 based */
325 x = -1;
326 t = all_targets;
327 while (t) {
328 if (x < t->target_number)
329 x = t->target_number;
330 t = t->next;
331 }
332 return x + 1;
333 }
334
335 /* read a uint64_t from a buffer in target memory endianness */
336 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
337 {
338 if (target->endianness == TARGET_LITTLE_ENDIAN)
339 return le_to_h_u64(buffer);
340 else
341 return be_to_h_u64(buffer);
342 }
343
344 /* read a uint32_t from a buffer in target memory endianness */
345 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
346 {
347 if (target->endianness == TARGET_LITTLE_ENDIAN)
348 return le_to_h_u32(buffer);
349 else
350 return be_to_h_u32(buffer);
351 }
352
353 /* read a uint24_t from a buffer in target memory endianness */
354 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
355 {
356 if (target->endianness == TARGET_LITTLE_ENDIAN)
357 return le_to_h_u24(buffer);
358 else
359 return be_to_h_u24(buffer);
360 }
361
362 /* read a uint16_t from a buffer in target memory endianness */
363 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
364 {
365 if (target->endianness == TARGET_LITTLE_ENDIAN)
366 return le_to_h_u16(buffer);
367 else
368 return be_to_h_u16(buffer);
369 }
370
371 /* read a uint8_t from a buffer in target memory endianness */
372 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
373 {
374 return *buffer & 0x0ff;
375 }
376
377 /* write a uint64_t to a buffer in target memory endianness */
378 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
379 {
380 if (target->endianness == TARGET_LITTLE_ENDIAN)
381 h_u64_to_le(buffer, value);
382 else
383 h_u64_to_be(buffer, value);
384 }
385
386 /* write a uint32_t to a buffer in target memory endianness */
387 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
388 {
389 if (target->endianness == TARGET_LITTLE_ENDIAN)
390 h_u32_to_le(buffer, value);
391 else
392 h_u32_to_be(buffer, value);
393 }
394
395 /* write a uint24_t to a buffer in target memory endianness */
396 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
397 {
398 if (target->endianness == TARGET_LITTLE_ENDIAN)
399 h_u24_to_le(buffer, value);
400 else
401 h_u24_to_be(buffer, value);
402 }
403
404 /* write a uint16_t to a buffer in target memory endianness */
405 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
406 {
407 if (target->endianness == TARGET_LITTLE_ENDIAN)
408 h_u16_to_le(buffer, value);
409 else
410 h_u16_to_be(buffer, value);
411 }
412
413 /* write a uint8_t to a buffer in target memory endianness */
414 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
415 {
416 *buffer = value;
417 }
418
419 /* write a uint64_t array to a buffer in target memory endianness */
420 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
421 {
422 uint32_t i;
423 for (i = 0; i < count; i++)
424 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
425 }
426
427 /* write a uint32_t array to a buffer in target memory endianness */
428 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
429 {
430 uint32_t i;
431 for (i = 0; i < count; i++)
432 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
433 }
434
435 /* write a uint16_t array to a buffer in target memory endianness */
436 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
437 {
438 uint32_t i;
439 for (i = 0; i < count; i++)
440 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
441 }
442
443 /* write a uint64_t array to a buffer in target memory endianness */
444 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
445 {
446 uint32_t i;
447 for (i = 0; i < count; i++)
448 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
449 }
450
451 /* write a uint32_t array to a buffer in target memory endianness */
452 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
453 {
454 uint32_t i;
455 for (i = 0; i < count; i++)
456 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
457 }
458
459 /* write a uint16_t array to a buffer in target memory endianness */
460 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
461 {
462 uint32_t i;
463 for (i = 0; i < count; i++)
464 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
465 }
466
467 /* return a pointer to a configured target; id is name or number */
468 struct target *get_target(const char *id)
469 {
470 struct target *target;
471
472 /* try as tcltarget name */
473 for (target = all_targets; target; target = target->next) {
474 if (target_name(target) == NULL)
475 continue;
476 if (strcmp(id, target_name(target)) == 0)
477 return target;
478 }
479
480 /* It's OK to remove this fallback sometime after August 2010 or so */
481
482 /* no match, try as number */
483 unsigned num;
484 if (parse_uint(id, &num) != ERROR_OK)
485 return NULL;
486
487 for (target = all_targets; target; target = target->next) {
488 if (target->target_number == (int)num) {
489 LOG_WARNING("use '%s' as target identifier, not '%u'",
490 target_name(target), num);
491 return target;
492 }
493 }
494
495 return NULL;
496 }
497
498 /* returns a pointer to the n-th configured target */
499 struct target *get_target_by_num(int num)
500 {
501 struct target *target = all_targets;
502
503 while (target) {
504 if (target->target_number == num)
505 return target;
506 target = target->next;
507 }
508
509 return NULL;
510 }
511
512 struct target *get_current_target(struct command_context *cmd_ctx)
513 {
514 struct target *target = cmd_ctx->current_target_override
515 ? cmd_ctx->current_target_override
516 : cmd_ctx->current_target;
517
518 if (target == NULL) {
519 LOG_ERROR("BUG: current_target out of bounds");
520 exit(-1);
521 }
522
523 return target;
524 }
525
526 int target_poll(struct target *target)
527 {
528 int retval;
529
530 /* We can't poll until after examine */
531 if (!target_was_examined(target)) {
532 /* Fail silently lest we pollute the log */
533 return ERROR_FAIL;
534 }
535
536 retval = target->type->poll(target);
537 if (retval != ERROR_OK)
538 return retval;
539
540 if (target->halt_issued) {
541 if (target->state == TARGET_HALTED)
542 target->halt_issued = false;
543 else {
544 int64_t t = timeval_ms() - target->halt_issued_time;
545 if (t > DEFAULT_HALT_TIMEOUT) {
546 target->halt_issued = false;
547 LOG_INFO("Halt timed out, wake up GDB.");
548 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
549 }
550 }
551 }
552
553 return ERROR_OK;
554 }
555
556 int target_halt(struct target *target)
557 {
558 int retval;
559 /* We can't poll until after examine */
560 if (!target_was_examined(target)) {
561 LOG_ERROR("Target not examined yet");
562 return ERROR_FAIL;
563 }
564
565 retval = target->type->halt(target);
566 if (retval != ERROR_OK)
567 return retval;
568
569 target->halt_issued = true;
570 target->halt_issued_time = timeval_ms();
571
572 return ERROR_OK;
573 }
574
575 /**
576 * Make the target (re)start executing using its saved execution
577 * context (possibly with some modifications).
578 *
579 * @param target Which target should start executing.
580 * @param current True to use the target's saved program counter instead
581 * of the address parameter
582 * @param address Optionally used as the program counter.
583 * @param handle_breakpoints True iff breakpoints at the resumption PC
584 * should be skipped. (For example, maybe execution was stopped by
585 * such a breakpoint, in which case it would be counterprodutive to
586 * let it re-trigger.
587 * @param debug_execution False if all working areas allocated by OpenOCD
588 * should be released and/or restored to their original contents.
589 * (This would for example be true to run some downloaded "helper"
590 * algorithm code, which resides in one such working buffer and uses
591 * another for data storage.)
592 *
593 * @todo Resolve the ambiguity about what the "debug_execution" flag
594 * signifies. For example, Target implementations don't agree on how
595 * it relates to invalidation of the register cache, or to whether
596 * breakpoints and watchpoints should be enabled. (It would seem wrong
597 * to enable breakpoints when running downloaded "helper" algorithms
598 * (debug_execution true), since the breakpoints would be set to match
599 * target firmware being debugged, not the helper algorithm.... and
600 * enabling them could cause such helpers to malfunction (for example,
601 * by overwriting data with a breakpoint instruction. On the other
602 * hand the infrastructure for running such helpers might use this
603 * procedure but rely on hardware breakpoint to detect termination.)
604 */
605 int target_resume(struct target *target, int current, target_addr_t address,
606 int handle_breakpoints, int debug_execution)
607 {
608 int retval;
609
610 /* We can't poll until after examine */
611 if (!target_was_examined(target)) {
612 LOG_ERROR("Target not examined yet");
613 return ERROR_FAIL;
614 }
615
616 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
617
618 /* note that resume *must* be asynchronous. The CPU can halt before
619 * we poll. The CPU can even halt at the current PC as a result of
620 * a software breakpoint being inserted by (a bug?) the application.
621 */
622 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
623 if (retval != ERROR_OK)
624 return retval;
625
626 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
627
628 return retval;
629 }
630
631 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
632 {
633 char buf[100];
634 int retval;
635 Jim_Nvp *n;
636 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
637 if (n->name == NULL) {
638 LOG_ERROR("invalid reset mode");
639 return ERROR_FAIL;
640 }
641
642 struct target *target;
643 for (target = all_targets; target; target = target->next)
644 target_call_reset_callbacks(target, reset_mode);
645
646 /* disable polling during reset to make reset event scripts
647 * more predictable, i.e. dr/irscan & pathmove in events will
648 * not have JTAG operations injected into the middle of a sequence.
649 */
650 bool save_poll = jtag_poll_get_enabled();
651
652 jtag_poll_set_enabled(false);
653
654 sprintf(buf, "ocd_process_reset %s", n->name);
655 retval = Jim_Eval(cmd_ctx->interp, buf);
656
657 jtag_poll_set_enabled(save_poll);
658
659 if (retval != JIM_OK) {
660 Jim_MakeErrorMessage(cmd_ctx->interp);
661 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
662 return ERROR_FAIL;
663 }
664
665 /* We want any events to be processed before the prompt */
666 retval = target_call_timer_callbacks_now();
667
668 for (target = all_targets; target; target = target->next) {
669 target->type->check_reset(target);
670 target->running_alg = false;
671 }
672
673 return retval;
674 }
675
676 static int identity_virt2phys(struct target *target,
677 target_addr_t virtual, target_addr_t *physical)
678 {
679 *physical = virtual;
680 return ERROR_OK;
681 }
682
683 static int no_mmu(struct target *target, int *enabled)
684 {
685 *enabled = 0;
686 return ERROR_OK;
687 }
688
689 static int default_examine(struct target *target)
690 {
691 target_set_examined(target);
692 return ERROR_OK;
693 }
694
695 /* no check by default */
696 static int default_check_reset(struct target *target)
697 {
698 return ERROR_OK;
699 }
700
701 int target_examine_one(struct target *target)
702 {
703 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704
705 int retval = target->type->examine(target);
706 if (retval != ERROR_OK)
707 return retval;
708
709 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710
711 return ERROR_OK;
712 }
713
714 static int jtag_enable_callback(enum jtag_event event, void *priv)
715 {
716 struct target *target = priv;
717
718 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
719 return ERROR_OK;
720
721 jtag_unregister_event_callback(jtag_enable_callback, target);
722
723 return target_examine_one(target);
724 }
725
726 /* Targets that correctly implement init + examine, i.e.
727 * no communication with target during init:
728 *
729 * XScale
730 */
731 int target_examine(void)
732 {
733 int retval = ERROR_OK;
734 struct target *target;
735
736 for (target = all_targets; target; target = target->next) {
737 /* defer examination, but don't skip it */
738 if (!target->tap->enabled) {
739 jtag_register_event_callback(jtag_enable_callback,
740 target);
741 continue;
742 }
743
744 if (target->defer_examine)
745 continue;
746
747 retval = target_examine_one(target);
748 if (retval != ERROR_OK)
749 return retval;
750 }
751 return retval;
752 }
753
754 const char *target_type_name(struct target *target)
755 {
756 return target->type->name;
757 }
758
759 static int target_soft_reset_halt(struct target *target)
760 {
761 if (!target_was_examined(target)) {
762 LOG_ERROR("Target not examined yet");
763 return ERROR_FAIL;
764 }
765 if (!target->type->soft_reset_halt) {
766 LOG_ERROR("Target %s does not support soft_reset_halt",
767 target_name(target));
768 return ERROR_FAIL;
769 }
770 return target->type->soft_reset_halt(target);
771 }
772
773 /**
774 * Downloads a target-specific native code algorithm to the target,
775 * and executes it. * Note that some targets may need to set up, enable,
776 * and tear down a breakpoint (hard or * soft) to detect algorithm
777 * termination, while others may support lower overhead schemes where
778 * soft breakpoints embedded in the algorithm automatically terminate the
779 * algorithm.
780 *
781 * @param target used to run the algorithm
782 * @param arch_info target-specific description of the algorithm.
783 */
784 int target_run_algorithm(struct target *target,
785 int num_mem_params, struct mem_param *mem_params,
786 int num_reg_params, struct reg_param *reg_param,
787 uint32_t entry_point, uint32_t exit_point,
788 int timeout_ms, void *arch_info)
789 {
790 int retval = ERROR_FAIL;
791
792 if (!target_was_examined(target)) {
793 LOG_ERROR("Target not examined yet");
794 goto done;
795 }
796 if (!target->type->run_algorithm) {
797 LOG_ERROR("Target type '%s' does not support %s",
798 target_type_name(target), __func__);
799 goto done;
800 }
801
802 target->running_alg = true;
803 retval = target->type->run_algorithm(target,
804 num_mem_params, mem_params,
805 num_reg_params, reg_param,
806 entry_point, exit_point, timeout_ms, arch_info);
807 target->running_alg = false;
808
809 done:
810 return retval;
811 }
812
813 /**
814 * Executes a target-specific native code algorithm and leaves it running.
815 *
816 * @param target used to run the algorithm
817 * @param arch_info target-specific description of the algorithm.
818 */
819 int target_start_algorithm(struct target *target,
820 int num_mem_params, struct mem_param *mem_params,
821 int num_reg_params, struct reg_param *reg_params,
822 uint32_t entry_point, uint32_t exit_point,
823 void *arch_info)
824 {
825 int retval = ERROR_FAIL;
826
827 if (!target_was_examined(target)) {
828 LOG_ERROR("Target not examined yet");
829 goto done;
830 }
831 if (!target->type->start_algorithm) {
832 LOG_ERROR("Target type '%s' does not support %s",
833 target_type_name(target), __func__);
834 goto done;
835 }
836 if (target->running_alg) {
837 LOG_ERROR("Target is already running an algorithm");
838 goto done;
839 }
840
841 target->running_alg = true;
842 retval = target->type->start_algorithm(target,
843 num_mem_params, mem_params,
844 num_reg_params, reg_params,
845 entry_point, exit_point, arch_info);
846
847 done:
848 return retval;
849 }
850
851 /**
852 * Waits for an algorithm started with target_start_algorithm() to complete.
853 *
854 * @param target used to run the algorithm
855 * @param arch_info target-specific description of the algorithm.
856 */
857 int target_wait_algorithm(struct target *target,
858 int num_mem_params, struct mem_param *mem_params,
859 int num_reg_params, struct reg_param *reg_params,
860 uint32_t exit_point, int timeout_ms,
861 void *arch_info)
862 {
863 int retval = ERROR_FAIL;
864
865 if (!target->type->wait_algorithm) {
866 LOG_ERROR("Target type '%s' does not support %s",
867 target_type_name(target), __func__);
868 goto done;
869 }
870 if (!target->running_alg) {
871 LOG_ERROR("Target is not running an algorithm");
872 goto done;
873 }
874
875 retval = target->type->wait_algorithm(target,
876 num_mem_params, mem_params,
877 num_reg_params, reg_params,
878 exit_point, timeout_ms, arch_info);
879 if (retval != ERROR_TARGET_TIMEOUT)
880 target->running_alg = false;
881
882 done:
883 return retval;
884 }
885
886 /**
887 * Streams data to a circular buffer on target intended for consumption by code
888 * running asynchronously on target.
889 *
890 * This is intended for applications where target-specific native code runs
891 * on the target, receives data from the circular buffer, does something with
892 * it (most likely writing it to a flash memory), and advances the circular
893 * buffer pointer.
894 *
895 * This assumes that the helper algorithm has already been loaded to the target,
896 * but has not been started yet. Given memory and register parameters are passed
897 * to the algorithm.
898 *
899 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
900 * following format:
901 *
902 * [buffer_start + 0, buffer_start + 4):
903 * Write Pointer address (aka head). Written and updated by this
904 * routine when new data is written to the circular buffer.
905 * [buffer_start + 4, buffer_start + 8):
906 * Read Pointer address (aka tail). Updated by code running on the
907 * target after it consumes data.
908 * [buffer_start + 8, buffer_start + buffer_size):
909 * Circular buffer contents.
910 *
911 * See contrib/loaders/flash/stm32f1x.S for an example.
912 *
913 * @param target used to run the algorithm
914 * @param buffer address on the host where data to be sent is located
915 * @param count number of blocks to send
916 * @param block_size size in bytes of each block
917 * @param num_mem_params count of memory-based params to pass to algorithm
918 * @param mem_params memory-based params to pass to algorithm
919 * @param num_reg_params count of register-based params to pass to algorithm
920 * @param reg_params memory-based params to pass to algorithm
921 * @param buffer_start address on the target of the circular buffer structure
922 * @param buffer_size size of the circular buffer structure
923 * @param entry_point address on the target to execute to start the algorithm
924 * @param exit_point address at which to set a breakpoint to catch the
925 * end of the algorithm; can be 0 if target triggers a breakpoint itself
926 */
927
928 int target_run_flash_async_algorithm(struct target *target,
929 const uint8_t *buffer, uint32_t count, int block_size,
930 int num_mem_params, struct mem_param *mem_params,
931 int num_reg_params, struct reg_param *reg_params,
932 uint32_t buffer_start, uint32_t buffer_size,
933 uint32_t entry_point, uint32_t exit_point, void *arch_info)
934 {
935 int retval;
936 int timeout = 0;
937
938 const uint8_t *buffer_orig = buffer;
939
940 /* Set up working area. First word is write pointer, second word is read pointer,
941 * rest is fifo data area. */
942 uint32_t wp_addr = buffer_start;
943 uint32_t rp_addr = buffer_start + 4;
944 uint32_t fifo_start_addr = buffer_start + 8;
945 uint32_t fifo_end_addr = buffer_start + buffer_size;
946
947 uint32_t wp = fifo_start_addr;
948 uint32_t rp = fifo_start_addr;
949
950 /* validate block_size is 2^n */
951 assert(!block_size || !(block_size & (block_size - 1)));
952
953 retval = target_write_u32(target, wp_addr, wp);
954 if (retval != ERROR_OK)
955 return retval;
956 retval = target_write_u32(target, rp_addr, rp);
957 if (retval != ERROR_OK)
958 return retval;
959
960 /* Start up algorithm on target and let it idle while writing the first chunk */
961 retval = target_start_algorithm(target, num_mem_params, mem_params,
962 num_reg_params, reg_params,
963 entry_point,
964 exit_point,
965 arch_info);
966
967 if (retval != ERROR_OK) {
968 LOG_ERROR("error starting target flash write algorithm");
969 return retval;
970 }
971
972 while (count > 0) {
973
974 retval = target_read_u32(target, rp_addr, &rp);
975 if (retval != ERROR_OK) {
976 LOG_ERROR("failed to get read pointer");
977 break;
978 }
979
980 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
981 (size_t) (buffer - buffer_orig), count, wp, rp);
982
983 if (rp == 0) {
984 LOG_ERROR("flash write algorithm aborted by target");
985 retval = ERROR_FLASH_OPERATION_FAILED;
986 break;
987 }
988
989 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
990 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
991 break;
992 }
993
994 /* Count the number of bytes available in the fifo without
995 * crossing the wrap around. Make sure to not fill it completely,
996 * because that would make wp == rp and that's the empty condition. */
997 uint32_t thisrun_bytes;
998 if (rp > wp)
999 thisrun_bytes = rp - wp - block_size;
1000 else if (rp > fifo_start_addr)
1001 thisrun_bytes = fifo_end_addr - wp;
1002 else
1003 thisrun_bytes = fifo_end_addr - wp - block_size;
1004
1005 if (thisrun_bytes == 0) {
1006 /* Throttle polling a bit if transfer is (much) faster than flash
1007 * programming. The exact delay shouldn't matter as long as it's
1008 * less than buffer size / flash speed. This is very unlikely to
1009 * run when using high latency connections such as USB. */
1010 alive_sleep(10);
1011
1012 /* to stop an infinite loop on some targets check and increment a timeout
1013 * this issue was observed on a stellaris using the new ICDI interface */
1014 if (timeout++ >= 500) {
1015 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1016 return ERROR_FLASH_OPERATION_FAILED;
1017 }
1018 continue;
1019 }
1020
1021 /* reset our timeout */
1022 timeout = 0;
1023
1024 /* Limit to the amount of data we actually want to write */
1025 if (thisrun_bytes > count * block_size)
1026 thisrun_bytes = count * block_size;
1027
1028 /* Write data to fifo */
1029 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1030 if (retval != ERROR_OK)
1031 break;
1032
1033 /* Update counters and wrap write pointer */
1034 buffer += thisrun_bytes;
1035 count -= thisrun_bytes / block_size;
1036 wp += thisrun_bytes;
1037 if (wp >= fifo_end_addr)
1038 wp = fifo_start_addr;
1039
1040 /* Store updated write pointer to target */
1041 retval = target_write_u32(target, wp_addr, wp);
1042 if (retval != ERROR_OK)
1043 break;
1044 }
1045
1046 if (retval != ERROR_OK) {
1047 /* abort flash write algorithm on target */
1048 target_write_u32(target, wp_addr, 0);
1049 }
1050
1051 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1052 num_reg_params, reg_params,
1053 exit_point,
1054 10000,
1055 arch_info);
1056
1057 if (retval2 != ERROR_OK) {
1058 LOG_ERROR("error waiting for target flash write algorithm");
1059 retval = retval2;
1060 }
1061
1062 if (retval == ERROR_OK) {
1063 /* check if algorithm set rp = 0 after fifo writer loop finished */
1064 retval = target_read_u32(target, rp_addr, &rp);
1065 if (retval == ERROR_OK && rp == 0) {
1066 LOG_ERROR("flash write algorithm aborted by target");
1067 retval = ERROR_FLASH_OPERATION_FAILED;
1068 }
1069 }
1070
1071 return retval;
1072 }
1073
1074 int target_read_memory(struct target *target,
1075 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1076 {
1077 if (!target_was_examined(target)) {
1078 LOG_ERROR("Target not examined yet");
1079 return ERROR_FAIL;
1080 }
1081 if (!target->type->read_memory) {
1082 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1083 return ERROR_FAIL;
1084 }
1085 return target->type->read_memory(target, address, size, count, buffer);
1086 }
1087
1088 int target_read_phys_memory(struct target *target,
1089 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1090 {
1091 if (!target_was_examined(target)) {
1092 LOG_ERROR("Target not examined yet");
1093 return ERROR_FAIL;
1094 }
1095 if (!target->type->read_phys_memory) {
1096 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1097 return ERROR_FAIL;
1098 }
1099 return target->type->read_phys_memory(target, address, size, count, buffer);
1100 }
1101
1102 int target_write_memory(struct target *target,
1103 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1104 {
1105 if (!target_was_examined(target)) {
1106 LOG_ERROR("Target not examined yet");
1107 return ERROR_FAIL;
1108 }
1109 if (!target->type->write_memory) {
1110 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1111 return ERROR_FAIL;
1112 }
1113 return target->type->write_memory(target, address, size, count, buffer);
1114 }
1115
1116 int target_write_phys_memory(struct target *target,
1117 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1118 {
1119 if (!target_was_examined(target)) {
1120 LOG_ERROR("Target not examined yet");
1121 return ERROR_FAIL;
1122 }
1123 if (!target->type->write_phys_memory) {
1124 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1125 return ERROR_FAIL;
1126 }
1127 return target->type->write_phys_memory(target, address, size, count, buffer);
1128 }
1129
1130 int target_add_breakpoint(struct target *target,
1131 struct breakpoint *breakpoint)
1132 {
1133 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1134 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1135 return ERROR_TARGET_NOT_HALTED;
1136 }
1137 return target->type->add_breakpoint(target, breakpoint);
1138 }
1139
1140 int target_add_context_breakpoint(struct target *target,
1141 struct breakpoint *breakpoint)
1142 {
1143 if (target->state != TARGET_HALTED) {
1144 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1145 return ERROR_TARGET_NOT_HALTED;
1146 }
1147 return target->type->add_context_breakpoint(target, breakpoint);
1148 }
1149
1150 int target_add_hybrid_breakpoint(struct target *target,
1151 struct breakpoint *breakpoint)
1152 {
1153 if (target->state != TARGET_HALTED) {
1154 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1155 return ERROR_TARGET_NOT_HALTED;
1156 }
1157 return target->type->add_hybrid_breakpoint(target, breakpoint);
1158 }
1159
1160 int target_remove_breakpoint(struct target *target,
1161 struct breakpoint *breakpoint)
1162 {
1163 return target->type->remove_breakpoint(target, breakpoint);
1164 }
1165
1166 int target_add_watchpoint(struct target *target,
1167 struct watchpoint *watchpoint)
1168 {
1169 if (target->state != TARGET_HALTED) {
1170 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1171 return ERROR_TARGET_NOT_HALTED;
1172 }
1173 return target->type->add_watchpoint(target, watchpoint);
1174 }
1175 int target_remove_watchpoint(struct target *target,
1176 struct watchpoint *watchpoint)
1177 {
1178 return target->type->remove_watchpoint(target, watchpoint);
1179 }
1180 int target_hit_watchpoint(struct target *target,
1181 struct watchpoint **hit_watchpoint)
1182 {
1183 if (target->state != TARGET_HALTED) {
1184 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1185 return ERROR_TARGET_NOT_HALTED;
1186 }
1187
1188 if (target->type->hit_watchpoint == NULL) {
1189 /* For backward compatible, if hit_watchpoint is not implemented,
1190 * return ERROR_FAIL such that gdb_server will not take the nonsense
1191 * information. */
1192 return ERROR_FAIL;
1193 }
1194
1195 return target->type->hit_watchpoint(target, hit_watchpoint);
1196 }
1197
1198 int target_get_gdb_reg_list(struct target *target,
1199 struct reg **reg_list[], int *reg_list_size,
1200 enum target_register_class reg_class)
1201 {
1202 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1203 }
1204 int target_step(struct target *target,
1205 int current, target_addr_t address, int handle_breakpoints)
1206 {
1207 return target->type->step(target, current, address, handle_breakpoints);
1208 }
1209
1210 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1211 {
1212 if (target->state != TARGET_HALTED) {
1213 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1214 return ERROR_TARGET_NOT_HALTED;
1215 }
1216 return target->type->get_gdb_fileio_info(target, fileio_info);
1217 }
1218
1219 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1220 {
1221 if (target->state != TARGET_HALTED) {
1222 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1223 return ERROR_TARGET_NOT_HALTED;
1224 }
1225 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1226 }
1227
1228 int target_profiling(struct target *target, uint32_t *samples,
1229 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1230 {
1231 if (target->state != TARGET_HALTED) {
1232 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1233 return ERROR_TARGET_NOT_HALTED;
1234 }
1235 return target->type->profiling(target, samples, max_num_samples,
1236 num_samples, seconds);
1237 }
1238
1239 /**
1240 * Reset the @c examined flag for the given target.
1241 * Pure paranoia -- targets are zeroed on allocation.
1242 */
1243 static void target_reset_examined(struct target *target)
1244 {
1245 target->examined = false;
1246 }
1247
1248 static int handle_target(void *priv);
1249
1250 static int target_init_one(struct command_context *cmd_ctx,
1251 struct target *target)
1252 {
1253 target_reset_examined(target);
1254
1255 struct target_type *type = target->type;
1256 if (type->examine == NULL)
1257 type->examine = default_examine;
1258
1259 if (type->check_reset == NULL)
1260 type->check_reset = default_check_reset;
1261
1262 assert(type->init_target != NULL);
1263
1264 int retval = type->init_target(cmd_ctx, target);
1265 if (ERROR_OK != retval) {
1266 LOG_ERROR("target '%s' init failed", target_name(target));
1267 return retval;
1268 }
1269
1270 /* Sanity-check MMU support ... stub in what we must, to help
1271 * implement it in stages, but warn if we need to do so.
1272 */
1273 if (type->mmu) {
1274 if (type->virt2phys == NULL) {
1275 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1276 type->virt2phys = identity_virt2phys;
1277 }
1278 } else {
1279 /* Make sure no-MMU targets all behave the same: make no
1280 * distinction between physical and virtual addresses, and
1281 * ensure that virt2phys() is always an identity mapping.
1282 */
1283 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1284 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1285
1286 type->mmu = no_mmu;
1287 type->write_phys_memory = type->write_memory;
1288 type->read_phys_memory = type->read_memory;
1289 type->virt2phys = identity_virt2phys;
1290 }
1291
1292 if (target->type->read_buffer == NULL)
1293 target->type->read_buffer = target_read_buffer_default;
1294
1295 if (target->type->write_buffer == NULL)
1296 target->type->write_buffer = target_write_buffer_default;
1297
1298 if (target->type->get_gdb_fileio_info == NULL)
1299 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1300
1301 if (target->type->gdb_fileio_end == NULL)
1302 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1303
1304 if (target->type->profiling == NULL)
1305 target->type->profiling = target_profiling_default;
1306
1307 return ERROR_OK;
1308 }
1309
1310 static int target_init(struct command_context *cmd_ctx)
1311 {
1312 struct target *target;
1313 int retval;
1314
1315 for (target = all_targets; target; target = target->next) {
1316 retval = target_init_one(cmd_ctx, target);
1317 if (ERROR_OK != retval)
1318 return retval;
1319 }
1320
1321 if (!all_targets)
1322 return ERROR_OK;
1323
1324 retval = target_register_user_commands(cmd_ctx);
1325 if (ERROR_OK != retval)
1326 return retval;
1327
1328 retval = target_register_timer_callback(&handle_target,
1329 polling_interval, 1, cmd_ctx->interp);
1330 if (ERROR_OK != retval)
1331 return retval;
1332
1333 return ERROR_OK;
1334 }
1335
1336 COMMAND_HANDLER(handle_target_init_command)
1337 {
1338 int retval;
1339
1340 if (CMD_ARGC != 0)
1341 return ERROR_COMMAND_SYNTAX_ERROR;
1342
1343 static bool target_initialized;
1344 if (target_initialized) {
1345 LOG_INFO("'target init' has already been called");
1346 return ERROR_OK;
1347 }
1348 target_initialized = true;
1349
1350 retval = command_run_line(CMD_CTX, "init_targets");
1351 if (ERROR_OK != retval)
1352 return retval;
1353
1354 retval = command_run_line(CMD_CTX, "init_target_events");
1355 if (ERROR_OK != retval)
1356 return retval;
1357
1358 retval = command_run_line(CMD_CTX, "init_board");
1359 if (ERROR_OK != retval)
1360 return retval;
1361
1362 LOG_DEBUG("Initializing targets...");
1363 return target_init(CMD_CTX);
1364 }
1365
1366 int target_register_event_callback(int (*callback)(struct target *target,
1367 enum target_event event, void *priv), void *priv)
1368 {
1369 struct target_event_callback **callbacks_p = &target_event_callbacks;
1370
1371 if (callback == NULL)
1372 return ERROR_COMMAND_SYNTAX_ERROR;
1373
1374 if (*callbacks_p) {
1375 while ((*callbacks_p)->next)
1376 callbacks_p = &((*callbacks_p)->next);
1377 callbacks_p = &((*callbacks_p)->next);
1378 }
1379
1380 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1381 (*callbacks_p)->callback = callback;
1382 (*callbacks_p)->priv = priv;
1383 (*callbacks_p)->next = NULL;
1384
1385 return ERROR_OK;
1386 }
1387
1388 int target_register_reset_callback(int (*callback)(struct target *target,
1389 enum target_reset_mode reset_mode, void *priv), void *priv)
1390 {
1391 struct target_reset_callback *entry;
1392
1393 if (callback == NULL)
1394 return ERROR_COMMAND_SYNTAX_ERROR;
1395
1396 entry = malloc(sizeof(struct target_reset_callback));
1397 if (entry == NULL) {
1398 LOG_ERROR("error allocating buffer for reset callback entry");
1399 return ERROR_COMMAND_SYNTAX_ERROR;
1400 }
1401
1402 entry->callback = callback;
1403 entry->priv = priv;
1404 list_add(&entry->list, &target_reset_callback_list);
1405
1406
1407 return ERROR_OK;
1408 }
1409
1410 int target_register_trace_callback(int (*callback)(struct target *target,
1411 size_t len, uint8_t *data, void *priv), void *priv)
1412 {
1413 struct target_trace_callback *entry;
1414
1415 if (callback == NULL)
1416 return ERROR_COMMAND_SYNTAX_ERROR;
1417
1418 entry = malloc(sizeof(struct target_trace_callback));
1419 if (entry == NULL) {
1420 LOG_ERROR("error allocating buffer for trace callback entry");
1421 return ERROR_COMMAND_SYNTAX_ERROR;
1422 }
1423
1424 entry->callback = callback;
1425 entry->priv = priv;
1426 list_add(&entry->list, &target_trace_callback_list);
1427
1428
1429 return ERROR_OK;
1430 }
1431
1432 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1433 {
1434 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1435
1436 if (callback == NULL)
1437 return ERROR_COMMAND_SYNTAX_ERROR;
1438
1439 if (*callbacks_p) {
1440 while ((*callbacks_p)->next)
1441 callbacks_p = &((*callbacks_p)->next);
1442 callbacks_p = &((*callbacks_p)->next);
1443 }
1444
1445 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1446 (*callbacks_p)->callback = callback;
1447 (*callbacks_p)->periodic = periodic;
1448 (*callbacks_p)->time_ms = time_ms;
1449 (*callbacks_p)->removed = false;
1450
1451 gettimeofday(&(*callbacks_p)->when, NULL);
1452 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1453
1454 (*callbacks_p)->priv = priv;
1455 (*callbacks_p)->next = NULL;
1456
1457 return ERROR_OK;
1458 }
1459
1460 int target_unregister_event_callback(int (*callback)(struct target *target,
1461 enum target_event event, void *priv), void *priv)
1462 {
1463 struct target_event_callback **p = &target_event_callbacks;
1464 struct target_event_callback *c = target_event_callbacks;
1465
1466 if (callback == NULL)
1467 return ERROR_COMMAND_SYNTAX_ERROR;
1468
1469 while (c) {
1470 struct target_event_callback *next = c->next;
1471 if ((c->callback == callback) && (c->priv == priv)) {
1472 *p = next;
1473 free(c);
1474 return ERROR_OK;
1475 } else
1476 p = &(c->next);
1477 c = next;
1478 }
1479
1480 return ERROR_OK;
1481 }
1482
1483 int target_unregister_reset_callback(int (*callback)(struct target *target,
1484 enum target_reset_mode reset_mode, void *priv), void *priv)
1485 {
1486 struct target_reset_callback *entry;
1487
1488 if (callback == NULL)
1489 return ERROR_COMMAND_SYNTAX_ERROR;
1490
1491 list_for_each_entry(entry, &target_reset_callback_list, list) {
1492 if (entry->callback == callback && entry->priv == priv) {
1493 list_del(&entry->list);
1494 free(entry);
1495 break;
1496 }
1497 }
1498
1499 return ERROR_OK;
1500 }
1501
1502 int target_unregister_trace_callback(int (*callback)(struct target *target,
1503 size_t len, uint8_t *data, void *priv), void *priv)
1504 {
1505 struct target_trace_callback *entry;
1506
1507 if (callback == NULL)
1508 return ERROR_COMMAND_SYNTAX_ERROR;
1509
1510 list_for_each_entry(entry, &target_trace_callback_list, list) {
1511 if (entry->callback == callback && entry->priv == priv) {
1512 list_del(&entry->list);
1513 free(entry);
1514 break;
1515 }
1516 }
1517
1518 return ERROR_OK;
1519 }
1520
1521 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1522 {
1523 if (callback == NULL)
1524 return ERROR_COMMAND_SYNTAX_ERROR;
1525
1526 for (struct target_timer_callback *c = target_timer_callbacks;
1527 c; c = c->next) {
1528 if ((c->callback == callback) && (c->priv == priv)) {
1529 c->removed = true;
1530 return ERROR_OK;
1531 }
1532 }
1533
1534 return ERROR_FAIL;
1535 }
1536
1537 int target_call_event_callbacks(struct target *target, enum target_event event)
1538 {
1539 struct target_event_callback *callback = target_event_callbacks;
1540 struct target_event_callback *next_callback;
1541
1542 if (event == TARGET_EVENT_HALTED) {
1543 /* execute early halted first */
1544 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1545 }
1546
1547 LOG_DEBUG("target event %i (%s)", event,
1548 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1549
1550 target_handle_event(target, event);
1551
1552 while (callback) {
1553 next_callback = callback->next;
1554 callback->callback(target, event, callback->priv);
1555 callback = next_callback;
1556 }
1557
1558 return ERROR_OK;
1559 }
1560
1561 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1562 {
1563 struct target_reset_callback *callback;
1564
1565 LOG_DEBUG("target reset %i (%s)", reset_mode,
1566 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1567
1568 list_for_each_entry(callback, &target_reset_callback_list, list)
1569 callback->callback(target, reset_mode, callback->priv);
1570
1571 return ERROR_OK;
1572 }
1573
1574 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1575 {
1576 struct target_trace_callback *callback;
1577
1578 list_for_each_entry(callback, &target_trace_callback_list, list)
1579 callback->callback(target, len, data, callback->priv);
1580
1581 return ERROR_OK;
1582 }
1583
1584 static int target_timer_callback_periodic_restart(
1585 struct target_timer_callback *cb, struct timeval *now)
1586 {
1587 cb->when = *now;
1588 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1589 return ERROR_OK;
1590 }
1591
1592 static int target_call_timer_callback(struct target_timer_callback *cb,
1593 struct timeval *now)
1594 {
1595 cb->callback(cb->priv);
1596
1597 if (cb->periodic)
1598 return target_timer_callback_periodic_restart(cb, now);
1599
1600 return target_unregister_timer_callback(cb->callback, cb->priv);
1601 }
1602
1603 static int target_call_timer_callbacks_check_time(int checktime)
1604 {
1605 static bool callback_processing;
1606
1607 /* Do not allow nesting */
1608 if (callback_processing)
1609 return ERROR_OK;
1610
1611 callback_processing = true;
1612
1613 keep_alive();
1614
1615 struct timeval now;
1616 gettimeofday(&now, NULL);
1617
1618 /* Store an address of the place containing a pointer to the
1619 * next item; initially, that's a standalone "root of the
1620 * list" variable. */
1621 struct target_timer_callback **callback = &target_timer_callbacks;
1622 while (*callback) {
1623 if ((*callback)->removed) {
1624 struct target_timer_callback *p = *callback;
1625 *callback = (*callback)->next;
1626 free(p);
1627 continue;
1628 }
1629
1630 bool call_it = (*callback)->callback &&
1631 ((!checktime && (*callback)->periodic) ||
1632 timeval_compare(&now, &(*callback)->when) >= 0);
1633
1634 if (call_it)
1635 target_call_timer_callback(*callback, &now);
1636
1637 callback = &(*callback)->next;
1638 }
1639
1640 callback_processing = false;
1641 return ERROR_OK;
1642 }
1643
1644 int target_call_timer_callbacks(void)
1645 {
1646 return target_call_timer_callbacks_check_time(1);
1647 }
1648
1649 /* invoke periodic callbacks immediately */
1650 int target_call_timer_callbacks_now(void)
1651 {
1652 return target_call_timer_callbacks_check_time(0);
1653 }
1654
1655 /* Prints the working area layout for debug purposes */
1656 static void print_wa_layout(struct target *target)
1657 {
1658 struct working_area *c = target->working_areas;
1659
1660 while (c) {
1661 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1662 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1663 c->address, c->address + c->size - 1, c->size);
1664 c = c->next;
1665 }
1666 }
1667
1668 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1669 static void target_split_working_area(struct working_area *area, uint32_t size)
1670 {
1671 assert(area->free); /* Shouldn't split an allocated area */
1672 assert(size <= area->size); /* Caller should guarantee this */
1673
1674 /* Split only if not already the right size */
1675 if (size < area->size) {
1676 struct working_area *new_wa = malloc(sizeof(*new_wa));
1677
1678 if (new_wa == NULL)
1679 return;
1680
1681 new_wa->next = area->next;
1682 new_wa->size = area->size - size;
1683 new_wa->address = area->address + size;
1684 new_wa->backup = NULL;
1685 new_wa->user = NULL;
1686 new_wa->free = true;
1687
1688 area->next = new_wa;
1689 area->size = size;
1690
1691 /* If backup memory was allocated to this area, it has the wrong size
1692 * now so free it and it will be reallocated if/when needed */
1693 if (area->backup) {
1694 free(area->backup);
1695 area->backup = NULL;
1696 }
1697 }
1698 }
1699
1700 /* Merge all adjacent free areas into one */
1701 static void target_merge_working_areas(struct target *target)
1702 {
1703 struct working_area *c = target->working_areas;
1704
1705 while (c && c->next) {
1706 assert(c->next->address == c->address + c->size); /* This is an invariant */
1707
1708 /* Find two adjacent free areas */
1709 if (c->free && c->next->free) {
1710 /* Merge the last into the first */
1711 c->size += c->next->size;
1712
1713 /* Remove the last */
1714 struct working_area *to_be_freed = c->next;
1715 c->next = c->next->next;
1716 if (to_be_freed->backup)
1717 free(to_be_freed->backup);
1718 free(to_be_freed);
1719
1720 /* If backup memory was allocated to the remaining area, it's has
1721 * the wrong size now */
1722 if (c->backup) {
1723 free(c->backup);
1724 c->backup = NULL;
1725 }
1726 } else {
1727 c = c->next;
1728 }
1729 }
1730 }
1731
1732 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1733 {
1734 /* Reevaluate working area address based on MMU state*/
1735 if (target->working_areas == NULL) {
1736 int retval;
1737 int enabled;
1738
1739 retval = target->type->mmu(target, &enabled);
1740 if (retval != ERROR_OK)
1741 return retval;
1742
1743 if (!enabled) {
1744 if (target->working_area_phys_spec) {
1745 LOG_DEBUG("MMU disabled, using physical "
1746 "address for working memory " TARGET_ADDR_FMT,
1747 target->working_area_phys);
1748 target->working_area = target->working_area_phys;
1749 } else {
1750 LOG_ERROR("No working memory available. "
1751 "Specify -work-area-phys to target.");
1752 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1753 }
1754 } else {
1755 if (target->working_area_virt_spec) {
1756 LOG_DEBUG("MMU enabled, using virtual "
1757 "address for working memory " TARGET_ADDR_FMT,
1758 target->working_area_virt);
1759 target->working_area = target->working_area_virt;
1760 } else {
1761 LOG_ERROR("No working memory available. "
1762 "Specify -work-area-virt to target.");
1763 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1764 }
1765 }
1766
1767 /* Set up initial working area on first call */
1768 struct working_area *new_wa = malloc(sizeof(*new_wa));
1769 if (new_wa) {
1770 new_wa->next = NULL;
1771 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1772 new_wa->address = target->working_area;
1773 new_wa->backup = NULL;
1774 new_wa->user = NULL;
1775 new_wa->free = true;
1776 }
1777
1778 target->working_areas = new_wa;
1779 }
1780
1781 /* only allocate multiples of 4 byte */
1782 if (size % 4)
1783 size = (size + 3) & (~3UL);
1784
1785 struct working_area *c = target->working_areas;
1786
1787 /* Find the first large enough working area */
1788 while (c) {
1789 if (c->free && c->size >= size)
1790 break;
1791 c = c->next;
1792 }
1793
1794 if (c == NULL)
1795 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1796
1797 /* Split the working area into the requested size */
1798 target_split_working_area(c, size);
1799
1800 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1801 size, c->address);
1802
1803 if (target->backup_working_area) {
1804 if (c->backup == NULL) {
1805 c->backup = malloc(c->size);
1806 if (c->backup == NULL)
1807 return ERROR_FAIL;
1808 }
1809
1810 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1811 if (retval != ERROR_OK)
1812 return retval;
1813 }
1814
1815 /* mark as used, and return the new (reused) area */
1816 c->free = false;
1817 *area = c;
1818
1819 /* user pointer */
1820 c->user = area;
1821
1822 print_wa_layout(target);
1823
1824 return ERROR_OK;
1825 }
1826
1827 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1828 {
1829 int retval;
1830
1831 retval = target_alloc_working_area_try(target, size, area);
1832 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1833 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1834 return retval;
1835
1836 }
1837
1838 static int target_restore_working_area(struct target *target, struct working_area *area)
1839 {
1840 int retval = ERROR_OK;
1841
1842 if (target->backup_working_area && area->backup != NULL) {
1843 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1844 if (retval != ERROR_OK)
1845 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1846 area->size, area->address);
1847 }
1848
1849 return retval;
1850 }
1851
1852 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1853 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1854 {
1855 int retval = ERROR_OK;
1856
1857 if (area->free)
1858 return retval;
1859
1860 if (restore) {
1861 retval = target_restore_working_area(target, area);
1862 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1863 if (retval != ERROR_OK)
1864 return retval;
1865 }
1866
1867 area->free = true;
1868
1869 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1870 area->size, area->address);
1871
1872 /* mark user pointer invalid */
1873 /* TODO: Is this really safe? It points to some previous caller's memory.
1874 * How could we know that the area pointer is still in that place and not
1875 * some other vital data? What's the purpose of this, anyway? */
1876 *area->user = NULL;
1877 area->user = NULL;
1878
1879 target_merge_working_areas(target);
1880
1881 print_wa_layout(target);
1882
1883 return retval;
1884 }
1885
1886 int target_free_working_area(struct target *target, struct working_area *area)
1887 {
1888 return target_free_working_area_restore(target, area, 1);
1889 }
1890
1891 static void target_destroy(struct target *target)
1892 {
1893 if (target->type->deinit_target)
1894 target->type->deinit_target(target);
1895
1896 if (target->semihosting)
1897 free(target->semihosting);
1898
1899 jtag_unregister_event_callback(jtag_enable_callback, target);
1900
1901 struct target_event_action *teap = target->event_action;
1902 while (teap) {
1903 struct target_event_action *next = teap->next;
1904 Jim_DecrRefCount(teap->interp, teap->body);
1905 free(teap);
1906 teap = next;
1907 }
1908
1909 target_free_all_working_areas(target);
1910 /* Now we have none or only one working area marked as free */
1911 if (target->working_areas) {
1912 free(target->working_areas->backup);
1913 free(target->working_areas);
1914 }
1915
1916 /* release the targets SMP list */
1917 if (target->smp) {
1918 struct target_list *head = target->head;
1919 while (head != NULL) {
1920 struct target_list *pos = head->next;
1921 head->target->smp = 0;
1922 free(head);
1923 head = pos;
1924 }
1925 target->smp = 0;
1926 }
1927
1928 free(target->type);
1929 free(target->trace_info);
1930 free(target->fileio_info);
1931 free(target->cmd_name);
1932 free(target);
1933 }
1934
1935 void target_quit(void)
1936 {
1937 struct target_event_callback *pe = target_event_callbacks;
1938 while (pe) {
1939 struct target_event_callback *t = pe->next;
1940 free(pe);
1941 pe = t;
1942 }
1943 target_event_callbacks = NULL;
1944
1945 struct target_timer_callback *pt = target_timer_callbacks;
1946 while (pt) {
1947 struct target_timer_callback *t = pt->next;
1948 free(pt);
1949 pt = t;
1950 }
1951 target_timer_callbacks = NULL;
1952
1953 for (struct target *target = all_targets; target;) {
1954 struct target *tmp;
1955
1956 tmp = target->next;
1957 target_destroy(target);
1958 target = tmp;
1959 }
1960
1961 all_targets = NULL;
1962 }
1963
1964 /* free resources and restore memory, if restoring memory fails,
1965 * free up resources anyway
1966 */
1967 static void target_free_all_working_areas_restore(struct target *target, int restore)
1968 {
1969 struct working_area *c = target->working_areas;
1970
1971 LOG_DEBUG("freeing all working areas");
1972
1973 /* Loop through all areas, restoring the allocated ones and marking them as free */
1974 while (c) {
1975 if (!c->free) {
1976 if (restore)
1977 target_restore_working_area(target, c);
1978 c->free = true;
1979 *c->user = NULL; /* Same as above */
1980 c->user = NULL;
1981 }
1982 c = c->next;
1983 }
1984
1985 /* Run a merge pass to combine all areas into one */
1986 target_merge_working_areas(target);
1987
1988 print_wa_layout(target);
1989 }
1990
1991 void target_free_all_working_areas(struct target *target)
1992 {
1993 target_free_all_working_areas_restore(target, 1);
1994 }
1995
1996 /* Find the largest number of bytes that can be allocated */
1997 uint32_t target_get_working_area_avail(struct target *target)
1998 {
1999 struct working_area *c = target->working_areas;
2000 uint32_t max_size = 0;
2001
2002 if (c == NULL)
2003 return target->working_area_size;
2004
2005 while (c) {
2006 if (c->free && max_size < c->size)
2007 max_size = c->size;
2008
2009 c = c->next;
2010 }
2011
2012 return max_size;
2013 }
2014
2015 int target_arch_state(struct target *target)
2016 {
2017 int retval;
2018 if (target == NULL) {
2019 LOG_WARNING("No target has been configured");
2020 return ERROR_OK;
2021 }
2022
2023 if (target->state != TARGET_HALTED)
2024 return ERROR_OK;
2025
2026 retval = target->type->arch_state(target);
2027 return retval;
2028 }
2029
2030 static int target_get_gdb_fileio_info_default(struct target *target,
2031 struct gdb_fileio_info *fileio_info)
2032 {
2033 /* If target does not support semi-hosting function, target
2034 has no need to provide .get_gdb_fileio_info callback.
2035 It just return ERROR_FAIL and gdb_server will return "Txx"
2036 as target halted every time. */
2037 return ERROR_FAIL;
2038 }
2039
2040 static int target_gdb_fileio_end_default(struct target *target,
2041 int retcode, int fileio_errno, bool ctrl_c)
2042 {
2043 return ERROR_OK;
2044 }
2045
2046 static int target_profiling_default(struct target *target, uint32_t *samples,
2047 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2048 {
2049 struct timeval timeout, now;
2050
2051 gettimeofday(&timeout, NULL);
2052 timeval_add_time(&timeout, seconds, 0);
2053
2054 LOG_INFO("Starting profiling. Halting and resuming the"
2055 " target as often as we can...");
2056
2057 uint32_t sample_count = 0;
2058 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2059 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2060
2061 int retval = ERROR_OK;
2062 for (;;) {
2063 target_poll(target);
2064 if (target->state == TARGET_HALTED) {
2065 uint32_t t = buf_get_u32(reg->value, 0, 32);
2066 samples[sample_count++] = t;
2067 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2068 retval = target_resume(target, 1, 0, 0, 0);
2069 target_poll(target);
2070 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2071 } else if (target->state == TARGET_RUNNING) {
2072 /* We want to quickly sample the PC. */
2073 retval = target_halt(target);
2074 } else {
2075 LOG_INFO("Target not halted or running");
2076 retval = ERROR_OK;
2077 break;
2078 }
2079
2080 if (retval != ERROR_OK)
2081 break;
2082
2083 gettimeofday(&now, NULL);
2084 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2085 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2086 break;
2087 }
2088 }
2089
2090 *num_samples = sample_count;
2091 return retval;
2092 }
2093
2094 /* Single aligned words are guaranteed to use 16 or 32 bit access
2095 * mode respectively, otherwise data is handled as quickly as
2096 * possible
2097 */
2098 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2099 {
2100 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2101 size, address);
2102
2103 if (!target_was_examined(target)) {
2104 LOG_ERROR("Target not examined yet");
2105 return ERROR_FAIL;
2106 }
2107
2108 if (size == 0)
2109 return ERROR_OK;
2110
2111 if ((address + size - 1) < address) {
2112 /* GDB can request this when e.g. PC is 0xfffffffc */
2113 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2114 address,
2115 size);
2116 return ERROR_FAIL;
2117 }
2118
2119 return target->type->write_buffer(target, address, size, buffer);
2120 }
2121
2122 static int target_write_buffer_default(struct target *target,
2123 target_addr_t address, uint32_t count, const uint8_t *buffer)
2124 {
2125 uint32_t size;
2126
2127 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2128 * will have something to do with the size we leave to it. */
2129 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2130 if (address & size) {
2131 int retval = target_write_memory(target, address, size, 1, buffer);
2132 if (retval != ERROR_OK)
2133 return retval;
2134 address += size;
2135 count -= size;
2136 buffer += size;
2137 }
2138 }
2139
2140 /* Write the data with as large access size as possible. */
2141 for (; size > 0; size /= 2) {
2142 uint32_t aligned = count - count % size;
2143 if (aligned > 0) {
2144 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2145 if (retval != ERROR_OK)
2146 return retval;
2147 address += aligned;
2148 count -= aligned;
2149 buffer += aligned;
2150 }
2151 }
2152
2153 return ERROR_OK;
2154 }
2155
2156 /* Single aligned words are guaranteed to use 16 or 32 bit access
2157 * mode respectively, otherwise data is handled as quickly as
2158 * possible
2159 */
2160 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2161 {
2162 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2163 size, address);
2164
2165 if (!target_was_examined(target)) {
2166 LOG_ERROR("Target not examined yet");
2167 return ERROR_FAIL;
2168 }
2169
2170 if (size == 0)
2171 return ERROR_OK;
2172
2173 if ((address + size - 1) < address) {
2174 /* GDB can request this when e.g. PC is 0xfffffffc */
2175 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2176 address,
2177 size);
2178 return ERROR_FAIL;
2179 }
2180
2181 return target->type->read_buffer(target, address, size, buffer);
2182 }
2183
2184 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2185 {
2186 uint32_t size;
2187
2188 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2189 * will have something to do with the size we leave to it. */
2190 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2191 if (address & size) {
2192 int retval = target_read_memory(target, address, size, 1, buffer);
2193 if (retval != ERROR_OK)
2194 return retval;
2195 address += size;
2196 count -= size;
2197 buffer += size;
2198 }
2199 }
2200
2201 /* Read the data with as large access size as possible. */
2202 for (; size > 0; size /= 2) {
2203 uint32_t aligned = count - count % size;
2204 if (aligned > 0) {
2205 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2206 if (retval != ERROR_OK)
2207 return retval;
2208 address += aligned;
2209 count -= aligned;
2210 buffer += aligned;
2211 }
2212 }
2213
2214 return ERROR_OK;
2215 }
2216
2217 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2218 {
2219 uint8_t *buffer;
2220 int retval;
2221 uint32_t i;
2222 uint32_t checksum = 0;
2223 if (!target_was_examined(target)) {
2224 LOG_ERROR("Target not examined yet");
2225 return ERROR_FAIL;
2226 }
2227
2228 retval = target->type->checksum_memory(target, address, size, &checksum);
2229 if (retval != ERROR_OK) {
2230 buffer = malloc(size);
2231 if (buffer == NULL) {
2232 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2233 return ERROR_COMMAND_SYNTAX_ERROR;
2234 }
2235 retval = target_read_buffer(target, address, size, buffer);
2236 if (retval != ERROR_OK) {
2237 free(buffer);
2238 return retval;
2239 }
2240
2241 /* convert to target endianness */
2242 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2243 uint32_t target_data;
2244 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2245 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2246 }
2247
2248 retval = image_calculate_checksum(buffer, size, &checksum);
2249 free(buffer);
2250 }
2251
2252 *crc = checksum;
2253
2254 return retval;
2255 }
2256
2257 int target_blank_check_memory(struct target *target,
2258 struct target_memory_check_block *blocks, int num_blocks,
2259 uint8_t erased_value)
2260 {
2261 if (!target_was_examined(target)) {
2262 LOG_ERROR("Target not examined yet");
2263 return ERROR_FAIL;
2264 }
2265
2266 if (target->type->blank_check_memory == NULL)
2267 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2268
2269 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2270 }
2271
2272 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2273 {
2274 uint8_t value_buf[8];
2275 if (!target_was_examined(target)) {
2276 LOG_ERROR("Target not examined yet");
2277 return ERROR_FAIL;
2278 }
2279
2280 int retval = target_read_memory(target, address, 8, 1, value_buf);
2281
2282 if (retval == ERROR_OK) {
2283 *value = target_buffer_get_u64(target, value_buf);
2284 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2285 address,
2286 *value);
2287 } else {
2288 *value = 0x0;
2289 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2290 address);
2291 }
2292
2293 return retval;
2294 }
2295
2296 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2297 {
2298 uint8_t value_buf[4];
2299 if (!target_was_examined(target)) {
2300 LOG_ERROR("Target not examined yet");
2301 return ERROR_FAIL;
2302 }
2303
2304 int retval = target_read_memory(target, address, 4, 1, value_buf);
2305
2306 if (retval == ERROR_OK) {
2307 *value = target_buffer_get_u32(target, value_buf);
2308 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2309 address,
2310 *value);
2311 } else {
2312 *value = 0x0;
2313 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2314 address);
2315 }
2316
2317 return retval;
2318 }
2319
2320 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2321 {
2322 uint8_t value_buf[2];
2323 if (!target_was_examined(target)) {
2324 LOG_ERROR("Target not examined yet");
2325 return ERROR_FAIL;
2326 }
2327
2328 int retval = target_read_memory(target, address, 2, 1, value_buf);
2329
2330 if (retval == ERROR_OK) {
2331 *value = target_buffer_get_u16(target, value_buf);
2332 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2333 address,
2334 *value);
2335 } else {
2336 *value = 0x0;
2337 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2338 address);
2339 }
2340
2341 return retval;
2342 }
2343
2344 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2345 {
2346 if (!target_was_examined(target)) {
2347 LOG_ERROR("Target not examined yet");
2348 return ERROR_FAIL;
2349 }
2350
2351 int retval = target_read_memory(target, address, 1, 1, value);
2352
2353 if (retval == ERROR_OK) {
2354 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2355 address,
2356 *value);
2357 } else {
2358 *value = 0x0;
2359 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2360 address);
2361 }
2362
2363 return retval;
2364 }
2365
2366 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2367 {
2368 int retval;
2369 uint8_t value_buf[8];
2370 if (!target_was_examined(target)) {
2371 LOG_ERROR("Target not examined yet");
2372 return ERROR_FAIL;
2373 }
2374
2375 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2376 address,
2377 value);
2378
2379 target_buffer_set_u64(target, value_buf, value);
2380 retval = target_write_memory(target, address, 8, 1, value_buf);
2381 if (retval != ERROR_OK)
2382 LOG_DEBUG("failed: %i", retval);
2383
2384 return retval;
2385 }
2386
2387 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2388 {
2389 int retval;
2390 uint8_t value_buf[4];
2391 if (!target_was_examined(target)) {
2392 LOG_ERROR("Target not examined yet");
2393 return ERROR_FAIL;
2394 }
2395
2396 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2397 address,
2398 value);
2399
2400 target_buffer_set_u32(target, value_buf, value);
2401 retval = target_write_memory(target, address, 4, 1, value_buf);
2402 if (retval != ERROR_OK)
2403 LOG_DEBUG("failed: %i", retval);
2404
2405 return retval;
2406 }
2407
2408 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2409 {
2410 int retval;
2411 uint8_t value_buf[2];
2412 if (!target_was_examined(target)) {
2413 LOG_ERROR("Target not examined yet");
2414 return ERROR_FAIL;
2415 }
2416
2417 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2418 address,
2419 value);
2420
2421 target_buffer_set_u16(target, value_buf, value);
2422 retval = target_write_memory(target, address, 2, 1, value_buf);
2423 if (retval != ERROR_OK)
2424 LOG_DEBUG("failed: %i", retval);
2425
2426 return retval;
2427 }
2428
2429 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2430 {
2431 int retval;
2432 if (!target_was_examined(target)) {
2433 LOG_ERROR("Target not examined yet");
2434 return ERROR_FAIL;
2435 }
2436
2437 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2438 address, value);
2439
2440 retval = target_write_memory(target, address, 1, 1, &value);
2441 if (retval != ERROR_OK)
2442 LOG_DEBUG("failed: %i", retval);
2443
2444 return retval;
2445 }
2446
2447 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2448 {
2449 int retval;
2450 uint8_t value_buf[8];
2451 if (!target_was_examined(target)) {
2452 LOG_ERROR("Target not examined yet");
2453 return ERROR_FAIL;
2454 }
2455
2456 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2457 address,
2458 value);
2459
2460 target_buffer_set_u64(target, value_buf, value);
2461 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2462 if (retval != ERROR_OK)
2463 LOG_DEBUG("failed: %i", retval);
2464
2465 return retval;
2466 }
2467
2468 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2469 {
2470 int retval;
2471 uint8_t value_buf[4];
2472 if (!target_was_examined(target)) {
2473 LOG_ERROR("Target not examined yet");
2474 return ERROR_FAIL;
2475 }
2476
2477 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2478 address,
2479 value);
2480
2481 target_buffer_set_u32(target, value_buf, value);
2482 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2483 if (retval != ERROR_OK)
2484 LOG_DEBUG("failed: %i", retval);
2485
2486 return retval;
2487 }
2488
2489 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2490 {
2491 int retval;
2492 uint8_t value_buf[2];
2493 if (!target_was_examined(target)) {
2494 LOG_ERROR("Target not examined yet");
2495 return ERROR_FAIL;
2496 }
2497
2498 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2499 address,
2500 value);
2501
2502 target_buffer_set_u16(target, value_buf, value);
2503 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2504 if (retval != ERROR_OK)
2505 LOG_DEBUG("failed: %i", retval);
2506
2507 return retval;
2508 }
2509
2510 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2511 {
2512 int retval;
2513 if (!target_was_examined(target)) {
2514 LOG_ERROR("Target not examined yet");
2515 return ERROR_FAIL;
2516 }
2517
2518 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2519 address, value);
2520
2521 retval = target_write_phys_memory(target, address, 1, 1, &value);
2522 if (retval != ERROR_OK)
2523 LOG_DEBUG("failed: %i", retval);
2524
2525 return retval;
2526 }
2527
2528 static int find_target(struct command_context *cmd_ctx, const char *name)
2529 {
2530 struct target *target = get_target(name);
2531 if (target == NULL) {
2532 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2533 return ERROR_FAIL;
2534 }
2535 if (!target->tap->enabled) {
2536 LOG_USER("Target: TAP %s is disabled, "
2537 "can't be the current target\n",
2538 target->tap->dotted_name);
2539 return ERROR_FAIL;
2540 }
2541
2542 cmd_ctx->current_target = target;
2543 if (cmd_ctx->current_target_override)
2544 cmd_ctx->current_target_override = target;
2545
2546 return ERROR_OK;
2547 }
2548
2549
2550 COMMAND_HANDLER(handle_targets_command)
2551 {
2552 int retval = ERROR_OK;
2553 if (CMD_ARGC == 1) {
2554 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2555 if (retval == ERROR_OK) {
2556 /* we're done! */
2557 return retval;
2558 }
2559 }
2560
2561 struct target *target = all_targets;
2562 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2563 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2564 while (target) {
2565 const char *state;
2566 char marker = ' ';
2567
2568 if (target->tap->enabled)
2569 state = target_state_name(target);
2570 else
2571 state = "tap-disabled";
2572
2573 if (CMD_CTX->current_target == target)
2574 marker = '*';
2575
2576 /* keep columns lined up to match the headers above */
2577 command_print(CMD_CTX,
2578 "%2d%c %-18s %-10s %-6s %-18s %s",
2579 target->target_number,
2580 marker,
2581 target_name(target),
2582 target_type_name(target),
2583 Jim_Nvp_value2name_simple(nvp_target_endian,
2584 target->endianness)->name,
2585 target->tap->dotted_name,
2586 state);
2587 target = target->next;
2588 }
2589
2590 return retval;
2591 }
2592
2593 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2594
2595 static int powerDropout;
2596 static int srstAsserted;
2597
2598 static int runPowerRestore;
2599 static int runPowerDropout;
2600 static int runSrstAsserted;
2601 static int runSrstDeasserted;
2602
2603 static int sense_handler(void)
2604 {
2605 static int prevSrstAsserted;
2606 static int prevPowerdropout;
2607
2608 int retval = jtag_power_dropout(&powerDropout);
2609 if (retval != ERROR_OK)
2610 return retval;
2611
2612 int powerRestored;
2613 powerRestored = prevPowerdropout && !powerDropout;
2614 if (powerRestored)
2615 runPowerRestore = 1;
2616
2617 int64_t current = timeval_ms();
2618 static int64_t lastPower;
2619 bool waitMore = lastPower + 2000 > current;
2620 if (powerDropout && !waitMore) {
2621 runPowerDropout = 1;
2622 lastPower = current;
2623 }
2624
2625 retval = jtag_srst_asserted(&srstAsserted);
2626 if (retval != ERROR_OK)
2627 return retval;
2628
2629 int srstDeasserted;
2630 srstDeasserted = prevSrstAsserted && !srstAsserted;
2631
2632 static int64_t lastSrst;
2633 waitMore = lastSrst + 2000 > current;
2634 if (srstDeasserted && !waitMore) {
2635 runSrstDeasserted = 1;
2636 lastSrst = current;
2637 }
2638
2639 if (!prevSrstAsserted && srstAsserted)
2640 runSrstAsserted = 1;
2641
2642 prevSrstAsserted = srstAsserted;
2643 prevPowerdropout = powerDropout;
2644
2645 if (srstDeasserted || powerRestored) {
2646 /* Other than logging the event we can't do anything here.
2647 * Issuing a reset is a particularly bad idea as we might
2648 * be inside a reset already.
2649 */
2650 }
2651
2652 return ERROR_OK;
2653 }
2654
2655 /* process target state changes */
2656 static int handle_target(void *priv)
2657 {
2658 Jim_Interp *interp = (Jim_Interp *)priv;
2659 int retval = ERROR_OK;
2660
2661 if (!is_jtag_poll_safe()) {
2662 /* polling is disabled currently */
2663 return ERROR_OK;
2664 }
2665
2666 /* we do not want to recurse here... */
2667 static int recursive;
2668 if (!recursive) {
2669 recursive = 1;
2670 sense_handler();
2671 /* danger! running these procedures can trigger srst assertions and power dropouts.
2672 * We need to avoid an infinite loop/recursion here and we do that by
2673 * clearing the flags after running these events.
2674 */
2675 int did_something = 0;
2676 if (runSrstAsserted) {
2677 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2678 Jim_Eval(interp, "srst_asserted");
2679 did_something = 1;
2680 }
2681 if (runSrstDeasserted) {
2682 Jim_Eval(interp, "srst_deasserted");
2683 did_something = 1;
2684 }
2685 if (runPowerDropout) {
2686 LOG_INFO("Power dropout detected, running power_dropout proc.");
2687 Jim_Eval(interp, "power_dropout");
2688 did_something = 1;
2689 }
2690 if (runPowerRestore) {
2691 Jim_Eval(interp, "power_restore");
2692 did_something = 1;
2693 }
2694
2695 if (did_something) {
2696 /* clear detect flags */
2697 sense_handler();
2698 }
2699
2700 /* clear action flags */
2701
2702 runSrstAsserted = 0;
2703 runSrstDeasserted = 0;
2704 runPowerRestore = 0;
2705 runPowerDropout = 0;
2706
2707 recursive = 0;
2708 }
2709
2710 /* Poll targets for state changes unless that's globally disabled.
2711 * Skip targets that are currently disabled.
2712 */
2713 for (struct target *target = all_targets;
2714 is_jtag_poll_safe() && target;
2715 target = target->next) {
2716
2717 if (!target_was_examined(target))
2718 continue;
2719
2720 if (!target->tap->enabled)
2721 continue;
2722
2723 if (target->backoff.times > target->backoff.count) {
2724 /* do not poll this time as we failed previously */
2725 target->backoff.count++;
2726 continue;
2727 }
2728 target->backoff.count = 0;
2729
2730 /* only poll target if we've got power and srst isn't asserted */
2731 if (!powerDropout && !srstAsserted) {
2732 /* polling may fail silently until the target has been examined */
2733 retval = target_poll(target);
2734 if (retval != ERROR_OK) {
2735 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2736 if (target->backoff.times * polling_interval < 5000) {
2737 target->backoff.times *= 2;
2738 target->backoff.times++;
2739 }
2740
2741 /* Tell GDB to halt the debugger. This allows the user to
2742 * run monitor commands to handle the situation.
2743 */
2744 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2745 }
2746 if (target->backoff.times > 0) {
2747 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2748 target_reset_examined(target);
2749 retval = target_examine_one(target);
2750 /* Target examination could have failed due to unstable connection,
2751 * but we set the examined flag anyway to repoll it later */
2752 if (retval != ERROR_OK) {
2753 target->examined = true;
2754 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2755 target->backoff.times * polling_interval);
2756 return retval;
2757 }
2758 }
2759
2760 /* Since we succeeded, we reset backoff count */
2761 target->backoff.times = 0;
2762 }
2763 }
2764
2765 return retval;
2766 }
2767
2768 COMMAND_HANDLER(handle_reg_command)
2769 {
2770 struct target *target;
2771 struct reg *reg = NULL;
2772 unsigned count = 0;
2773 char *value;
2774
2775 LOG_DEBUG("-");
2776
2777 target = get_current_target(CMD_CTX);
2778
2779 /* list all available registers for the current target */
2780 if (CMD_ARGC == 0) {
2781 struct reg_cache *cache = target->reg_cache;
2782
2783 count = 0;
2784 while (cache) {
2785 unsigned i;
2786
2787 command_print(CMD_CTX, "===== %s", cache->name);
2788
2789 for (i = 0, reg = cache->reg_list;
2790 i < cache->num_regs;
2791 i++, reg++, count++) {
2792 /* only print cached values if they are valid */
2793 if (reg->valid) {
2794 value = buf_to_str(reg->value,
2795 reg->size, 16);
2796 command_print(CMD_CTX,
2797 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2798 count, reg->name,
2799 reg->size, value,
2800 reg->dirty
2801 ? " (dirty)"
2802 : "");
2803 free(value);
2804 } else {
2805 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2806 count, reg->name,
2807 reg->size) ;
2808 }
2809 }
2810 cache = cache->next;
2811 }
2812
2813 return ERROR_OK;
2814 }
2815
2816 /* access a single register by its ordinal number */
2817 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2818 unsigned num;
2819 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2820
2821 struct reg_cache *cache = target->reg_cache;
2822 count = 0;
2823 while (cache) {
2824 unsigned i;
2825 for (i = 0; i < cache->num_regs; i++) {
2826 if (count++ == num) {
2827 reg = &cache->reg_list[i];
2828 break;
2829 }
2830 }
2831 if (reg)
2832 break;
2833 cache = cache->next;
2834 }
2835
2836 if (!reg) {
2837 command_print(CMD_CTX, "%i is out of bounds, the current target "
2838 "has only %i registers (0 - %i)", num, count, count - 1);
2839 return ERROR_OK;
2840 }
2841 } else {
2842 /* access a single register by its name */
2843 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2844
2845 if (!reg) {
2846 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2847 return ERROR_OK;
2848 }
2849 }
2850
2851 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2852
2853 /* display a register */
2854 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2855 && (CMD_ARGV[1][0] <= '9')))) {
2856 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2857 reg->valid = 0;
2858
2859 if (reg->valid == 0)
2860 reg->type->get(reg);
2861 value = buf_to_str(reg->value, reg->size, 16);
2862 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2863 free(value);
2864 return ERROR_OK;
2865 }
2866
2867 /* set register value */
2868 if (CMD_ARGC == 2) {
2869 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2870 if (buf == NULL)
2871 return ERROR_FAIL;
2872 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2873
2874 reg->type->set(reg, buf);
2875
2876 value = buf_to_str(reg->value, reg->size, 16);
2877 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2878 free(value);
2879
2880 free(buf);
2881
2882 return ERROR_OK;
2883 }
2884
2885 return ERROR_COMMAND_SYNTAX_ERROR;
2886 }
2887
2888 COMMAND_HANDLER(handle_poll_command)
2889 {
2890 int retval = ERROR_OK;
2891 struct target *target = get_current_target(CMD_CTX);
2892
2893 if (CMD_ARGC == 0) {
2894 command_print(CMD_CTX, "background polling: %s",
2895 jtag_poll_get_enabled() ? "on" : "off");
2896 command_print(CMD_CTX, "TAP: %s (%s)",
2897 target->tap->dotted_name,
2898 target->tap->enabled ? "enabled" : "disabled");
2899 if (!target->tap->enabled)
2900 return ERROR_OK;
2901 retval = target_poll(target);
2902 if (retval != ERROR_OK)
2903 return retval;
2904 retval = target_arch_state(target);
2905 if (retval != ERROR_OK)
2906 return retval;
2907 } else if (CMD_ARGC == 1) {
2908 bool enable;
2909 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2910 jtag_poll_set_enabled(enable);
2911 } else
2912 return ERROR_COMMAND_SYNTAX_ERROR;
2913
2914 return retval;
2915 }
2916
2917 COMMAND_HANDLER(handle_wait_halt_command)
2918 {
2919 if (CMD_ARGC > 1)
2920 return ERROR_COMMAND_SYNTAX_ERROR;
2921
2922 unsigned ms = DEFAULT_HALT_TIMEOUT;
2923 if (1 == CMD_ARGC) {
2924 int retval = parse_uint(CMD_ARGV[0], &ms);
2925 if (ERROR_OK != retval)
2926 return ERROR_COMMAND_SYNTAX_ERROR;
2927 }
2928
2929 struct target *target = get_current_target(CMD_CTX);
2930 return target_wait_state(target, TARGET_HALTED, ms);
2931 }
2932
2933 /* wait for target state to change. The trick here is to have a low
2934 * latency for short waits and not to suck up all the CPU time
2935 * on longer waits.
2936 *
2937 * After 500ms, keep_alive() is invoked
2938 */
2939 int target_wait_state(struct target *target, enum target_state state, int ms)
2940 {
2941 int retval;
2942 int64_t then = 0, cur;
2943 bool once = true;
2944
2945 for (;;) {
2946 retval = target_poll(target);
2947 if (retval != ERROR_OK)
2948 return retval;
2949 if (target->state == state)
2950 break;
2951 cur = timeval_ms();
2952 if (once) {
2953 once = false;
2954 then = timeval_ms();
2955 LOG_DEBUG("waiting for target %s...",
2956 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2957 }
2958
2959 if (cur-then > 500)
2960 keep_alive();
2961
2962 if ((cur-then) > ms) {
2963 LOG_ERROR("timed out while waiting for target %s",
2964 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2965 return ERROR_FAIL;
2966 }
2967 }
2968
2969 return ERROR_OK;
2970 }
2971
2972 COMMAND_HANDLER(handle_halt_command)
2973 {
2974 LOG_DEBUG("-");
2975
2976 struct target *target = get_current_target(CMD_CTX);
2977
2978 target->verbose_halt_msg = true;
2979
2980 int retval = target_halt(target);
2981 if (ERROR_OK != retval)
2982 return retval;
2983
2984 if (CMD_ARGC == 1) {
2985 unsigned wait_local;
2986 retval = parse_uint(CMD_ARGV[0], &wait_local);
2987 if (ERROR_OK != retval)
2988 return ERROR_COMMAND_SYNTAX_ERROR;
2989 if (!wait_local)
2990 return ERROR_OK;
2991 }
2992
2993 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2994 }
2995
2996 COMMAND_HANDLER(handle_soft_reset_halt_command)
2997 {
2998 struct target *target = get_current_target(CMD_CTX);
2999
3000 LOG_USER("requesting target halt and executing a soft reset");
3001
3002 target_soft_reset_halt(target);
3003
3004 return ERROR_OK;
3005 }
3006
3007 COMMAND_HANDLER(handle_reset_command)
3008 {
3009 if (CMD_ARGC > 1)
3010 return ERROR_COMMAND_SYNTAX_ERROR;
3011
3012 enum target_reset_mode reset_mode = RESET_RUN;
3013 if (CMD_ARGC == 1) {
3014 const Jim_Nvp *n;
3015 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3016 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3017 return ERROR_COMMAND_SYNTAX_ERROR;
3018 reset_mode = n->value;
3019 }
3020
3021 /* reset *all* targets */
3022 return target_process_reset(CMD_CTX, reset_mode);
3023 }
3024
3025
3026 COMMAND_HANDLER(handle_resume_command)
3027 {
3028 int current = 1;
3029 if (CMD_ARGC > 1)
3030 return ERROR_COMMAND_SYNTAX_ERROR;
3031
3032 struct target *target = get_current_target(CMD_CTX);
3033
3034 /* with no CMD_ARGV, resume from current pc, addr = 0,
3035 * with one arguments, addr = CMD_ARGV[0],
3036 * handle breakpoints, not debugging */
3037 target_addr_t addr = 0;
3038 if (CMD_ARGC == 1) {
3039 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3040 current = 0;
3041 }
3042
3043 return target_resume(target, current, addr, 1, 0);
3044 }
3045
3046 COMMAND_HANDLER(handle_step_command)
3047 {
3048 if (CMD_ARGC > 1)
3049 return ERROR_COMMAND_SYNTAX_ERROR;
3050
3051 LOG_DEBUG("-");
3052
3053 /* with no CMD_ARGV, step from current pc, addr = 0,
3054 * with one argument addr = CMD_ARGV[0],
3055 * handle breakpoints, debugging */
3056 target_addr_t addr = 0;
3057 int current_pc = 1;
3058 if (CMD_ARGC == 1) {
3059 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3060 current_pc = 0;
3061 }
3062
3063 struct target *target = get_current_target(CMD_CTX);
3064
3065 return target->type->step(target, current_pc, addr, 1);
3066 }
3067
3068 static void handle_md_output(struct command_context *cmd_ctx,
3069 struct target *target, target_addr_t address, unsigned size,
3070 unsigned count, const uint8_t *buffer)
3071 {
3072 const unsigned line_bytecnt = 32;
3073 unsigned line_modulo = line_bytecnt / size;
3074
3075 char output[line_bytecnt * 4 + 1];
3076 unsigned output_len = 0;
3077
3078 const char *value_fmt;
3079 switch (size) {
3080 case 8:
3081 value_fmt = "%16.16"PRIx64" ";
3082 break;
3083 case 4:
3084 value_fmt = "%8.8"PRIx64" ";
3085 break;
3086 case 2:
3087 value_fmt = "%4.4"PRIx64" ";
3088 break;
3089 case 1:
3090 value_fmt = "%2.2"PRIx64" ";
3091 break;
3092 default:
3093 /* "can't happen", caller checked */
3094 LOG_ERROR("invalid memory read size: %u", size);
3095 return;
3096 }
3097
3098 for (unsigned i = 0; i < count; i++) {
3099 if (i % line_modulo == 0) {
3100 output_len += snprintf(output + output_len,
3101 sizeof(output) - output_len,
3102 TARGET_ADDR_FMT ": ",
3103 (address + (i * size)));
3104 }
3105
3106 uint64_t value = 0;
3107 const uint8_t *value_ptr = buffer + i * size;
3108 switch (size) {
3109 case 8:
3110 value = target_buffer_get_u64(target, value_ptr);
3111 break;
3112 case 4:
3113 value = target_buffer_get_u32(target, value_ptr);
3114 break;
3115 case 2:
3116 value = target_buffer_get_u16(target, value_ptr);
3117 break;
3118 case 1:
3119 value = *value_ptr;
3120 }
3121 output_len += snprintf(output + output_len,
3122 sizeof(output) - output_len,
3123 value_fmt, value);
3124
3125 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3126 command_print(cmd_ctx, "%s", output);
3127 output_len = 0;
3128 }
3129 }
3130 }
3131
3132 COMMAND_HANDLER(handle_md_command)
3133 {
3134 if (CMD_ARGC < 1)
3135 return ERROR_COMMAND_SYNTAX_ERROR;
3136
3137 unsigned size = 0;
3138 switch (CMD_NAME[2]) {
3139 case 'd':
3140 size = 8;
3141 break;
3142 case 'w':
3143 size = 4;
3144 break;
3145 case 'h':
3146 size = 2;
3147 break;
3148 case 'b':
3149 size = 1;
3150 break;
3151 default:
3152 return ERROR_COMMAND_SYNTAX_ERROR;
3153 }
3154
3155 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3156 int (*fn)(struct target *target,
3157 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3158 if (physical) {
3159 CMD_ARGC--;
3160 CMD_ARGV++;
3161 fn = target_read_phys_memory;
3162 } else
3163 fn = target_read_memory;
3164 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3165 return ERROR_COMMAND_SYNTAX_ERROR;
3166
3167 target_addr_t address;
3168 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3169
3170 unsigned count = 1;
3171 if (CMD_ARGC == 2)
3172 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3173
3174 uint8_t *buffer = calloc(count, size);
3175 if (buffer == NULL) {
3176 LOG_ERROR("Failed to allocate md read buffer");
3177 return ERROR_FAIL;
3178 }
3179
3180 struct target *target = get_current_target(CMD_CTX);
3181 int retval = fn(target, address, size, count, buffer);
3182 if (ERROR_OK == retval)
3183 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3184
3185 free(buffer);
3186
3187 return retval;
3188 }
3189
3190 typedef int (*target_write_fn)(struct target *target,
3191 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3192
3193 static int target_fill_mem(struct target *target,
3194 target_addr_t address,
3195 target_write_fn fn,
3196 unsigned data_size,
3197 /* value */
3198 uint64_t b,
3199 /* count */
3200 unsigned c)
3201 {
3202 /* We have to write in reasonably large chunks to be able
3203 * to fill large memory areas with any sane speed */
3204 const unsigned chunk_size = 16384;
3205 uint8_t *target_buf = malloc(chunk_size * data_size);
3206 if (target_buf == NULL) {
3207 LOG_ERROR("Out of memory");
3208 return ERROR_FAIL;
3209 }
3210
3211 for (unsigned i = 0; i < chunk_size; i++) {
3212 switch (data_size) {
3213 case 8:
3214 target_buffer_set_u64(target, target_buf + i * data_size, b);
3215 break;
3216 case 4:
3217 target_buffer_set_u32(target, target_buf + i * data_size, b);
3218 break;
3219 case 2:
3220 target_buffer_set_u16(target, target_buf + i * data_size, b);
3221 break;
3222 case 1:
3223 target_buffer_set_u8(target, target_buf + i * data_size, b);
3224 break;
3225 default:
3226 exit(-1);
3227 }
3228 }
3229
3230 int retval = ERROR_OK;
3231
3232 for (unsigned x = 0; x < c; x += chunk_size) {
3233 unsigned current;
3234 current = c - x;
3235 if (current > chunk_size)
3236 current = chunk_size;
3237 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3238 if (retval != ERROR_OK)
3239 break;
3240 /* avoid GDB timeouts */
3241 keep_alive();
3242 }
3243 free(target_buf);
3244
3245 return retval;
3246 }
3247
3248
3249 COMMAND_HANDLER(handle_mw_command)
3250 {
3251 if (CMD_ARGC < 2)
3252 return ERROR_COMMAND_SYNTAX_ERROR;
3253 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3254 target_write_fn fn;
3255 if (physical) {
3256 CMD_ARGC--;
3257 CMD_ARGV++;
3258 fn = target_write_phys_memory;
3259 } else
3260 fn = target_write_memory;
3261 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3262 return ERROR_COMMAND_SYNTAX_ERROR;
3263
3264 target_addr_t address;
3265 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3266
3267 target_addr_t value;
3268 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3269
3270 unsigned count = 1;
3271 if (CMD_ARGC == 3)
3272 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3273
3274 struct target *target = get_current_target(CMD_CTX);
3275 unsigned wordsize;
3276 switch (CMD_NAME[2]) {
3277 case 'd':
3278 wordsize = 8;
3279 break;
3280 case 'w':
3281 wordsize = 4;
3282 break;
3283 case 'h':
3284 wordsize = 2;
3285 break;
3286 case 'b':
3287 wordsize = 1;
3288 break;
3289 default:
3290 return ERROR_COMMAND_SYNTAX_ERROR;
3291 }
3292
3293 return target_fill_mem(target, address, fn, wordsize, value, count);
3294 }
3295
3296 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3297 target_addr_t *min_address, target_addr_t *max_address)
3298 {
3299 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3300 return ERROR_COMMAND_SYNTAX_ERROR;
3301
3302 /* a base address isn't always necessary,
3303 * default to 0x0 (i.e. don't relocate) */
3304 if (CMD_ARGC >= 2) {
3305 target_addr_t addr;
3306 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3307 image->base_address = addr;
3308 image->base_address_set = 1;
3309 } else
3310 image->base_address_set = 0;
3311
3312 image->start_address_set = 0;
3313
3314 if (CMD_ARGC >= 4)
3315 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3316 if (CMD_ARGC == 5) {
3317 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3318 /* use size (given) to find max (required) */
3319 *max_address += *min_address;
3320 }
3321
3322 if (*min_address > *max_address)
3323 return ERROR_COMMAND_SYNTAX_ERROR;
3324
3325 return ERROR_OK;
3326 }
3327
3328 COMMAND_HANDLER(handle_load_image_command)
3329 {
3330 uint8_t *buffer;
3331 size_t buf_cnt;
3332 uint32_t image_size;
3333 target_addr_t min_address = 0;
3334 target_addr_t max_address = -1;
3335 int i;
3336 struct image image;
3337
3338 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3339 &image, &min_address, &max_address);
3340 if (ERROR_OK != retval)
3341 return retval;
3342
3343 struct target *target = get_current_target(CMD_CTX);
3344
3345 struct duration bench;
3346 duration_start(&bench);
3347
3348 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3349 return ERROR_FAIL;
3350
3351 image_size = 0x0;
3352 retval = ERROR_OK;
3353 for (i = 0; i < image.num_sections; i++) {
3354 buffer = malloc(image.sections[i].size);
3355 if (buffer == NULL) {
3356 command_print(CMD_CTX,
3357 "error allocating buffer for section (%d bytes)",
3358 (int)(image.sections[i].size));
3359 retval = ERROR_FAIL;
3360 break;
3361 }
3362
3363 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3364 if (retval != ERROR_OK) {
3365 free(buffer);
3366 break;
3367 }
3368
3369 uint32_t offset = 0;
3370 uint32_t length = buf_cnt;
3371
3372 /* DANGER!!! beware of unsigned comparision here!!! */
3373
3374 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3375 (image.sections[i].base_address < max_address)) {
3376
3377 if (image.sections[i].base_address < min_address) {
3378 /* clip addresses below */
3379 offset += min_address-image.sections[i].base_address;
3380 length -= offset;
3381 }
3382
3383 if (image.sections[i].base_address + buf_cnt > max_address)
3384 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3385
3386 retval = target_write_buffer(target,
3387 image.sections[i].base_address + offset, length, buffer + offset);
3388 if (retval != ERROR_OK) {
3389 free(buffer);
3390 break;
3391 }
3392 image_size += length;
3393 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3394 (unsigned int)length,
3395 image.sections[i].base_address + offset);
3396 }
3397
3398 free(buffer);
3399 }
3400
3401 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3402 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3403 "in %fs (%0.3f KiB/s)", image_size,
3404 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3405 }
3406
3407 image_close(&image);
3408
3409 return retval;
3410
3411 }
3412
3413 COMMAND_HANDLER(handle_dump_image_command)
3414 {
3415 struct fileio *fileio;
3416 uint8_t *buffer;
3417 int retval, retvaltemp;
3418 target_addr_t address, size;
3419 struct duration bench;
3420 struct target *target = get_current_target(CMD_CTX);
3421
3422 if (CMD_ARGC != 3)
3423 return ERROR_COMMAND_SYNTAX_ERROR;
3424
3425 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3426 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3427
3428 uint32_t buf_size = (size > 4096) ? 4096 : size;
3429 buffer = malloc(buf_size);
3430 if (!buffer)
3431 return ERROR_FAIL;
3432
3433 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3434 if (retval != ERROR_OK) {
3435 free(buffer);
3436 return retval;
3437 }
3438
3439 duration_start(&bench);
3440
3441 while (size > 0) {
3442 size_t size_written;
3443 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3444 retval = target_read_buffer(target, address, this_run_size, buffer);
3445 if (retval != ERROR_OK)
3446 break;
3447
3448 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3449 if (retval != ERROR_OK)
3450 break;
3451
3452 size -= this_run_size;
3453 address += this_run_size;
3454 }
3455
3456 free(buffer);
3457
3458 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3459 size_t filesize;
3460 retval = fileio_size(fileio, &filesize);
3461 if (retval != ERROR_OK)
3462 return retval;
3463 command_print(CMD_CTX,
3464 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3465 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3466 }
3467
3468 retvaltemp = fileio_close(fileio);
3469 if (retvaltemp != ERROR_OK)
3470 return retvaltemp;
3471
3472 return retval;
3473 }
3474
3475 enum verify_mode {
3476 IMAGE_TEST = 0,
3477 IMAGE_VERIFY = 1,
3478 IMAGE_CHECKSUM_ONLY = 2
3479 };
3480
3481 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3482 {
3483 uint8_t *buffer;
3484 size_t buf_cnt;
3485 uint32_t image_size;
3486 int i;
3487 int retval;
3488 uint32_t checksum = 0;
3489 uint32_t mem_checksum = 0;
3490
3491 struct image image;
3492
3493 struct target *target = get_current_target(CMD_CTX);
3494
3495 if (CMD_ARGC < 1)
3496 return ERROR_COMMAND_SYNTAX_ERROR;
3497
3498 if (!target) {
3499 LOG_ERROR("no target selected");
3500 return ERROR_FAIL;
3501 }
3502
3503 struct duration bench;
3504 duration_start(&bench);
3505
3506 if (CMD_ARGC >= 2) {
3507 target_addr_t addr;
3508 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3509 image.base_address = addr;
3510 image.base_address_set = 1;
3511 } else {
3512 image.base_address_set = 0;
3513 image.base_address = 0x0;
3514 }
3515
3516 image.start_address_set = 0;
3517
3518 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3519 if (retval != ERROR_OK)
3520 return retval;
3521
3522 image_size = 0x0;
3523 int diffs = 0;
3524 retval = ERROR_OK;
3525 for (i = 0; i < image.num_sections; i++) {
3526 buffer = malloc(image.sections[i].size);
3527 if (buffer == NULL) {
3528 command_print(CMD_CTX,
3529 "error allocating buffer for section (%d bytes)",
3530 (int)(image.sections[i].size));
3531 break;
3532 }
3533 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3534 if (retval != ERROR_OK) {
3535 free(buffer);
3536 break;
3537 }
3538
3539 if (verify >= IMAGE_VERIFY) {
3540 /* calculate checksum of image */
3541 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3542 if (retval != ERROR_OK) {
3543 free(buffer);
3544 break;
3545 }
3546
3547 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3548 if (retval != ERROR_OK) {
3549 free(buffer);
3550 break;
3551 }
3552 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3553 LOG_ERROR("checksum mismatch");
3554 free(buffer);
3555 retval = ERROR_FAIL;
3556 goto done;
3557 }
3558 if (checksum != mem_checksum) {
3559 /* failed crc checksum, fall back to a binary compare */
3560 uint8_t *data;
3561
3562 if (diffs == 0)
3563 LOG_ERROR("checksum mismatch - attempting binary compare");
3564
3565 data = malloc(buf_cnt);
3566
3567 /* Can we use 32bit word accesses? */
3568 int size = 1;
3569 int count = buf_cnt;
3570 if ((count % 4) == 0) {
3571 size *= 4;
3572 count /= 4;
3573 }
3574 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3575 if (retval == ERROR_OK) {
3576 uint32_t t;
3577 for (t = 0; t < buf_cnt; t++) {
3578 if (data[t] != buffer[t]) {
3579 command_print(CMD_CTX,
3580 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3581 diffs,
3582 (unsigned)(t + image.sections[i].base_address),
3583 data[t],
3584 buffer[t]);
3585 if (diffs++ >= 127) {
3586 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3587 free(data);
3588 free(buffer);
3589 goto done;
3590 }
3591 }
3592 keep_alive();
3593 }
3594 }
3595 free(data);
3596 }
3597 } else {
3598 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3599 image.sections[i].base_address,
3600 buf_cnt);
3601 }
3602
3603 free(buffer);
3604 image_size += buf_cnt;
3605 }
3606 if (diffs > 0)
3607 command_print(CMD_CTX, "No more differences found.");
3608 done:
3609 if (diffs > 0)
3610 retval = ERROR_FAIL;
3611 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3612 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3613 "in %fs (%0.3f KiB/s)", image_size,
3614 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3615 }
3616
3617 image_close(&image);
3618
3619 return retval;
3620 }
3621
3622 COMMAND_HANDLER(handle_verify_image_checksum_command)
3623 {
3624 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3625 }
3626
3627 COMMAND_HANDLER(handle_verify_image_command)
3628 {
3629 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3630 }
3631
3632 COMMAND_HANDLER(handle_test_image_command)
3633 {
3634 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3635 }
3636
3637 static int handle_bp_command_list(struct command_context *cmd_ctx)
3638 {
3639 struct target *target = get_current_target(cmd_ctx);
3640 struct breakpoint *breakpoint = target->breakpoints;
3641 while (breakpoint) {
3642 if (breakpoint->type == BKPT_SOFT) {
3643 char *buf = buf_to_str(breakpoint->orig_instr,
3644 breakpoint->length, 16);
3645 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3646 breakpoint->address,
3647 breakpoint->length,
3648 breakpoint->set, buf);
3649 free(buf);
3650 } else {
3651 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3652 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3653 breakpoint->asid,
3654 breakpoint->length, breakpoint->set);
3655 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3656 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3657 breakpoint->address,
3658 breakpoint->length, breakpoint->set);
3659 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3660 breakpoint->asid);
3661 } else
3662 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3663 breakpoint->address,
3664 breakpoint->length, breakpoint->set);
3665 }
3666
3667 breakpoint = breakpoint->next;
3668 }
3669 return ERROR_OK;
3670 }
3671
3672 static int handle_bp_command_set(struct command_context *cmd_ctx,
3673 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3674 {
3675 struct target *target = get_current_target(cmd_ctx);
3676 int retval;
3677
3678 if (asid == 0) {
3679 retval = breakpoint_add(target, addr, length, hw);
3680 if (ERROR_OK == retval)
3681 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3682 else {