6aee09832e3983362d278c3caef9394c66cf7fed
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t size, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t size, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm3_target;
89 extern struct target_type cortexa8_target;
90 extern struct target_type cortexr4_target;
91 extern struct target_type arm11_target;
92 extern struct target_type mips_m4k_target;
93 extern struct target_type avr_target;
94 extern struct target_type dsp563xx_target;
95 extern struct target_type dsp5680xx_target;
96 extern struct target_type testee_target;
97 extern struct target_type avr32_ap7k_target;
98 extern struct target_type hla_target;
99 extern struct target_type nds32_v2_target;
100 extern struct target_type nds32_v3_target;
101 extern struct target_type nds32_v3m_target;
102
103 static struct target_type *target_types[] = {
104 &arm7tdmi_target,
105 &arm9tdmi_target,
106 &arm920t_target,
107 &arm720t_target,
108 &arm966e_target,
109 &arm946e_target,
110 &arm926ejs_target,
111 &fa526_target,
112 &feroceon_target,
113 &dragonite_target,
114 &xscale_target,
115 &cortexm3_target,
116 &cortexa8_target,
117 &cortexr4_target,
118 &arm11_target,
119 &mips_m4k_target,
120 &avr_target,
121 &dsp563xx_target,
122 &dsp5680xx_target,
123 &testee_target,
124 &avr32_ap7k_target,
125 &hla_target,
126 &nds32_v2_target,
127 &nds32_v3_target,
128 &nds32_v3m_target,
129 NULL,
130 };
131
132 struct target *all_targets;
133 static struct target_event_callback *target_event_callbacks;
134 static struct target_timer_callback *target_timer_callbacks;
135 static const int polling_interval = 100;
136
137 static const Jim_Nvp nvp_assert[] = {
138 { .name = "assert", NVP_ASSERT },
139 { .name = "deassert", NVP_DEASSERT },
140 { .name = "T", NVP_ASSERT },
141 { .name = "F", NVP_DEASSERT },
142 { .name = "t", NVP_ASSERT },
143 { .name = "f", NVP_DEASSERT },
144 { .name = NULL, .value = -1 }
145 };
146
147 static const Jim_Nvp nvp_error_target[] = {
148 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
149 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
150 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
151 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
152 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
153 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
154 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
155 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
156 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
157 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
158 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
159 { .value = -1, .name = NULL }
160 };
161
162 static const char *target_strerror_safe(int err)
163 {
164 const Jim_Nvp *n;
165
166 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
167 if (n->name == NULL)
168 return "unknown";
169 else
170 return n->name;
171 }
172
173 static const Jim_Nvp nvp_target_event[] = {
174
175 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
176 { .value = TARGET_EVENT_HALTED, .name = "halted" },
177 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
178 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
179 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
180
181 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
182 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
183
184 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
185 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
186 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
187 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
188 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
189 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
190 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
191 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
192 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
193 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
194 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
195 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
196
197 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
198 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
199
200 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
201 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
202
203 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
204 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
205
206 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
207 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
208
209 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
210 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
211
212 { .name = NULL, .value = -1 }
213 };
214
215 static const Jim_Nvp nvp_target_state[] = {
216 { .name = "unknown", .value = TARGET_UNKNOWN },
217 { .name = "running", .value = TARGET_RUNNING },
218 { .name = "halted", .value = TARGET_HALTED },
219 { .name = "reset", .value = TARGET_RESET },
220 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
221 { .name = NULL, .value = -1 },
222 };
223
224 static const Jim_Nvp nvp_target_debug_reason[] = {
225 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
226 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
227 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
228 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
229 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
230 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
231 { .name = "program-exit" , .value = DBG_REASON_EXIT },
232 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
233 { .name = NULL, .value = -1 },
234 };
235
236 static const Jim_Nvp nvp_target_endian[] = {
237 { .name = "big", .value = TARGET_BIG_ENDIAN },
238 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
239 { .name = "be", .value = TARGET_BIG_ENDIAN },
240 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
241 { .name = NULL, .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_reset_modes[] = {
245 { .name = "unknown", .value = RESET_UNKNOWN },
246 { .name = "run" , .value = RESET_RUN },
247 { .name = "halt" , .value = RESET_HALT },
248 { .name = "init" , .value = RESET_INIT },
249 { .name = NULL , .value = -1 },
250 };
251
252 const char *debug_reason_name(struct target *t)
253 {
254 const char *cp;
255
256 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
257 t->debug_reason)->name;
258 if (!cp) {
259 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
260 cp = "(*BUG*unknown*BUG*)";
261 }
262 return cp;
263 }
264
265 const char *target_state_name(struct target *t)
266 {
267 const char *cp;
268 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
269 if (!cp) {
270 LOG_ERROR("Invalid target state: %d", (int)(t->state));
271 cp = "(*BUG*unknown*BUG*)";
272 }
273 return cp;
274 }
275
276 /* determine the number of the new target */
277 static int new_target_number(void)
278 {
279 struct target *t;
280 int x;
281
282 /* number is 0 based */
283 x = -1;
284 t = all_targets;
285 while (t) {
286 if (x < t->target_number)
287 x = t->target_number;
288 t = t->next;
289 }
290 return x + 1;
291 }
292
293 /* read a uint32_t from a buffer in target memory endianness */
294 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
295 {
296 if (target->endianness == TARGET_LITTLE_ENDIAN)
297 return le_to_h_u32(buffer);
298 else
299 return be_to_h_u32(buffer);
300 }
301
302 /* read a uint24_t from a buffer in target memory endianness */
303 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
304 {
305 if (target->endianness == TARGET_LITTLE_ENDIAN)
306 return le_to_h_u24(buffer);
307 else
308 return be_to_h_u24(buffer);
309 }
310
311 /* read a uint16_t from a buffer in target memory endianness */
312 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
313 {
314 if (target->endianness == TARGET_LITTLE_ENDIAN)
315 return le_to_h_u16(buffer);
316 else
317 return be_to_h_u16(buffer);
318 }
319
320 /* read a uint8_t from a buffer in target memory endianness */
321 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
322 {
323 return *buffer & 0x0ff;
324 }
325
326 /* write a uint32_t to a buffer in target memory endianness */
327 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
328 {
329 if (target->endianness == TARGET_LITTLE_ENDIAN)
330 h_u32_to_le(buffer, value);
331 else
332 h_u32_to_be(buffer, value);
333 }
334
335 /* write a uint24_t to a buffer in target memory endianness */
336 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
337 {
338 if (target->endianness == TARGET_LITTLE_ENDIAN)
339 h_u24_to_le(buffer, value);
340 else
341 h_u24_to_be(buffer, value);
342 }
343
344 /* write a uint16_t to a buffer in target memory endianness */
345 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
346 {
347 if (target->endianness == TARGET_LITTLE_ENDIAN)
348 h_u16_to_le(buffer, value);
349 else
350 h_u16_to_be(buffer, value);
351 }
352
353 /* write a uint8_t to a buffer in target memory endianness */
354 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
355 {
356 *buffer = value;
357 }
358
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
361 {
362 uint32_t i;
363 for (i = 0; i < count; i++)
364 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
365 }
366
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
369 {
370 uint32_t i;
371 for (i = 0; i < count; i++)
372 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
373 }
374
375 /* write a uint32_t array to a buffer in target memory endianness */
376 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
377 {
378 uint32_t i;
379 for (i = 0; i < count; i++)
380 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
381 }
382
383 /* write a uint16_t array to a buffer in target memory endianness */
384 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
385 {
386 uint32_t i;
387 for (i = 0; i < count; i++)
388 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
389 }
390
391 /* return a pointer to a configured target; id is name or number */
392 struct target *get_target(const char *id)
393 {
394 struct target *target;
395
396 /* try as tcltarget name */
397 for (target = all_targets; target; target = target->next) {
398 if (target_name(target) == NULL)
399 continue;
400 if (strcmp(id, target_name(target)) == 0)
401 return target;
402 }
403
404 /* It's OK to remove this fallback sometime after August 2010 or so */
405
406 /* no match, try as number */
407 unsigned num;
408 if (parse_uint(id, &num) != ERROR_OK)
409 return NULL;
410
411 for (target = all_targets; target; target = target->next) {
412 if (target->target_number == (int)num) {
413 LOG_WARNING("use '%s' as target identifier, not '%u'",
414 target_name(target), num);
415 return target;
416 }
417 }
418
419 return NULL;
420 }
421
422 /* returns a pointer to the n-th configured target */
423 static struct target *get_target_by_num(int num)
424 {
425 struct target *target = all_targets;
426
427 while (target) {
428 if (target->target_number == num)
429 return target;
430 target = target->next;
431 }
432
433 return NULL;
434 }
435
436 struct target *get_current_target(struct command_context *cmd_ctx)
437 {
438 struct target *target = get_target_by_num(cmd_ctx->current_target);
439
440 if (target == NULL) {
441 LOG_ERROR("BUG: current_target out of bounds");
442 exit(-1);
443 }
444
445 return target;
446 }
447
448 int target_poll(struct target *target)
449 {
450 int retval;
451
452 /* We can't poll until after examine */
453 if (!target_was_examined(target)) {
454 /* Fail silently lest we pollute the log */
455 return ERROR_FAIL;
456 }
457
458 retval = target->type->poll(target);
459 if (retval != ERROR_OK)
460 return retval;
461
462 if (target->halt_issued) {
463 if (target->state == TARGET_HALTED)
464 target->halt_issued = false;
465 else {
466 long long t = timeval_ms() - target->halt_issued_time;
467 if (t > DEFAULT_HALT_TIMEOUT) {
468 target->halt_issued = false;
469 LOG_INFO("Halt timed out, wake up GDB.");
470 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
471 }
472 }
473 }
474
475 return ERROR_OK;
476 }
477
478 int target_halt(struct target *target)
479 {
480 int retval;
481 /* We can't poll until after examine */
482 if (!target_was_examined(target)) {
483 LOG_ERROR("Target not examined yet");
484 return ERROR_FAIL;
485 }
486
487 retval = target->type->halt(target);
488 if (retval != ERROR_OK)
489 return retval;
490
491 target->halt_issued = true;
492 target->halt_issued_time = timeval_ms();
493
494 return ERROR_OK;
495 }
496
497 /**
498 * Make the target (re)start executing using its saved execution
499 * context (possibly with some modifications).
500 *
501 * @param target Which target should start executing.
502 * @param current True to use the target's saved program counter instead
503 * of the address parameter
504 * @param address Optionally used as the program counter.
505 * @param handle_breakpoints True iff breakpoints at the resumption PC
506 * should be skipped. (For example, maybe execution was stopped by
507 * such a breakpoint, in which case it would be counterprodutive to
508 * let it re-trigger.
509 * @param debug_execution False if all working areas allocated by OpenOCD
510 * should be released and/or restored to their original contents.
511 * (This would for example be true to run some downloaded "helper"
512 * algorithm code, which resides in one such working buffer and uses
513 * another for data storage.)
514 *
515 * @todo Resolve the ambiguity about what the "debug_execution" flag
516 * signifies. For example, Target implementations don't agree on how
517 * it relates to invalidation of the register cache, or to whether
518 * breakpoints and watchpoints should be enabled. (It would seem wrong
519 * to enable breakpoints when running downloaded "helper" algorithms
520 * (debug_execution true), since the breakpoints would be set to match
521 * target firmware being debugged, not the helper algorithm.... and
522 * enabling them could cause such helpers to malfunction (for example,
523 * by overwriting data with a breakpoint instruction. On the other
524 * hand the infrastructure for running such helpers might use this
525 * procedure but rely on hardware breakpoint to detect termination.)
526 */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529 int retval;
530
531 /* We can't poll until after examine */
532 if (!target_was_examined(target)) {
533 LOG_ERROR("Target not examined yet");
534 return ERROR_FAIL;
535 }
536
537 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
538
539 /* note that resume *must* be asynchronous. The CPU can halt before
540 * we poll. The CPU can even halt at the current PC as a result of
541 * a software breakpoint being inserted by (a bug?) the application.
542 */
543 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
544 if (retval != ERROR_OK)
545 return retval;
546
547 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
548
549 return retval;
550 }
551
552 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
553 {
554 char buf[100];
555 int retval;
556 Jim_Nvp *n;
557 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
558 if (n->name == NULL) {
559 LOG_ERROR("invalid reset mode");
560 return ERROR_FAIL;
561 }
562
563 /* disable polling during reset to make reset event scripts
564 * more predictable, i.e. dr/irscan & pathmove in events will
565 * not have JTAG operations injected into the middle of a sequence.
566 */
567 bool save_poll = jtag_poll_get_enabled();
568
569 jtag_poll_set_enabled(false);
570
571 sprintf(buf, "ocd_process_reset %s", n->name);
572 retval = Jim_Eval(cmd_ctx->interp, buf);
573
574 jtag_poll_set_enabled(save_poll);
575
576 if (retval != JIM_OK) {
577 Jim_MakeErrorMessage(cmd_ctx->interp);
578 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
579 return ERROR_FAIL;
580 }
581
582 /* We want any events to be processed before the prompt */
583 retval = target_call_timer_callbacks_now();
584
585 struct target *target;
586 for (target = all_targets; target; target = target->next) {
587 target->type->check_reset(target);
588 target->running_alg = false;
589 }
590
591 return retval;
592 }
593
594 static int identity_virt2phys(struct target *target,
595 uint32_t virtual, uint32_t *physical)
596 {
597 *physical = virtual;
598 return ERROR_OK;
599 }
600
601 static int no_mmu(struct target *target, int *enabled)
602 {
603 *enabled = 0;
604 return ERROR_OK;
605 }
606
607 static int default_examine(struct target *target)
608 {
609 target_set_examined(target);
610 return ERROR_OK;
611 }
612
613 /* no check by default */
614 static int default_check_reset(struct target *target)
615 {
616 return ERROR_OK;
617 }
618
619 int target_examine_one(struct target *target)
620 {
621 return target->type->examine(target);
622 }
623
624 static int jtag_enable_callback(enum jtag_event event, void *priv)
625 {
626 struct target *target = priv;
627
628 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
629 return ERROR_OK;
630
631 jtag_unregister_event_callback(jtag_enable_callback, target);
632
633 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
634
635 int retval = target_examine_one(target);
636 if (retval != ERROR_OK)
637 return retval;
638
639 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
640
641 return retval;
642 }
643
644 /* Targets that correctly implement init + examine, i.e.
645 * no communication with target during init:
646 *
647 * XScale
648 */
649 int target_examine(void)
650 {
651 int retval = ERROR_OK;
652 struct target *target;
653
654 for (target = all_targets; target; target = target->next) {
655 /* defer examination, but don't skip it */
656 if (!target->tap->enabled) {
657 jtag_register_event_callback(jtag_enable_callback,
658 target);
659 continue;
660 }
661
662 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
663
664 retval = target_examine_one(target);
665 if (retval != ERROR_OK)
666 return retval;
667
668 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
669 }
670 return retval;
671 }
672
673 const char *target_type_name(struct target *target)
674 {
675 return target->type->name;
676 }
677
678 static int target_soft_reset_halt(struct target *target)
679 {
680 if (!target_was_examined(target)) {
681 LOG_ERROR("Target not examined yet");
682 return ERROR_FAIL;
683 }
684 if (!target->type->soft_reset_halt) {
685 LOG_ERROR("Target %s does not support soft_reset_halt",
686 target_name(target));
687 return ERROR_FAIL;
688 }
689 return target->type->soft_reset_halt(target);
690 }
691
692 /**
693 * Downloads a target-specific native code algorithm to the target,
694 * and executes it. * Note that some targets may need to set up, enable,
695 * and tear down a breakpoint (hard or * soft) to detect algorithm
696 * termination, while others may support lower overhead schemes where
697 * soft breakpoints embedded in the algorithm automatically terminate the
698 * algorithm.
699 *
700 * @param target used to run the algorithm
701 * @param arch_info target-specific description of the algorithm.
702 */
703 int target_run_algorithm(struct target *target,
704 int num_mem_params, struct mem_param *mem_params,
705 int num_reg_params, struct reg_param *reg_param,
706 uint32_t entry_point, uint32_t exit_point,
707 int timeout_ms, void *arch_info)
708 {
709 int retval = ERROR_FAIL;
710
711 if (!target_was_examined(target)) {
712 LOG_ERROR("Target not examined yet");
713 goto done;
714 }
715 if (!target->type->run_algorithm) {
716 LOG_ERROR("Target type '%s' does not support %s",
717 target_type_name(target), __func__);
718 goto done;
719 }
720
721 target->running_alg = true;
722 retval = target->type->run_algorithm(target,
723 num_mem_params, mem_params,
724 num_reg_params, reg_param,
725 entry_point, exit_point, timeout_ms, arch_info);
726 target->running_alg = false;
727
728 done:
729 return retval;
730 }
731
732 /**
733 * Downloads a target-specific native code algorithm to the target,
734 * executes and leaves it running.
735 *
736 * @param target used to run the algorithm
737 * @param arch_info target-specific description of the algorithm.
738 */
739 int target_start_algorithm(struct target *target,
740 int num_mem_params, struct mem_param *mem_params,
741 int num_reg_params, struct reg_param *reg_params,
742 uint32_t entry_point, uint32_t exit_point,
743 void *arch_info)
744 {
745 int retval = ERROR_FAIL;
746
747 if (!target_was_examined(target)) {
748 LOG_ERROR("Target not examined yet");
749 goto done;
750 }
751 if (!target->type->start_algorithm) {
752 LOG_ERROR("Target type '%s' does not support %s",
753 target_type_name(target), __func__);
754 goto done;
755 }
756 if (target->running_alg) {
757 LOG_ERROR("Target is already running an algorithm");
758 goto done;
759 }
760
761 target->running_alg = true;
762 retval = target->type->start_algorithm(target,
763 num_mem_params, mem_params,
764 num_reg_params, reg_params,
765 entry_point, exit_point, arch_info);
766
767 done:
768 return retval;
769 }
770
771 /**
772 * Waits for an algorithm started with target_start_algorithm() to complete.
773 *
774 * @param target used to run the algorithm
775 * @param arch_info target-specific description of the algorithm.
776 */
777 int target_wait_algorithm(struct target *target,
778 int num_mem_params, struct mem_param *mem_params,
779 int num_reg_params, struct reg_param *reg_params,
780 uint32_t exit_point, int timeout_ms,
781 void *arch_info)
782 {
783 int retval = ERROR_FAIL;
784
785 if (!target->type->wait_algorithm) {
786 LOG_ERROR("Target type '%s' does not support %s",
787 target_type_name(target), __func__);
788 goto done;
789 }
790 if (!target->running_alg) {
791 LOG_ERROR("Target is not running an algorithm");
792 goto done;
793 }
794
795 retval = target->type->wait_algorithm(target,
796 num_mem_params, mem_params,
797 num_reg_params, reg_params,
798 exit_point, timeout_ms, arch_info);
799 if (retval != ERROR_TARGET_TIMEOUT)
800 target->running_alg = false;
801
802 done:
803 return retval;
804 }
805
806 /**
807 * Executes a target-specific native code algorithm in the target.
808 * It differs from target_run_algorithm in that the algorithm is asynchronous.
809 * Because of this it requires an compliant algorithm:
810 * see contrib/loaders/flash/stm32f1x.S for example.
811 *
812 * @param target used to run the algorithm
813 */
814
815 int target_run_flash_async_algorithm(struct target *target,
816 uint8_t *buffer, uint32_t count, int block_size,
817 int num_mem_params, struct mem_param *mem_params,
818 int num_reg_params, struct reg_param *reg_params,
819 uint32_t buffer_start, uint32_t buffer_size,
820 uint32_t entry_point, uint32_t exit_point, void *arch_info)
821 {
822 int retval;
823 int timeout = 0;
824
825 /* Set up working area. First word is write pointer, second word is read pointer,
826 * rest is fifo data area. */
827 uint32_t wp_addr = buffer_start;
828 uint32_t rp_addr = buffer_start + 4;
829 uint32_t fifo_start_addr = buffer_start + 8;
830 uint32_t fifo_end_addr = buffer_start + buffer_size;
831
832 uint32_t wp = fifo_start_addr;
833 uint32_t rp = fifo_start_addr;
834
835 /* validate block_size is 2^n */
836 assert(!block_size || !(block_size & (block_size - 1)));
837
838 retval = target_write_u32(target, wp_addr, wp);
839 if (retval != ERROR_OK)
840 return retval;
841 retval = target_write_u32(target, rp_addr, rp);
842 if (retval != ERROR_OK)
843 return retval;
844
845 /* Start up algorithm on target and let it idle while writing the first chunk */
846 retval = target_start_algorithm(target, num_mem_params, mem_params,
847 num_reg_params, reg_params,
848 entry_point,
849 exit_point,
850 arch_info);
851
852 if (retval != ERROR_OK) {
853 LOG_ERROR("error starting target flash write algorithm");
854 return retval;
855 }
856
857 while (count > 0) {
858
859 retval = target_read_u32(target, rp_addr, &rp);
860 if (retval != ERROR_OK) {
861 LOG_ERROR("failed to get read pointer");
862 break;
863 }
864
865 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
866
867 if (rp == 0) {
868 LOG_ERROR("flash write algorithm aborted by target");
869 retval = ERROR_FLASH_OPERATION_FAILED;
870 break;
871 }
872
873 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
874 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
875 break;
876 }
877
878 /* Count the number of bytes available in the fifo without
879 * crossing the wrap around. Make sure to not fill it completely,
880 * because that would make wp == rp and that's the empty condition. */
881 uint32_t thisrun_bytes;
882 if (rp > wp)
883 thisrun_bytes = rp - wp - block_size;
884 else if (rp > fifo_start_addr)
885 thisrun_bytes = fifo_end_addr - wp;
886 else
887 thisrun_bytes = fifo_end_addr - wp - block_size;
888
889 if (thisrun_bytes == 0) {
890 /* Throttle polling a bit if transfer is (much) faster than flash
891 * programming. The exact delay shouldn't matter as long as it's
892 * less than buffer size / flash speed. This is very unlikely to
893 * run when using high latency connections such as USB. */
894 alive_sleep(10);
895
896 /* to stop an infinite loop on some targets check and increment a timeout
897 * this issue was observed on a stellaris using the new ICDI interface */
898 if (timeout++ >= 500) {
899 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
900 return ERROR_FLASH_OPERATION_FAILED;
901 }
902 continue;
903 }
904
905 /* reset our timeout */
906 timeout = 0;
907
908 /* Limit to the amount of data we actually want to write */
909 if (thisrun_bytes > count * block_size)
910 thisrun_bytes = count * block_size;
911
912 /* Write data to fifo */
913 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
914 if (retval != ERROR_OK)
915 break;
916
917 /* Update counters and wrap write pointer */
918 buffer += thisrun_bytes;
919 count -= thisrun_bytes / block_size;
920 wp += thisrun_bytes;
921 if (wp >= fifo_end_addr)
922 wp = fifo_start_addr;
923
924 /* Store updated write pointer to target */
925 retval = target_write_u32(target, wp_addr, wp);
926 if (retval != ERROR_OK)
927 break;
928 }
929
930 if (retval != ERROR_OK) {
931 /* abort flash write algorithm on target */
932 target_write_u32(target, wp_addr, 0);
933 }
934
935 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
936 num_reg_params, reg_params,
937 exit_point,
938 10000,
939 arch_info);
940
941 if (retval2 != ERROR_OK) {
942 LOG_ERROR("error waiting for target flash write algorithm");
943 retval = retval2;
944 }
945
946 return retval;
947 }
948
949 int target_read_memory(struct target *target,
950 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
951 {
952 if (!target_was_examined(target)) {
953 LOG_ERROR("Target not examined yet");
954 return ERROR_FAIL;
955 }
956 return target->type->read_memory(target, address, size, count, buffer);
957 }
958
959 int target_read_phys_memory(struct target *target,
960 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
961 {
962 if (!target_was_examined(target)) {
963 LOG_ERROR("Target not examined yet");
964 return ERROR_FAIL;
965 }
966 return target->type->read_phys_memory(target, address, size, count, buffer);
967 }
968
969 int target_write_memory(struct target *target,
970 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
971 {
972 if (!target_was_examined(target)) {
973 LOG_ERROR("Target not examined yet");
974 return ERROR_FAIL;
975 }
976 return target->type->write_memory(target, address, size, count, buffer);
977 }
978
979 int target_write_phys_memory(struct target *target,
980 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
981 {
982 if (!target_was_examined(target)) {
983 LOG_ERROR("Target not examined yet");
984 return ERROR_FAIL;
985 }
986 return target->type->write_phys_memory(target, address, size, count, buffer);
987 }
988
989 int target_add_breakpoint(struct target *target,
990 struct breakpoint *breakpoint)
991 {
992 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
993 LOG_WARNING("target %s is not halted", target_name(target));
994 return ERROR_TARGET_NOT_HALTED;
995 }
996 return target->type->add_breakpoint(target, breakpoint);
997 }
998
999 int target_add_context_breakpoint(struct target *target,
1000 struct breakpoint *breakpoint)
1001 {
1002 if (target->state != TARGET_HALTED) {
1003 LOG_WARNING("target %s is not halted", target_name(target));
1004 return ERROR_TARGET_NOT_HALTED;
1005 }
1006 return target->type->add_context_breakpoint(target, breakpoint);
1007 }
1008
1009 int target_add_hybrid_breakpoint(struct target *target,
1010 struct breakpoint *breakpoint)
1011 {
1012 if (target->state != TARGET_HALTED) {
1013 LOG_WARNING("target %s is not halted", target_name(target));
1014 return ERROR_TARGET_NOT_HALTED;
1015 }
1016 return target->type->add_hybrid_breakpoint(target, breakpoint);
1017 }
1018
1019 int target_remove_breakpoint(struct target *target,
1020 struct breakpoint *breakpoint)
1021 {
1022 return target->type->remove_breakpoint(target, breakpoint);
1023 }
1024
1025 int target_add_watchpoint(struct target *target,
1026 struct watchpoint *watchpoint)
1027 {
1028 if (target->state != TARGET_HALTED) {
1029 LOG_WARNING("target %s is not halted", target_name(target));
1030 return ERROR_TARGET_NOT_HALTED;
1031 }
1032 return target->type->add_watchpoint(target, watchpoint);
1033 }
1034 int target_remove_watchpoint(struct target *target,
1035 struct watchpoint *watchpoint)
1036 {
1037 return target->type->remove_watchpoint(target, watchpoint);
1038 }
1039 int target_hit_watchpoint(struct target *target,
1040 struct watchpoint **hit_watchpoint)
1041 {
1042 if (target->state != TARGET_HALTED) {
1043 LOG_WARNING("target %s is not halted", target->cmd_name);
1044 return ERROR_TARGET_NOT_HALTED;
1045 }
1046
1047 if (target->type->hit_watchpoint == NULL) {
1048 /* For backward compatible, if hit_watchpoint is not implemented,
1049 * return ERROR_FAIL such that gdb_server will not take the nonsense
1050 * information. */
1051 return ERROR_FAIL;
1052 }
1053
1054 return target->type->hit_watchpoint(target, hit_watchpoint);
1055 }
1056
1057 int target_get_gdb_reg_list(struct target *target,
1058 struct reg **reg_list[], int *reg_list_size,
1059 enum target_register_class reg_class)
1060 {
1061 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1062 }
1063 int target_step(struct target *target,
1064 int current, uint32_t address, int handle_breakpoints)
1065 {
1066 return target->type->step(target, current, address, handle_breakpoints);
1067 }
1068
1069 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1070 {
1071 if (target->state != TARGET_HALTED) {
1072 LOG_WARNING("target %s is not halted", target->cmd_name);
1073 return ERROR_TARGET_NOT_HALTED;
1074 }
1075 return target->type->get_gdb_fileio_info(target, fileio_info);
1076 }
1077
1078 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1079 {
1080 if (target->state != TARGET_HALTED) {
1081 LOG_WARNING("target %s is not halted", target->cmd_name);
1082 return ERROR_TARGET_NOT_HALTED;
1083 }
1084 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1085 }
1086
1087 /**
1088 * Reset the @c examined flag for the given target.
1089 * Pure paranoia -- targets are zeroed on allocation.
1090 */
1091 static void target_reset_examined(struct target *target)
1092 {
1093 target->examined = false;
1094 }
1095
1096 static int err_read_phys_memory(struct target *target, uint32_t address,
1097 uint32_t size, uint32_t count, uint8_t *buffer)
1098 {
1099 LOG_ERROR("Not implemented: %s", __func__);
1100 return ERROR_FAIL;
1101 }
1102
1103 static int err_write_phys_memory(struct target *target, uint32_t address,
1104 uint32_t size, uint32_t count, const uint8_t *buffer)
1105 {
1106 LOG_ERROR("Not implemented: %s", __func__);
1107 return ERROR_FAIL;
1108 }
1109
1110 static int handle_target(void *priv);
1111
1112 static int target_init_one(struct command_context *cmd_ctx,
1113 struct target *target)
1114 {
1115 target_reset_examined(target);
1116
1117 struct target_type *type = target->type;
1118 if (type->examine == NULL)
1119 type->examine = default_examine;
1120
1121 if (type->check_reset == NULL)
1122 type->check_reset = default_check_reset;
1123
1124 assert(type->init_target != NULL);
1125
1126 int retval = type->init_target(cmd_ctx, target);
1127 if (ERROR_OK != retval) {
1128 LOG_ERROR("target '%s' init failed", target_name(target));
1129 return retval;
1130 }
1131
1132 /* Sanity-check MMU support ... stub in what we must, to help
1133 * implement it in stages, but warn if we need to do so.
1134 */
1135 if (type->mmu) {
1136 if (type->write_phys_memory == NULL) {
1137 LOG_ERROR("type '%s' is missing write_phys_memory",
1138 type->name);
1139 type->write_phys_memory = err_write_phys_memory;
1140 }
1141 if (type->read_phys_memory == NULL) {
1142 LOG_ERROR("type '%s' is missing read_phys_memory",
1143 type->name);
1144 type->read_phys_memory = err_read_phys_memory;
1145 }
1146 if (type->virt2phys == NULL) {
1147 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1148 type->virt2phys = identity_virt2phys;
1149 }
1150 } else {
1151 /* Make sure no-MMU targets all behave the same: make no
1152 * distinction between physical and virtual addresses, and
1153 * ensure that virt2phys() is always an identity mapping.
1154 */
1155 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1156 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1157
1158 type->mmu = no_mmu;
1159 type->write_phys_memory = type->write_memory;
1160 type->read_phys_memory = type->read_memory;
1161 type->virt2phys = identity_virt2phys;
1162 }
1163
1164 if (target->type->read_buffer == NULL)
1165 target->type->read_buffer = target_read_buffer_default;
1166
1167 if (target->type->write_buffer == NULL)
1168 target->type->write_buffer = target_write_buffer_default;
1169
1170 if (target->type->get_gdb_fileio_info == NULL)
1171 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1172
1173 if (target->type->gdb_fileio_end == NULL)
1174 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1175
1176 return ERROR_OK;
1177 }
1178
1179 static int target_init(struct command_context *cmd_ctx)
1180 {
1181 struct target *target;
1182 int retval;
1183
1184 for (target = all_targets; target; target = target->next) {
1185 retval = target_init_one(cmd_ctx, target);
1186 if (ERROR_OK != retval)
1187 return retval;
1188 }
1189
1190 if (!all_targets)
1191 return ERROR_OK;
1192
1193 retval = target_register_user_commands(cmd_ctx);
1194 if (ERROR_OK != retval)
1195 return retval;
1196
1197 retval = target_register_timer_callback(&handle_target,
1198 polling_interval, 1, cmd_ctx->interp);
1199 if (ERROR_OK != retval)
1200 return retval;
1201
1202 return ERROR_OK;
1203 }
1204
1205 COMMAND_HANDLER(handle_target_init_command)
1206 {
1207 int retval;
1208
1209 if (CMD_ARGC != 0)
1210 return ERROR_COMMAND_SYNTAX_ERROR;
1211
1212 static bool target_initialized;
1213 if (target_initialized) {
1214 LOG_INFO("'target init' has already been called");
1215 return ERROR_OK;
1216 }
1217 target_initialized = true;
1218
1219 retval = command_run_line(CMD_CTX, "init_targets");
1220 if (ERROR_OK != retval)
1221 return retval;
1222
1223 retval = command_run_line(CMD_CTX, "init_board");
1224 if (ERROR_OK != retval)
1225 return retval;
1226
1227 LOG_DEBUG("Initializing targets...");
1228 return target_init(CMD_CTX);
1229 }
1230
1231 int target_register_event_callback(int (*callback)(struct target *target,
1232 enum target_event event, void *priv), void *priv)
1233 {
1234 struct target_event_callback **callbacks_p = &target_event_callbacks;
1235
1236 if (callback == NULL)
1237 return ERROR_COMMAND_SYNTAX_ERROR;
1238
1239 if (*callbacks_p) {
1240 while ((*callbacks_p)->next)
1241 callbacks_p = &((*callbacks_p)->next);
1242 callbacks_p = &((*callbacks_p)->next);
1243 }
1244
1245 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1246 (*callbacks_p)->callback = callback;
1247 (*callbacks_p)->priv = priv;
1248 (*callbacks_p)->next = NULL;
1249
1250 return ERROR_OK;
1251 }
1252
1253 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1254 {
1255 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1256 struct timeval now;
1257
1258 if (callback == NULL)
1259 return ERROR_COMMAND_SYNTAX_ERROR;
1260
1261 if (*callbacks_p) {
1262 while ((*callbacks_p)->next)
1263 callbacks_p = &((*callbacks_p)->next);
1264 callbacks_p = &((*callbacks_p)->next);
1265 }
1266
1267 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1268 (*callbacks_p)->callback = callback;
1269 (*callbacks_p)->periodic = periodic;
1270 (*callbacks_p)->time_ms = time_ms;
1271
1272 gettimeofday(&now, NULL);
1273 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1274 time_ms -= (time_ms % 1000);
1275 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1276 if ((*callbacks_p)->when.tv_usec > 1000000) {
1277 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1278 (*callbacks_p)->when.tv_sec += 1;
1279 }
1280
1281 (*callbacks_p)->priv = priv;
1282 (*callbacks_p)->next = NULL;
1283
1284 return ERROR_OK;
1285 }
1286
1287 int target_unregister_event_callback(int (*callback)(struct target *target,
1288 enum target_event event, void *priv), void *priv)
1289 {
1290 struct target_event_callback **p = &target_event_callbacks;
1291 struct target_event_callback *c = target_event_callbacks;
1292
1293 if (callback == NULL)
1294 return ERROR_COMMAND_SYNTAX_ERROR;
1295
1296 while (c) {
1297 struct target_event_callback *next = c->next;
1298 if ((c->callback == callback) && (c->priv == priv)) {
1299 *p = next;
1300 free(c);
1301 return ERROR_OK;
1302 } else
1303 p = &(c->next);
1304 c = next;
1305 }
1306
1307 return ERROR_OK;
1308 }
1309
1310 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1311 {
1312 struct target_timer_callback **p = &target_timer_callbacks;
1313 struct target_timer_callback *c = target_timer_callbacks;
1314
1315 if (callback == NULL)
1316 return ERROR_COMMAND_SYNTAX_ERROR;
1317
1318 while (c) {
1319 struct target_timer_callback *next = c->next;
1320 if ((c->callback == callback) && (c->priv == priv)) {
1321 *p = next;
1322 free(c);
1323 return ERROR_OK;
1324 } else
1325 p = &(c->next);
1326 c = next;
1327 }
1328
1329 return ERROR_OK;
1330 }
1331
1332 int target_call_event_callbacks(struct target *target, enum target_event event)
1333 {
1334 struct target_event_callback *callback = target_event_callbacks;
1335 struct target_event_callback *next_callback;
1336
1337 if (event == TARGET_EVENT_HALTED) {
1338 /* execute early halted first */
1339 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1340 }
1341
1342 LOG_DEBUG("target event %i (%s)", event,
1343 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1344
1345 target_handle_event(target, event);
1346
1347 while (callback) {
1348 next_callback = callback->next;
1349 callback->callback(target, event, callback->priv);
1350 callback = next_callback;
1351 }
1352
1353 return ERROR_OK;
1354 }
1355
1356 static int target_timer_callback_periodic_restart(
1357 struct target_timer_callback *cb, struct timeval *now)
1358 {
1359 int time_ms = cb->time_ms;
1360 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1361 time_ms -= (time_ms % 1000);
1362 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1363 if (cb->when.tv_usec > 1000000) {
1364 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1365 cb->when.tv_sec += 1;
1366 }
1367 return ERROR_OK;
1368 }
1369
1370 static int target_call_timer_callback(struct target_timer_callback *cb,
1371 struct timeval *now)
1372 {
1373 cb->callback(cb->priv);
1374
1375 if (cb->periodic)
1376 return target_timer_callback_periodic_restart(cb, now);
1377
1378 return target_unregister_timer_callback(cb->callback, cb->priv);
1379 }
1380
1381 static int target_call_timer_callbacks_check_time(int checktime)
1382 {
1383 keep_alive();
1384
1385 struct timeval now;
1386 gettimeofday(&now, NULL);
1387
1388 struct target_timer_callback *callback = target_timer_callbacks;
1389 while (callback) {
1390 /* cleaning up may unregister and free this callback */
1391 struct target_timer_callback *next_callback = callback->next;
1392
1393 bool call_it = callback->callback &&
1394 ((!checktime && callback->periodic) ||
1395 now.tv_sec > callback->when.tv_sec ||
1396 (now.tv_sec == callback->when.tv_sec &&
1397 now.tv_usec >= callback->when.tv_usec));
1398
1399 if (call_it) {
1400 int retval = target_call_timer_callback(callback, &now);
1401 if (retval != ERROR_OK)
1402 return retval;
1403 }
1404
1405 callback = next_callback;
1406 }
1407
1408 return ERROR_OK;
1409 }
1410
1411 int target_call_timer_callbacks(void)
1412 {
1413 return target_call_timer_callbacks_check_time(1);
1414 }
1415
1416 /* invoke periodic callbacks immediately */
1417 int target_call_timer_callbacks_now(void)
1418 {
1419 return target_call_timer_callbacks_check_time(0);
1420 }
1421
1422 /* Prints the working area layout for debug purposes */
1423 static void print_wa_layout(struct target *target)
1424 {
1425 struct working_area *c = target->working_areas;
1426
1427 while (c) {
1428 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1429 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1430 c->address, c->address + c->size - 1, c->size);
1431 c = c->next;
1432 }
1433 }
1434
1435 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1436 static void target_split_working_area(struct working_area *area, uint32_t size)
1437 {
1438 assert(area->free); /* Shouldn't split an allocated area */
1439 assert(size <= area->size); /* Caller should guarantee this */
1440
1441 /* Split only if not already the right size */
1442 if (size < area->size) {
1443 struct working_area *new_wa = malloc(sizeof(*new_wa));
1444
1445 if (new_wa == NULL)
1446 return;
1447
1448 new_wa->next = area->next;
1449 new_wa->size = area->size - size;
1450 new_wa->address = area->address + size;
1451 new_wa->backup = NULL;
1452 new_wa->user = NULL;
1453 new_wa->free = true;
1454
1455 area->next = new_wa;
1456 area->size = size;
1457
1458 /* If backup memory was allocated to this area, it has the wrong size
1459 * now so free it and it will be reallocated if/when needed */
1460 if (area->backup) {
1461 free(area->backup);
1462 area->backup = NULL;
1463 }
1464 }
1465 }
1466
1467 /* Merge all adjacent free areas into one */
1468 static void target_merge_working_areas(struct target *target)
1469 {
1470 struct working_area *c = target->working_areas;
1471
1472 while (c && c->next) {
1473 assert(c->next->address == c->address + c->size); /* This is an invariant */
1474
1475 /* Find two adjacent free areas */
1476 if (c->free && c->next->free) {
1477 /* Merge the last into the first */
1478 c->size += c->next->size;
1479
1480 /* Remove the last */
1481 struct working_area *to_be_freed = c->next;
1482 c->next = c->next->next;
1483 if (to_be_freed->backup)
1484 free(to_be_freed->backup);
1485 free(to_be_freed);
1486
1487 /* If backup memory was allocated to the remaining area, it's has
1488 * the wrong size now */
1489 if (c->backup) {
1490 free(c->backup);
1491 c->backup = NULL;
1492 }
1493 } else {
1494 c = c->next;
1495 }
1496 }
1497 }
1498
1499 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1500 {
1501 /* Reevaluate working area address based on MMU state*/
1502 if (target->working_areas == NULL) {
1503 int retval;
1504 int enabled;
1505
1506 retval = target->type->mmu(target, &enabled);
1507 if (retval != ERROR_OK)
1508 return retval;
1509
1510 if (!enabled) {
1511 if (target->working_area_phys_spec) {
1512 LOG_DEBUG("MMU disabled, using physical "
1513 "address for working memory 0x%08"PRIx32,
1514 target->working_area_phys);
1515 target->working_area = target->working_area_phys;
1516 } else {
1517 LOG_ERROR("No working memory available. "
1518 "Specify -work-area-phys to target.");
1519 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1520 }
1521 } else {
1522 if (target->working_area_virt_spec) {
1523 LOG_DEBUG("MMU enabled, using virtual "
1524 "address for working memory 0x%08"PRIx32,
1525 target->working_area_virt);
1526 target->working_area = target->working_area_virt;
1527 } else {
1528 LOG_ERROR("No working memory available. "
1529 "Specify -work-area-virt to target.");
1530 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1531 }
1532 }
1533
1534 /* Set up initial working area on first call */
1535 struct working_area *new_wa = malloc(sizeof(*new_wa));
1536 if (new_wa) {
1537 new_wa->next = NULL;
1538 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1539 new_wa->address = target->working_area;
1540 new_wa->backup = NULL;
1541 new_wa->user = NULL;
1542 new_wa->free = true;
1543 }
1544
1545 target->working_areas = new_wa;
1546 }
1547
1548 /* only allocate multiples of 4 byte */
1549 if (size % 4)
1550 size = (size + 3) & (~3UL);
1551
1552 struct working_area *c = target->working_areas;
1553
1554 /* Find the first large enough working area */
1555 while (c) {
1556 if (c->free && c->size >= size)
1557 break;
1558 c = c->next;
1559 }
1560
1561 if (c == NULL)
1562 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1563
1564 /* Split the working area into the requested size */
1565 target_split_working_area(c, size);
1566
1567 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1568
1569 if (target->backup_working_area) {
1570 if (c->backup == NULL) {
1571 c->backup = malloc(c->size);
1572 if (c->backup == NULL)
1573 return ERROR_FAIL;
1574 }
1575
1576 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1577 if (retval != ERROR_OK)
1578 return retval;
1579 }
1580
1581 /* mark as used, and return the new (reused) area */
1582 c->free = false;
1583 *area = c;
1584
1585 /* user pointer */
1586 c->user = area;
1587
1588 print_wa_layout(target);
1589
1590 return ERROR_OK;
1591 }
1592
1593 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1594 {
1595 int retval;
1596
1597 retval = target_alloc_working_area_try(target, size, area);
1598 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1599 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1600 return retval;
1601
1602 }
1603
1604 static int target_restore_working_area(struct target *target, struct working_area *area)
1605 {
1606 int retval = ERROR_OK;
1607
1608 if (target->backup_working_area && area->backup != NULL) {
1609 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1610 if (retval != ERROR_OK)
1611 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1612 area->size, area->address);
1613 }
1614
1615 return retval;
1616 }
1617
1618 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1619 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1620 {
1621 int retval = ERROR_OK;
1622
1623 if (area->free)
1624 return retval;
1625
1626 if (restore) {
1627 retval = target_restore_working_area(target, area);
1628 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1629 if (retval != ERROR_OK)
1630 return retval;
1631 }
1632
1633 area->free = true;
1634
1635 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1636 area->size, area->address);
1637
1638 /* mark user pointer invalid */
1639 /* TODO: Is this really safe? It points to some previous caller's memory.
1640 * How could we know that the area pointer is still in that place and not
1641 * some other vital data? What's the purpose of this, anyway? */
1642 *area->user = NULL;
1643 area->user = NULL;
1644
1645 target_merge_working_areas(target);
1646
1647 print_wa_layout(target);
1648
1649 return retval;
1650 }
1651
1652 int target_free_working_area(struct target *target, struct working_area *area)
1653 {
1654 return target_free_working_area_restore(target, area, 1);
1655 }
1656
1657 /* free resources and restore memory, if restoring memory fails,
1658 * free up resources anyway
1659 */
1660 static void target_free_all_working_areas_restore(struct target *target, int restore)
1661 {
1662 struct working_area *c = target->working_areas;
1663
1664 LOG_DEBUG("freeing all working areas");
1665
1666 /* Loop through all areas, restoring the allocated ones and marking them as free */
1667 while (c) {
1668 if (!c->free) {
1669 if (restore)
1670 target_restore_working_area(target, c);
1671 c->free = true;
1672 *c->user = NULL; /* Same as above */
1673 c->user = NULL;
1674 }
1675 c = c->next;
1676 }
1677
1678 /* Run a merge pass to combine all areas into one */
1679 target_merge_working_areas(target);
1680
1681 print_wa_layout(target);
1682 }
1683
1684 void target_free_all_working_areas(struct target *target)
1685 {
1686 target_free_all_working_areas_restore(target, 1);
1687 }
1688
1689 /* Find the largest number of bytes that can be allocated */
1690 uint32_t target_get_working_area_avail(struct target *target)
1691 {
1692 struct working_area *c = target->working_areas;
1693 uint32_t max_size = 0;
1694
1695 if (c == NULL)
1696 return target->working_area_size;
1697
1698 while (c) {
1699 if (c->free && max_size < c->size)
1700 max_size = c->size;
1701
1702 c = c->next;
1703 }
1704
1705 return max_size;
1706 }
1707
1708 int target_arch_state(struct target *target)
1709 {
1710 int retval;
1711 if (target == NULL) {
1712 LOG_USER("No target has been configured");
1713 return ERROR_OK;
1714 }
1715
1716 LOG_USER("target state: %s", target_state_name(target));
1717
1718 if (target->state != TARGET_HALTED)
1719 return ERROR_OK;
1720
1721 retval = target->type->arch_state(target);
1722 return retval;
1723 }
1724
1725 static int target_get_gdb_fileio_info_default(struct target *target,
1726 struct gdb_fileio_info *fileio_info)
1727 {
1728 /* If target does not support semi-hosting function, target
1729 has no need to provide .get_gdb_fileio_info callback.
1730 It just return ERROR_FAIL and gdb_server will return "Txx"
1731 as target halted every time. */
1732 return ERROR_FAIL;
1733 }
1734
1735 static int target_gdb_fileio_end_default(struct target *target,
1736 int retcode, int fileio_errno, bool ctrl_c)
1737 {
1738 return ERROR_OK;
1739 }
1740
1741 /* Single aligned words are guaranteed to use 16 or 32 bit access
1742 * mode respectively, otherwise data is handled as quickly as
1743 * possible
1744 */
1745 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1746 {
1747 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1748 (int)size, (unsigned)address);
1749
1750 if (!target_was_examined(target)) {
1751 LOG_ERROR("Target not examined yet");
1752 return ERROR_FAIL;
1753 }
1754
1755 if (size == 0)
1756 return ERROR_OK;
1757
1758 if ((address + size - 1) < address) {
1759 /* GDB can request this when e.g. PC is 0xfffffffc*/
1760 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1761 (unsigned)address,
1762 (unsigned)size);
1763 return ERROR_FAIL;
1764 }
1765
1766 return target->type->write_buffer(target, address, size, buffer);
1767 }
1768
1769 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1770 {
1771 int retval = ERROR_OK;
1772
1773 if (((address % 2) == 0) && (size == 2))
1774 return target_write_memory(target, address, 2, 1, buffer);
1775
1776 /* handle unaligned head bytes */
1777 if (address % 4) {
1778 uint32_t unaligned = 4 - (address % 4);
1779
1780 if (unaligned > size)
1781 unaligned = size;
1782
1783 retval = target_write_memory(target, address, 1, unaligned, buffer);
1784 if (retval != ERROR_OK)
1785 return retval;
1786
1787 buffer += unaligned;
1788 address += unaligned;
1789 size -= unaligned;
1790 }
1791
1792 /* handle aligned words */
1793 if (size >= 4) {
1794 int aligned = size - (size % 4);
1795
1796 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1797 if (retval != ERROR_OK)
1798 return retval;
1799
1800 buffer += aligned;
1801 address += aligned;
1802 size -= aligned;
1803 }
1804
1805 /* handle tail writes of less than 4 bytes */
1806 if (size > 0) {
1807 retval = target_write_memory(target, address, 1, size, buffer);
1808 if (retval != ERROR_OK)
1809 return retval;
1810 }
1811
1812 return retval;
1813 }
1814
1815 /* Single aligned words are guaranteed to use 16 or 32 bit access
1816 * mode respectively, otherwise data is handled as quickly as
1817 * possible
1818 */
1819 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1820 {
1821 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1822 (int)size, (unsigned)address);
1823
1824 if (!target_was_examined(target)) {
1825 LOG_ERROR("Target not examined yet");
1826 return ERROR_FAIL;
1827 }
1828
1829 if (size == 0)
1830 return ERROR_OK;
1831
1832 if ((address + size - 1) < address) {
1833 /* GDB can request this when e.g. PC is 0xfffffffc*/
1834 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1835 address,
1836 size);
1837 return ERROR_FAIL;
1838 }
1839
1840 return target->type->read_buffer(target, address, size, buffer);
1841 }
1842
1843 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1844 {
1845 int retval = ERROR_OK;
1846
1847 if (((address % 2) == 0) && (size == 2))
1848 return target_read_memory(target, address, 2, 1, buffer);
1849
1850 /* handle unaligned head bytes */
1851 if (address % 4) {
1852 uint32_t unaligned = 4 - (address % 4);
1853
1854 if (unaligned > size)
1855 unaligned = size;
1856
1857 retval = target_read_memory(target, address, 1, unaligned, buffer);
1858 if (retval != ERROR_OK)
1859 return retval;
1860
1861 buffer += unaligned;
1862 address += unaligned;
1863 size -= unaligned;
1864 }
1865
1866 /* handle aligned words */
1867 if (size >= 4) {
1868 int aligned = size - (size % 4);
1869
1870 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1871 if (retval != ERROR_OK)
1872 return retval;
1873
1874 buffer += aligned;
1875 address += aligned;
1876 size -= aligned;
1877 }
1878
1879 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1880 if (size >= 2) {
1881 int aligned = size - (size % 2);
1882 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1883 if (retval != ERROR_OK)
1884 return retval;
1885
1886 buffer += aligned;
1887 address += aligned;
1888 size -= aligned;
1889 }
1890 /* handle tail writes of less than 4 bytes */
1891 if (size > 0) {
1892 retval = target_read_memory(target, address, 1, size, buffer);
1893 if (retval != ERROR_OK)
1894 return retval;
1895 }
1896
1897 return ERROR_OK;
1898 }
1899
1900 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1901 {
1902 uint8_t *buffer;
1903 int retval;
1904 uint32_t i;
1905 uint32_t checksum = 0;
1906 if (!target_was_examined(target)) {
1907 LOG_ERROR("Target not examined yet");
1908 return ERROR_FAIL;
1909 }
1910
1911 retval = target->type->checksum_memory(target, address, size, &checksum);
1912 if (retval != ERROR_OK) {
1913 buffer = malloc(size);
1914 if (buffer == NULL) {
1915 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1916 return ERROR_COMMAND_SYNTAX_ERROR;
1917 }
1918 retval = target_read_buffer(target, address, size, buffer);
1919 if (retval != ERROR_OK) {
1920 free(buffer);
1921 return retval;
1922 }
1923
1924 /* convert to target endianness */
1925 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1926 uint32_t target_data;
1927 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1928 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1929 }
1930
1931 retval = image_calculate_checksum(buffer, size, &checksum);
1932 free(buffer);
1933 }
1934
1935 *crc = checksum;
1936
1937 return retval;
1938 }
1939
1940 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1941 {
1942 int retval;
1943 if (!target_was_examined(target)) {
1944 LOG_ERROR("Target not examined yet");
1945 return ERROR_FAIL;
1946 }
1947
1948 if (target->type->blank_check_memory == 0)
1949 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1950
1951 retval = target->type->blank_check_memory(target, address, size, blank);
1952
1953 return retval;
1954 }
1955
1956 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1957 {
1958 uint8_t value_buf[4];
1959 if (!target_was_examined(target)) {
1960 LOG_ERROR("Target not examined yet");
1961 return ERROR_FAIL;
1962 }
1963
1964 int retval = target_read_memory(target, address, 4, 1, value_buf);
1965
1966 if (retval == ERROR_OK) {
1967 *value = target_buffer_get_u32(target, value_buf);
1968 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1969 address,
1970 *value);
1971 } else {
1972 *value = 0x0;
1973 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1974 address);
1975 }
1976
1977 return retval;
1978 }
1979
1980 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1981 {
1982 uint8_t value_buf[2];
1983 if (!target_was_examined(target)) {
1984 LOG_ERROR("Target not examined yet");
1985 return ERROR_FAIL;
1986 }
1987
1988 int retval = target_read_memory(target, address, 2, 1, value_buf);
1989
1990 if (retval == ERROR_OK) {
1991 *value = target_buffer_get_u16(target, value_buf);
1992 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1993 address,
1994 *value);
1995 } else {
1996 *value = 0x0;
1997 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1998 address);
1999 }
2000
2001 return retval;
2002 }
2003
2004 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2005 {
2006 int retval = target_read_memory(target, address, 1, 1, value);
2007 if (!target_was_examined(target)) {
2008 LOG_ERROR("Target not examined yet");
2009 return ERROR_FAIL;
2010 }
2011
2012 if (retval == ERROR_OK) {
2013 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2014 address,
2015 *value);
2016 } else {
2017 *value = 0x0;
2018 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2019 address);
2020 }
2021
2022 return retval;
2023 }
2024
2025 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2026 {
2027 int retval;
2028 uint8_t value_buf[4];
2029 if (!target_was_examined(target)) {
2030 LOG_ERROR("Target not examined yet");
2031 return ERROR_FAIL;
2032 }
2033
2034 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2035 address,
2036 value);
2037
2038 target_buffer_set_u32(target, value_buf, value);
2039 retval = target_write_memory(target, address, 4, 1, value_buf);
2040 if (retval != ERROR_OK)
2041 LOG_DEBUG("failed: %i", retval);
2042
2043 return retval;
2044 }
2045
2046 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2047 {
2048 int retval;
2049 uint8_t value_buf[2];
2050 if (!target_was_examined(target)) {
2051 LOG_ERROR("Target not examined yet");
2052 return ERROR_FAIL;
2053 }
2054
2055 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2056 address,
2057 value);
2058
2059 target_buffer_set_u16(target, value_buf, value);
2060 retval = target_write_memory(target, address, 2, 1, value_buf);
2061 if (retval != ERROR_OK)
2062 LOG_DEBUG("failed: %i", retval);
2063
2064 return retval;
2065 }
2066
2067 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2068 {
2069 int retval;
2070 if (!target_was_examined(target)) {
2071 LOG_ERROR("Target not examined yet");
2072 return ERROR_FAIL;
2073 }
2074
2075 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2076 address, value);
2077
2078 retval = target_write_memory(target, address, 1, 1, &value);
2079 if (retval != ERROR_OK)
2080 LOG_DEBUG("failed: %i", retval);
2081
2082 return retval;
2083 }
2084
2085 static int find_target(struct command_context *cmd_ctx, const char *name)
2086 {
2087 struct target *target = get_target(name);
2088 if (target == NULL) {
2089 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2090 return ERROR_FAIL;
2091 }
2092 if (!target->tap->enabled) {
2093 LOG_USER("Target: TAP %s is disabled, "
2094 "can't be the current target\n",
2095 target->tap->dotted_name);
2096 return ERROR_FAIL;
2097 }
2098
2099 cmd_ctx->current_target = target->target_number;
2100 return ERROR_OK;
2101 }
2102
2103
2104 COMMAND_HANDLER(handle_targets_command)
2105 {
2106 int retval = ERROR_OK;
2107 if (CMD_ARGC == 1) {
2108 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2109 if (retval == ERROR_OK) {
2110 /* we're done! */
2111 return retval;
2112 }
2113 }
2114
2115 struct target *target = all_targets;
2116 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2117 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2118 while (target) {
2119 const char *state;
2120 char marker = ' ';
2121
2122 if (target->tap->enabled)
2123 state = target_state_name(target);
2124 else
2125 state = "tap-disabled";
2126
2127 if (CMD_CTX->current_target == target->target_number)
2128 marker = '*';
2129
2130 /* keep columns lined up to match the headers above */
2131 command_print(CMD_CTX,
2132 "%2d%c %-18s %-10s %-6s %-18s %s",
2133 target->target_number,
2134 marker,
2135 target_name(target),
2136 target_type_name(target),
2137 Jim_Nvp_value2name_simple(nvp_target_endian,
2138 target->endianness)->name,
2139 target->tap->dotted_name,
2140 state);
2141 target = target->next;
2142 }
2143
2144 return retval;
2145 }
2146
2147 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2148
2149 static int powerDropout;
2150 static int srstAsserted;
2151
2152 static int runPowerRestore;
2153 static int runPowerDropout;
2154 static int runSrstAsserted;
2155 static int runSrstDeasserted;
2156
2157 static int sense_handler(void)
2158 {
2159 static int prevSrstAsserted;
2160 static int prevPowerdropout;
2161
2162 int retval = jtag_power_dropout(&powerDropout);
2163 if (retval != ERROR_OK)
2164 return retval;
2165
2166 int powerRestored;
2167 powerRestored = prevPowerdropout && !powerDropout;
2168 if (powerRestored)
2169 runPowerRestore = 1;
2170
2171 long long current = timeval_ms();
2172 static long long lastPower;
2173 int waitMore = lastPower + 2000 > current;
2174 if (powerDropout && !waitMore) {
2175 runPowerDropout = 1;
2176 lastPower = current;
2177 }
2178
2179 retval = jtag_srst_asserted(&srstAsserted);
2180 if (retval != ERROR_OK)
2181 return retval;
2182
2183 int srstDeasserted;
2184 srstDeasserted = prevSrstAsserted && !srstAsserted;
2185
2186 static long long lastSrst;
2187 waitMore = lastSrst + 2000 > current;
2188 if (srstDeasserted && !waitMore) {
2189 runSrstDeasserted = 1;
2190 lastSrst = current;
2191 }
2192
2193 if (!prevSrstAsserted && srstAsserted)
2194 runSrstAsserted = 1;
2195
2196 prevSrstAsserted = srstAsserted;
2197 prevPowerdropout = powerDropout;
2198
2199 if (srstDeasserted || powerRestored) {
2200 /* Other than logging the event we can't do anything here.
2201 * Issuing a reset is a particularly bad idea as we might
2202 * be inside a reset already.
2203 */
2204 }
2205
2206 return ERROR_OK;
2207 }
2208
2209 /* process target state changes */
2210 static int handle_target(void *priv)
2211 {
2212 Jim_Interp *interp = (Jim_Interp *)priv;
2213 int retval = ERROR_OK;
2214
2215 if (!is_jtag_poll_safe()) {
2216 /* polling is disabled currently */
2217 return ERROR_OK;
2218 }
2219
2220 /* we do not want to recurse here... */
2221 static int recursive;
2222 if (!recursive) {
2223 recursive = 1;
2224 sense_handler();
2225 /* danger! running these procedures can trigger srst assertions and power dropouts.
2226 * We need to avoid an infinite loop/recursion here and we do that by
2227 * clearing the flags after running these events.
2228 */
2229 int did_something = 0;
2230 if (runSrstAsserted) {
2231 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2232 Jim_Eval(interp, "srst_asserted");
2233 did_something = 1;
2234 }
2235 if (runSrstDeasserted) {
2236 Jim_Eval(interp, "srst_deasserted");
2237 did_something = 1;
2238 }
2239 if (runPowerDropout) {
2240 LOG_INFO("Power dropout detected, running power_dropout proc.");
2241 Jim_Eval(interp, "power_dropout");
2242 did_something = 1;
2243 }
2244 if (runPowerRestore) {
2245 Jim_Eval(interp, "power_restore");
2246 did_something = 1;
2247 }
2248
2249 if (did_something) {
2250 /* clear detect flags */
2251 sense_handler();
2252 }
2253
2254 /* clear action flags */
2255
2256 runSrstAsserted = 0;
2257 runSrstDeasserted = 0;
2258 runPowerRestore = 0;
2259 runPowerDropout = 0;
2260
2261 recursive = 0;
2262 }
2263
2264 /* Poll targets for state changes unless that's globally disabled.
2265 * Skip targets that are currently disabled.
2266 */
2267 for (struct target *target = all_targets;
2268 is_jtag_poll_safe() && target;
2269 target = target->next) {
2270 if (!target->tap->enabled)
2271 continue;
2272
2273 if (target->backoff.times > target->backoff.count) {
2274 /* do not poll this time as we failed previously */
2275 target->backoff.count++;
2276 continue;
2277 }
2278 target->backoff.count = 0;
2279
2280 /* only poll target if we've got power and srst isn't asserted */
2281 if (!powerDropout && !srstAsserted) {
2282 /* polling may fail silently until the target has been examined */
2283 retval = target_poll(target);
2284 if (retval != ERROR_OK) {
2285 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2286 if (target->backoff.times * polling_interval < 5000) {
2287 target->backoff.times *= 2;
2288 target->backoff.times++;
2289 }
2290 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2291 target_name(target),
2292 target->backoff.times * polling_interval);
2293
2294 /* Tell GDB to halt the debugger. This allows the user to
2295 * run monitor commands to handle the situation.
2296 */
2297 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2298 return retval;
2299 }
2300 /* Since we succeeded, we reset backoff count */
2301 if (target->backoff.times > 0)
2302 LOG_USER("Polling target %s succeeded again", target_name(target));
2303 target->backoff.times = 0;
2304 }
2305 }
2306
2307 return retval;
2308 }
2309
2310 COMMAND_HANDLER(handle_reg_command)
2311 {
2312 struct target *target;
2313 struct reg *reg = NULL;
2314 unsigned count = 0;
2315 char *value;
2316
2317 LOG_DEBUG("-");
2318
2319 target = get_current_target(CMD_CTX);
2320
2321 /* list all available registers for the current target */
2322 if (CMD_ARGC == 0) {
2323 struct reg_cache *cache = target->reg_cache;
2324
2325 count = 0;
2326 while (cache) {
2327 unsigned i;
2328
2329 command_print(CMD_CTX, "===== %s", cache->name);
2330
2331 for (i = 0, reg = cache->reg_list;
2332 i < cache->num_regs;
2333 i++, reg++, count++) {
2334 /* only print cached values if they are valid */
2335 if (reg->valid) {
2336 value = buf_to_str(reg->value,
2337 reg->size, 16);
2338 command_print(CMD_CTX,
2339 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2340 count, reg->name,
2341 reg->size, value,
2342 reg->dirty
2343 ? " (dirty)"
2344 : "");
2345 free(value);
2346 } else {
2347 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2348 count, reg->name,
2349 reg->size) ;
2350 }
2351 }
2352 cache = cache->next;
2353 }
2354
2355 return ERROR_OK;
2356 }
2357
2358 /* access a single register by its ordinal number */
2359 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2360 unsigned num;
2361 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2362
2363 struct reg_cache *cache = target->reg_cache;
2364 count = 0;
2365 while (cache) {
2366 unsigned i;
2367 for (i = 0; i < cache->num_regs; i++) {
2368 if (count++ == num) {
2369 reg = &cache->reg_list[i];
2370 break;
2371 }
2372 }
2373 if (reg)
2374 break;
2375 cache = cache->next;
2376 }
2377
2378 if (!reg) {
2379 command_print(CMD_CTX, "%i is out of bounds, the current target "
2380 "has only %i registers (0 - %i)", num, count, count - 1);
2381 return ERROR_OK;
2382 }
2383 } else {
2384 /* access a single register by its name */
2385 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2386
2387 if (!reg) {
2388 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2389 return ERROR_OK;
2390 }
2391 }
2392
2393 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2394
2395 /* display a register */
2396 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2397 && (CMD_ARGV[1][0] <= '9')))) {
2398 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2399 reg->valid = 0;
2400
2401 if (reg->valid == 0)
2402 reg->type->get(reg);
2403 value = buf_to_str(reg->value, reg->size, 16);
2404 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2405 free(value);
2406 return ERROR_OK;
2407 }
2408
2409 /* set register value */
2410 if (CMD_ARGC == 2) {
2411 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2412 if (buf == NULL)
2413 return ERROR_FAIL;
2414 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2415
2416 reg->type->set(reg, buf);
2417
2418 value = buf_to_str(reg->value, reg->size, 16);
2419 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2420 free(value);
2421
2422 free(buf);
2423
2424 return ERROR_OK;
2425 }
2426
2427 return ERROR_COMMAND_SYNTAX_ERROR;
2428 }
2429
2430 COMMAND_HANDLER(handle_poll_command)
2431 {
2432 int retval = ERROR_OK;
2433 struct target *target = get_current_target(CMD_CTX);
2434
2435 if (CMD_ARGC == 0) {
2436 command_print(CMD_CTX, "background polling: %s",
2437 jtag_poll_get_enabled() ? "on" : "off");
2438 command_print(CMD_CTX, "TAP: %s (%s)",
2439 target->tap->dotted_name,
2440 target->tap->enabled ? "enabled" : "disabled");
2441 if (!target->tap->enabled)
2442 return ERROR_OK;
2443 retval = target_poll(target);
2444 if (retval != ERROR_OK)
2445 return retval;
2446 retval = target_arch_state(target);
2447 if (retval != ERROR_OK)
2448 return retval;
2449 } else if (CMD_ARGC == 1) {
2450 bool enable;
2451 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2452 jtag_poll_set_enabled(enable);
2453 } else
2454 return ERROR_COMMAND_SYNTAX_ERROR;
2455
2456 return retval;
2457 }
2458
2459 COMMAND_HANDLER(handle_wait_halt_command)
2460 {
2461 if (CMD_ARGC > 1)
2462 return ERROR_COMMAND_SYNTAX_ERROR;
2463
2464 unsigned ms = DEFAULT_HALT_TIMEOUT;
2465 if (1 == CMD_ARGC) {
2466 int retval = parse_uint(CMD_ARGV[0], &ms);
2467 if (ERROR_OK != retval)
2468 return ERROR_COMMAND_SYNTAX_ERROR;
2469 }
2470
2471 struct target *target = get_current_target(CMD_CTX);
2472 return target_wait_state(target, TARGET_HALTED, ms);
2473 }
2474
2475 /* wait for target state to change. The trick here is to have a low
2476 * latency for short waits and not to suck up all the CPU time
2477 * on longer waits.
2478 *
2479 * After 500ms, keep_alive() is invoked
2480 */
2481 int target_wait_state(struct target *target, enum target_state state, int ms)
2482 {
2483 int retval;
2484 long long then = 0, cur;
2485 int once = 1;
2486
2487 for (;;) {
2488 retval = target_poll(target);
2489 if (retval != ERROR_OK)
2490 return retval;
2491 if (target->state == state)
2492 break;
2493 cur = timeval_ms();
2494 if (once) {
2495 once = 0;
2496 then = timeval_ms();
2497 LOG_DEBUG("waiting for target %s...",
2498 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2499 }
2500
2501 if (cur-then > 500)
2502 keep_alive();
2503
2504 if ((cur-then) > ms) {
2505 LOG_ERROR("timed out while waiting for target %s",
2506 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2507 return ERROR_FAIL;
2508 }
2509 }
2510
2511 return ERROR_OK;
2512 }
2513
2514 COMMAND_HANDLER(handle_halt_command)
2515 {
2516 LOG_DEBUG("-");
2517
2518 struct target *target = get_current_target(CMD_CTX);
2519 int retval = target_halt(target);
2520 if (ERROR_OK != retval)
2521 return retval;
2522
2523 if (CMD_ARGC == 1) {
2524 unsigned wait_local;
2525 retval = parse_uint(CMD_ARGV[0], &wait_local);
2526 if (ERROR_OK != retval)
2527 return ERROR_COMMAND_SYNTAX_ERROR;
2528 if (!wait_local)
2529 return ERROR_OK;
2530 }
2531
2532 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2533 }
2534
2535 COMMAND_HANDLER(handle_soft_reset_halt_command)
2536 {
2537 struct target *target = get_current_target(CMD_CTX);
2538
2539 LOG_USER("requesting target halt and executing a soft reset");
2540
2541 target_soft_reset_halt(target);
2542
2543 return ERROR_OK;
2544 }
2545
2546 COMMAND_HANDLER(handle_reset_command)
2547 {
2548 if (CMD_ARGC > 1)
2549 return ERROR_COMMAND_SYNTAX_ERROR;
2550
2551 enum target_reset_mode reset_mode = RESET_RUN;
2552 if (CMD_ARGC == 1) {
2553 const Jim_Nvp *n;
2554 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2555 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2556 return ERROR_COMMAND_SYNTAX_ERROR;
2557 reset_mode = n->value;
2558 }
2559
2560 /* reset *all* targets */
2561 return target_process_reset(CMD_CTX, reset_mode);
2562 }
2563
2564
2565 COMMAND_HANDLER(handle_resume_command)
2566 {
2567 int current = 1;
2568 if (CMD_ARGC > 1)
2569 return ERROR_COMMAND_SYNTAX_ERROR;
2570
2571 struct target *target = get_current_target(CMD_CTX);
2572
2573 /* with no CMD_ARGV, resume from current pc, addr = 0,
2574 * with one arguments, addr = CMD_ARGV[0],
2575 * handle breakpoints, not debugging */
2576 uint32_t addr = 0;
2577 if (CMD_ARGC == 1) {
2578 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2579 current = 0;
2580 }
2581
2582 return target_resume(target, current, addr, 1, 0);
2583 }
2584
2585 COMMAND_HANDLER(handle_step_command)
2586 {
2587 if (CMD_ARGC > 1)
2588 return ERROR_COMMAND_SYNTAX_ERROR;
2589
2590 LOG_DEBUG("-");
2591
2592 /* with no CMD_ARGV, step from current pc, addr = 0,
2593 * with one argument addr = CMD_ARGV[0],
2594 * handle breakpoints, debugging */
2595 uint32_t addr = 0;
2596 int current_pc = 1;
2597 if (CMD_ARGC == 1) {
2598 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2599 current_pc = 0;
2600 }
2601
2602 struct target *target = get_current_target(CMD_CTX);
2603
2604 return target->type->step(target, current_pc, addr, 1);
2605 }
2606
2607 static void handle_md_output(struct command_context *cmd_ctx,
2608 struct target *target, uint32_t address, unsigned size,
2609 unsigned count, const uint8_t *buffer)
2610 {
2611 const unsigned line_bytecnt = 32;
2612 unsigned line_modulo = line_bytecnt / size;
2613
2614 char output[line_bytecnt * 4 + 1];
2615 unsigned output_len = 0;
2616
2617 const char *value_fmt;
2618 switch (size) {
2619 case 4:
2620 value_fmt = "%8.8x ";
2621 break;
2622 case 2:
2623 value_fmt = "%4.4x ";
2624 break;
2625 case 1:
2626 value_fmt = "%2.2x ";
2627 break;
2628 default:
2629 /* "can't happen", caller checked */
2630 LOG_ERROR("invalid memory read size: %u", size);
2631 return;
2632 }
2633
2634 for (unsigned i = 0; i < count; i++) {
2635 if (i % line_modulo == 0) {
2636 output_len += snprintf(output + output_len,
2637 sizeof(output) - output_len,
2638 "0x%8.8x: ",
2639 (unsigned)(address + (i*size)));
2640 }
2641
2642 uint32_t value = 0;
2643 const uint8_t *value_ptr = buffer + i * size;
2644 switch (size) {
2645 case 4:
2646 value = target_buffer_get_u32(target, value_ptr);
2647 break;
2648 case 2:
2649 value = target_buffer_get_u16(target, value_ptr);
2650 break;
2651 case 1:
2652 value = *value_ptr;
2653 }
2654 output_len += snprintf(output + output_len,
2655 sizeof(output) - output_len,
2656 value_fmt, value);
2657
2658 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2659 command_print(cmd_ctx, "%s", output);
2660 output_len = 0;
2661 }
2662 }
2663 }
2664
2665 COMMAND_HANDLER(handle_md_command)
2666 {
2667 if (CMD_ARGC < 1)
2668 return ERROR_COMMAND_SYNTAX_ERROR;
2669
2670 unsigned size = 0;
2671 switch (CMD_NAME[2]) {
2672 case 'w':
2673 size = 4;
2674 break;
2675 case 'h':
2676 size = 2;
2677 break;
2678 case 'b':
2679 size = 1;
2680 break;
2681 default:
2682 return ERROR_COMMAND_SYNTAX_ERROR;
2683 }
2684
2685 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2686 int (*fn)(struct target *target,
2687 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2688 if (physical) {
2689 CMD_ARGC--;
2690 CMD_ARGV++;
2691 fn = target_read_phys_memory;
2692 } else
2693 fn = target_read_memory;
2694 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2695 return ERROR_COMMAND_SYNTAX_ERROR;
2696
2697 uint32_t address;
2698 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2699
2700 unsigned count = 1;
2701 if (CMD_ARGC == 2)
2702 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2703
2704 uint8_t *buffer = calloc(count, size);
2705
2706 struct target *target = get_current_target(CMD_CTX);
2707 int retval = fn(target, address, size, count, buffer);
2708 if (ERROR_OK == retval)
2709 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2710
2711 free(buffer);
2712
2713 return retval;
2714 }
2715
2716 typedef int (*target_write_fn)(struct target *target,
2717 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2718
2719 static int target_write_memory_fast(struct target *target,
2720 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2721 {
2722 return target_write_buffer(target, address, size * count, buffer);
2723 }
2724
2725 static int target_fill_mem(struct target *target,
2726 uint32_t address,
2727 target_write_fn fn,
2728 unsigned data_size,
2729 /* value */
2730 uint32_t b,
2731 /* count */
2732 unsigned c)
2733 {
2734 /* We have to write in reasonably large chunks to be able
2735 * to fill large memory areas with any sane speed */
2736 const unsigned chunk_size = 16384;
2737 uint8_t *target_buf = malloc(chunk_size * data_size);
2738 if (target_buf == NULL) {
2739 LOG_ERROR("Out of memory");
2740 return ERROR_FAIL;
2741 }
2742
2743 for (unsigned i = 0; i < chunk_size; i++) {
2744 switch (data_size) {
2745 case 4:
2746 target_buffer_set_u32(target, target_buf + i * data_size, b);
2747 break;
2748 case 2:
2749 target_buffer_set_u16(target, target_buf + i * data_size, b);
2750 break;
2751 case 1:
2752 target_buffer_set_u8(target, target_buf + i * data_size, b);
2753 break;
2754 default:
2755 exit(-1);
2756 }
2757 }
2758
2759 int retval = ERROR_OK;
2760
2761 for (unsigned x = 0; x < c; x += chunk_size) {
2762 unsigned current;
2763 current = c - x;
2764 if (current > chunk_size)
2765 current = chunk_size;
2766 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2767 if (retval != ERROR_OK)
2768 break;
2769 /* avoid GDB timeouts */
2770 keep_alive();
2771 }
2772 free(target_buf);
2773
2774 return retval;
2775 }
2776
2777
2778 COMMAND_HANDLER(handle_mw_command)
2779 {
2780 if (CMD_ARGC < 2)
2781 return ERROR_COMMAND_SYNTAX_ERROR;
2782 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2783 target_write_fn fn;
2784 if (physical) {
2785 CMD_ARGC--;
2786 CMD_ARGV++;
2787 fn = target_write_phys_memory;
2788 } else
2789 fn = target_write_memory_fast;
2790 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2791 return ERROR_COMMAND_SYNTAX_ERROR;
2792
2793 uint32_t address;
2794 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2795
2796 uint32_t value;
2797 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2798
2799 unsigned count = 1;
2800 if (CMD_ARGC == 3)
2801 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2802
2803 struct target *target = get_current_target(CMD_CTX);
2804 unsigned wordsize;
2805 switch (CMD_NAME[2]) {
2806 case 'w':
2807 wordsize = 4;
2808 break;
2809 case 'h':
2810 wordsize = 2;
2811 break;
2812 case 'b':
2813 wordsize = 1;
2814 break;
2815 default:
2816 return ERROR_COMMAND_SYNTAX_ERROR;
2817 }
2818
2819 return target_fill_mem(target, address, fn, wordsize, value, count);
2820 }
2821
2822 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2823 uint32_t *min_address, uint32_t *max_address)
2824 {
2825 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2826 return ERROR_COMMAND_SYNTAX_ERROR;
2827
2828 /* a base address isn't always necessary,
2829 * default to 0x0 (i.e. don't relocate) */
2830 if (CMD_ARGC >= 2) {
2831 uint32_t addr;
2832 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2833 image->base_address = addr;
2834 image->base_address_set = 1;
2835 } else
2836 image->base_address_set = 0;
2837
2838 image->start_address_set = 0;
2839
2840 if (CMD_ARGC >= 4)
2841 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2842 if (CMD_ARGC == 5) {
2843 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2844 /* use size (given) to find max (required) */
2845 *max_address += *min_address;
2846 }
2847
2848 if (*min_address > *max_address)
2849 return ERROR_COMMAND_SYNTAX_ERROR;
2850
2851 return ERROR_OK;
2852 }
2853
2854 COMMAND_HANDLER(handle_load_image_command)
2855 {
2856 uint8_t *buffer;
2857 size_t buf_cnt;
2858 uint32_t image_size;
2859 uint32_t min_address = 0;
2860 uint32_t max_address = 0xffffffff;
2861 int i;
2862 struct image image;
2863
2864 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2865 &image, &min_address, &max_address);
2866 if (ERROR_OK != retval)
2867 return retval;
2868
2869 struct target *target = get_current_target(CMD_CTX);
2870
2871 struct duration bench;
2872 duration_start(&bench);
2873
2874 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2875 return ERROR_OK;
2876
2877 image_size = 0x0;
2878 retval = ERROR_OK;
2879 for (i = 0; i < image.num_sections; i++) {
2880 buffer = malloc(image.sections[i].size);
2881 if (buffer == NULL) {
2882 command_print(CMD_CTX,
2883 "error allocating buffer for section (%d bytes)",
2884 (int)(image.sections[i].size));
2885 break;
2886 }
2887
2888 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2889 if (retval != ERROR_OK) {
2890 free(buffer);
2891 break;
2892 }
2893
2894 uint32_t offset = 0;
2895 uint32_t length = buf_cnt;
2896
2897 /* DANGER!!! beware of unsigned comparision here!!! */
2898
2899 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2900 (image.sections[i].base_address < max_address)) {
2901
2902 if (image.sections[i].base_address < min_address) {
2903 /* clip addresses below */
2904 offset += min_address-image.sections[i].base_address;
2905 length -= offset;
2906 }
2907
2908 if (image.sections[i].base_address + buf_cnt > max_address)
2909 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2910
2911 retval = target_write_buffer(target,
2912 image.sections[i].base_address + offset, length, buffer + offset);
2913 if (retval != ERROR_OK) {
2914 free(buffer);
2915 break;
2916 }
2917 image_size += length;
2918 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2919 (unsigned int)length,
2920 image.sections[i].base_address + offset);
2921 }
2922
2923 free(buffer);
2924 }
2925
2926 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2927 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2928 "in %fs (%0.3f KiB/s)", image_size,
2929 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2930 }
2931
2932 image_close(&image);
2933
2934 return retval;
2935
2936 }
2937
2938 COMMAND_HANDLER(handle_dump_image_command)
2939 {
2940 struct fileio fileio;
2941 uint8_t *buffer;
2942 int retval, retvaltemp;
2943 uint32_t address, size;
2944 struct duration bench;
2945 struct target *target = get_current_target(CMD_CTX);
2946
2947 if (CMD_ARGC != 3)
2948 return ERROR_COMMAND_SYNTAX_ERROR;
2949
2950 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2951 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2952
2953 uint32_t buf_size = (size > 4096) ? 4096 : size;
2954 buffer = malloc(buf_size);
2955 if (!buffer)
2956 return ERROR_FAIL;
2957
2958 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2959 if (retval != ERROR_OK) {
2960 free(buffer);
2961 return retval;
2962 }
2963
2964 duration_start(&bench);
2965
2966 while (size > 0) {
2967 size_t size_written;
2968 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2969 retval = target_read_buffer(target, address, this_run_size, buffer);
2970 if (retval != ERROR_OK)
2971 break;
2972
2973 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2974 if (retval != ERROR_OK)
2975 break;
2976
2977 size -= this_run_size;
2978 address += this_run_size;
2979 }
2980
2981 free(buffer);
2982
2983 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2984 int filesize;
2985 retval = fileio_size(&fileio, &filesize);
2986 if (retval != ERROR_OK)
2987 return retval;
2988 command_print(CMD_CTX,
2989 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2990 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2991 }
2992
2993 retvaltemp = fileio_close(&fileio);
2994 if (retvaltemp != ERROR_OK)
2995 return retvaltemp;
2996
2997 return retval;
2998 }
2999
3000 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3001 {
3002 uint8_t *buffer;
3003 size_t buf_cnt;
3004 uint32_t image_size;
3005 int i;
3006 int retval;
3007 uint32_t checksum = 0;
3008 uint32_t mem_checksum = 0;
3009
3010 struct image image;
3011
3012 struct target *target = get_current_target(CMD_CTX);
3013
3014 if (CMD_ARGC < 1)
3015 return ERROR_COMMAND_SYNTAX_ERROR;
3016
3017 if (!target) {
3018 LOG_ERROR("no target selected");
3019 return ERROR_FAIL;
3020 }
3021
3022 struct duration bench;
3023 duration_start(&bench);
3024
3025 if (CMD_ARGC >= 2) {
3026 uint32_t addr;
3027 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3028 image.base_address = addr;
3029 image.base_address_set = 1;
3030 } else {
3031 image.base_address_set = 0;
3032 image.base_address = 0x0;
3033 }
3034
3035 image.start_address_set = 0;
3036
3037 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3038 if (retval != ERROR_OK)
3039 return retval;
3040
3041 image_size = 0x0;
3042 int diffs = 0;
3043 retval = ERROR_OK;
3044 for (i = 0; i < image.num_sections; i++) {
3045 buffer = malloc(image.sections[i].size);
3046 if (buffer == NULL) {
3047 command_print(CMD_CTX,
3048 "error allocating buffer for section (%d bytes)",
3049 (int)(image.sections[i].size));
3050 break;
3051 }
3052 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3053 if (retval != ERROR_OK) {
3054 free(buffer);
3055 break;
3056 }
3057
3058 if (verify) {
3059 /* calculate checksum of image */
3060 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3061 if (retval != ERROR_OK) {
3062 free(buffer);
3063 break;
3064 }
3065
3066 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3067 if (retval != ERROR_OK) {
3068 free(buffer);
3069 break;
3070 }
3071
3072 if (checksum != mem_checksum) {
3073 /* failed crc checksum, fall back to a binary compare */
3074 uint8_t *data;
3075
3076 if (diffs == 0)
3077 LOG_ERROR("checksum mismatch - attempting binary compare");
3078
3079 data = (uint8_t *)malloc(buf_cnt);
3080
3081 /* Can we use 32bit word accesses? */
3082 int size = 1;
3083 int count = buf_cnt;
3084 if ((count % 4) == 0) {
3085 size *= 4;
3086 count /= 4;
3087 }
3088 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3089 if (retval == ERROR_OK) {
3090 uint32_t t;
3091 for (t = 0; t < buf_cnt; t++) {
3092 if (data[t] != buffer[t]) {
3093 command_print(CMD_CTX,
3094 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3095 diffs,
3096 (unsigned)(t + image.sections[i].base_address),
3097 data[t],
3098 buffer[t]);
3099 if (diffs++ >= 127) {
3100 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3101 free(data);
3102 free(buffer);
3103 goto done;
3104 }
3105 }
3106 keep_alive();
3107 }
3108 }
3109 free(data);
3110 }
3111 } else {
3112 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3113 image.sections[i].base_address,
3114 buf_cnt);
3115 }
3116
3117 free(buffer);
3118 image_size += buf_cnt;
3119 }
3120 if (diffs > 0)
3121 command_print(CMD_CTX, "No more differences found.");
3122 done:
3123 if (diffs > 0)
3124 retval = ERROR_FAIL;
3125 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3126 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3127 "in %fs (%0.3f KiB/s)", image_size,
3128 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3129 }
3130
3131 image_close(&image);
3132
3133 return retval;
3134 }
3135
3136 COMMAND_HANDLER(handle_verify_image_command)
3137 {
3138 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3139 }
3140
3141 COMMAND_HANDLER(handle_test_image_command)
3142 {
3143 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3144 }
3145
3146 static int handle_bp_command_list(struct command_context *cmd_ctx)
3147 {
3148 struct target *target = get_current_target(cmd_ctx);
3149 struct breakpoint *breakpoint = target->breakpoints;
3150 while (breakpoint) {
3151 if (breakpoint->type == BKPT_SOFT) {
3152 char *buf = buf_to_str(breakpoint->orig_instr,
3153 breakpoint->length, 16);
3154 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3155 breakpoint->address,
3156 breakpoint->length,
3157 breakpoint->set, buf);
3158 free(buf);
3159 } else {
3160 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3161 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3162 breakpoint->asid,
3163 breakpoint->length, breakpoint->set);
3164 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3165 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3166 breakpoint->address,
3167 breakpoint->length, breakpoint->set);
3168 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3169 breakpoint->asid);
3170 } else
3171 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3172 breakpoint->address,
3173 breakpoint->length, breakpoint->set);
3174 }
3175
3176 breakpoint = breakpoint->next;
3177 }
3178 return ERROR_OK;
3179 }
3180
3181 static int handle_bp_command_set(struct command_context *cmd_ctx,
3182 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3183 {
3184 struct target *target = get_current_target(cmd_ctx);
3185
3186 if (asid == 0) {
3187 int retval = breakpoint_add(target, addr, length, hw);
3188 if (ERROR_OK == retval)
3189 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3190 else {
3191 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3192 return retval;
3193 }
3194 } else if (addr == 0) {
3195 int retval = context_breakpoint_add(target, asid, length, hw);
3196 if (ERROR_OK == retval)
3197 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3198 else {
3199 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3200 return retval;
3201 }
3202 } else {
3203 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3204 if (ERROR_OK == retval)
3205 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3206 else {
3207 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3208 return retval;
3209 }
3210 }
3211 return ERROR_OK;
3212 }
3213
3214 COMMAND_HANDLER(handle_bp_command)
3215 {
3216 uint32_t addr;
3217 uint32_t asid;
3218 uint32_t length;
3219 int hw = BKPT_SOFT;
3220
3221 switch (CMD_ARGC) {
3222 case 0:
3223 return handle_bp_command_list(CMD_CTX);
3224
3225 case 2:
3226 asid = 0;
3227 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3228 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3229 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3230
3231 case 3:
3232 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3233 hw = BKPT_HARD;
3234 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3235
3236 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3237
3238 asid = 0;
3239 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3240 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3241 hw = BKPT_HARD;
3242 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3243 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3244 addr = 0;
3245 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3246 }
3247
3248 case 4:
3249 hw = BKPT_HARD;
3250 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3251 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3252 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3253 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3254
3255 default:
3256 return ERROR_COMMAND_SYNTAX_ERROR;
3257 }
3258 }
3259
3260 COMMAND_HANDLER(handle_rbp_command)
3261 {
3262 if (CMD_ARGC != 1)
3263 return ERROR_COMMAND_SYNTAX_ERROR;
3264
3265 uint32_t addr;
3266 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3267
3268 struct target *target = get_current_target(CMD_CTX);
3269 breakpoint_remove(target, addr);
3270
3271 return ERROR_OK;
3272 }
3273
3274 COMMAND_HANDLER(handle_wp_command)
3275 {
3276 struct target *target = get_current_target(CMD_CTX);
3277
3278 if (CMD_ARGC == 0) {
3279 struct watchpoint *watchpoint = target->watchpoints;
3280
3281 while (watchpoint) {
3282 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3283 ", len: 0x%8.8" PRIx32
3284 ", r/w/a: %i, value: 0x%8.8" PRIx32
3285 ", mask: 0x%8.8" PRIx32,
3286 watchpoint->address,
3287 watchpoint->length,
3288 (int)watchpoint->rw,
3289 watchpoint->value,
3290 watchpoint->mask);
3291 watchpoint = watchpoint->next;
3292 }
3293 return ERROR_OK;
3294 }
3295
3296 enum watchpoint_rw type = WPT_ACCESS;
3297 uint32_t addr = 0;
3298 uint32_t length = 0;
3299 uint32_t data_value = 0x0;
3300 uint32_t data_mask = 0xffffffff;
3301
3302 switch (CMD_ARGC) {
3303 case 5:
3304 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3305 /* fall through */
3306 case 4:
3307 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3308 /* fall through */
3309 case 3:
3310 switch (CMD_ARGV[2][0]) {
3311 case 'r':
3312 type = WPT_READ;
3313 break;
3314 case 'w':
3315 type = WPT_WRITE;
3316 break;
3317 case 'a':
3318 type = WPT_ACCESS;
3319 break;
3320 default:
3321 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3322 return ERROR_COMMAND_SYNTAX_ERROR;
3323 }
3324 /* fall through */
3325 case 2:
3326 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3327 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3328 break;
3329
3330 default:
3331 return ERROR_COMMAND_SYNTAX_ERROR;
3332 }
3333
3334 int retval = watchpoint_add(target, addr, length, type,
3335 data_value, data_mask);
3336 if (ERROR_OK != retval)
3337 LOG_ERROR("Failure setting watchpoints");
3338
3339 return retval;
3340 }
3341
3342 COMMAND_HANDLER(handle_rwp_command)
3343 {
3344 if (CMD_ARGC != 1)
3345 return ERROR_COMMAND_SYNTAX_ERROR;
3346
3347 uint32_t addr;
3348 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3349
3350 struct target *target = get_current_target(CMD_CTX);
3351 watchpoint_remove(target, addr);
3352
3353 return ERROR_OK;
3354 }
3355
3356 /**
3357 * Translate a virtual address to a physical address.
3358 *
3359 * The low-level target implementation must have logged a detailed error
3360 * which is forwarded to telnet/GDB session.
3361 */
3362 COMMAND_HANDLER(handle_virt2phys_command)
3363 {
3364 if (CMD_ARGC != 1)
3365 return ERROR_COMMAND_SYNTAX_ERROR;
3366
3367 uint32_t va;
3368 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3369 uint32_t pa;
3370
3371 struct target *target = get_current_target(CMD_CTX);
3372 int retval = target->type->virt2phys(target, va, &pa);
3373 if (retval == ERROR_OK)
3374 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3375
3376 return retval;
3377 }
3378
3379 static void writeData(FILE *f, const void *data, size_t len)
3380 {
3381 size_t written = fwrite(data, 1, len, f);
3382 if (written != len)
3383 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3384 }
3385
3386 static void writeLong(FILE *f, int l)
3387 {
3388 int i;
3389 for (i = 0; i < 4; i++) {
3390 char c = (l >> (i*8))&0xff;
3391 writeData(f, &c, 1);
3392 }
3393
3394 }
3395
3396 static void writeString(FILE *f, char *s)
3397 {
3398 writeData(f, s, strlen(s));
3399 }
3400
3401 /* Dump a gmon.out histogram file. */
3402 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3403 {
3404 uint32_t i;
3405 FILE *f = fopen(filename, "w");
3406 if (f == NULL)
3407 return;
3408 writeString(f, "gmon");
3409 writeLong(f, 0x00000001); /* Version */
3410 writeLong(f, 0); /* padding */
3411 writeLong(f, 0); /* padding */
3412 writeLong(f, 0); /* padding */
3413
3414 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3415 writeData(f, &zero, 1);
3416
3417 /* figure out bucket size */
3418 uint32_t min = samples[0];
3419 uint32_t max = samples[0];
3420 for (i = 0; i < sampleNum; i++) {
3421 if (min > samples[i])
3422 min = samples[i];
3423 if (max < samples[i])
3424 max = samples[i];
3425 }
3426
3427 int addressSpace = (max - min + 1);
3428 assert(addressSpace >= 2);
3429
3430 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3431 uint32_t length = addressSpace;
3432 if (length > maxBuckets)
3433 length = maxBuckets;
3434 int *buckets = malloc(sizeof(int)*length);
3435 if (buckets == NULL) {
3436 fclose(f);
3437 return;
3438 }
3439 memset(buckets, 0, sizeof(int) * length);
3440 for (i = 0; i < sampleNum; i++) {
3441 uint32_t address = samples[i];
3442 long long a = address - min;
3443 long long b = length - 1;
3444 long long c = addressSpace - 1;
3445 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3446 buckets[index_t]++;
3447 }
3448
3449 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3450 writeLong(f, min); /* low_pc */
3451 writeLong(f, max); /* high_pc */
3452 writeLong(f, length); /* # of samples */
3453 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3454 writeString(f, "seconds");
3455 for (i = 0; i < (15-strlen("seconds")); i++)
3456 writeData(f, &zero, 1);
3457 writeString(f, "s");
3458
3459 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3460
3461 char *data = malloc(2 * length);
3462 if (data != NULL) {
3463 for (i = 0; i < length; i++) {
3464 int val;
3465 val = buckets[i];
3466 if (val > 65535)
3467 val = 65535;
3468 data[i * 2] = val&0xff;
3469 data[i * 2 + 1] = (val >> 8) & 0xff;
3470 }
3471 free(buckets);
3472 writeData(f, data, length * 2);
3473 free(data);
3474 } else
3475 free(buckets);
3476
3477 fclose(f);
3478 }
3479
3480 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3481 * which will be used as a random sampling of PC */
3482 COMMAND_HANDLER(handle_profile_command)
3483 {
3484 struct target *target = get_current_target(CMD_CTX);
3485 struct timeval timeout, now;
3486
3487 gettimeofday(&timeout, NULL);
3488 if (CMD_ARGC != 2)
3489 return ERROR_COMMAND_SYNTAX_ERROR;
3490 unsigned offset;
3491 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3492
3493 timeval_add_time(&timeout, offset, 0);
3494
3495 /**
3496 * @todo: Some cores let us sample the PC without the
3497 * annoying halt/resume step; for example, ARMv7 PCSR.
3498 * Provide a way to use that more efficient mechanism.
3499 */
3500
3501 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3502
3503 static const int maxSample = 10000;
3504 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3505 if (samples == NULL)
3506 return ERROR_OK;
3507
3508 int numSamples = 0;
3509 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3510 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3511
3512 int retval = ERROR_OK;
3513 for (;;) {
3514 target_poll(target);
3515 if (target->state == TARGET_HALTED) {
3516 uint32_t t = *((uint32_t *)reg->value);
3517 samples[numSamples++] = t;
3518 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3519 retval = target_resume(target, 1, 0, 0, 0);
3520 target_poll(target);
3521 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3522 } else if (target->state == TARGET_RUNNING) {
3523 /* We want to quickly sample the PC. */
3524 retval = target_halt(target);
3525 if (retval != ERROR_OK) {
3526 free(samples);
3527 return retval;
3528 }
3529 } else {
3530 command_print(CMD_CTX, "Target not halted or running");
3531 retval = ERROR_OK;
3532 break;
3533 }
3534 if (retval != ERROR_OK)
3535 break;
3536
3537 gettimeofday(&now, NULL);
3538 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3539 && (now.tv_usec >= timeout.tv_usec))) {
3540 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3541 retval = target_poll(target);
3542 if (retval != ERROR_OK) {
3543 free(samples);
3544 return retval;
3545 }
3546 if (target->state == TARGET_HALTED) {
3547 /* current pc, addr = 0, do not handle
3548 * breakpoints, not debugging */
3549 target_resume(target, 1, 0, 0, 0);
3550 }
3551 retval = target_poll(target);
3552 if (retval != ERROR_OK) {
3553 free(samples);
3554 return retval;
3555 }
3556 writeGmon(samples, numSamples, CMD_ARGV[1]);
3557 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3558 break;
3559 }
3560 }
3561 free(samples);
3562
3563 return retval;
3564 }
3565
3566 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3567 {
3568 char *namebuf;
3569 Jim_Obj *nameObjPtr, *valObjPtr;
3570 int result;
3571
3572 namebuf = alloc_printf("%s(%d)", varname, idx);
3573 if (!namebuf)
3574 return JIM_ERR;
3575
3576 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3577 valObjPtr = Jim_NewIntObj(interp, val);
3578 if (!nameObjPtr || !valObjPtr) {
3579 free(namebuf);
3580 return JIM_ERR;
3581 }
3582
3583 Jim_IncrRefCount(nameObjPtr);
3584 Jim_IncrRefCount(valObjPtr);
3585 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3586 Jim_DecrRefCount(interp, nameObjPtr);
3587 Jim_DecrRefCount(interp, valObjPtr);
3588 free(namebuf);
3589 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3590 return result;
3591 }
3592
3593 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3594 {
3595 struct command_context *context;
3596 struct target *target;
3597
3598 context = current_command_context(interp);
3599 assert(context != NULL);
3600
3601 target = get_current_target(context);
3602 if (target == NULL) {
3603 LOG_ERROR("mem2array: no current target");
3604 return JIM_ERR;
3605 }
3606
3607 return target_mem2array(interp, target, argc - 1, argv + 1);
3608 }
3609
3610 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3611 {
3612 long l;
3613 uint32_t width;
3614 int len;
3615 uint32_t addr;
3616 uint32_t count;
3617 uint32_t v;
3618 const char *varname;
3619 int n, e, retval;
3620 uint32_t i;
3621
3622 /* argv[1] = name of array to receive the data
3623 * argv[2] = desired width
3624 * argv[3] = memory address
3625 * argv[4] = count of times to read
3626 */
3627 if (argc != 4) {
3628 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3629 return JIM_ERR;
3630 }
3631 varname = Jim_GetString(argv[0], &len);
3632 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3633
3634 e = Jim_GetLong(interp, argv[1], &l);
3635 width = l;
3636 if (e != JIM_OK)
3637 return e;
3638
3639 e = Jim_GetLong(interp, argv[2], &l);
3640 addr = l;
3641 if (e != JIM_OK)
3642 return e;
3643 e = Jim_GetLong(interp, argv[3], &l);
3644 len = l;
3645 if (e != JIM_OK)
3646 return e;
3647 switch (width) {
3648 case 8:
3649 width = 1;
3650 break;
3651 case 16:
3652 width = 2;
3653