693eb519eb13aa1ec4c7f24ad16ad906c4084eaa
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111 extern struct target_type mem_ap_target;
112 extern struct target_type esirisc_target;
113
114 static struct target_type *target_types[] = {
115 &arm7tdmi_target,
116 &arm9tdmi_target,
117 &arm920t_target,
118 &arm720t_target,
119 &arm966e_target,
120 &arm946e_target,
121 &arm926ejs_target,
122 &fa526_target,
123 &feroceon_target,
124 &dragonite_target,
125 &xscale_target,
126 &cortexm_target,
127 &cortexa_target,
128 &cortexr4_target,
129 &arm11_target,
130 &ls1_sap_target,
131 &mips_m4k_target,
132 &avr_target,
133 &dsp563xx_target,
134 &dsp5680xx_target,
135 &testee_target,
136 &avr32_ap7k_target,
137 &hla_target,
138 &nds32_v2_target,
139 &nds32_v3_target,
140 &nds32_v3m_target,
141 &or1k_target,
142 &quark_x10xx_target,
143 &quark_d20xx_target,
144 &stm8_target,
145 &riscv_target,
146 &mem_ap_target,
147 &esirisc_target,
148 #if BUILD_TARGET64
149 &aarch64_target,
150 #endif
151 NULL,
152 };
153
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 LIST_HEAD(target_reset_callback_list);
158 LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160
161 static const Jim_Nvp nvp_assert[] = {
162 { .name = "assert", NVP_ASSERT },
163 { .name = "deassert", NVP_DEASSERT },
164 { .name = "T", NVP_ASSERT },
165 { .name = "F", NVP_DEASSERT },
166 { .name = "t", NVP_ASSERT },
167 { .name = "f", NVP_DEASSERT },
168 { .name = NULL, .value = -1 }
169 };
170
171 static const Jim_Nvp nvp_error_target[] = {
172 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
178 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
179 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
180 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
181 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183 { .value = -1, .name = NULL }
184 };
185
186 static const char *target_strerror_safe(int err)
187 {
188 const Jim_Nvp *n;
189
190 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191 if (n->name == NULL)
192 return "unknown";
193 else
194 return n->name;
195 }
196
197 static const Jim_Nvp nvp_target_event[] = {
198
199 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200 { .value = TARGET_EVENT_HALTED, .name = "halted" },
201 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204
205 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
206 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
207
208 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
209 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
210 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
211 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
212 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
213 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
214 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
215 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
216
217 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
218 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
219
220 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
221 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
222
223 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
224 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
225
226 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
227 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
228
229 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
230 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
231
232 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
233
234 { .name = NULL, .value = -1 }
235 };
236
237 static const Jim_Nvp nvp_target_state[] = {
238 { .name = "unknown", .value = TARGET_UNKNOWN },
239 { .name = "running", .value = TARGET_RUNNING },
240 { .name = "halted", .value = TARGET_HALTED },
241 { .name = "reset", .value = TARGET_RESET },
242 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
243 { .name = NULL, .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_target_debug_reason[] = {
247 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
248 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
249 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
250 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
251 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
252 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
253 { .name = "program-exit" , .value = DBG_REASON_EXIT },
254 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
255 { .name = NULL, .value = -1 },
256 };
257
258 static const Jim_Nvp nvp_target_endian[] = {
259 { .name = "big", .value = TARGET_BIG_ENDIAN },
260 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
261 { .name = "be", .value = TARGET_BIG_ENDIAN },
262 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
263 { .name = NULL, .value = -1 },
264 };
265
266 static const Jim_Nvp nvp_reset_modes[] = {
267 { .name = "unknown", .value = RESET_UNKNOWN },
268 { .name = "run" , .value = RESET_RUN },
269 { .name = "halt" , .value = RESET_HALT },
270 { .name = "init" , .value = RESET_INIT },
271 { .name = NULL , .value = -1 },
272 };
273
274 const char *debug_reason_name(struct target *t)
275 {
276 const char *cp;
277
278 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
279 t->debug_reason)->name;
280 if (!cp) {
281 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
282 cp = "(*BUG*unknown*BUG*)";
283 }
284 return cp;
285 }
286
287 const char *target_state_name(struct target *t)
288 {
289 const char *cp;
290 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
291 if (!cp) {
292 LOG_ERROR("Invalid target state: %d", (int)(t->state));
293 cp = "(*BUG*unknown*BUG*)";
294 }
295
296 if (!target_was_examined(t) && t->defer_examine)
297 cp = "examine deferred";
298
299 return cp;
300 }
301
302 const char *target_event_name(enum target_event event)
303 {
304 const char *cp;
305 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
306 if (!cp) {
307 LOG_ERROR("Invalid target event: %d", (int)(event));
308 cp = "(*BUG*unknown*BUG*)";
309 }
310 return cp;
311 }
312
313 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
314 {
315 const char *cp;
316 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
317 if (!cp) {
318 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
319 cp = "(*BUG*unknown*BUG*)";
320 }
321 return cp;
322 }
323
324 /* determine the number of the new target */
325 static int new_target_number(void)
326 {
327 struct target *t;
328 int x;
329
330 /* number is 0 based */
331 x = -1;
332 t = all_targets;
333 while (t) {
334 if (x < t->target_number)
335 x = t->target_number;
336 t = t->next;
337 }
338 return x + 1;
339 }
340
341 /* read a uint64_t from a buffer in target memory endianness */
342 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
343 {
344 if (target->endianness == TARGET_LITTLE_ENDIAN)
345 return le_to_h_u64(buffer);
346 else
347 return be_to_h_u64(buffer);
348 }
349
350 /* read a uint32_t from a buffer in target memory endianness */
351 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
352 {
353 if (target->endianness == TARGET_LITTLE_ENDIAN)
354 return le_to_h_u32(buffer);
355 else
356 return be_to_h_u32(buffer);
357 }
358
359 /* read a uint24_t from a buffer in target memory endianness */
360 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
361 {
362 if (target->endianness == TARGET_LITTLE_ENDIAN)
363 return le_to_h_u24(buffer);
364 else
365 return be_to_h_u24(buffer);
366 }
367
368 /* read a uint16_t from a buffer in target memory endianness */
369 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
370 {
371 if (target->endianness == TARGET_LITTLE_ENDIAN)
372 return le_to_h_u16(buffer);
373 else
374 return be_to_h_u16(buffer);
375 }
376
377 /* read a uint8_t from a buffer in target memory endianness */
378 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
379 {
380 return *buffer & 0x0ff;
381 }
382
383 /* write a uint64_t to a buffer in target memory endianness */
384 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
385 {
386 if (target->endianness == TARGET_LITTLE_ENDIAN)
387 h_u64_to_le(buffer, value);
388 else
389 h_u64_to_be(buffer, value);
390 }
391
392 /* write a uint32_t to a buffer in target memory endianness */
393 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
394 {
395 if (target->endianness == TARGET_LITTLE_ENDIAN)
396 h_u32_to_le(buffer, value);
397 else
398 h_u32_to_be(buffer, value);
399 }
400
401 /* write a uint24_t to a buffer in target memory endianness */
402 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
403 {
404 if (target->endianness == TARGET_LITTLE_ENDIAN)
405 h_u24_to_le(buffer, value);
406 else
407 h_u24_to_be(buffer, value);
408 }
409
410 /* write a uint16_t to a buffer in target memory endianness */
411 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
412 {
413 if (target->endianness == TARGET_LITTLE_ENDIAN)
414 h_u16_to_le(buffer, value);
415 else
416 h_u16_to_be(buffer, value);
417 }
418
419 /* write a uint8_t to a buffer in target memory endianness */
420 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
421 {
422 *buffer = value;
423 }
424
425 /* write a uint64_t array to a buffer in target memory endianness */
426 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
427 {
428 uint32_t i;
429 for (i = 0; i < count; i++)
430 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
431 }
432
433 /* write a uint32_t array to a buffer in target memory endianness */
434 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
435 {
436 uint32_t i;
437 for (i = 0; i < count; i++)
438 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
439 }
440
441 /* write a uint16_t array to a buffer in target memory endianness */
442 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
443 {
444 uint32_t i;
445 for (i = 0; i < count; i++)
446 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
447 }
448
449 /* write a uint64_t array to a buffer in target memory endianness */
450 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
451 {
452 uint32_t i;
453 for (i = 0; i < count; i++)
454 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
455 }
456
457 /* write a uint32_t array to a buffer in target memory endianness */
458 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
459 {
460 uint32_t i;
461 for (i = 0; i < count; i++)
462 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
463 }
464
465 /* write a uint16_t array to a buffer in target memory endianness */
466 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
467 {
468 uint32_t i;
469 for (i = 0; i < count; i++)
470 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
471 }
472
473 /* return a pointer to a configured target; id is name or number */
474 struct target *get_target(const char *id)
475 {
476 struct target *target;
477
478 /* try as tcltarget name */
479 for (target = all_targets; target; target = target->next) {
480 if (target_name(target) == NULL)
481 continue;
482 if (strcmp(id, target_name(target)) == 0)
483 return target;
484 }
485
486 /* It's OK to remove this fallback sometime after August 2010 or so */
487
488 /* no match, try as number */
489 unsigned num;
490 if (parse_uint(id, &num) != ERROR_OK)
491 return NULL;
492
493 for (target = all_targets; target; target = target->next) {
494 if (target->target_number == (int)num) {
495 LOG_WARNING("use '%s' as target identifier, not '%u'",
496 target_name(target), num);
497 return target;
498 }
499 }
500
501 return NULL;
502 }
503
504 /* returns a pointer to the n-th configured target */
505 struct target *get_target_by_num(int num)
506 {
507 struct target *target = all_targets;
508
509 while (target) {
510 if (target->target_number == num)
511 return target;
512 target = target->next;
513 }
514
515 return NULL;
516 }
517
518 struct target *get_current_target(struct command_context *cmd_ctx)
519 {
520 struct target *target = get_current_target_or_null(cmd_ctx);
521
522 if (target == NULL) {
523 LOG_ERROR("BUG: current_target out of bounds");
524 exit(-1);
525 }
526
527 return target;
528 }
529
530 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
531 {
532 return cmd_ctx->current_target_override
533 ? cmd_ctx->current_target_override
534 : cmd_ctx->current_target;
535 }
536
537 int target_poll(struct target *target)
538 {
539 int retval;
540
541 /* We can't poll until after examine */
542 if (!target_was_examined(target)) {
543 /* Fail silently lest we pollute the log */
544 return ERROR_FAIL;
545 }
546
547 retval = target->type->poll(target);
548 if (retval != ERROR_OK)
549 return retval;
550
551 if (target->halt_issued) {
552 if (target->state == TARGET_HALTED)
553 target->halt_issued = false;
554 else {
555 int64_t t = timeval_ms() - target->halt_issued_time;
556 if (t > DEFAULT_HALT_TIMEOUT) {
557 target->halt_issued = false;
558 LOG_INFO("Halt timed out, wake up GDB.");
559 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
560 }
561 }
562 }
563
564 return ERROR_OK;
565 }
566
567 int target_halt(struct target *target)
568 {
569 int retval;
570 /* We can't poll until after examine */
571 if (!target_was_examined(target)) {
572 LOG_ERROR("Target not examined yet");
573 return ERROR_FAIL;
574 }
575
576 retval = target->type->halt(target);
577 if (retval != ERROR_OK)
578 return retval;
579
580 target->halt_issued = true;
581 target->halt_issued_time = timeval_ms();
582
583 return ERROR_OK;
584 }
585
586 /**
587 * Make the target (re)start executing using its saved execution
588 * context (possibly with some modifications).
589 *
590 * @param target Which target should start executing.
591 * @param current True to use the target's saved program counter instead
592 * of the address parameter
593 * @param address Optionally used as the program counter.
594 * @param handle_breakpoints True iff breakpoints at the resumption PC
595 * should be skipped. (For example, maybe execution was stopped by
596 * such a breakpoint, in which case it would be counterprodutive to
597 * let it re-trigger.
598 * @param debug_execution False if all working areas allocated by OpenOCD
599 * should be released and/or restored to their original contents.
600 * (This would for example be true to run some downloaded "helper"
601 * algorithm code, which resides in one such working buffer and uses
602 * another for data storage.)
603 *
604 * @todo Resolve the ambiguity about what the "debug_execution" flag
605 * signifies. For example, Target implementations don't agree on how
606 * it relates to invalidation of the register cache, or to whether
607 * breakpoints and watchpoints should be enabled. (It would seem wrong
608 * to enable breakpoints when running downloaded "helper" algorithms
609 * (debug_execution true), since the breakpoints would be set to match
610 * target firmware being debugged, not the helper algorithm.... and
611 * enabling them could cause such helpers to malfunction (for example,
612 * by overwriting data with a breakpoint instruction. On the other
613 * hand the infrastructure for running such helpers might use this
614 * procedure but rely on hardware breakpoint to detect termination.)
615 */
616 int target_resume(struct target *target, int current, target_addr_t address,
617 int handle_breakpoints, int debug_execution)
618 {
619 int retval;
620
621 /* We can't poll until after examine */
622 if (!target_was_examined(target)) {
623 LOG_ERROR("Target not examined yet");
624 return ERROR_FAIL;
625 }
626
627 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
628
629 /* note that resume *must* be asynchronous. The CPU can halt before
630 * we poll. The CPU can even halt at the current PC as a result of
631 * a software breakpoint being inserted by (a bug?) the application.
632 */
633 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
634 if (retval != ERROR_OK)
635 return retval;
636
637 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
638
639 return retval;
640 }
641
642 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
643 {
644 char buf[100];
645 int retval;
646 Jim_Nvp *n;
647 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
648 if (n->name == NULL) {
649 LOG_ERROR("invalid reset mode");
650 return ERROR_FAIL;
651 }
652
653 struct target *target;
654 for (target = all_targets; target; target = target->next)
655 target_call_reset_callbacks(target, reset_mode);
656
657 /* disable polling during reset to make reset event scripts
658 * more predictable, i.e. dr/irscan & pathmove in events will
659 * not have JTAG operations injected into the middle of a sequence.
660 */
661 bool save_poll = jtag_poll_get_enabled();
662
663 jtag_poll_set_enabled(false);
664
665 sprintf(buf, "ocd_process_reset %s", n->name);
666 retval = Jim_Eval(cmd_ctx->interp, buf);
667
668 jtag_poll_set_enabled(save_poll);
669
670 if (retval != JIM_OK) {
671 Jim_MakeErrorMessage(cmd_ctx->interp);
672 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
673 return ERROR_FAIL;
674 }
675
676 /* We want any events to be processed before the prompt */
677 retval = target_call_timer_callbacks_now();
678
679 for (target = all_targets; target; target = target->next) {
680 target->type->check_reset(target);
681 target->running_alg = false;
682 }
683
684 return retval;
685 }
686
687 static int identity_virt2phys(struct target *target,
688 target_addr_t virtual, target_addr_t *physical)
689 {
690 *physical = virtual;
691 return ERROR_OK;
692 }
693
694 static int no_mmu(struct target *target, int *enabled)
695 {
696 *enabled = 0;
697 return ERROR_OK;
698 }
699
700 static int default_examine(struct target *target)
701 {
702 target_set_examined(target);
703 return ERROR_OK;
704 }
705
706 /* no check by default */
707 static int default_check_reset(struct target *target)
708 {
709 return ERROR_OK;
710 }
711
712 int target_examine_one(struct target *target)
713 {
714 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
715
716 int retval = target->type->examine(target);
717 if (retval != ERROR_OK)
718 return retval;
719
720 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
721
722 return ERROR_OK;
723 }
724
725 static int jtag_enable_callback(enum jtag_event event, void *priv)
726 {
727 struct target *target = priv;
728
729 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
730 return ERROR_OK;
731
732 jtag_unregister_event_callback(jtag_enable_callback, target);
733
734 return target_examine_one(target);
735 }
736
737 /* Targets that correctly implement init + examine, i.e.
738 * no communication with target during init:
739 *
740 * XScale
741 */
742 int target_examine(void)
743 {
744 int retval = ERROR_OK;
745 struct target *target;
746
747 for (target = all_targets; target; target = target->next) {
748 /* defer examination, but don't skip it */
749 if (!target->tap->enabled) {
750 jtag_register_event_callback(jtag_enable_callback,
751 target);
752 continue;
753 }
754
755 if (target->defer_examine)
756 continue;
757
758 retval = target_examine_one(target);
759 if (retval != ERROR_OK)
760 return retval;
761 }
762 return retval;
763 }
764
765 const char *target_type_name(struct target *target)
766 {
767 return target->type->name;
768 }
769
770 static int target_soft_reset_halt(struct target *target)
771 {
772 if (!target_was_examined(target)) {
773 LOG_ERROR("Target not examined yet");
774 return ERROR_FAIL;
775 }
776 if (!target->type->soft_reset_halt) {
777 LOG_ERROR("Target %s does not support soft_reset_halt",
778 target_name(target));
779 return ERROR_FAIL;
780 }
781 return target->type->soft_reset_halt(target);
782 }
783
784 /**
785 * Downloads a target-specific native code algorithm to the target,
786 * and executes it. * Note that some targets may need to set up, enable,
787 * and tear down a breakpoint (hard or * soft) to detect algorithm
788 * termination, while others may support lower overhead schemes where
789 * soft breakpoints embedded in the algorithm automatically terminate the
790 * algorithm.
791 *
792 * @param target used to run the algorithm
793 * @param arch_info target-specific description of the algorithm.
794 */
795 int target_run_algorithm(struct target *target,
796 int num_mem_params, struct mem_param *mem_params,
797 int num_reg_params, struct reg_param *reg_param,
798 uint32_t entry_point, uint32_t exit_point,
799 int timeout_ms, void *arch_info)
800 {
801 int retval = ERROR_FAIL;
802
803 if (!target_was_examined(target)) {
804 LOG_ERROR("Target not examined yet");
805 goto done;
806 }
807 if (!target->type->run_algorithm) {
808 LOG_ERROR("Target type '%s' does not support %s",
809 target_type_name(target), __func__);
810 goto done;
811 }
812
813 target->running_alg = true;
814 retval = target->type->run_algorithm(target,
815 num_mem_params, mem_params,
816 num_reg_params, reg_param,
817 entry_point, exit_point, timeout_ms, arch_info);
818 target->running_alg = false;
819
820 done:
821 return retval;
822 }
823
824 /**
825 * Executes a target-specific native code algorithm and leaves it running.
826 *
827 * @param target used to run the algorithm
828 * @param arch_info target-specific description of the algorithm.
829 */
830 int target_start_algorithm(struct target *target,
831 int num_mem_params, struct mem_param *mem_params,
832 int num_reg_params, struct reg_param *reg_params,
833 uint32_t entry_point, uint32_t exit_point,
834 void *arch_info)
835 {
836 int retval = ERROR_FAIL;
837
838 if (!target_was_examined(target)) {
839 LOG_ERROR("Target not examined yet");
840 goto done;
841 }
842 if (!target->type->start_algorithm) {
843 LOG_ERROR("Target type '%s' does not support %s",
844 target_type_name(target), __func__);
845 goto done;
846 }
847 if (target->running_alg) {
848 LOG_ERROR("Target is already running an algorithm");
849 goto done;
850 }
851
852 target->running_alg = true;
853 retval = target->type->start_algorithm(target,
854 num_mem_params, mem_params,
855 num_reg_params, reg_params,
856 entry_point, exit_point, arch_info);
857
858 done:
859 return retval;
860 }
861
862 /**
863 * Waits for an algorithm started with target_start_algorithm() to complete.
864 *
865 * @param target used to run the algorithm
866 * @param arch_info target-specific description of the algorithm.
867 */
868 int target_wait_algorithm(struct target *target,
869 int num_mem_params, struct mem_param *mem_params,
870 int num_reg_params, struct reg_param *reg_params,
871 uint32_t exit_point, int timeout_ms,
872 void *arch_info)
873 {
874 int retval = ERROR_FAIL;
875
876 if (!target->type->wait_algorithm) {
877 LOG_ERROR("Target type '%s' does not support %s",
878 target_type_name(target), __func__);
879 goto done;
880 }
881 if (!target->running_alg) {
882 LOG_ERROR("Target is not running an algorithm");
883 goto done;
884 }
885
886 retval = target->type->wait_algorithm(target,
887 num_mem_params, mem_params,
888 num_reg_params, reg_params,
889 exit_point, timeout_ms, arch_info);
890 if (retval != ERROR_TARGET_TIMEOUT)
891 target->running_alg = false;
892
893 done:
894 return retval;
895 }
896
897 /**
898 * Streams data to a circular buffer on target intended for consumption by code
899 * running asynchronously on target.
900 *
901 * This is intended for applications where target-specific native code runs
902 * on the target, receives data from the circular buffer, does something with
903 * it (most likely writing it to a flash memory), and advances the circular
904 * buffer pointer.
905 *
906 * This assumes that the helper algorithm has already been loaded to the target,
907 * but has not been started yet. Given memory and register parameters are passed
908 * to the algorithm.
909 *
910 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
911 * following format:
912 *
913 * [buffer_start + 0, buffer_start + 4):
914 * Write Pointer address (aka head). Written and updated by this
915 * routine when new data is written to the circular buffer.
916 * [buffer_start + 4, buffer_start + 8):
917 * Read Pointer address (aka tail). Updated by code running on the
918 * target after it consumes data.
919 * [buffer_start + 8, buffer_start + buffer_size):
920 * Circular buffer contents.
921 *
922 * See contrib/loaders/flash/stm32f1x.S for an example.
923 *
924 * @param target used to run the algorithm
925 * @param buffer address on the host where data to be sent is located
926 * @param count number of blocks to send
927 * @param block_size size in bytes of each block
928 * @param num_mem_params count of memory-based params to pass to algorithm
929 * @param mem_params memory-based params to pass to algorithm
930 * @param num_reg_params count of register-based params to pass to algorithm
931 * @param reg_params memory-based params to pass to algorithm
932 * @param buffer_start address on the target of the circular buffer structure
933 * @param buffer_size size of the circular buffer structure
934 * @param entry_point address on the target to execute to start the algorithm
935 * @param exit_point address at which to set a breakpoint to catch the
936 * end of the algorithm; can be 0 if target triggers a breakpoint itself
937 */
938
939 int target_run_flash_async_algorithm(struct target *target,
940 const uint8_t *buffer, uint32_t count, int block_size,
941 int num_mem_params, struct mem_param *mem_params,
942 int num_reg_params, struct reg_param *reg_params,
943 uint32_t buffer_start, uint32_t buffer_size,
944 uint32_t entry_point, uint32_t exit_point, void *arch_info)
945 {
946 int retval;
947 int timeout = 0;
948
949 const uint8_t *buffer_orig = buffer;
950
951 /* Set up working area. First word is write pointer, second word is read pointer,
952 * rest is fifo data area. */
953 uint32_t wp_addr = buffer_start;
954 uint32_t rp_addr = buffer_start + 4;
955 uint32_t fifo_start_addr = buffer_start + 8;
956 uint32_t fifo_end_addr = buffer_start + buffer_size;
957
958 uint32_t wp = fifo_start_addr;
959 uint32_t rp = fifo_start_addr;
960
961 /* validate block_size is 2^n */
962 assert(!block_size || !(block_size & (block_size - 1)));
963
964 retval = target_write_u32(target, wp_addr, wp);
965 if (retval != ERROR_OK)
966 return retval;
967 retval = target_write_u32(target, rp_addr, rp);
968 if (retval != ERROR_OK)
969 return retval;
970
971 /* Start up algorithm on target and let it idle while writing the first chunk */
972 retval = target_start_algorithm(target, num_mem_params, mem_params,
973 num_reg_params, reg_params,
974 entry_point,
975 exit_point,
976 arch_info);
977
978 if (retval != ERROR_OK) {
979 LOG_ERROR("error starting target flash write algorithm");
980 return retval;
981 }
982
983 while (count > 0) {
984
985 retval = target_read_u32(target, rp_addr, &rp);
986 if (retval != ERROR_OK) {
987 LOG_ERROR("failed to get read pointer");
988 break;
989 }
990
991 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
992 (size_t) (buffer - buffer_orig), count, wp, rp);
993
994 if (rp == 0) {
995 LOG_ERROR("flash write algorithm aborted by target");
996 retval = ERROR_FLASH_OPERATION_FAILED;
997 break;
998 }
999
1000 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1001 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1002 break;
1003 }
1004
1005 /* Count the number of bytes available in the fifo without
1006 * crossing the wrap around. Make sure to not fill it completely,
1007 * because that would make wp == rp and that's the empty condition. */
1008 uint32_t thisrun_bytes;
1009 if (rp > wp)
1010 thisrun_bytes = rp - wp - block_size;
1011 else if (rp > fifo_start_addr)
1012 thisrun_bytes = fifo_end_addr - wp;
1013 else
1014 thisrun_bytes = fifo_end_addr - wp - block_size;
1015
1016 if (thisrun_bytes == 0) {
1017 /* Throttle polling a bit if transfer is (much) faster than flash
1018 * programming. The exact delay shouldn't matter as long as it's
1019 * less than buffer size / flash speed. This is very unlikely to
1020 * run when using high latency connections such as USB. */
1021 alive_sleep(10);
1022
1023 /* to stop an infinite loop on some targets check and increment a timeout
1024 * this issue was observed on a stellaris using the new ICDI interface */
1025 if (timeout++ >= 500) {
1026 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1027 return ERROR_FLASH_OPERATION_FAILED;
1028 }
1029 continue;
1030 }
1031
1032 /* reset our timeout */
1033 timeout = 0;
1034
1035 /* Limit to the amount of data we actually want to write */
1036 if (thisrun_bytes > count * block_size)
1037 thisrun_bytes = count * block_size;
1038
1039 /* Write data to fifo */
1040 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1041 if (retval != ERROR_OK)
1042 break;
1043
1044 /* Update counters and wrap write pointer */
1045 buffer += thisrun_bytes;
1046 count -= thisrun_bytes / block_size;
1047 wp += thisrun_bytes;
1048 if (wp >= fifo_end_addr)
1049 wp = fifo_start_addr;
1050
1051 /* Store updated write pointer to target */
1052 retval = target_write_u32(target, wp_addr, wp);
1053 if (retval != ERROR_OK)
1054 break;
1055
1056 /* Avoid GDB timeouts */
1057 keep_alive();
1058 }
1059
1060 if (retval != ERROR_OK) {
1061 /* abort flash write algorithm on target */
1062 target_write_u32(target, wp_addr, 0);
1063 }
1064
1065 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1066 num_reg_params, reg_params,
1067 exit_point,
1068 10000,
1069 arch_info);
1070
1071 if (retval2 != ERROR_OK) {
1072 LOG_ERROR("error waiting for target flash write algorithm");
1073 retval = retval2;
1074 }
1075
1076 if (retval == ERROR_OK) {
1077 /* check if algorithm set rp = 0 after fifo writer loop finished */
1078 retval = target_read_u32(target, rp_addr, &rp);
1079 if (retval == ERROR_OK && rp == 0) {
1080 LOG_ERROR("flash write algorithm aborted by target");
1081 retval = ERROR_FLASH_OPERATION_FAILED;
1082 }
1083 }
1084
1085 return retval;
1086 }
1087
1088 int target_read_memory(struct target *target,
1089 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1090 {
1091 if (!target_was_examined(target)) {
1092 LOG_ERROR("Target not examined yet");
1093 return ERROR_FAIL;
1094 }
1095 if (!target->type->read_memory) {
1096 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1097 return ERROR_FAIL;
1098 }
1099 return target->type->read_memory(target, address, size, count, buffer);
1100 }
1101
1102 int target_read_phys_memory(struct target *target,
1103 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1104 {
1105 if (!target_was_examined(target)) {
1106 LOG_ERROR("Target not examined yet");
1107 return ERROR_FAIL;
1108 }
1109 if (!target->type->read_phys_memory) {
1110 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1111 return ERROR_FAIL;
1112 }
1113 return target->type->read_phys_memory(target, address, size, count, buffer);
1114 }
1115
1116 int target_write_memory(struct target *target,
1117 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1118 {
1119 if (!target_was_examined(target)) {
1120 LOG_ERROR("Target not examined yet");
1121 return ERROR_FAIL;
1122 }
1123 if (!target->type->write_memory) {
1124 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1125 return ERROR_FAIL;
1126 }
1127 return target->type->write_memory(target, address, size, count, buffer);
1128 }
1129
1130 int target_write_phys_memory(struct target *target,
1131 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1132 {
1133 if (!target_was_examined(target)) {
1134 LOG_ERROR("Target not examined yet");
1135 return ERROR_FAIL;
1136 }
1137 if (!target->type->write_phys_memory) {
1138 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1139 return ERROR_FAIL;
1140 }
1141 return target->type->write_phys_memory(target, address, size, count, buffer);
1142 }
1143
1144 int target_add_breakpoint(struct target *target,
1145 struct breakpoint *breakpoint)
1146 {
1147 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1148 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1149 return ERROR_TARGET_NOT_HALTED;
1150 }
1151 return target->type->add_breakpoint(target, breakpoint);
1152 }
1153
1154 int target_add_context_breakpoint(struct target *target,
1155 struct breakpoint *breakpoint)
1156 {
1157 if (target->state != TARGET_HALTED) {
1158 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1159 return ERROR_TARGET_NOT_HALTED;
1160 }
1161 return target->type->add_context_breakpoint(target, breakpoint);
1162 }
1163
1164 int target_add_hybrid_breakpoint(struct target *target,
1165 struct breakpoint *breakpoint)
1166 {
1167 if (target->state != TARGET_HALTED) {
1168 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1169 return ERROR_TARGET_NOT_HALTED;
1170 }
1171 return target->type->add_hybrid_breakpoint(target, breakpoint);
1172 }
1173
1174 int target_remove_breakpoint(struct target *target,
1175 struct breakpoint *breakpoint)
1176 {
1177 return target->type->remove_breakpoint(target, breakpoint);
1178 }
1179
1180 int target_add_watchpoint(struct target *target,
1181 struct watchpoint *watchpoint)
1182 {
1183 if (target->state != TARGET_HALTED) {
1184 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1185 return ERROR_TARGET_NOT_HALTED;
1186 }
1187 return target->type->add_watchpoint(target, watchpoint);
1188 }
1189 int target_remove_watchpoint(struct target *target,
1190 struct watchpoint *watchpoint)
1191 {
1192 return target->type->remove_watchpoint(target, watchpoint);
1193 }
1194 int target_hit_watchpoint(struct target *target,
1195 struct watchpoint **hit_watchpoint)
1196 {
1197 if (target->state != TARGET_HALTED) {
1198 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1199 return ERROR_TARGET_NOT_HALTED;
1200 }
1201
1202 if (target->type->hit_watchpoint == NULL) {
1203 /* For backward compatible, if hit_watchpoint is not implemented,
1204 * return ERROR_FAIL such that gdb_server will not take the nonsense
1205 * information. */
1206 return ERROR_FAIL;
1207 }
1208
1209 return target->type->hit_watchpoint(target, hit_watchpoint);
1210 }
1211
1212 const char *target_get_gdb_arch(struct target *target)
1213 {
1214 if (target->type->get_gdb_arch == NULL)
1215 return NULL;
1216 return target->type->get_gdb_arch(target);
1217 }
1218
1219 int target_get_gdb_reg_list(struct target *target,
1220 struct reg **reg_list[], int *reg_list_size,
1221 enum target_register_class reg_class)
1222 {
1223 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1224 }
1225
1226 bool target_supports_gdb_connection(struct target *target)
1227 {
1228 /*
1229 * based on current code, we can simply exclude all the targets that
1230 * don't provide get_gdb_reg_list; this could change with new targets.
1231 */
1232 return !!target->type->get_gdb_reg_list;
1233 }
1234
1235 int target_step(struct target *target,
1236 int current, target_addr_t address, int handle_breakpoints)
1237 {
1238 return target->type->step(target, current, address, handle_breakpoints);
1239 }
1240
1241 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1242 {
1243 if (target->state != TARGET_HALTED) {
1244 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1245 return ERROR_TARGET_NOT_HALTED;
1246 }
1247 return target->type->get_gdb_fileio_info(target, fileio_info);
1248 }
1249
1250 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1251 {
1252 if (target->state != TARGET_HALTED) {
1253 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1254 return ERROR_TARGET_NOT_HALTED;
1255 }
1256 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1257 }
1258
1259 int target_profiling(struct target *target, uint32_t *samples,
1260 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1261 {
1262 if (target->state != TARGET_HALTED) {
1263 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1264 return ERROR_TARGET_NOT_HALTED;
1265 }
1266 return target->type->profiling(target, samples, max_num_samples,
1267 num_samples, seconds);
1268 }
1269
1270 /**
1271 * Reset the @c examined flag for the given target.
1272 * Pure paranoia -- targets are zeroed on allocation.
1273 */
1274 static void target_reset_examined(struct target *target)
1275 {
1276 target->examined = false;
1277 }
1278
1279 static int handle_target(void *priv);
1280
1281 static int target_init_one(struct command_context *cmd_ctx,
1282 struct target *target)
1283 {
1284 target_reset_examined(target);
1285
1286 struct target_type *type = target->type;
1287 if (type->examine == NULL)
1288 type->examine = default_examine;
1289
1290 if (type->check_reset == NULL)
1291 type->check_reset = default_check_reset;
1292
1293 assert(type->init_target != NULL);
1294
1295 int retval = type->init_target(cmd_ctx, target);
1296 if (ERROR_OK != retval) {
1297 LOG_ERROR("target '%s' init failed", target_name(target));
1298 return retval;
1299 }
1300
1301 /* Sanity-check MMU support ... stub in what we must, to help
1302 * implement it in stages, but warn if we need to do so.
1303 */
1304 if (type->mmu) {
1305 if (type->virt2phys == NULL) {
1306 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1307 type->virt2phys = identity_virt2phys;
1308 }
1309 } else {
1310 /* Make sure no-MMU targets all behave the same: make no
1311 * distinction between physical and virtual addresses, and
1312 * ensure that virt2phys() is always an identity mapping.
1313 */
1314 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1315 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1316
1317 type->mmu = no_mmu;
1318 type->write_phys_memory = type->write_memory;
1319 type->read_phys_memory = type->read_memory;
1320 type->virt2phys = identity_virt2phys;
1321 }
1322
1323 if (target->type->read_buffer == NULL)
1324 target->type->read_buffer = target_read_buffer_default;
1325
1326 if (target->type->write_buffer == NULL)
1327 target->type->write_buffer = target_write_buffer_default;
1328
1329 if (target->type->get_gdb_fileio_info == NULL)
1330 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1331
1332 if (target->type->gdb_fileio_end == NULL)
1333 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1334
1335 if (target->type->profiling == NULL)
1336 target->type->profiling = target_profiling_default;
1337
1338 return ERROR_OK;
1339 }
1340
1341 static int target_init(struct command_context *cmd_ctx)
1342 {
1343 struct target *target;
1344 int retval;
1345
1346 for (target = all_targets; target; target = target->next) {
1347 retval = target_init_one(cmd_ctx, target);
1348 if (ERROR_OK != retval)
1349 return retval;
1350 }
1351
1352 if (!all_targets)
1353 return ERROR_OK;
1354
1355 retval = target_register_user_commands(cmd_ctx);
1356 if (ERROR_OK != retval)
1357 return retval;
1358
1359 retval = target_register_timer_callback(&handle_target,
1360 polling_interval, 1, cmd_ctx->interp);
1361 if (ERROR_OK != retval)
1362 return retval;
1363
1364 return ERROR_OK;
1365 }
1366
1367 COMMAND_HANDLER(handle_target_init_command)
1368 {
1369 int retval;
1370
1371 if (CMD_ARGC != 0)
1372 return ERROR_COMMAND_SYNTAX_ERROR;
1373
1374 static bool target_initialized;
1375 if (target_initialized) {
1376 LOG_INFO("'target init' has already been called");
1377 return ERROR_OK;
1378 }
1379 target_initialized = true;
1380
1381 retval = command_run_line(CMD_CTX, "init_targets");
1382 if (ERROR_OK != retval)
1383 return retval;
1384
1385 retval = command_run_line(CMD_CTX, "init_target_events");
1386 if (ERROR_OK != retval)
1387 return retval;
1388
1389 retval = command_run_line(CMD_CTX, "init_board");
1390 if (ERROR_OK != retval)
1391 return retval;
1392
1393 LOG_DEBUG("Initializing targets...");
1394 return target_init(CMD_CTX);
1395 }
1396
1397 int target_register_event_callback(int (*callback)(struct target *target,
1398 enum target_event event, void *priv), void *priv)
1399 {
1400 struct target_event_callback **callbacks_p = &target_event_callbacks;
1401
1402 if (callback == NULL)
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404
1405 if (*callbacks_p) {
1406 while ((*callbacks_p)->next)
1407 callbacks_p = &((*callbacks_p)->next);
1408 callbacks_p = &((*callbacks_p)->next);
1409 }
1410
1411 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1412 (*callbacks_p)->callback = callback;
1413 (*callbacks_p)->priv = priv;
1414 (*callbacks_p)->next = NULL;
1415
1416 return ERROR_OK;
1417 }
1418
1419 int target_register_reset_callback(int (*callback)(struct target *target,
1420 enum target_reset_mode reset_mode, void *priv), void *priv)
1421 {
1422 struct target_reset_callback *entry;
1423
1424 if (callback == NULL)
1425 return ERROR_COMMAND_SYNTAX_ERROR;
1426
1427 entry = malloc(sizeof(struct target_reset_callback));
1428 if (entry == NULL) {
1429 LOG_ERROR("error allocating buffer for reset callback entry");
1430 return ERROR_COMMAND_SYNTAX_ERROR;
1431 }
1432
1433 entry->callback = callback;
1434 entry->priv = priv;
1435 list_add(&entry->list, &target_reset_callback_list);
1436
1437
1438 return ERROR_OK;
1439 }
1440
1441 int target_register_trace_callback(int (*callback)(struct target *target,
1442 size_t len, uint8_t *data, void *priv), void *priv)
1443 {
1444 struct target_trace_callback *entry;
1445
1446 if (callback == NULL)
1447 return ERROR_COMMAND_SYNTAX_ERROR;
1448
1449 entry = malloc(sizeof(struct target_trace_callback));
1450 if (entry == NULL) {
1451 LOG_ERROR("error allocating buffer for trace callback entry");
1452 return ERROR_COMMAND_SYNTAX_ERROR;
1453 }
1454
1455 entry->callback = callback;
1456 entry->priv = priv;
1457 list_add(&entry->list, &target_trace_callback_list);
1458
1459
1460 return ERROR_OK;
1461 }
1462
1463 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1464 {
1465 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1466
1467 if (callback == NULL)
1468 return ERROR_COMMAND_SYNTAX_ERROR;
1469
1470 if (*callbacks_p) {
1471 while ((*callbacks_p)->next)
1472 callbacks_p = &((*callbacks_p)->next);
1473 callbacks_p = &((*callbacks_p)->next);
1474 }
1475
1476 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1477 (*callbacks_p)->callback = callback;
1478 (*callbacks_p)->periodic = periodic;
1479 (*callbacks_p)->time_ms = time_ms;
1480 (*callbacks_p)->removed = false;
1481
1482 gettimeofday(&(*callbacks_p)->when, NULL);
1483 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1484
1485 (*callbacks_p)->priv = priv;
1486 (*callbacks_p)->next = NULL;
1487
1488 return ERROR_OK;
1489 }
1490
1491 int target_unregister_event_callback(int (*callback)(struct target *target,
1492 enum target_event event, void *priv), void *priv)
1493 {
1494 struct target_event_callback **p = &target_event_callbacks;
1495 struct target_event_callback *c = target_event_callbacks;
1496
1497 if (callback == NULL)
1498 return ERROR_COMMAND_SYNTAX_ERROR;
1499
1500 while (c) {
1501 struct target_event_callback *next = c->next;
1502 if ((c->callback == callback) && (c->priv == priv)) {
1503 *p = next;
1504 free(c);
1505 return ERROR_OK;
1506 } else
1507 p = &(c->next);
1508 c = next;
1509 }
1510
1511 return ERROR_OK;
1512 }
1513
1514 int target_unregister_reset_callback(int (*callback)(struct target *target,
1515 enum target_reset_mode reset_mode, void *priv), void *priv)
1516 {
1517 struct target_reset_callback *entry;
1518
1519 if (callback == NULL)
1520 return ERROR_COMMAND_SYNTAX_ERROR;
1521
1522 list_for_each_entry(entry, &target_reset_callback_list, list) {
1523 if (entry->callback == callback && entry->priv == priv) {
1524 list_del(&entry->list);
1525 free(entry);
1526 break;
1527 }
1528 }
1529
1530 return ERROR_OK;
1531 }
1532
1533 int target_unregister_trace_callback(int (*callback)(struct target *target,
1534 size_t len, uint8_t *data, void *priv), void *priv)
1535 {
1536 struct target_trace_callback *entry;
1537
1538 if (callback == NULL)
1539 return ERROR_COMMAND_SYNTAX_ERROR;
1540
1541 list_for_each_entry(entry, &target_trace_callback_list, list) {
1542 if (entry->callback == callback && entry->priv == priv) {
1543 list_del(&entry->list);
1544 free(entry);
1545 break;
1546 }
1547 }
1548
1549 return ERROR_OK;
1550 }
1551
1552 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1553 {
1554 if (callback == NULL)
1555 return ERROR_COMMAND_SYNTAX_ERROR;
1556
1557 for (struct target_timer_callback *c = target_timer_callbacks;
1558 c; c = c->next) {
1559 if ((c->callback == callback) && (c->priv == priv)) {
1560 c->removed = true;
1561 return ERROR_OK;
1562 }
1563 }
1564
1565 return ERROR_FAIL;
1566 }
1567
1568 int target_call_event_callbacks(struct target *target, enum target_event event)
1569 {
1570 struct target_event_callback *callback = target_event_callbacks;
1571 struct target_event_callback *next_callback;
1572
1573 if (event == TARGET_EVENT_HALTED) {
1574 /* execute early halted first */
1575 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1576 }
1577
1578 LOG_DEBUG("target event %i (%s)", event,
1579 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1580
1581 target_handle_event(target, event);
1582
1583 while (callback) {
1584 next_callback = callback->next;
1585 callback->callback(target, event, callback->priv);
1586 callback = next_callback;
1587 }
1588
1589 return ERROR_OK;
1590 }
1591
1592 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1593 {
1594 struct target_reset_callback *callback;
1595
1596 LOG_DEBUG("target reset %i (%s)", reset_mode,
1597 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1598
1599 list_for_each_entry(callback, &target_reset_callback_list, list)
1600 callback->callback(target, reset_mode, callback->priv);
1601
1602 return ERROR_OK;
1603 }
1604
1605 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1606 {
1607 struct target_trace_callback *callback;
1608
1609 list_for_each_entry(callback, &target_trace_callback_list, list)
1610 callback->callback(target, len, data, callback->priv);
1611
1612 return ERROR_OK;
1613 }
1614
1615 static int target_timer_callback_periodic_restart(
1616 struct target_timer_callback *cb, struct timeval *now)
1617 {
1618 cb->when = *now;
1619 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1620 return ERROR_OK;
1621 }
1622
1623 static int target_call_timer_callback(struct target_timer_callback *cb,
1624 struct timeval *now)
1625 {
1626 cb->callback(cb->priv);
1627
1628 if (cb->periodic)
1629 return target_timer_callback_periodic_restart(cb, now);
1630
1631 return target_unregister_timer_callback(cb->callback, cb->priv);
1632 }
1633
1634 static int target_call_timer_callbacks_check_time(int checktime)
1635 {
1636 static bool callback_processing;
1637
1638 /* Do not allow nesting */
1639 if (callback_processing)
1640 return ERROR_OK;
1641
1642 callback_processing = true;
1643
1644 keep_alive();
1645
1646 struct timeval now;
1647 gettimeofday(&now, NULL);
1648
1649 /* Store an address of the place containing a pointer to the
1650 * next item; initially, that's a standalone "root of the
1651 * list" variable. */
1652 struct target_timer_callback **callback = &target_timer_callbacks;
1653 while (*callback) {
1654 if ((*callback)->removed) {
1655 struct target_timer_callback *p = *callback;
1656 *callback = (*callback)->next;
1657 free(p);
1658 continue;
1659 }
1660
1661 bool call_it = (*callback)->callback &&
1662 ((!checktime && (*callback)->periodic) ||
1663 timeval_compare(&now, &(*callback)->when) >= 0);
1664
1665 if (call_it)
1666 target_call_timer_callback(*callback, &now);
1667
1668 callback = &(*callback)->next;
1669 }
1670
1671 callback_processing = false;
1672 return ERROR_OK;
1673 }
1674
1675 int target_call_timer_callbacks(void)
1676 {
1677 return target_call_timer_callbacks_check_time(1);
1678 }
1679
1680 /* invoke periodic callbacks immediately */
1681 int target_call_timer_callbacks_now(void)
1682 {
1683 return target_call_timer_callbacks_check_time(0);
1684 }
1685
1686 /* Prints the working area layout for debug purposes */
1687 static void print_wa_layout(struct target *target)
1688 {
1689 struct working_area *c = target->working_areas;
1690
1691 while (c) {
1692 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1693 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1694 c->address, c->address + c->size - 1, c->size);
1695 c = c->next;
1696 }
1697 }
1698
1699 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1700 static void target_split_working_area(struct working_area *area, uint32_t size)
1701 {
1702 assert(area->free); /* Shouldn't split an allocated area */
1703 assert(size <= area->size); /* Caller should guarantee this */
1704
1705 /* Split only if not already the right size */
1706 if (size < area->size) {
1707 struct working_area *new_wa = malloc(sizeof(*new_wa));
1708
1709 if (new_wa == NULL)
1710 return;
1711
1712 new_wa->next = area->next;
1713 new_wa->size = area->size - size;
1714 new_wa->address = area->address + size;
1715 new_wa->backup = NULL;
1716 new_wa->user = NULL;
1717 new_wa->free = true;
1718
1719 area->next = new_wa;
1720 area->size = size;
1721
1722 /* If backup memory was allocated to this area, it has the wrong size
1723 * now so free it and it will be reallocated if/when needed */
1724 if (area->backup) {
1725 free(area->backup);
1726 area->backup = NULL;
1727 }
1728 }
1729 }
1730
1731 /* Merge all adjacent free areas into one */
1732 static void target_merge_working_areas(struct target *target)
1733 {
1734 struct working_area *c = target->working_areas;
1735
1736 while (c && c->next) {
1737 assert(c->next->address == c->address + c->size); /* This is an invariant */
1738
1739 /* Find two adjacent free areas */
1740 if (c->free && c->next->free) {
1741 /* Merge the last into the first */
1742 c->size += c->next->size;
1743
1744 /* Remove the last */
1745 struct working_area *to_be_freed = c->next;
1746 c->next = c->next->next;
1747 if (to_be_freed->backup)
1748 free(to_be_freed->backup);
1749 free(to_be_freed);
1750
1751 /* If backup memory was allocated to the remaining area, it's has
1752 * the wrong size now */
1753 if (c->backup) {
1754 free(c->backup);
1755 c->backup = NULL;
1756 }
1757 } else {
1758 c = c->next;
1759 }
1760 }
1761 }
1762
1763 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1764 {
1765 /* Reevaluate working area address based on MMU state*/
1766 if (target->working_areas == NULL) {
1767 int retval;
1768 int enabled;
1769
1770 retval = target->type->mmu(target, &enabled);
1771 if (retval != ERROR_OK)
1772 return retval;
1773
1774 if (!enabled) {
1775 if (target->working_area_phys_spec) {
1776 LOG_DEBUG("MMU disabled, using physical "
1777 "address for working memory " TARGET_ADDR_FMT,
1778 target->working_area_phys);
1779 target->working_area = target->working_area_phys;
1780 } else {
1781 LOG_ERROR("No working memory available. "
1782 "Specify -work-area-phys to target.");
1783 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1784 }
1785 } else {
1786 if (target->working_area_virt_spec) {
1787 LOG_DEBUG("MMU enabled, using virtual "
1788 "address for working memory " TARGET_ADDR_FMT,
1789 target->working_area_virt);
1790 target->working_area = target->working_area_virt;
1791 } else {
1792 LOG_ERROR("No working memory available. "
1793 "Specify -work-area-virt to target.");
1794 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1795 }
1796 }
1797
1798 /* Set up initial working area on first call */
1799 struct working_area *new_wa = malloc(sizeof(*new_wa));
1800 if (new_wa) {
1801 new_wa->next = NULL;
1802 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1803 new_wa->address = target->working_area;
1804 new_wa->backup = NULL;
1805 new_wa->user = NULL;
1806 new_wa->free = true;
1807 }
1808
1809 target->working_areas = new_wa;
1810 }
1811
1812 /* only allocate multiples of 4 byte */
1813 if (size % 4)
1814 size = (size + 3) & (~3UL);
1815
1816 struct working_area *c = target->working_areas;
1817
1818 /* Find the first large enough working area */
1819 while (c) {
1820 if (c->free && c->size >= size)
1821 break;
1822 c = c->next;
1823 }
1824
1825 if (c == NULL)
1826 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1827
1828 /* Split the working area into the requested size */
1829 target_split_working_area(c, size);
1830
1831 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1832 size, c->address);
1833
1834 if (target->backup_working_area) {
1835 if (c->backup == NULL) {
1836 c->backup = malloc(c->size);
1837 if (c->backup == NULL)
1838 return ERROR_FAIL;
1839 }
1840
1841 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1842 if (retval != ERROR_OK)
1843 return retval;
1844 }
1845
1846 /* mark as used, and return the new (reused) area */
1847 c->free = false;
1848 *area = c;
1849
1850 /* user pointer */
1851 c->user = area;
1852
1853 print_wa_layout(target);
1854
1855 return ERROR_OK;
1856 }
1857
1858 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1859 {
1860 int retval;
1861
1862 retval = target_alloc_working_area_try(target, size, area);
1863 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1864 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1865 return retval;
1866
1867 }
1868
1869 static int target_restore_working_area(struct target *target, struct working_area *area)
1870 {
1871 int retval = ERROR_OK;
1872
1873 if (target->backup_working_area && area->backup != NULL) {
1874 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1875 if (retval != ERROR_OK)
1876 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1877 area->size, area->address);
1878 }
1879
1880 return retval;
1881 }
1882
1883 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1884 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1885 {
1886 int retval = ERROR_OK;
1887
1888 if (area->free)
1889 return retval;
1890
1891 if (restore) {
1892 retval = target_restore_working_area(target, area);
1893 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1894 if (retval != ERROR_OK)
1895 return retval;
1896 }
1897
1898 area->free = true;
1899
1900 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1901 area->size, area->address);
1902
1903 /* mark user pointer invalid */
1904 /* TODO: Is this really safe? It points to some previous caller's memory.
1905 * How could we know that the area pointer is still in that place and not
1906 * some other vital data? What's the purpose of this, anyway? */
1907 *area->user = NULL;
1908 area->user = NULL;
1909
1910 target_merge_working_areas(target);
1911
1912 print_wa_layout(target);
1913
1914 return retval;
1915 }
1916
1917 int target_free_working_area(struct target *target, struct working_area *area)
1918 {
1919 return target_free_working_area_restore(target, area, 1);
1920 }
1921
1922 /* free resources and restore memory, if restoring memory fails,
1923 * free up resources anyway
1924 */
1925 static void target_free_all_working_areas_restore(struct target *target, int restore)
1926 {
1927 struct working_area *c = target->working_areas;
1928
1929 LOG_DEBUG("freeing all working areas");
1930
1931 /* Loop through all areas, restoring the allocated ones and marking them as free */
1932 while (c) {
1933 if (!c->free) {
1934 if (restore)
1935 target_restore_working_area(target, c);
1936 c->free = true;
1937 *c->user = NULL; /* Same as above */
1938 c->user = NULL;
1939 }
1940 c = c->next;
1941 }
1942
1943 /* Run a merge pass to combine all areas into one */
1944 target_merge_working_areas(target);
1945
1946 print_wa_layout(target);
1947 }
1948
1949 void target_free_all_working_areas(struct target *target)
1950 {
1951 target_free_all_working_areas_restore(target, 1);
1952
1953 /* Now we have none or only one working area marked as free */
1954 if (target->working_areas) {
1955 /* Free the last one to allow on-the-fly moving and resizing */
1956 free(target->working_areas->backup);
1957 free(target->working_areas);
1958 target->working_areas = NULL;
1959 }
1960 }
1961
1962 /* Find the largest number of bytes that can be allocated */
1963 uint32_t target_get_working_area_avail(struct target *target)
1964 {
1965 struct working_area *c = target->working_areas;
1966 uint32_t max_size = 0;
1967
1968 if (c == NULL)
1969 return target->working_area_size;
1970
1971 while (c) {
1972 if (c->free && max_size < c->size)
1973 max_size = c->size;
1974
1975 c = c->next;
1976 }
1977
1978 return max_size;
1979 }
1980
1981 static void target_destroy(struct target *target)
1982 {
1983 if (target->type->deinit_target)
1984 target->type->deinit_target(target);
1985
1986 if (target->semihosting)
1987 free(target->semihosting);
1988
1989 jtag_unregister_event_callback(jtag_enable_callback, target);
1990
1991 struct target_event_action *teap = target->event_action;
1992 while (teap) {
1993 struct target_event_action *next = teap->next;
1994 Jim_DecrRefCount(teap->interp, teap->body);
1995 free(teap);
1996 teap = next;
1997 }
1998
1999 target_free_all_working_areas(target);
2000
2001 /* release the targets SMP list */
2002 if (target->smp) {
2003 struct target_list *head = target->head;
2004 while (head != NULL) {
2005 struct target_list *pos = head->next;
2006 head->target->smp = 0;
2007 free(head);
2008 head = pos;
2009 }
2010 target->smp = 0;
2011 }
2012
2013 free(target->gdb_port_override);
2014 free(target->type);
2015 free(target->trace_info);
2016 free(target->fileio_info);
2017 free(target->cmd_name);
2018 free(target);
2019 }
2020
2021 void target_quit(void)
2022 {
2023 struct target_event_callback *pe = target_event_callbacks;
2024 while (pe) {
2025 struct target_event_callback *t = pe->next;
2026 free(pe);
2027 pe = t;
2028 }
2029 target_event_callbacks = NULL;
2030
2031 struct target_timer_callback *pt = target_timer_callbacks;
2032 while (pt) {
2033 struct target_timer_callback *t = pt->next;
2034 free(pt);
2035 pt = t;
2036 }
2037 target_timer_callbacks = NULL;
2038
2039 for (struct target *target = all_targets; target;) {
2040 struct target *tmp;
2041
2042 tmp = target->next;
2043 target_destroy(target);
2044 target = tmp;
2045 }
2046
2047 all_targets = NULL;
2048 }
2049
2050 int target_arch_state(struct target *target)
2051 {
2052 int retval;
2053 if (target == NULL) {
2054 LOG_WARNING("No target has been configured");
2055 return ERROR_OK;
2056 }
2057
2058 if (target->state != TARGET_HALTED)
2059 return ERROR_OK;
2060
2061 retval = target->type->arch_state(target);
2062 return retval;
2063 }
2064
2065 static int target_get_gdb_fileio_info_default(struct target *target,
2066 struct gdb_fileio_info *fileio_info)
2067 {
2068 /* If target does not support semi-hosting function, target
2069 has no need to provide .get_gdb_fileio_info callback.
2070 It just return ERROR_FAIL and gdb_server will return "Txx"
2071 as target halted every time. */
2072 return ERROR_FAIL;
2073 }
2074
2075 static int target_gdb_fileio_end_default(struct target *target,
2076 int retcode, int fileio_errno, bool ctrl_c)
2077 {
2078 return ERROR_OK;
2079 }
2080
2081 static int target_profiling_default(struct target *target, uint32_t *samples,
2082 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2083 {
2084 struct timeval timeout, now;
2085
2086 gettimeofday(&timeout, NULL);
2087 timeval_add_time(&timeout, seconds, 0);
2088
2089 LOG_INFO("Starting profiling. Halting and resuming the"
2090 " target as often as we can...");
2091
2092 uint32_t sample_count = 0;
2093 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2094 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2095
2096 int retval = ERROR_OK;
2097 for (;;) {
2098 target_poll(target);
2099 if (target->state == TARGET_HALTED) {
2100 uint32_t t = buf_get_u32(reg->value, 0, 32);
2101 samples[sample_count++] = t;
2102 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2103 retval = target_resume(target, 1, 0, 0, 0);
2104 target_poll(target);
2105 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2106 } else if (target->state == TARGET_RUNNING) {
2107 /* We want to quickly sample the PC. */
2108 retval = target_halt(target);
2109 } else {
2110 LOG_INFO("Target not halted or running");
2111 retval = ERROR_OK;
2112 break;
2113 }
2114
2115 if (retval != ERROR_OK)
2116 break;
2117
2118 gettimeofday(&now, NULL);
2119 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2120 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2121 break;
2122 }
2123 }
2124
2125 *num_samples = sample_count;
2126 return retval;
2127 }
2128
2129 /* Single aligned words are guaranteed to use 16 or 32 bit access
2130 * mode respectively, otherwise data is handled as quickly as
2131 * possible
2132 */
2133 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2134 {
2135 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2136 size, address);
2137
2138 if (!target_was_examined(target)) {
2139 LOG_ERROR("Target not examined yet");
2140 return ERROR_FAIL;
2141 }
2142
2143 if (size == 0)
2144 return ERROR_OK;
2145
2146 if ((address + size - 1) < address) {
2147 /* GDB can request this when e.g. PC is 0xfffffffc */
2148 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2149 address,
2150 size);
2151 return ERROR_FAIL;
2152 }
2153
2154 return target->type->write_buffer(target, address, size, buffer);
2155 }
2156
2157 static int target_write_buffer_default(struct target *target,
2158 target_addr_t address, uint32_t count, const uint8_t *buffer)
2159 {
2160 uint32_t size;
2161
2162 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2163 * will have something to do with the size we leave to it. */
2164 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2165 if (address & size) {
2166 int retval = target_write_memory(target, address, size, 1, buffer);
2167 if (retval != ERROR_OK)
2168 return retval;
2169 address += size;
2170 count -= size;
2171 buffer += size;
2172 }
2173 }
2174
2175 /* Write the data with as large access size as possible. */
2176 for (; size > 0; size /= 2) {
2177 uint32_t aligned = count - count % size;
2178 if (aligned > 0) {
2179 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2180 if (retval != ERROR_OK)
2181 return retval;
2182 address += aligned;
2183 count -= aligned;
2184 buffer += aligned;
2185 }
2186 }
2187
2188 return ERROR_OK;
2189 }
2190
2191 /* Single aligned words are guaranteed to use 16 or 32 bit access
2192 * mode respectively, otherwise data is handled as quickly as
2193 * possible
2194 */
2195 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2196 {
2197 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2198 size, address);
2199
2200 if (!target_was_examined(target)) {
2201 LOG_ERROR("Target not examined yet");
2202 return ERROR_FAIL;
2203 }
2204
2205 if (size == 0)
2206 return ERROR_OK;
2207
2208 if ((address + size - 1) < address) {
2209 /* GDB can request this when e.g. PC is 0xfffffffc */
2210 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2211 address,
2212 size);
2213 return ERROR_FAIL;
2214 }
2215
2216 return target->type->read_buffer(target, address, size, buffer);
2217 }
2218
2219 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2220 {
2221 uint32_t size;
2222
2223 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2224 * will have something to do with the size we leave to it. */
2225 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2226 if (address & size) {
2227 int retval = target_read_memory(target, address, size, 1, buffer);
2228 if (retval != ERROR_OK)
2229 return retval;
2230 address += size;
2231 count -= size;
2232 buffer += size;
2233 }
2234 }
2235
2236 /* Read the data with as large access size as possible. */
2237 for (; size > 0; size /= 2) {
2238 uint32_t aligned = count - count % size;
2239 if (aligned > 0) {
2240 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2241 if (retval != ERROR_OK)
2242 return retval;
2243 address += aligned;
2244 count -= aligned;
2245 buffer += aligned;
2246 }
2247 }
2248
2249 return ERROR_OK;
2250 }
2251
2252 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2253 {
2254 uint8_t *buffer;
2255 int retval;
2256 uint32_t i;
2257 uint32_t checksum = 0;
2258 if (!target_was_examined(target)) {
2259 LOG_ERROR("Target not examined yet");
2260 return ERROR_FAIL;
2261 }
2262
2263 retval = target->type->checksum_memory(target, address, size, &checksum);
2264 if (retval != ERROR_OK) {
2265 buffer = malloc(size);
2266 if (buffer == NULL) {
2267 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2268 return ERROR_COMMAND_SYNTAX_ERROR;
2269 }
2270 retval = target_read_buffer(target, address, size, buffer);
2271 if (retval != ERROR_OK) {
2272 free(buffer);
2273 return retval;
2274 }
2275
2276 /* convert to target endianness */
2277 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2278 uint32_t target_data;
2279 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2280 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2281 }
2282
2283 retval = image_calculate_checksum(buffer, size, &checksum);
2284 free(buffer);
2285 }
2286
2287 *crc = checksum;
2288
2289 return retval;
2290 }
2291
2292 int target_blank_check_memory(struct target *target,
2293 struct target_memory_check_block *blocks, int num_blocks,
2294 uint8_t erased_value)
2295 {
2296 if (!target_was_examined(target)) {
2297 LOG_ERROR("Target not examined yet");
2298 return ERROR_FAIL;
2299 }
2300
2301 if (target->type->blank_check_memory == NULL)
2302 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2303
2304 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2305 }
2306
2307 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2308 {
2309 uint8_t value_buf[8];
2310 if (!target_was_examined(target)) {
2311 LOG_ERROR("Target not examined yet");
2312 return ERROR_FAIL;
2313 }
2314
2315 int retval = target_read_memory(target, address, 8, 1, value_buf);
2316
2317 if (retval == ERROR_OK) {
2318 *value = target_buffer_get_u64(target, value_buf);
2319 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2320 address,
2321 *value);
2322 } else {
2323 *value = 0x0;
2324 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2325 address);
2326 }
2327
2328 return retval;
2329 }
2330
2331 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2332 {
2333 uint8_t value_buf[4];
2334 if (!target_was_examined(target)) {
2335 LOG_ERROR("Target not examined yet");
2336 return ERROR_FAIL;
2337 }
2338
2339 int retval = target_read_memory(target, address, 4, 1, value_buf);
2340
2341 if (retval == ERROR_OK) {
2342 *value = target_buffer_get_u32(target, value_buf);
2343 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2344 address,
2345 *value);
2346 } else {
2347 *value = 0x0;
2348 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2349 address);
2350 }
2351
2352 return retval;
2353 }
2354
2355 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2356 {
2357 uint8_t value_buf[2];
2358 if (!target_was_examined(target)) {
2359 LOG_ERROR("Target not examined yet");
2360 return ERROR_FAIL;
2361 }
2362
2363 int retval = target_read_memory(target, address, 2, 1, value_buf);
2364
2365 if (retval == ERROR_OK) {
2366 *value = target_buffer_get_u16(target, value_buf);
2367 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2368 address,
2369 *value);
2370 } else {
2371 *value = 0x0;
2372 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2373 address);
2374 }
2375
2376 return retval;
2377 }
2378
2379 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2380 {
2381 if (!target_was_examined(target)) {
2382 LOG_ERROR("Target not examined yet");
2383 return ERROR_FAIL;
2384 }
2385
2386 int retval = target_read_memory(target, address, 1, 1, value);
2387
2388 if (retval == ERROR_OK) {
2389 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2390 address,
2391 *value);
2392 } else {
2393 *value = 0x0;
2394 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2395 address);
2396 }
2397
2398 return retval;
2399 }
2400
2401 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2402 {
2403 int retval;
2404 uint8_t value_buf[8];
2405 if (!target_was_examined(target)) {
2406 LOG_ERROR("Target not examined yet");
2407 return ERROR_FAIL;
2408 }
2409
2410 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2411 address,
2412 value);
2413
2414 target_buffer_set_u64(target, value_buf, value);
2415 retval = target_write_memory(target, address, 8, 1, value_buf);
2416 if (retval != ERROR_OK)
2417 LOG_DEBUG("failed: %i", retval);
2418
2419 return retval;
2420 }
2421
2422 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2423 {
2424 int retval;
2425 uint8_t value_buf[4];
2426 if (!target_was_examined(target)) {
2427 LOG_ERROR("Target not examined yet");
2428 return ERROR_FAIL;
2429 }
2430
2431 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2432 address,
2433 value);
2434
2435 target_buffer_set_u32(target, value_buf, value);
2436 retval = target_write_memory(target, address, 4, 1, value_buf);
2437 if (retval != ERROR_OK)
2438 LOG_DEBUG("failed: %i", retval);
2439
2440 return retval;
2441 }
2442
2443 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2444 {
2445 int retval;
2446 uint8_t value_buf[2];
2447 if (!target_was_examined(target)) {
2448 LOG_ERROR("Target not examined yet");
2449 return ERROR_FAIL;
2450 }
2451
2452 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2453 address,
2454 value);
2455
2456 target_buffer_set_u16(target, value_buf, value);
2457 retval = target_write_memory(target, address, 2, 1, value_buf);
2458 if (retval != ERROR_OK)
2459 LOG_DEBUG("failed: %i", retval);
2460
2461 return retval;
2462 }
2463
2464 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2465 {
2466 int retval;
2467 if (!target_was_examined(target)) {
2468 LOG_ERROR("Target not examined yet");
2469 return ERROR_FAIL;
2470 }
2471
2472 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2473 address, value);
2474
2475 retval = target_write_memory(target, address, 1, 1, &value);
2476 if (retval != ERROR_OK)
2477 LOG_DEBUG("failed: %i", retval);
2478
2479 return retval;
2480 }
2481
2482 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2483 {
2484 int retval;
2485 uint8_t value_buf[8];
2486 if (!target_was_examined(target)) {
2487 LOG_ERROR("Target not examined yet");
2488 return ERROR_FAIL;
2489 }
2490
2491 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2492 address,
2493 value);
2494
2495 target_buffer_set_u64(target, value_buf, value);
2496 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2497 if (retval != ERROR_OK)
2498 LOG_DEBUG("failed: %i", retval);
2499
2500 return retval;
2501 }
2502
2503 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2504 {
2505 int retval;
2506 uint8_t value_buf[4];
2507 if (!target_was_examined(target)) {
2508 LOG_ERROR("Target not examined yet");
2509 return ERROR_FAIL;
2510 }
2511
2512 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2513 address,
2514 value);
2515
2516 target_buffer_set_u32(target, value_buf, value);
2517 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2518 if (retval != ERROR_OK)
2519 LOG_DEBUG("failed: %i", retval);
2520
2521 return retval;
2522 }
2523
2524 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2525 {
2526 int retval;
2527 uint8_t value_buf[2];
2528 if (!target_was_examined(target)) {
2529 LOG_ERROR("Target not examined yet");
2530 return ERROR_FAIL;
2531 }
2532
2533 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2534 address,
2535 value);
2536
2537 target_buffer_set_u16(target, value_buf, value);
2538 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2539 if (retval != ERROR_OK)
2540 LOG_DEBUG("failed: %i", retval);
2541
2542 return retval;
2543 }
2544
2545 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2546 {
2547 int retval;
2548 if (!target_was_examined(target)) {
2549 LOG_ERROR("Target not examined yet");
2550 return ERROR_FAIL;
2551 }
2552
2553 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2554 address, value);
2555
2556 retval = target_write_phys_memory(target, address, 1, 1, &value);
2557 if (retval != ERROR_OK)
2558 LOG_DEBUG("failed: %i", retval);
2559
2560 return retval;
2561 }
2562
2563 static int find_target(struct command_context *cmd_ctx, const char *name)
2564 {
2565 struct target *target = get_target(name);
2566 if (target == NULL) {
2567 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2568 return ERROR_FAIL;
2569 }
2570 if (!target->tap->enabled) {
2571 LOG_USER("Target: TAP %s is disabled, "
2572 "can't be the current target\n",
2573 target->tap->dotted_name);
2574 return ERROR_FAIL;
2575 }
2576
2577 cmd_ctx->current_target = target;
2578 if (cmd_ctx->current_target_override)
2579 cmd_ctx->current_target_override = target;
2580
2581 return ERROR_OK;
2582 }
2583
2584
2585 COMMAND_HANDLER(handle_targets_command)
2586 {
2587 int retval = ERROR_OK;
2588 if (CMD_ARGC == 1) {
2589 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2590 if (retval == ERROR_OK) {
2591 /* we're done! */
2592 return retval;
2593 }
2594 }
2595
2596 struct target *target = all_targets;
2597 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2598 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2599 while (target) {
2600 const char *state;
2601 char marker = ' ';
2602
2603 if (target->tap->enabled)
2604 state = target_state_name(target);
2605 else
2606 state = "tap-disabled";
2607
2608 if (CMD_CTX->current_target == target)
2609 marker = '*';
2610
2611 /* keep columns lined up to match the headers above */
2612 command_print(CMD_CTX,
2613 "%2d%c %-18s %-10s %-6s %-18s %s",
2614 target->target_number,
2615 marker,
2616 target_name(target),
2617 target_type_name(target),
2618 Jim_Nvp_value2name_simple(nvp_target_endian,
2619 target->endianness)->name,
2620 target->tap->dotted_name,
2621 state);
2622 target = target->next;
2623 }
2624
2625 return retval;
2626 }
2627
2628 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2629
2630 static int powerDropout;
2631 static int srstAsserted;
2632
2633 static int runPowerRestore;
2634 static int runPowerDropout;
2635 static int runSrstAsserted;
2636 static int runSrstDeasserted;
2637
2638 static int sense_handler(void)
2639 {
2640 static int prevSrstAsserted;
2641 static int prevPowerdropout;
2642
2643 int retval = jtag_power_dropout(&powerDropout);
2644 if (retval != ERROR_OK)
2645 return retval;
2646
2647 int powerRestored;
2648 powerRestored = prevPowerdropout && !powerDropout;
2649 if (powerRestored)
2650 runPowerRestore = 1;
2651
2652 int64_t current = timeval_ms();
2653 static int64_t lastPower;
2654 bool waitMore = lastPower + 2000 > current;
2655 if (powerDropout && !waitMore) {
2656 runPowerDropout = 1;
2657 lastPower = current;
2658 }
2659
2660 retval = jtag_srst_asserted(&srstAsserted);
2661 if (retval != ERROR_OK)
2662 return retval;
2663
2664 int srstDeasserted;
2665 srstDeasserted = prevSrstAsserted && !srstAsserted;
2666
2667 static int64_t lastSrst;
2668 waitMore = lastSrst + 2000 > current;
2669 if (srstDeasserted && !waitMore) {
2670 runSrstDeasserted = 1;
2671 lastSrst = current;
2672 }
2673
2674 if (!prevSrstAsserted && srstAsserted)
2675 runSrstAsserted = 1;
2676
2677 prevSrstAsserted = srstAsserted;
2678 prevPowerdropout = powerDropout;
2679
2680 if (srstDeasserted || powerRestored) {
2681 /* Other than logging the event we can't do anything here.
2682 * Issuing a reset is a particularly bad idea as we might
2683 * be inside a reset already.
2684 */
2685 }
2686
2687 return ERROR_OK;
2688 }
2689
2690 /* process target state changes */
2691 static int handle_target(void *priv)
2692 {
2693 Jim_Interp *interp = (Jim_Interp *)priv;
2694 int retval = ERROR_OK;
2695
2696 if (!is_jtag_poll_safe()) {
2697 /* polling is disabled currently */
2698 return ERROR_OK;
2699 }
2700
2701 /* we do not want to recurse here... */
2702 static int recursive;
2703 if (!recursive) {
2704 recursive = 1;
2705 sense_handler();
2706 /* danger! running these procedures can trigger srst assertions and power dropouts.
2707 * We need to avoid an infinite loop/recursion here and we do that by
2708 * clearing the flags after running these events.
2709 */
2710 int did_something = 0;
2711 if (runSrstAsserted) {
2712 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2713 Jim_Eval(interp, "srst_asserted");
2714 did_something = 1;
2715 }
2716 if (runSrstDeasserted) {
2717 Jim_Eval(interp, "srst_deasserted");
2718 did_something = 1;
2719 }
2720 if (runPowerDropout) {
2721 LOG_INFO("Power dropout detected, running power_dropout proc.");
2722 Jim_Eval(interp, "power_dropout");
2723 did_something = 1;
2724 }
2725 if (runPowerRestore) {
2726 Jim_Eval(interp, "power_restore");
2727 did_something = 1;
2728 }
2729
2730 if (did_something) {
2731 /* clear detect flags */
2732 sense_handler();
2733 }
2734
2735 /* clear action flags */
2736
2737 runSrstAsserted = 0;
2738 runSrstDeasserted = 0;
2739 runPowerRestore = 0;
2740 runPowerDropout = 0;
2741
2742 recursive = 0;
2743 }
2744
2745 /* Poll targets for state changes unless that's globally disabled.
2746 * Skip targets that are currently disabled.
2747 */
2748 for (struct target *target = all_targets;
2749 is_jtag_poll_safe() && target;
2750 target = target->next) {
2751
2752 if (!target_was_examined(target))
2753 continue;
2754
2755 if (!target->tap->enabled)
2756 continue;
2757
2758 if (target->backoff.times > target->backoff.count) {
2759 /* do not poll this time as we failed previously */
2760 target->backoff.count++;
2761 continue;
2762 }
2763 target->backoff.count = 0;
2764
2765 /* only poll target if we've got power and srst isn't asserted */
2766 if (!powerDropout && !srstAsserted) {
2767 /* polling may fail silently until the target has been examined */
2768 retval = target_poll(target);
2769 if (retval != ERROR_OK) {
2770 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2771 if (target->backoff.times * polling_interval < 5000) {
2772 target->backoff.times *= 2;
2773 target->backoff.times++;
2774 }
2775
2776 /* Tell GDB to halt the debugger. This allows the user to
2777 * run monitor commands to handle the situation.
2778 */
2779 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2780 }
2781 if (target->backoff.times > 0) {
2782 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2783 target_reset_examined(target);
2784 retval = target_examine_one(target);
2785 /* Target examination could have failed due to unstable connection,
2786 * but we set the examined flag anyway to repoll it later */
2787 if (retval != ERROR_OK) {
2788 target->examined = true;
2789 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2790 target->backoff.times * polling_interval);
2791 return retval;
2792 }
2793 }
2794
2795 /* Since we succeeded, we reset backoff count */
2796 target->backoff.times = 0;
2797 }
2798 }
2799
2800 return retval;
2801 }
2802
2803 COMMAND_HANDLER(handle_reg_command)
2804 {
2805 struct target *target;
2806 struct reg *reg = NULL;
2807 unsigned count = 0;
2808 char *value;
2809
2810 LOG_DEBUG("-");
2811
2812 target = get_current_target(CMD_CTX);
2813
2814 /* list all available registers for the current target */
2815 if (CMD_ARGC == 0) {
2816 struct reg_cache *cache = target->reg_cache;
2817
2818 count = 0;
2819 while (cache) {
2820 unsigned i;
2821
2822 command_print(CMD_CTX, "===== %s", cache->name);
2823
2824 for (i = 0, reg = cache->reg_list;
2825 i < cache->num_regs;
2826 i++, reg++, count++) {
2827 if (reg->exist == false)
2828 continue;
2829 /* only print cached values if they are valid */
2830 if (reg->valid) {
2831 value = buf_to_str(reg->value,
2832 reg->size, 16);
2833 command_print(CMD_CTX,
2834 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2835 count, reg->name,
2836 reg->size, value,
2837 reg->dirty
2838 ? " (dirty)"
2839 : "");
2840 free(value);
2841 } else {
2842 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2843 count, reg->name,
2844 reg->size) ;
2845 }
2846 }
2847 cache = cache->next;
2848 }
2849
2850 return ERROR_OK;
2851 }
2852
2853 /* access a single register by its ordinal number */
2854 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2855 unsigned num;
2856 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2857
2858 struct reg_cache *cache = target->reg_cache;
2859 count = 0;
2860 while (cache) {
2861 unsigned i;
2862 for (i = 0; i < cache->num_regs; i++) {
2863 if (count++ == num) {
2864 reg = &cache->reg_list[i];
2865 break;
2866 }
2867 }
2868 if (reg)
2869 break;
2870 cache = cache->next;
2871 }
2872
2873 if (!reg) {
2874 command_print(CMD_CTX, "%i is out of bounds, the current target "
2875 "has only %i registers (0 - %i)", num, count, count - 1);
2876 return ERROR_OK;
2877 }
2878 } else {
2879 /* access a single register by its name */
2880 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2881
2882 if (!reg)
2883 goto not_found;
2884 }
2885
2886 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2887
2888 if (!reg->exist)
2889 goto not_found;
2890
2891 /* display a register */
2892 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2893 && (CMD_ARGV[1][0] <= '9')))) {
2894 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2895 reg->valid = 0;
2896
2897 if (reg->valid == 0)
2898 reg->type->get(reg);
2899 value = buf_to_str(reg->value, reg->size, 16);
2900 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2901 free(value);
2902 return ERROR_OK;
2903 }
2904
2905 /* set register value */
2906 if (CMD_ARGC == 2) {
2907 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2908 if (buf == NULL)
2909 return ERROR_FAIL;
2910 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2911
2912 reg->type->set(reg, buf);
2913
2914 value = buf_to_str(reg->value, reg->size, 16);
2915 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2916 free(value);
2917
2918 free(buf);
2919
2920 return ERROR_OK;
2921 }
2922
2923 return ERROR_COMMAND_SYNTAX_ERROR;
2924
2925 not_found:
2926 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2927 return ERROR_OK;
2928 }
2929
2930 COMMAND_HANDLER(handle_poll_command)
2931 {
2932 int retval = ERROR_OK;
2933 struct target *target = get_current_target(CMD_CTX);
2934
2935 if (CMD_ARGC == 0) {
2936 command_print(CMD_CTX, "background polling: %s",
2937 jtag_poll_get_enabled() ? "on" : "off");
2938 command_print(CMD_CTX, "TAP: %s (%s)",
2939 target->tap->dotted_name,
2940 target->tap->enabled ? "enabled" : "disabled");
2941 if (!target->tap->enabled)
2942 return ERROR_OK;
2943 retval = target_poll(target);
2944 if (retval != ERROR_OK)
2945 return retval;
2946 retval = target_arch_state(target);
2947 if (retval != ERROR_OK)
2948 return retval;
2949 } else if (CMD_ARGC == 1) {
2950 bool enable;
2951 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2952 jtag_poll_set_enabled(enable);
2953 } else
2954 return ERROR_COMMAND_SYNTAX_ERROR;
2955
2956 return retval;
2957 }
2958
2959 COMMAND_HANDLER(handle_wait_halt_command)
2960 {
2961 if (CMD_ARGC > 1)
2962 return ERROR_COMMAND_SYNTAX_ERROR;
2963
2964 unsigned ms = DEFAULT_HALT_TIMEOUT;
2965 if (1 == CMD_ARGC) {
2966 int retval = parse_uint(CMD_ARGV[0], &ms);
2967 if (ERROR_OK != retval)
2968 return ERROR_COMMAND_SYNTAX_ERROR;
2969 }
2970
2971 struct target *target = get_current_target(CMD_CTX);
2972 return target_wait_state(target, TARGET_HALTED, ms);
2973 }
2974
2975 /* wait for target state to change. The trick here is to have a low
2976 * latency for short waits and not to suck up all the CPU time
2977 * on longer waits.
2978 *
2979 * After 500ms, keep_alive() is invoked
2980 */
2981 int target_wait_state(struct target *target, enum target_state state, int ms)
2982 {
2983 int retval;
2984 int64_t then = 0, cur;
2985 bool once = true;
2986
2987 for (;;) {
2988 retval = target_poll(target);
2989 if (retval != ERROR_OK)
2990 return retval;
2991 if (target->state == state)
2992 break;
2993 cur = timeval_ms();
2994 if (once) {
2995 once = false;
2996 then = timeval_ms();
2997 LOG_DEBUG("waiting for target %s...",
2998 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2999 }
3000
3001 if (cur-then > 500)
3002 keep_alive();
3003
3004 if ((cur-then) > ms) {
3005 LOG_ERROR("timed out while waiting for target %s",
3006 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3007 return ERROR_FAIL;
3008 }
3009 }
3010
3011 return ERROR_OK;
3012 }
3013
3014 COMMAND_HANDLER(handle_halt_command)
3015 {
3016 LOG_DEBUG("-");
3017
3018 struct target *target = get_current_target(CMD_CTX);
3019
3020 target->verbose_halt_msg = true;
3021
3022 int retval = target_halt(target);
3023 if (ERROR_OK != retval)
3024 return retval;
3025
3026 if (CMD_ARGC == 1) {
3027 unsigned wait_local;
3028 retval = parse_uint(CMD_ARGV[0], &wait_local);
3029 if (ERROR_OK != retval)
3030 return ERROR_COMMAND_SYNTAX_ERROR;
3031 if (!wait_local)
3032 return ERROR_OK;
3033 }
3034
3035 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3036 }
3037
3038 COMMAND_HANDLER(handle_soft_reset_halt_command)
3039 {
3040 struct target *target = get_current_target(CMD_CTX);
3041
3042 LOG_USER("requesting target halt and executing a soft reset");
3043
3044 target_soft_reset_halt(target);
3045
3046 return ERROR_OK;
3047 }
3048
3049 COMMAND_HANDLER(handle_reset_command)
3050 {
3051 if (CMD_ARGC > 1)
3052 return ERROR_COMMAND_SYNTAX_ERROR;
3053
3054 enum target_reset_mode reset_mode = RESET_RUN;
3055 if (CMD_ARGC == 1) {
3056 const Jim_Nvp *n;
3057 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3058 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3059 return ERROR_COMMAND_SYNTAX_ERROR;
3060 reset_mode = n->value;
3061 }
3062
3063 /* reset *all* targets */
3064 return target_process_reset(CMD_CTX, reset_mode);
3065 }
3066
3067
3068 COMMAND_HANDLER(handle_resume_command)
3069 {
3070 int current = 1;
3071 if (CMD_ARGC > 1)
3072 return ERROR_COMMAND_SYNTAX_ERROR;
3073
3074 struct target *target = get_current_target(CMD_CTX);
3075
3076 /* with no CMD_ARGV, resume from current pc, addr = 0,
3077 * with one arguments, addr = CMD_ARGV[0],
3078 * handle breakpoints, not debugging */
3079 target_addr_t addr = 0;
3080 if (CMD_ARGC == 1) {
3081 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3082 current = 0;
3083 }
3084
3085 return target_resume(target, current, addr, 1, 0);
3086 }
3087
3088 COMMAND_HANDLER(handle_step_command)
3089 {
3090 if (CMD_ARGC > 1)
3091 return ERROR_COMMAND_SYNTAX_ERROR;
3092
3093 LOG_DEBUG("-");
3094
3095 /* with no CMD_ARGV, step from current pc, addr = 0,
3096 * with one argument addr = CMD_ARGV[0],
3097 * handle breakpoints, debugging */
3098 target_addr_t addr = 0;
3099 int current_pc = 1;
3100 if (CMD_ARGC == 1) {
3101 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3102 current_pc = 0;
3103 }
3104
3105 struct target *target = get_current_target(CMD_CTX);
3106
3107 return target->type->step(target, current_pc, addr, 1);
3108 }
3109
3110 static void handle_md_output(struct command_context *cmd_ctx,
3111 struct target *target, target_addr_t address, unsigned size,
3112 unsigned count, const uint8_t *buffer)
3113 {
3114 const unsigned line_bytecnt = 32;
3115 unsigned line_modulo = line_bytecnt / size;
3116
3117 char output[line_bytecnt * 4 + 1];
3118 unsigned output_len = 0;
3119
3120 const char *value_fmt;
3121 switch (size) {
3122 case 8:
3123 value_fmt = "%16.16"PRIx64" ";
3124 break;
3125 case 4:
3126 value_fmt = "%8.8"PRIx64" ";
3127 break;
3128 case 2:
3129 value_fmt = "%4.4"PRIx64" ";
3130 break;
3131 case 1:
3132 value_fmt = "%2.2"PRIx64" ";
3133 break;
3134 default:
3135 /* "can't happen", caller checked */
3136 LOG_ERROR("invalid memory read size: %u", size);
3137 return;
3138 }
3139
3140 for (unsigned i = 0; i < count; i++) {
3141 if (i % line_modulo == 0) {
3142 output_len += snprintf(output + output_len,
3143 sizeof(output) - output_len,
3144 TARGET_ADDR_FMT ": ",
3145 (address + (i * size)));
3146 }
3147
3148 uint64_t value = 0;
3149 const uint8_t *value_ptr = buffer + i * size;
3150 switch (size) {
3151 case 8:
3152 value = target_buffer_get_u64(target, value_ptr);
3153 break;
3154 case 4:
3155 value = target_buffer_get_u32(target, value_ptr);
3156 break;
3157 case 2:
3158 value = target_buffer_get_u16(target, value_ptr);
3159 break;
3160 case 1:
3161 value = *value_ptr;
3162 }
3163 output_len += snprintf(output + output_len,
3164 sizeof(output) - output_len,
3165 value_fmt, value);
3166
3167 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3168 command_print(cmd_ctx, "%s", output);
3169 output_len = 0;
3170 }
3171 }
3172 }
3173
3174 COMMAND_HANDLER(handle_md_command)
3175 {
3176 if (CMD_ARGC < 1)
3177 return ERROR_COMMAND_SYNTAX_ERROR;
3178
3179 unsigned size = 0;
3180 switch (CMD_NAME[2]) {
3181 case 'd':
3182 size = 8;
3183 break;
3184 case 'w':
3185 size = 4;
3186 break;
3187 case 'h':
3188 size = 2;
3189 break;
3190 case 'b':
3191 size = 1;
3192 break;
3193 default:
3194 return ERROR_COMMAND_SYNTAX_ERROR;
3195 }
3196
3197 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3198 int (*fn)(struct target *target,
3199 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3200 if (physical) {
3201 CMD_ARGC--;
3202 CMD_ARGV++;
3203 fn = target_read_phys_memory;
3204 } else
3205 fn = target_read_memory;
3206 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3207 return ERROR_COMMAND_SYNTAX_ERROR;
3208
3209 target_addr_t address;
3210 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3211
3212 unsigned count = 1;
3213 if (CMD_ARGC == 2)
3214 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3215
3216 uint8_t *buffer = calloc(count, size);
3217 if (buffer == NULL) {
3218 LOG_ERROR("Failed to allocate md read buffer");
3219 return ERROR_FAIL;
3220 }
3221
3222 struct target *target = get_current_target(CMD_CTX);
3223 int retval = fn(target, address, size, count, buffer);
3224 if (ERROR_OK == retval)
3225 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3226
3227 free(buffer);
3228
3229 return retval;
3230 }
3231
3232 typedef int (*target_write_fn)(struct target *target,
3233 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3234
3235 static int target_fill_mem(struct target *target,
3236 target_addr_t address,
3237 target_write_fn fn,
3238 unsigned data_size,
3239 /* value */
3240 uint64_t b,
3241 /* count */
3242 unsigned c)
3243 {
3244 /* We have to write in reasonably large chunks to be able
3245 * to fill large memory areas with any sane speed */
3246 const unsigned chunk_size = 16384;
3247 uint8_t *target_buf = malloc(chunk_size * data_size);
3248 if (target_buf == NULL) {
3249 LOG_ERROR("Out of memory");
3250 return ERROR_FAIL;
3251 }
3252
3253 for (unsigned i = 0; i < chunk_size; i++) {
3254 switch (data_size) {
3255 case 8:
3256 target_buffer_set_u64(target, target_buf + i * data_size, b);
3257 break;
3258 case 4:
3259 target_buffer_set_u32(target, target_buf + i * data_size, b);
3260 break;
3261 case 2:
3262 target_buffer_set_u16(target, target_buf + i * data_size, b);
3263 break;
3264 case 1:
3265 target_buffer_set_u8(target, target_buf + i * data_size, b);
3266 break;
3267 default:
3268 exit(-1);
3269 }
3270 }
3271
3272 int retval = ERROR_OK;
3273
3274 for (unsigned x = 0; x < c; x += chunk_size) {
3275 unsigned current;
3276 current = c - x;
3277 if (current > chunk_size)
3278 current = chunk_size;
3279 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3280 if (retval != ERROR_OK)
3281 break;
3282 /* avoid GDB timeouts */
3283 keep_alive();
3284 }
3285 free(target_buf);
3286
3287 return retval;
3288 }
3289
3290
3291 COMMAND_HANDLER(handle_mw_command)
3292 {
3293 if (CMD_ARGC < 2)
3294 return ERROR_COMMAND_SYNTAX_ERROR;
3295 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3296 target_write_fn fn;
3297 if (physical) {
3298 CMD_ARGC--;
3299 CMD_ARGV++;
3300 fn = target_write_phys_memory;
3301 } else
3302 fn = target_write_memory;
3303 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3304 return ERROR_COMMAND_SYNTAX_ERROR;
3305
3306 target_addr_t address;
3307 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3308
3309 target_addr_t value;
3310 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3311
3312 unsigned count = 1;
3313 if (CMD_ARGC == 3)
3314 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3315
3316 struct target *target = get_current_target(CMD_CTX);
3317 unsigned wordsize;
3318 switch (CMD_NAME[2]) {
3319 case 'd':
3320 wordsize = 8;
3321 break;
3322 case 'w':
3323 wordsize = 4;
3324 break;
3325 case 'h':
3326 wordsize = 2;
3327 break;
3328 case 'b':
3329 wordsize = 1;
3330 break;
3331 default:
3332 return ERROR_COMMAND_SYNTAX_ERROR;
3333 }
3334
3335 return target_fill_mem(target, address, fn, wordsize, value, count);
3336 }
3337
3338 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3339 target_addr_t *min_address, target_addr_t *max_address)
3340 {
3341 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3342 return ERROR_COMMAND_SYNTAX_ERROR;
3343
3344 /* a base address isn't always necessary,
3345 * default to 0x0 (i.e. don't relocate) */
3346 if (CMD_ARGC >= 2) {
3347 target_addr_t addr;
3348 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3349 image->base_address = addr;
3350 image->base_address_set = 1;
3351 } else
3352 image->base_address_set = 0;
3353
3354 image->start_address_set = 0;
3355
3356 if (CMD_ARGC >= 4)
3357 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3358 if (CMD_ARGC == 5) {
3359 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3360 /* use size (given) to find max (required) */
3361 *max_address += *min_address;
3362 }
3363
3364 if (*min_address > *max_address)
3365 return ERROR_COMMAND_SYNTAX_ERROR;
3366
3367 return ERROR_OK;
3368 }
3369
3370 COMMAND_HANDLER(handle_load_image_command)
3371 {
3372 uint8_t *buffer;
3373 size_t buf_cnt;
3374 uint32_t image_size;
3375 target_addr_t min_address = 0;
3376 target_addr_t max_address = -1;
3377 int i;
3378 struct image image;
3379
3380 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3381 &image, &min_address, &max_address);
3382 if (ERROR_OK != retval)
3383 return retval;
3384
3385 struct target *target = get_current_target(CMD_CTX);
3386
3387 struct duration bench;
3388 duration_start(&bench);
3389
3390 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3391 return ERROR_FAIL;
3392
3393 image_size = 0x0;
3394 retval = ERROR_OK;
3395 for (i = 0; i < image.num_sections; i++) {
3396 buffer = malloc(image.sections[i].size);
3397 if (buffer == NULL) {
3398 command_print(CMD_CTX,
3399 "error allocating buffer for section (%d bytes)",
3400 (int)(image.sections[i].size));
3401 retval = ERROR_FAIL;
3402 break;
3403 }
3404
3405 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3406 if (retval != ERROR_OK) {
3407 free(buffer);
3408 break;
3409 }
3410
3411 uint32_t offset = 0;
3412 uint32_t length = buf_cnt;
3413
3414 /* DANGER!!! beware of unsigned comparision here!!! */
3415
3416 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3417 (image.sections[i].base_address < max_address)) {
3418
3419 if (image.sections[i].base_address < min_address) {
3420 /* clip addresses below */
3421 offset += min_address-image.sections[i].base_address;
3422 length -= offset;
3423 }
3424
3425 if (image.sections[i].base_address + buf_cnt > max_address)
3426 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3427
3428 retval = target_write_buffer(target,
3429 image.sections[i].base_address + offset, length, buffer + offset);
3430 if (retval != ERROR_OK) {
3431 free(buffer);
3432 break;
3433 }
3434 image_size += length;
3435 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3436 (unsigned int)length,
3437 image.sections[i].base_address + offset);
3438 }
3439
3440 free(buffer);
3441 }
3442
3443 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3444 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3445 "in %fs (%0.3f KiB/s)", image_size,
3446 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3447 }
3448
3449 image_close(&image);
3450
3451 return retval;
3452
3453 }
3454
3455 COMMAND_HANDLER(handle_dump_image_command)
3456 {
3457 struct fileio *fileio;
3458 uint8_t *buffer;
3459 int retval, retvaltemp;
3460 target_addr_t address, size;
3461 struct duration bench;
3462 struct target *target = get_current_target(CMD_CTX);
3463
3464 if (CMD_ARGC != 3)
3465 return ERROR_COMMAND_SYNTAX_ERROR;
3466
3467 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3468 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3469
3470 uint32_t buf_size = (size > 4096) ? 4096 : size;
3471 buffer = malloc(buf_size);
3472 if (!buffer)
3473 return ERROR_FAIL;
3474
3475 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3476 if (retval != ERROR_OK) {
3477 free(buffer);
3478 return retval;
3479 }
3480
3481 duration_start(&bench);
3482
3483 while (size > 0) {
3484 size_t size_written;
3485 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3486 retval = target_read_buffer(target, address, this_run_size, buffer);
3487 if (retval != ERROR_OK)
3488 break;
3489
3490 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3491 if (retval != ERROR_OK)
3492 break;
3493
3494 size -= this_run_size;
3495 address += this_run_size;
3496 }
3497
3498 free(buffer);
3499
3500 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3501 size_t filesize;
3502 retval = fileio_size(fileio, &filesize);
3503 if (retval != ERROR_OK)
3504 return retval;
3505 command_print(CMD_CTX,
3506 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3507 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3508 }
3509
3510 retvaltemp = fileio_close(fileio);
3511 if (retvaltemp != ERROR_OK)
3512 return retvaltemp;
3513
3514 return retval;
3515 }
3516
3517 enum verify_mode {
3518 IMAGE_TEST = 0,
3519 IMAGE_VERIFY = 1,
3520 IMAGE_CHECKSUM_ONLY = 2
3521 };
3522
3523 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3524 {
3525 uint8_t *buffer;
3526 size_t buf_cnt;
3527 uint32_t image_size;
3528 int i;
3529 int retval;
3530 uint32_t checksum = 0;
3531 uint32_t mem_checksum = 0;
3532
3533 struct image image;
3534
3535 struct target *target = get_current_target(CMD_CTX);
3536
3537 if (CMD_ARGC < 1)
3538 return ERROR_COMMAND_SYNTAX_ERROR;
3539
3540 if (!target) {
3541 LOG_ERROR("no target selected");
3542 return ERROR_FAIL;
3543 }
3544
3545 struct duration bench;
3546 duration_start(&bench);
3547
3548 if (CMD_ARGC >= 2) {
3549 target_addr_t addr;
3550 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3551 image.base_address = addr;
3552 image.base_address_set = 1;
3553 } else {
3554 image.base_address_set = 0;
3555 image.base_address = 0x0;
3556 }
3557
3558 image.start_address_set = 0;
3559
3560 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3561 if (retval != ERROR_OK)
3562 return retval;
3563
3564 image_size = 0x0;
3565 int diffs = 0;
3566 retval = ERROR_OK;
3567 for (i = 0; i < image.num_sections; i++) {
3568 buffer = malloc(image.sections[i].size);
3569 if (buffer == NULL) {
3570 command_print(CMD_CTX,
3571 "error allocating buffer for section (%d bytes)",
3572 (int)(image.sections[i].size));
3573 break;
3574 }
3575 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3576 if (retval != ERROR_OK) {
3577 free(buffer);
3578 break;
3579 }
3580
3581 if (verify >= IMAGE_VERIFY) {
3582 /* calculate checksum of image */
3583 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3584 if (retval != ERROR_OK) {
3585 free(buffer);
3586 break;
3587 }
3588
3589 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3590 if (retval != ERROR_OK) {
3591 free(buffer);
3592 break;
3593 }
3594 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3595 LOG_ERROR("checksum mismatch");
3596 free(buffer);
3597 retval = ERROR_FAIL;
3598 goto done;
3599 }
3600 if (checksum != mem_checksum) {
3601 /* failed crc checksum, fall back to a binary compare */
3602 uint8_t *data;
3603
3604 if (diffs == 0)
3605 LOG_ERROR("checksum mismatch - attempting binary compare");
3606
3607 data = malloc(buf_cnt);
3608
3609 /* Can we use 32bit word accesses? */
3610 int size = 1;
3611 int count = buf_cnt;
3612 if ((count % 4) == 0) {
3613 size *= 4;
3614 count /= 4;
3615 }
3616 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3617 if (retval == ERROR_OK) {
3618 uint32_t t;
3619 for (t = 0; t < buf_cnt; t++) {
3620 if (data[t] != buffer[t]) {
3621 command_print(CMD_CTX,
3622 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3623 diffs,
3624 (unsigned)(t + image.sections[i].base_address),
3625 data[t],
3626 buffer[t]);
3627 if (diffs++ >= 127) {
3628 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3629 free(data);
3630 free(buffer);
3631 goto done;
3632 }
3633 }
3634 keep_alive();
3635 }
3636 }
3637 free(data);
3638 }
3639 } else {
3640 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3641 image.sections[i].base_address,
3642 buf_cnt);
3643 }
3644
3645 free(buffer);
3646 image_size += buf_cnt;
3647 }
3648 if (diffs > 0)
3649 command_print(CMD_CTX, "No more differences found.");
3650 done:
3651 if (diffs > 0)
3652 retval = ERROR_FAIL;
3653 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3654 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3655 "in %fs (%0.3f KiB/s)", image_size,
3656 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3657 }
3658
3659 image_close(&image);
3660
3661 return retval;
3662 }
3663
3664 COMMAND_HANDLER(handle_verify_image_checksum_command)
3665 {
3666 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3667 }
3668
3669 COMMAND_HANDLER(handle_verify_image_command)
3670 {
3671 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3672 }
3673
3674 COMMAND_HANDLER(handle_test_image_command)
3675 {
3676 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3677 }
3678
3679 static int handle_bp_command_list(struct command_context *cmd_ctx)
3680 {
3681 struct target *target = get_current_target(cmd_ctx);
3682 struct breakpoint *breakpoint = target->breakpoints;
3683 while (breakpoint) {
3684 if (breakpoint->type == BKPT_SOFT) {
3685 char *buf = buf_to_str(breakpoint->orig_instr,
3686 breakpoint->length, 16);
3687 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3688 breakpoint->address,
3689 breakpoint->length,
3690 breakpoint->set, buf);
3691 free(buf);