command_handler: change 'args' to CMD_ARGV
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "breakpoints.h"
40 #include "time_support.h"
41 #include "register.h"
42 #include "trace.h"
43 #include "image.h"
44 #include "jtag.h"
45
46
47 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
51
52 /* targets */
53 extern struct target_type arm7tdmi_target;
54 extern struct target_type arm720t_target;
55 extern struct target_type arm9tdmi_target;
56 extern struct target_type arm920t_target;
57 extern struct target_type arm966e_target;
58 extern struct target_type arm926ejs_target;
59 extern struct target_type fa526_target;
60 extern struct target_type feroceon_target;
61 extern struct target_type dragonite_target;
62 extern struct target_type xscale_target;
63 extern struct target_type cortexm3_target;
64 extern struct target_type cortexa8_target;
65 extern struct target_type arm11_target;
66 extern struct target_type mips_m4k_target;
67 extern struct target_type avr_target;
68
69 struct target_type *target_types[] =
70 {
71 &arm7tdmi_target,
72 &arm9tdmi_target,
73 &arm920t_target,
74 &arm720t_target,
75 &arm966e_target,
76 &arm926ejs_target,
77 &fa526_target,
78 &feroceon_target,
79 &dragonite_target,
80 &xscale_target,
81 &cortexm3_target,
82 &cortexa8_target,
83 &arm11_target,
84 &mips_m4k_target,
85 &avr_target,
86 NULL,
87 };
88
89 struct target *all_targets = NULL;
90 struct target_event_callback *target_event_callbacks = NULL;
91 struct target_timer_callback *target_timer_callbacks = NULL;
92
93 const Jim_Nvp nvp_assert[] = {
94 { .name = "assert", NVP_ASSERT },
95 { .name = "deassert", NVP_DEASSERT },
96 { .name = "T", NVP_ASSERT },
97 { .name = "F", NVP_DEASSERT },
98 { .name = "t", NVP_ASSERT },
99 { .name = "f", NVP_DEASSERT },
100 { .name = NULL, .value = -1 }
101 };
102
103 const Jim_Nvp nvp_error_target[] = {
104 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
105 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
106 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
107 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
108 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
109 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
110 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
111 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
112 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
113 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
114 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
115 { .value = -1, .name = NULL }
116 };
117
118 const char *target_strerror_safe(int err)
119 {
120 const Jim_Nvp *n;
121
122 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
123 if (n->name == NULL) {
124 return "unknown";
125 } else {
126 return n->name;
127 }
128 }
129
130 static const Jim_Nvp nvp_target_event[] = {
131 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
132 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
133
134 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
135 { .value = TARGET_EVENT_HALTED, .name = "halted" },
136 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
137 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
138 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
139
140 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
141 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
142
143 /* historical name */
144
145 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
146
147 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
148 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
149 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
150 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
151 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
152 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
153 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
154 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
155 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
156 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
157
158 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
159 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
160
161 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
162 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
163
164 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
165 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
166
167 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
168 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
169
170 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
171 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
172
173 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
174 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
175 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
176
177 { .name = NULL, .value = -1 }
178 };
179
180 const Jim_Nvp nvp_target_state[] = {
181 { .name = "unknown", .value = TARGET_UNKNOWN },
182 { .name = "running", .value = TARGET_RUNNING },
183 { .name = "halted", .value = TARGET_HALTED },
184 { .name = "reset", .value = TARGET_RESET },
185 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
186 { .name = NULL, .value = -1 },
187 };
188
189 const Jim_Nvp nvp_target_debug_reason [] = {
190 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
191 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
192 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
193 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
194 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
195 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
196 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
197 { .name = NULL, .value = -1 },
198 };
199
200 const Jim_Nvp nvp_target_endian[] = {
201 { .name = "big", .value = TARGET_BIG_ENDIAN },
202 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
203 { .name = "be", .value = TARGET_BIG_ENDIAN },
204 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
205 { .name = NULL, .value = -1 },
206 };
207
208 const Jim_Nvp nvp_reset_modes[] = {
209 { .name = "unknown", .value = RESET_UNKNOWN },
210 { .name = "run" , .value = RESET_RUN },
211 { .name = "halt" , .value = RESET_HALT },
212 { .name = "init" , .value = RESET_INIT },
213 { .name = NULL , .value = -1 },
214 };
215
216 const char *
217 target_state_name( struct target *t )
218 {
219 const char *cp;
220 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
221 if( !cp ){
222 LOG_ERROR("Invalid target state: %d", (int)(t->state));
223 cp = "(*BUG*unknown*BUG*)";
224 }
225 return cp;
226 }
227
228 /* determine the number of the new target */
229 static int new_target_number(void)
230 {
231 struct target *t;
232 int x;
233
234 /* number is 0 based */
235 x = -1;
236 t = all_targets;
237 while (t) {
238 if (x < t->target_number) {
239 x = t->target_number;
240 }
241 t = t->next;
242 }
243 return x + 1;
244 }
245
246 /* read a uint32_t from a buffer in target memory endianness */
247 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
248 {
249 if (target->endianness == TARGET_LITTLE_ENDIAN)
250 return le_to_h_u32(buffer);
251 else
252 return be_to_h_u32(buffer);
253 }
254
255 /* read a uint16_t from a buffer in target memory endianness */
256 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
257 {
258 if (target->endianness == TARGET_LITTLE_ENDIAN)
259 return le_to_h_u16(buffer);
260 else
261 return be_to_h_u16(buffer);
262 }
263
264 /* read a uint8_t from a buffer in target memory endianness */
265 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
266 {
267 return *buffer & 0x0ff;
268 }
269
270 /* write a uint32_t to a buffer in target memory endianness */
271 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
272 {
273 if (target->endianness == TARGET_LITTLE_ENDIAN)
274 h_u32_to_le(buffer, value);
275 else
276 h_u32_to_be(buffer, value);
277 }
278
279 /* write a uint16_t to a buffer in target memory endianness */
280 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
281 {
282 if (target->endianness == TARGET_LITTLE_ENDIAN)
283 h_u16_to_le(buffer, value);
284 else
285 h_u16_to_be(buffer, value);
286 }
287
288 /* write a uint8_t to a buffer in target memory endianness */
289 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
290 {
291 *buffer = value;
292 }
293
294 /* return a pointer to a configured target; id is name or number */
295 struct target *get_target(const char *id)
296 {
297 struct target *target;
298
299 /* try as tcltarget name */
300 for (target = all_targets; target; target = target->next) {
301 if (target->cmd_name == NULL)
302 continue;
303 if (strcmp(id, target->cmd_name) == 0)
304 return target;
305 }
306
307 /* It's OK to remove this fallback sometime after August 2010 or so */
308
309 /* no match, try as number */
310 unsigned num;
311 if (parse_uint(id, &num) != ERROR_OK)
312 return NULL;
313
314 for (target = all_targets; target; target = target->next) {
315 if (target->target_number == (int)num) {
316 LOG_WARNING("use '%s' as target identifier, not '%u'",
317 target->cmd_name, num);
318 return target;
319 }
320 }
321
322 return NULL;
323 }
324
325 /* returns a pointer to the n-th configured target */
326 static struct target *get_target_by_num(int num)
327 {
328 struct target *target = all_targets;
329
330 while (target) {
331 if (target->target_number == num) {
332 return target;
333 }
334 target = target->next;
335 }
336
337 return NULL;
338 }
339
340 struct target* get_current_target(struct command_context *cmd_ctx)
341 {
342 struct target *target = get_target_by_num(cmd_ctx->current_target);
343
344 if (target == NULL)
345 {
346 LOG_ERROR("BUG: current_target out of bounds");
347 exit(-1);
348 }
349
350 return target;
351 }
352
353 int target_poll(struct target *target)
354 {
355 int retval;
356
357 /* We can't poll until after examine */
358 if (!target_was_examined(target))
359 {
360 /* Fail silently lest we pollute the log */
361 return ERROR_FAIL;
362 }
363
364 retval = target->type->poll(target);
365 if (retval != ERROR_OK)
366 return retval;
367
368 if (target->halt_issued)
369 {
370 if (target->state == TARGET_HALTED)
371 {
372 target->halt_issued = false;
373 } else
374 {
375 long long t = timeval_ms() - target->halt_issued_time;
376 if (t>1000)
377 {
378 target->halt_issued = false;
379 LOG_INFO("Halt timed out, wake up GDB.");
380 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
381 }
382 }
383 }
384
385 return ERROR_OK;
386 }
387
388 int target_halt(struct target *target)
389 {
390 int retval;
391 /* We can't poll until after examine */
392 if (!target_was_examined(target))
393 {
394 LOG_ERROR("Target not examined yet");
395 return ERROR_FAIL;
396 }
397
398 retval = target->type->halt(target);
399 if (retval != ERROR_OK)
400 return retval;
401
402 target->halt_issued = true;
403 target->halt_issued_time = timeval_ms();
404
405 return ERROR_OK;
406 }
407
408 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
409 {
410 int retval;
411
412 /* We can't poll until after examine */
413 if (!target_was_examined(target))
414 {
415 LOG_ERROR("Target not examined yet");
416 return ERROR_FAIL;
417 }
418
419 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
420 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
421 * the application.
422 */
423 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
424 return retval;
425
426 return retval;
427 }
428
429 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
430 {
431 char buf[100];
432 int retval;
433 Jim_Nvp *n;
434 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
435 if (n->name == NULL) {
436 LOG_ERROR("invalid reset mode");
437 return ERROR_FAIL;
438 }
439
440 /* disable polling during reset to make reset event scripts
441 * more predictable, i.e. dr/irscan & pathmove in events will
442 * not have JTAG operations injected into the middle of a sequence.
443 */
444 bool save_poll = jtag_poll_get_enabled();
445
446 jtag_poll_set_enabled(false);
447
448 sprintf(buf, "ocd_process_reset %s", n->name);
449 retval = Jim_Eval(interp, buf);
450
451 jtag_poll_set_enabled(save_poll);
452
453 if (retval != JIM_OK) {
454 Jim_PrintErrorMessage(interp);
455 return ERROR_FAIL;
456 }
457
458 /* We want any events to be processed before the prompt */
459 retval = target_call_timer_callbacks_now();
460
461 return retval;
462 }
463
464 static int identity_virt2phys(struct target *target,
465 uint32_t virtual, uint32_t *physical)
466 {
467 *physical = virtual;
468 return ERROR_OK;
469 }
470
471 static int no_mmu(struct target *target, int *enabled)
472 {
473 *enabled = 0;
474 return ERROR_OK;
475 }
476
477 static int default_examine(struct target *target)
478 {
479 target_set_examined(target);
480 return ERROR_OK;
481 }
482
483 int target_examine_one(struct target *target)
484 {
485 return target->type->examine(target);
486 }
487
488 static int jtag_enable_callback(enum jtag_event event, void *priv)
489 {
490 struct target *target = priv;
491
492 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
493 return ERROR_OK;
494
495 jtag_unregister_event_callback(jtag_enable_callback, target);
496 return target_examine_one(target);
497 }
498
499
500 /* Targets that correctly implement init + examine, i.e.
501 * no communication with target during init:
502 *
503 * XScale
504 */
505 int target_examine(void)
506 {
507 int retval = ERROR_OK;
508 struct target *target;
509
510 for (target = all_targets; target; target = target->next)
511 {
512 /* defer examination, but don't skip it */
513 if (!target->tap->enabled) {
514 jtag_register_event_callback(jtag_enable_callback,
515 target);
516 continue;
517 }
518 if ((retval = target_examine_one(target)) != ERROR_OK)
519 return retval;
520 }
521 return retval;
522 }
523 const char *target_get_name(struct target *target)
524 {
525 return target->type->name;
526 }
527
528 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
529 {
530 if (!target_was_examined(target))
531 {
532 LOG_ERROR("Target not examined yet");
533 return ERROR_FAIL;
534 }
535 return target->type->write_memory_imp(target, address, size, count, buffer);
536 }
537
538 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
539 {
540 if (!target_was_examined(target))
541 {
542 LOG_ERROR("Target not examined yet");
543 return ERROR_FAIL;
544 }
545 return target->type->read_memory_imp(target, address, size, count, buffer);
546 }
547
548 static int target_soft_reset_halt_imp(struct target *target)
549 {
550 if (!target_was_examined(target))
551 {
552 LOG_ERROR("Target not examined yet");
553 return ERROR_FAIL;
554 }
555 if (!target->type->soft_reset_halt_imp) {
556 LOG_ERROR("Target %s does not support soft_reset_halt",
557 target->cmd_name);
558 return ERROR_FAIL;
559 }
560 return target->type->soft_reset_halt_imp(target);
561 }
562
563 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
564 {
565 if (!target_was_examined(target))
566 {
567 LOG_ERROR("Target not examined yet");
568 return ERROR_FAIL;
569 }
570 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
571 }
572
573 int target_read_memory(struct target *target,
574 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
575 {
576 return target->type->read_memory(target, address, size, count, buffer);
577 }
578
579 int target_read_phys_memory(struct target *target,
580 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
581 {
582 return target->type->read_phys_memory(target, address, size, count, buffer);
583 }
584
585 int target_write_memory(struct target *target,
586 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
587 {
588 return target->type->write_memory(target, address, size, count, buffer);
589 }
590
591 int target_write_phys_memory(struct target *target,
592 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
593 {
594 return target->type->write_phys_memory(target, address, size, count, buffer);
595 }
596
597 int target_bulk_write_memory(struct target *target,
598 uint32_t address, uint32_t count, uint8_t *buffer)
599 {
600 return target->type->bulk_write_memory(target, address, count, buffer);
601 }
602
603 int target_add_breakpoint(struct target *target,
604 struct breakpoint *breakpoint)
605 {
606 return target->type->add_breakpoint(target, breakpoint);
607 }
608 int target_remove_breakpoint(struct target *target,
609 struct breakpoint *breakpoint)
610 {
611 return target->type->remove_breakpoint(target, breakpoint);
612 }
613
614 int target_add_watchpoint(struct target *target,
615 struct watchpoint *watchpoint)
616 {
617 return target->type->add_watchpoint(target, watchpoint);
618 }
619 int target_remove_watchpoint(struct target *target,
620 struct watchpoint *watchpoint)
621 {
622 return target->type->remove_watchpoint(target, watchpoint);
623 }
624
625 int target_get_gdb_reg_list(struct target *target,
626 struct reg **reg_list[], int *reg_list_size)
627 {
628 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
629 }
630 int target_step(struct target *target,
631 int current, uint32_t address, int handle_breakpoints)
632 {
633 return target->type->step(target, current, address, handle_breakpoints);
634 }
635
636
637 int target_run_algorithm(struct target *target,
638 int num_mem_params, struct mem_param *mem_params,
639 int num_reg_params, struct reg_param *reg_param,
640 uint32_t entry_point, uint32_t exit_point,
641 int timeout_ms, void *arch_info)
642 {
643 return target->type->run_algorithm(target,
644 num_mem_params, mem_params, num_reg_params, reg_param,
645 entry_point, exit_point, timeout_ms, arch_info);
646 }
647
648 /**
649 * Reset the @c examined flag for the given target.
650 * Pure paranoia -- targets are zeroed on allocation.
651 */
652 static void target_reset_examined(struct target *target)
653 {
654 target->examined = false;
655 }
656
657
658
659 static int default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
660 {
661 LOG_ERROR("Not implemented: %s", __func__);
662 return ERROR_FAIL;
663 }
664
665 static int default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
666 {
667 LOG_ERROR("Not implemented: %s", __func__);
668 return ERROR_FAIL;
669 }
670
671 static int arm_cp_check(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
672 {
673 /* basic check */
674 if (!target_was_examined(target))
675 {
676 LOG_ERROR("Target not examined yet");
677 return ERROR_FAIL;
678 }
679
680 if ((cpnum <0) || (cpnum > 15))
681 {
682 LOG_ERROR("Illegal co-processor %d", cpnum);
683 return ERROR_FAIL;
684 }
685
686 if (op1 > 7)
687 {
688 LOG_ERROR("Illegal op1");
689 return ERROR_FAIL;
690 }
691
692 if (op2 > 7)
693 {
694 LOG_ERROR("Illegal op2");
695 return ERROR_FAIL;
696 }
697
698 if (CRn > 15)
699 {
700 LOG_ERROR("Illegal CRn");
701 return ERROR_FAIL;
702 }
703
704 if (CRm > 15)
705 {
706 LOG_ERROR("Illegal CRm");
707 return ERROR_FAIL;
708 }
709
710 return ERROR_OK;
711 }
712
713 int target_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
714 {
715 int retval;
716
717 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
718 if (retval != ERROR_OK)
719 return retval;
720
721 return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
722 }
723
724 int target_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
725 {
726 int retval;
727
728 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
729 if (retval != ERROR_OK)
730 return retval;
731
732 return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
733 }
734
735 static int
736 err_read_phys_memory(struct target *target, uint32_t address,
737 uint32_t size, uint32_t count, uint8_t *buffer)
738 {
739 LOG_ERROR("Not implemented: %s", __func__);
740 return ERROR_FAIL;
741 }
742
743 static int
744 err_write_phys_memory(struct target *target, uint32_t address,
745 uint32_t size, uint32_t count, uint8_t *buffer)
746 {
747 LOG_ERROR("Not implemented: %s", __func__);
748 return ERROR_FAIL;
749 }
750
751 int target_init(struct command_context *cmd_ctx)
752 {
753 struct target *target;
754 int retval;
755
756 for (target = all_targets; target; target = target->next) {
757 struct target_type *type = target->type;
758
759 target_reset_examined(target);
760 if (target->type->examine == NULL)
761 {
762 target->type->examine = default_examine;
763 }
764
765 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
766 {
767 LOG_ERROR("target '%s' init failed", target_get_name(target));
768 return retval;
769 }
770
771 /**
772 * @todo MCR/MRC are ARM-specific; don't require them in
773 * all targets, or for ARMs without coprocessors.
774 */
775 if (target->type->mcr == NULL)
776 {
777 target->type->mcr = default_mcr;
778 } else
779 {
780 /* FIX! multiple targets will generally register global commands
781 * multiple times. Only register this one if *one* of the
782 * targets need the command. Hmm... make it a command on the
783 * Jim Tcl target object?
784 */
785 register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
786 }
787
788 if (target->type->mrc == NULL)
789 {
790 target->type->mrc = default_mrc;
791 } else
792 {
793 register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
794 }
795
796
797 /**
798 * @todo get rid of those *memory_imp() methods, now that all
799 * callers are using target_*_memory() accessors ... and make
800 * sure the "physical" paths handle the same issues.
801 */
802
803 /* a non-invasive way(in terms of patches) to add some code that
804 * runs before the type->write/read_memory implementation
805 */
806 target->type->write_memory_imp = target->type->write_memory;
807 target->type->write_memory = target_write_memory_imp;
808 target->type->read_memory_imp = target->type->read_memory;
809 target->type->read_memory = target_read_memory_imp;
810 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
811 target->type->soft_reset_halt = target_soft_reset_halt_imp;
812 target->type->run_algorithm_imp = target->type->run_algorithm;
813 target->type->run_algorithm = target_run_algorithm_imp;
814
815 /* Sanity-check MMU support ... stub in what we must, to help
816 * implement it in stages, but warn if we need to do so.
817 */
818 if (type->mmu) {
819 if (type->write_phys_memory == NULL) {
820 LOG_ERROR("type '%s' is missing %s",
821 type->name,
822 "write_phys_memory");
823 type->write_phys_memory = err_write_phys_memory;
824 }
825 if (type->read_phys_memory == NULL) {
826 LOG_ERROR("type '%s' is missing %s",
827 type->name,
828 "read_phys_memory");
829 type->read_phys_memory = err_read_phys_memory;
830 }
831 if (type->virt2phys == NULL) {
832 LOG_ERROR("type '%s' is missing %s",
833 type->name,
834 "virt2phys");
835 type->virt2phys = identity_virt2phys;
836 }
837
838 /* Make sure no-MMU targets all behave the same: make no
839 * distinction between physical and virtual addresses, and
840 * ensure that virt2phys() is always an identity mapping.
841 */
842 } else {
843 if (type->write_phys_memory
844 || type->read_phys_memory
845 || type->virt2phys)
846 LOG_WARNING("type '%s' has broken MMU hooks",
847 type->name);
848
849 type->mmu = no_mmu;
850 type->write_phys_memory = type->write_memory;
851 type->read_phys_memory = type->read_memory;
852 type->virt2phys = identity_virt2phys;
853 }
854 }
855
856 if (all_targets)
857 {
858 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
859 return retval;
860 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
861 return retval;
862 }
863
864 return ERROR_OK;
865 }
866
867 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
868 {
869 struct target_event_callback **callbacks_p = &target_event_callbacks;
870
871 if (callback == NULL)
872 {
873 return ERROR_INVALID_ARGUMENTS;
874 }
875
876 if (*callbacks_p)
877 {
878 while ((*callbacks_p)->next)
879 callbacks_p = &((*callbacks_p)->next);
880 callbacks_p = &((*callbacks_p)->next);
881 }
882
883 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
884 (*callbacks_p)->callback = callback;
885 (*callbacks_p)->priv = priv;
886 (*callbacks_p)->next = NULL;
887
888 return ERROR_OK;
889 }
890
891 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
892 {
893 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
894 struct timeval now;
895
896 if (callback == NULL)
897 {
898 return ERROR_INVALID_ARGUMENTS;
899 }
900
901 if (*callbacks_p)
902 {
903 while ((*callbacks_p)->next)
904 callbacks_p = &((*callbacks_p)->next);
905 callbacks_p = &((*callbacks_p)->next);
906 }
907
908 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
909 (*callbacks_p)->callback = callback;
910 (*callbacks_p)->periodic = periodic;
911 (*callbacks_p)->time_ms = time_ms;
912
913 gettimeofday(&now, NULL);
914 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
915 time_ms -= (time_ms % 1000);
916 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
917 if ((*callbacks_p)->when.tv_usec > 1000000)
918 {
919 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
920 (*callbacks_p)->when.tv_sec += 1;
921 }
922
923 (*callbacks_p)->priv = priv;
924 (*callbacks_p)->next = NULL;
925
926 return ERROR_OK;
927 }
928
929 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
930 {
931 struct target_event_callback **p = &target_event_callbacks;
932 struct target_event_callback *c = target_event_callbacks;
933
934 if (callback == NULL)
935 {
936 return ERROR_INVALID_ARGUMENTS;
937 }
938
939 while (c)
940 {
941 struct target_event_callback *next = c->next;
942 if ((c->callback == callback) && (c->priv == priv))
943 {
944 *p = next;
945 free(c);
946 return ERROR_OK;
947 }
948 else
949 p = &(c->next);
950 c = next;
951 }
952
953 return ERROR_OK;
954 }
955
956 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
957 {
958 struct target_timer_callback **p = &target_timer_callbacks;
959 struct target_timer_callback *c = target_timer_callbacks;
960
961 if (callback == NULL)
962 {
963 return ERROR_INVALID_ARGUMENTS;
964 }
965
966 while (c)
967 {
968 struct target_timer_callback *next = c->next;
969 if ((c->callback == callback) && (c->priv == priv))
970 {
971 *p = next;
972 free(c);
973 return ERROR_OK;
974 }
975 else
976 p = &(c->next);
977 c = next;
978 }
979
980 return ERROR_OK;
981 }
982
983 int target_call_event_callbacks(struct target *target, enum target_event event)
984 {
985 struct target_event_callback *callback = target_event_callbacks;
986 struct target_event_callback *next_callback;
987
988 if (event == TARGET_EVENT_HALTED)
989 {
990 /* execute early halted first */
991 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
992 }
993
994 LOG_DEBUG("target event %i (%s)",
995 event,
996 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
997
998 target_handle_event(target, event);
999
1000 while (callback)
1001 {
1002 next_callback = callback->next;
1003 callback->callback(target, event, callback->priv);
1004 callback = next_callback;
1005 }
1006
1007 return ERROR_OK;
1008 }
1009
1010 static int target_timer_callback_periodic_restart(
1011 struct target_timer_callback *cb, struct timeval *now)
1012 {
1013 int time_ms = cb->time_ms;
1014 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1015 time_ms -= (time_ms % 1000);
1016 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1017 if (cb->when.tv_usec > 1000000)
1018 {
1019 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1020 cb->when.tv_sec += 1;
1021 }
1022 return ERROR_OK;
1023 }
1024
1025 static int target_call_timer_callback(struct target_timer_callback *cb,
1026 struct timeval *now)
1027 {
1028 cb->callback(cb->priv);
1029
1030 if (cb->periodic)
1031 return target_timer_callback_periodic_restart(cb, now);
1032
1033 return target_unregister_timer_callback(cb->callback, cb->priv);
1034 }
1035
1036 static int target_call_timer_callbacks_check_time(int checktime)
1037 {
1038 keep_alive();
1039
1040 struct timeval now;
1041 gettimeofday(&now, NULL);
1042
1043 struct target_timer_callback *callback = target_timer_callbacks;
1044 while (callback)
1045 {
1046 // cleaning up may unregister and free this callback
1047 struct target_timer_callback *next_callback = callback->next;
1048
1049 bool call_it = callback->callback &&
1050 ((!checktime && callback->periodic) ||
1051 now.tv_sec > callback->when.tv_sec ||
1052 (now.tv_sec == callback->when.tv_sec &&
1053 now.tv_usec >= callback->when.tv_usec));
1054
1055 if (call_it)
1056 {
1057 int retval = target_call_timer_callback(callback, &now);
1058 if (retval != ERROR_OK)
1059 return retval;
1060 }
1061
1062 callback = next_callback;
1063 }
1064
1065 return ERROR_OK;
1066 }
1067
1068 int target_call_timer_callbacks(void)
1069 {
1070 return target_call_timer_callbacks_check_time(1);
1071 }
1072
1073 /* invoke periodic callbacks immediately */
1074 int target_call_timer_callbacks_now(void)
1075 {
1076 return target_call_timer_callbacks_check_time(0);
1077 }
1078
1079 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1080 {
1081 struct working_area *c = target->working_areas;
1082 struct working_area *new_wa = NULL;
1083
1084 /* Reevaluate working area address based on MMU state*/
1085 if (target->working_areas == NULL)
1086 {
1087 int retval;
1088 int enabled;
1089
1090 retval = target->type->mmu(target, &enabled);
1091 if (retval != ERROR_OK)
1092 {
1093 return retval;
1094 }
1095
1096 if (!enabled) {
1097 if (target->working_area_phys_spec) {
1098 LOG_DEBUG("MMU disabled, using physical "
1099 "address for working memory 0x%08x",
1100 (unsigned)target->working_area_phys);
1101 target->working_area = target->working_area_phys;
1102 } else {
1103 LOG_ERROR("No working memory available. "
1104 "Specify -work-area-phys to target.");
1105 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1106 }
1107 } else {
1108 if (target->working_area_virt_spec) {
1109 LOG_DEBUG("MMU enabled, using virtual "
1110 "address for working memory 0x%08x",
1111 (unsigned)target->working_area_virt);
1112 target->working_area = target->working_area_virt;
1113 } else {
1114 LOG_ERROR("No working memory available. "
1115 "Specify -work-area-virt to target.");
1116 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1117 }
1118 }
1119 }
1120
1121 /* only allocate multiples of 4 byte */
1122 if (size % 4)
1123 {
1124 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1125 size = (size + 3) & (~3);
1126 }
1127
1128 /* see if there's already a matching working area */
1129 while (c)
1130 {
1131 if ((c->free) && (c->size == size))
1132 {
1133 new_wa = c;
1134 break;
1135 }
1136 c = c->next;
1137 }
1138
1139 /* if not, allocate a new one */
1140 if (!new_wa)
1141 {
1142 struct working_area **p = &target->working_areas;
1143 uint32_t first_free = target->working_area;
1144 uint32_t free_size = target->working_area_size;
1145
1146 c = target->working_areas;
1147 while (c)
1148 {
1149 first_free += c->size;
1150 free_size -= c->size;
1151 p = &c->next;
1152 c = c->next;
1153 }
1154
1155 if (free_size < size)
1156 {
1157 LOG_WARNING("not enough working area available(requested %u, free %u)",
1158 (unsigned)(size), (unsigned)(free_size));
1159 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1160 }
1161
1162 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1163
1164 new_wa = malloc(sizeof(struct working_area));
1165 new_wa->next = NULL;
1166 new_wa->size = size;
1167 new_wa->address = first_free;
1168
1169 if (target->backup_working_area)
1170 {
1171 int retval;
1172 new_wa->backup = malloc(new_wa->size);
1173 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1174 {
1175 free(new_wa->backup);
1176 free(new_wa);
1177 return retval;
1178 }
1179 }
1180 else
1181 {
1182 new_wa->backup = NULL;
1183 }
1184
1185 /* put new entry in list */
1186 *p = new_wa;
1187 }
1188
1189 /* mark as used, and return the new (reused) area */
1190 new_wa->free = 0;
1191 *area = new_wa;
1192
1193 /* user pointer */
1194 new_wa->user = area;
1195
1196 return ERROR_OK;
1197 }
1198
1199 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1200 {
1201 if (area->free)
1202 return ERROR_OK;
1203
1204 if (restore && target->backup_working_area)
1205 {
1206 int retval;
1207 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1208 return retval;
1209 }
1210
1211 area->free = 1;
1212
1213 /* mark user pointer invalid */
1214 *area->user = NULL;
1215 area->user = NULL;
1216
1217 return ERROR_OK;
1218 }
1219
1220 int target_free_working_area(struct target *target, struct working_area *area)
1221 {
1222 return target_free_working_area_restore(target, area, 1);
1223 }
1224
1225 /* free resources and restore memory, if restoring memory fails,
1226 * free up resources anyway
1227 */
1228 void target_free_all_working_areas_restore(struct target *target, int restore)
1229 {
1230 struct working_area *c = target->working_areas;
1231
1232 while (c)
1233 {
1234 struct working_area *next = c->next;
1235 target_free_working_area_restore(target, c, restore);
1236
1237 if (c->backup)
1238 free(c->backup);
1239
1240 free(c);
1241
1242 c = next;
1243 }
1244
1245 target->working_areas = NULL;
1246 }
1247
1248 void target_free_all_working_areas(struct target *target)
1249 {
1250 target_free_all_working_areas_restore(target, 1);
1251 }
1252
1253 int target_arch_state(struct target *target)
1254 {
1255 int retval;
1256 if (target == NULL)
1257 {
1258 LOG_USER("No target has been configured");
1259 return ERROR_OK;
1260 }
1261
1262 LOG_USER("target state: %s", target_state_name( target ));
1263
1264 if (target->state != TARGET_HALTED)
1265 return ERROR_OK;
1266
1267 retval = target->type->arch_state(target);
1268 return retval;
1269 }
1270
1271 /* Single aligned words are guaranteed to use 16 or 32 bit access
1272 * mode respectively, otherwise data is handled as quickly as
1273 * possible
1274 */
1275 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1276 {
1277 int retval;
1278 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1279 (int)size, (unsigned)address);
1280
1281 if (!target_was_examined(target))
1282 {
1283 LOG_ERROR("Target not examined yet");
1284 return ERROR_FAIL;
1285 }
1286
1287 if (size == 0) {
1288 return ERROR_OK;
1289 }
1290
1291 if ((address + size - 1) < address)
1292 {
1293 /* GDB can request this when e.g. PC is 0xfffffffc*/
1294 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1295 (unsigned)address,
1296 (unsigned)size);
1297 return ERROR_FAIL;
1298 }
1299
1300 if (((address % 2) == 0) && (size == 2))
1301 {
1302 return target_write_memory(target, address, 2, 1, buffer);
1303 }
1304
1305 /* handle unaligned head bytes */
1306 if (address % 4)
1307 {
1308 uint32_t unaligned = 4 - (address % 4);
1309
1310 if (unaligned > size)
1311 unaligned = size;
1312
1313 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1314 return retval;
1315
1316 buffer += unaligned;
1317 address += unaligned;
1318 size -= unaligned;
1319 }
1320
1321 /* handle aligned words */
1322 if (size >= 4)
1323 {
1324 int aligned = size - (size % 4);
1325
1326 /* use bulk writes above a certain limit. This may have to be changed */
1327 if (aligned > 128)
1328 {
1329 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1330 return retval;
1331 }
1332 else
1333 {
1334 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1335 return retval;
1336 }
1337
1338 buffer += aligned;
1339 address += aligned;
1340 size -= aligned;
1341 }
1342
1343 /* handle tail writes of less than 4 bytes */
1344 if (size > 0)
1345 {
1346 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1347 return retval;
1348 }
1349
1350 return ERROR_OK;
1351 }
1352
1353 /* Single aligned words are guaranteed to use 16 or 32 bit access
1354 * mode respectively, otherwise data is handled as quickly as
1355 * possible
1356 */
1357 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1358 {
1359 int retval;
1360 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1361 (int)size, (unsigned)address);
1362
1363 if (!target_was_examined(target))
1364 {
1365 LOG_ERROR("Target not examined yet");
1366 return ERROR_FAIL;
1367 }
1368
1369 if (size == 0) {
1370 return ERROR_OK;
1371 }
1372
1373 if ((address + size - 1) < address)
1374 {
1375 /* GDB can request this when e.g. PC is 0xfffffffc*/
1376 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1377 address,
1378 size);
1379 return ERROR_FAIL;
1380 }
1381
1382 if (((address % 2) == 0) && (size == 2))
1383 {
1384 return target_read_memory(target, address, 2, 1, buffer);
1385 }
1386
1387 /* handle unaligned head bytes */
1388 if (address % 4)
1389 {
1390 uint32_t unaligned = 4 - (address % 4);
1391
1392 if (unaligned > size)
1393 unaligned = size;
1394
1395 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1396 return retval;
1397
1398 buffer += unaligned;
1399 address += unaligned;
1400 size -= unaligned;
1401 }
1402
1403 /* handle aligned words */
1404 if (size >= 4)
1405 {
1406 int aligned = size - (size % 4);
1407
1408 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1409 return retval;
1410
1411 buffer += aligned;
1412 address += aligned;
1413 size -= aligned;
1414 }
1415
1416 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1417 if(size >=2)
1418 {
1419 int aligned = size - (size%2);
1420 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1421 if (retval != ERROR_OK)
1422 return retval;
1423
1424 buffer += aligned;
1425 address += aligned;
1426 size -= aligned;
1427 }
1428 /* handle tail writes of less than 4 bytes */
1429 if (size > 0)
1430 {
1431 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1432 return retval;
1433 }
1434
1435 return ERROR_OK;
1436 }
1437
1438 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1439 {
1440 uint8_t *buffer;
1441 int retval;
1442 uint32_t i;
1443 uint32_t checksum = 0;
1444 if (!target_was_examined(target))
1445 {
1446 LOG_ERROR("Target not examined yet");
1447 return ERROR_FAIL;
1448 }
1449
1450 if ((retval = target->type->checksum_memory(target, address,
1451 size, &checksum)) != ERROR_OK)
1452 {
1453 buffer = malloc(size);
1454 if (buffer == NULL)
1455 {
1456 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1457 return ERROR_INVALID_ARGUMENTS;
1458 }
1459 retval = target_read_buffer(target, address, size, buffer);
1460 if (retval != ERROR_OK)
1461 {
1462 free(buffer);
1463 return retval;
1464 }
1465
1466 /* convert to target endianess */
1467 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1468 {
1469 uint32_t target_data;
1470 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1471 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1472 }
1473
1474 retval = image_calculate_checksum(buffer, size, &checksum);
1475 free(buffer);
1476 }
1477
1478 *crc = checksum;
1479
1480 return retval;
1481 }
1482
1483 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1484 {
1485 int retval;
1486 if (!target_was_examined(target))
1487 {
1488 LOG_ERROR("Target not examined yet");
1489 return ERROR_FAIL;
1490 }
1491
1492 if (target->type->blank_check_memory == 0)
1493 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1494
1495 retval = target->type->blank_check_memory(target, address, size, blank);
1496
1497 return retval;
1498 }
1499
1500 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1501 {
1502 uint8_t value_buf[4];
1503 if (!target_was_examined(target))
1504 {
1505 LOG_ERROR("Target not examined yet");
1506 return ERROR_FAIL;
1507 }
1508
1509 int retval = target_read_memory(target, address, 4, 1, value_buf);
1510
1511 if (retval == ERROR_OK)
1512 {
1513 *value = target_buffer_get_u32(target, value_buf);
1514 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1515 address,
1516 *value);
1517 }
1518 else
1519 {
1520 *value = 0x0;
1521 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1522 address);
1523 }
1524
1525 return retval;
1526 }
1527
1528 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1529 {
1530 uint8_t value_buf[2];
1531 if (!target_was_examined(target))
1532 {
1533 LOG_ERROR("Target not examined yet");
1534 return ERROR_FAIL;
1535 }
1536
1537 int retval = target_read_memory(target, address, 2, 1, value_buf);
1538
1539 if (retval == ERROR_OK)
1540 {
1541 *value = target_buffer_get_u16(target, value_buf);
1542 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1543 address,
1544 *value);
1545 }
1546 else
1547 {
1548 *value = 0x0;
1549 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1550 address);
1551 }
1552
1553 return retval;
1554 }
1555
1556 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1557 {
1558 int retval = target_read_memory(target, address, 1, 1, value);
1559 if (!target_was_examined(target))
1560 {
1561 LOG_ERROR("Target not examined yet");
1562 return ERROR_FAIL;
1563 }
1564
1565 if (retval == ERROR_OK)
1566 {
1567 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1568 address,
1569 *value);
1570 }
1571 else
1572 {
1573 *value = 0x0;
1574 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1575 address);
1576 }
1577
1578 return retval;
1579 }
1580
1581 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1582 {
1583 int retval;
1584 uint8_t value_buf[4];
1585 if (!target_was_examined(target))
1586 {
1587 LOG_ERROR("Target not examined yet");
1588 return ERROR_FAIL;
1589 }
1590
1591 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1592 address,
1593 value);
1594
1595 target_buffer_set_u32(target, value_buf, value);
1596 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1597 {
1598 LOG_DEBUG("failed: %i", retval);
1599 }
1600
1601 return retval;
1602 }
1603
1604 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1605 {
1606 int retval;
1607 uint8_t value_buf[2];
1608 if (!target_was_examined(target))
1609 {
1610 LOG_ERROR("Target not examined yet");
1611 return ERROR_FAIL;
1612 }
1613
1614 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1615 address,
1616 value);
1617
1618 target_buffer_set_u16(target, value_buf, value);
1619 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1620 {
1621 LOG_DEBUG("failed: %i", retval);
1622 }
1623
1624 return retval;
1625 }
1626
1627 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1628 {
1629 int retval;
1630 if (!target_was_examined(target))
1631 {
1632 LOG_ERROR("Target not examined yet");
1633 return ERROR_FAIL;
1634 }
1635
1636 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1637 address, value);
1638
1639 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1640 {
1641 LOG_DEBUG("failed: %i", retval);
1642 }
1643
1644 return retval;
1645 }
1646
1647 COMMAND_HANDLER(handle_targets_command)
1648 {
1649 struct target *target = all_targets;
1650
1651 if (CMD_ARGC == 1)
1652 {
1653 target = get_target(CMD_ARGV[0]);
1654 if (target == NULL) {
1655 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1656 goto DumpTargets;
1657 }
1658 if (!target->tap->enabled) {
1659 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1660 "can't be the current target\n",
1661 target->tap->dotted_name);
1662 return ERROR_FAIL;
1663 }
1664
1665 cmd_ctx->current_target = target->target_number;
1666 return ERROR_OK;
1667 }
1668 DumpTargets:
1669
1670 target = all_targets;
1671 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1672 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1673 while (target)
1674 {
1675 const char *state;
1676 char marker = ' ';
1677
1678 if (target->tap->enabled)
1679 state = target_state_name( target );
1680 else
1681 state = "tap-disabled";
1682
1683 if (cmd_ctx->current_target == target->target_number)
1684 marker = '*';
1685
1686 /* keep columns lined up to match the headers above */
1687 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1688 target->target_number,
1689 marker,
1690 target->cmd_name,
1691 target_get_name(target),
1692 Jim_Nvp_value2name_simple(nvp_target_endian,
1693 target->endianness)->name,
1694 target->tap->dotted_name,
1695 state);
1696 target = target->next;
1697 }
1698
1699 return ERROR_OK;
1700 }
1701
1702 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1703
1704 static int powerDropout;
1705 static int srstAsserted;
1706
1707 static int runPowerRestore;
1708 static int runPowerDropout;
1709 static int runSrstAsserted;
1710 static int runSrstDeasserted;
1711
1712 static int sense_handler(void)
1713 {
1714 static int prevSrstAsserted = 0;
1715 static int prevPowerdropout = 0;
1716
1717 int retval;
1718 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1719 return retval;
1720
1721 int powerRestored;
1722 powerRestored = prevPowerdropout && !powerDropout;
1723 if (powerRestored)
1724 {
1725 runPowerRestore = 1;
1726 }
1727
1728 long long current = timeval_ms();
1729 static long long lastPower = 0;
1730 int waitMore = lastPower + 2000 > current;
1731 if (powerDropout && !waitMore)
1732 {
1733 runPowerDropout = 1;
1734 lastPower = current;
1735 }
1736
1737 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1738 return retval;
1739
1740 int srstDeasserted;
1741 srstDeasserted = prevSrstAsserted && !srstAsserted;
1742
1743 static long long lastSrst = 0;
1744 waitMore = lastSrst + 2000 > current;
1745 if (srstDeasserted && !waitMore)
1746 {
1747 runSrstDeasserted = 1;
1748 lastSrst = current;
1749 }
1750
1751 if (!prevSrstAsserted && srstAsserted)
1752 {
1753 runSrstAsserted = 1;
1754 }
1755
1756 prevSrstAsserted = srstAsserted;
1757 prevPowerdropout = powerDropout;
1758
1759 if (srstDeasserted || powerRestored)
1760 {
1761 /* Other than logging the event we can't do anything here.
1762 * Issuing a reset is a particularly bad idea as we might
1763 * be inside a reset already.
1764 */
1765 }
1766
1767 return ERROR_OK;
1768 }
1769
1770 static void target_call_event_callbacks_all(enum target_event e) {
1771 struct target *target;
1772 target = all_targets;
1773 while (target) {
1774 target_call_event_callbacks(target, e);
1775 target = target->next;
1776 }
1777 }
1778
1779 /* process target state changes */
1780 int handle_target(void *priv)
1781 {
1782 int retval = ERROR_OK;
1783
1784 /* we do not want to recurse here... */
1785 static int recursive = 0;
1786 if (! recursive)
1787 {
1788 recursive = 1;
1789 sense_handler();
1790 /* danger! running these procedures can trigger srst assertions and power dropouts.
1791 * We need to avoid an infinite loop/recursion here and we do that by
1792 * clearing the flags after running these events.
1793 */
1794 int did_something = 0;
1795 if (runSrstAsserted)
1796 {
1797 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1798 Jim_Eval(interp, "srst_asserted");
1799 did_something = 1;
1800 }
1801 if (runSrstDeasserted)
1802 {
1803 Jim_Eval(interp, "srst_deasserted");
1804 did_something = 1;
1805 }
1806 if (runPowerDropout)
1807 {
1808 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1809 Jim_Eval(interp, "power_dropout");
1810 did_something = 1;
1811 }
1812 if (runPowerRestore)
1813 {
1814 Jim_Eval(interp, "power_restore");
1815 did_something = 1;
1816 }
1817
1818 if (did_something)
1819 {
1820 /* clear detect flags */
1821 sense_handler();
1822 }
1823
1824 /* clear action flags */
1825
1826 runSrstAsserted = 0;
1827 runSrstDeasserted = 0;
1828 runPowerRestore = 0;
1829 runPowerDropout = 0;
1830
1831 recursive = 0;
1832 }
1833
1834 /* Poll targets for state changes unless that's globally disabled.
1835 * Skip targets that are currently disabled.
1836 */
1837 for (struct target *target = all_targets;
1838 is_jtag_poll_safe() && target;
1839 target = target->next)
1840 {
1841 if (!target->tap->enabled)
1842 continue;
1843
1844 /* only poll target if we've got power and srst isn't asserted */
1845 if (!powerDropout && !srstAsserted)
1846 {
1847 /* polling may fail silently until the target has been examined */
1848 if ((retval = target_poll(target)) != ERROR_OK)
1849 {
1850 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1851 return retval;
1852 }
1853 }
1854 }
1855
1856 return retval;
1857 }
1858
1859 COMMAND_HANDLER(handle_reg_command)
1860 {
1861 struct target *target;
1862 struct reg *reg = NULL;
1863 int count = 0;
1864 char *value;
1865
1866 LOG_DEBUG("-");
1867
1868 target = get_current_target(cmd_ctx);
1869
1870 /* list all available registers for the current target */
1871 if (CMD_ARGC == 0)
1872 {
1873 struct reg_cache *cache = target->reg_cache;
1874
1875 count = 0;
1876 while (cache)
1877 {
1878 int i;
1879
1880 command_print(cmd_ctx, "===== %s", cache->name);
1881
1882 for (i = 0, reg = cache->reg_list;
1883 i < cache->num_regs;
1884 i++, reg++, count++)
1885 {
1886 /* only print cached values if they are valid */
1887 if (reg->valid) {
1888 value = buf_to_str(reg->value,
1889 reg->size, 16);
1890 command_print(cmd_ctx,
1891 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1892 count, reg->name,
1893 reg->size, value,
1894 reg->dirty
1895 ? " (dirty)"
1896 : "");
1897 free(value);
1898 } else {
1899 command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1900 count, reg->name,
1901 reg->size) ;
1902 }
1903 }
1904 cache = cache->next;
1905 }
1906
1907 return ERROR_OK;
1908 }
1909
1910 /* access a single register by its ordinal number */
1911 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1912 {
1913 unsigned num;
1914 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1915
1916 struct reg_cache *cache = target->reg_cache;
1917 count = 0;
1918 while (cache)
1919 {
1920 int i;
1921 for (i = 0; i < cache->num_regs; i++)
1922 {
1923 if (count++ == (int)num)
1924 {
1925 reg = &cache->reg_list[i];
1926 break;
1927 }
1928 }
1929 if (reg)
1930 break;
1931 cache = cache->next;
1932 }
1933
1934 if (!reg)
1935 {
1936 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1937 return ERROR_OK;
1938 }
1939 } else /* access a single register by its name */
1940 {
1941 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1942
1943 if (!reg)
1944 {
1945 command_print(cmd_ctx, "register %s not found in current target", CMD_ARGV[0]);
1946 return ERROR_OK;
1947 }
1948 }
1949
1950 /* display a register */
1951 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1952 {
1953 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1954 reg->valid = 0;
1955
1956 if (reg->valid == 0)
1957 {
1958 reg->type->get(reg);
1959 }
1960 value = buf_to_str(reg->value, reg->size, 16);
1961 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1962 free(value);
1963 return ERROR_OK;
1964 }
1965
1966 /* set register value */
1967 if (CMD_ARGC == 2)
1968 {
1969 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1970 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1971
1972 reg->type->set(reg, buf);
1973
1974 value = buf_to_str(reg->value, reg->size, 16);
1975 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1976 free(value);
1977
1978 free(buf);
1979
1980 return ERROR_OK;
1981 }
1982
1983 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1984
1985 return ERROR_OK;
1986 }
1987
1988 COMMAND_HANDLER(handle_poll_command)
1989 {
1990 int retval = ERROR_OK;
1991 struct target *target = get_current_target(cmd_ctx);
1992
1993 if (CMD_ARGC == 0)
1994 {
1995 command_print(cmd_ctx, "background polling: %s",
1996 jtag_poll_get_enabled() ? "on" : "off");
1997 command_print(cmd_ctx, "TAP: %s (%s)",
1998 target->tap->dotted_name,
1999 target->tap->enabled ? "enabled" : "disabled");
2000 if (!target->tap->enabled)
2001 return ERROR_OK;
2002 if ((retval = target_poll(target)) != ERROR_OK)
2003 return retval;
2004 if ((retval = target_arch_state(target)) != ERROR_OK)
2005 return retval;
2006
2007 }
2008 else if (CMD_ARGC == 1)
2009 {
2010 if (strcmp(CMD_ARGV[0], "on") == 0)
2011 {
2012 jtag_poll_set_enabled(true);
2013 }
2014 else if (strcmp(CMD_ARGV[0], "off") == 0)
2015 {
2016 jtag_poll_set_enabled(false);
2017 }
2018 else
2019 {
2020 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2021 }
2022 } else
2023 {
2024 return ERROR_COMMAND_SYNTAX_ERROR;
2025 }
2026
2027 return retval;
2028 }
2029
2030 COMMAND_HANDLER(handle_wait_halt_command)
2031 {
2032 if (CMD_ARGC > 1)
2033 return ERROR_COMMAND_SYNTAX_ERROR;
2034
2035 unsigned ms = 5000;
2036 if (1 == CMD_ARGC)
2037 {
2038 int retval = parse_uint(CMD_ARGV[0], &ms);
2039 if (ERROR_OK != retval)
2040 {
2041 command_print(cmd_ctx, "usage: %s [seconds]", CMD_NAME);
2042 return ERROR_COMMAND_SYNTAX_ERROR;
2043 }
2044 // convert seconds (given) to milliseconds (needed)
2045 ms *= 1000;
2046 }
2047
2048 struct target *target = get_current_target(cmd_ctx);
2049 return target_wait_state(target, TARGET_HALTED, ms);
2050 }
2051
2052 /* wait for target state to change. The trick here is to have a low
2053 * latency for short waits and not to suck up all the CPU time
2054 * on longer waits.
2055 *
2056 * After 500ms, keep_alive() is invoked
2057 */
2058 int target_wait_state(struct target *target, enum target_state state, int ms)
2059 {
2060 int retval;
2061 long long then = 0, cur;
2062 int once = 1;
2063
2064 for (;;)
2065 {
2066 if ((retval = target_poll(target)) != ERROR_OK)
2067 return retval;
2068 if (target->state == state)
2069 {
2070 break;
2071 }
2072 cur = timeval_ms();
2073 if (once)
2074 {
2075 once = 0;
2076 then = timeval_ms();
2077 LOG_DEBUG("waiting for target %s...",
2078 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2079 }
2080
2081 if (cur-then > 500)
2082 {
2083 keep_alive();
2084 }
2085
2086 if ((cur-then) > ms)
2087 {
2088 LOG_ERROR("timed out while waiting for target %s",
2089 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2090 return ERROR_FAIL;
2091 }
2092 }
2093
2094 return ERROR_OK;
2095 }
2096
2097 COMMAND_HANDLER(handle_halt_command)
2098 {
2099 LOG_DEBUG("-");
2100
2101 struct target *target = get_current_target(cmd_ctx);
2102 int retval = target_halt(target);
2103 if (ERROR_OK != retval)
2104 return retval;
2105
2106 if (CMD_ARGC == 1)
2107 {
2108 unsigned wait;
2109 retval = parse_uint(CMD_ARGV[0], &wait);
2110 if (ERROR_OK != retval)
2111 return ERROR_COMMAND_SYNTAX_ERROR;
2112 if (!wait)
2113 return ERROR_OK;
2114 }
2115
2116 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2117 }
2118
2119 COMMAND_HANDLER(handle_soft_reset_halt_command)
2120 {
2121 struct target *target = get_current_target(cmd_ctx);
2122
2123 LOG_USER("requesting target halt and executing a soft reset");
2124
2125 target->type->soft_reset_halt(target);
2126
2127 return ERROR_OK;
2128 }
2129
2130 COMMAND_HANDLER(handle_reset_command)
2131 {
2132 if (CMD_ARGC > 1)
2133 return ERROR_COMMAND_SYNTAX_ERROR;
2134
2135 enum target_reset_mode reset_mode = RESET_RUN;
2136 if (CMD_ARGC == 1)
2137 {
2138 const Jim_Nvp *n;
2139 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2140 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2141 return ERROR_COMMAND_SYNTAX_ERROR;
2142 }
2143 reset_mode = n->value;
2144 }
2145
2146 /* reset *all* targets */
2147 return target_process_reset(cmd_ctx, reset_mode);
2148 }
2149
2150
2151 COMMAND_HANDLER(handle_resume_command)
2152 {
2153 int current = 1;
2154 if (CMD_ARGC > 1)
2155 return ERROR_COMMAND_SYNTAX_ERROR;
2156
2157 struct target *target = get_current_target(cmd_ctx);
2158 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2159
2160 /* with no CMD_ARGV, resume from current pc, addr = 0,
2161 * with one arguments, addr = CMD_ARGV[0],
2162 * handle breakpoints, not debugging */
2163 uint32_t addr = 0;
2164 if (CMD_ARGC == 1)
2165 {
2166 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2167 current = 0;
2168 }
2169
2170 return target_resume(target, current, addr, 1, 0);
2171 }
2172
2173 COMMAND_HANDLER(handle_step_command)
2174 {
2175 if (CMD_ARGC > 1)
2176 return ERROR_COMMAND_SYNTAX_ERROR;
2177
2178 LOG_DEBUG("-");
2179
2180 /* with no CMD_ARGV, step from current pc, addr = 0,
2181 * with one argument addr = CMD_ARGV[0],
2182 * handle breakpoints, debugging */
2183 uint32_t addr = 0;
2184 int current_pc = 1;
2185 if (CMD_ARGC == 1)
2186 {
2187 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2188 current_pc = 0;
2189 }
2190
2191 struct target *target = get_current_target(cmd_ctx);
2192
2193 return target->type->step(target, current_pc, addr, 1);
2194 }
2195
2196 static void handle_md_output(struct command_context *cmd_ctx,
2197 struct target *target, uint32_t address, unsigned size,
2198 unsigned count, const uint8_t *buffer)
2199 {
2200 const unsigned line_bytecnt = 32;
2201 unsigned line_modulo = line_bytecnt / size;
2202
2203 char output[line_bytecnt * 4 + 1];
2204 unsigned output_len = 0;
2205
2206 const char *value_fmt;
2207 switch (size) {
2208 case 4: value_fmt = "%8.8x "; break;
2209 case 2: value_fmt = "%4.2x "; break;
2210 case 1: value_fmt = "%2.2x "; break;
2211 default:
2212 LOG_ERROR("invalid memory read size: %u", size);
2213 exit(-1);
2214 }
2215
2216 for (unsigned i = 0; i < count; i++)
2217 {
2218 if (i % line_modulo == 0)
2219 {
2220 output_len += snprintf(output + output_len,
2221 sizeof(output) - output_len,
2222 "0x%8.8x: ",
2223 (unsigned)(address + (i*size)));
2224 }
2225
2226 uint32_t value = 0;
2227 const uint8_t *value_ptr = buffer + i * size;
2228 switch (size) {
2229 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2230 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2231 case 1: value = *value_ptr;
2232 }
2233 output_len += snprintf(output + output_len,
2234 sizeof(output) - output_len,
2235 value_fmt, value);
2236
2237 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2238 {
2239 command_print(cmd_ctx, "%s", output);
2240 output_len = 0;
2241 }
2242 }
2243 }
2244
2245 COMMAND_HANDLER(handle_md_command)
2246 {
2247 if (CMD_ARGC < 1)
2248 return ERROR_COMMAND_SYNTAX_ERROR;
2249
2250 unsigned size = 0;
2251 const char *cmd_name = CMD_NAME;
2252 switch (cmd_name[6]) {
2253 case 'w': size = 4; break;
2254 case 'h': size = 2; break;
2255 case 'b': size = 1; break;
2256 default: return ERROR_COMMAND_SYNTAX_ERROR;
2257 }
2258
2259 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2260 int (*fn)(struct target *target,
2261 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2262 if (physical)
2263 {
2264 CMD_ARGC--;
2265 CMD_ARGV++;
2266 fn=target_read_phys_memory;
2267 } else
2268 {
2269 fn=target_read_memory;
2270 }
2271 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2272 {
2273 return ERROR_COMMAND_SYNTAX_ERROR;
2274 }
2275
2276 uint32_t address;
2277 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2278
2279 unsigned count = 1;
2280 if (CMD_ARGC == 2)
2281 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2282
2283 uint8_t *buffer = calloc(count, size);
2284
2285 struct target *target = get_current_target(cmd_ctx);
2286 int retval = fn(target, address, size, count, buffer);
2287 if (ERROR_OK == retval)
2288 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2289
2290 free(buffer);
2291
2292 return retval;
2293 }
2294
2295 COMMAND_HANDLER(handle_mw_command)
2296 {
2297 if (CMD_ARGC < 2)
2298 {
2299 return ERROR_COMMAND_SYNTAX_ERROR;
2300 }
2301 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2302 int (*fn)(struct target *target,
2303 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2304 const char *cmd_name = CMD_NAME;
2305 if (physical)
2306 {
2307 CMD_ARGC--;
2308 CMD_ARGV++;
2309 fn=target_write_phys_memory;
2310 } else
2311 {
2312 fn=target_write_memory;
2313 }
2314 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2315 return ERROR_COMMAND_SYNTAX_ERROR;
2316
2317 uint32_t address;
2318 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2319
2320 uint32_t value;
2321 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2322
2323 unsigned count = 1;
2324 if (CMD_ARGC == 3)
2325 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2326
2327 struct target *target = get_current_target(cmd_ctx);
2328 unsigned wordsize;
2329 uint8_t value_buf[4];
2330 switch (cmd_name[6])
2331 {
2332 case 'w':
2333 wordsize = 4;
2334 target_buffer_set_u32(target, value_buf, value);
2335 break;
2336 case 'h':
2337 wordsize = 2;
2338 target_buffer_set_u16(target, value_buf, value);
2339 break;
2340 case 'b':
2341 wordsize = 1;
2342 value_buf[0] = value;
2343 break;
2344 default:
2345 return ERROR_COMMAND_SYNTAX_ERROR;
2346 }
2347 for (unsigned i = 0; i < count; i++)
2348 {
2349 int retval = fn(target,
2350 address + i * wordsize, wordsize, 1, value_buf);
2351 if (ERROR_OK != retval)
2352 return retval;
2353 keep_alive();
2354 }
2355
2356 return ERROR_OK;
2357
2358 }
2359
2360 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2361 uint32_t *min_address, uint32_t *max_address)
2362 {
2363 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2364 return ERROR_COMMAND_SYNTAX_ERROR;
2365
2366 /* a base address isn't always necessary,
2367 * default to 0x0 (i.e. don't relocate) */
2368 if (CMD_ARGC >= 2)
2369 {
2370 uint32_t addr;
2371 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2372 image->base_address = addr;
2373 image->base_address_set = 1;
2374 }
2375 else
2376 image->base_address_set = 0;
2377
2378 image->start_address_set = 0;
2379
2380 if (CMD_ARGC >= 4)
2381 {
2382 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2383 }
2384 if (CMD_ARGC == 5)
2385 {
2386 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2387 // use size (given) to find max (required)
2388 *max_address += *min_address;
2389 }
2390
2391 if (*min_address > *max_address)
2392 return ERROR_COMMAND_SYNTAX_ERROR;
2393
2394 return ERROR_OK;
2395 }
2396
2397 COMMAND_HANDLER(handle_load_image_command)
2398 {
2399 uint8_t *buffer;
2400 size_t buf_cnt;
2401 uint32_t image_size;
2402 uint32_t min_address = 0;
2403 uint32_t max_address = 0xffffffff;
2404 int i;
2405 struct image image;
2406
2407 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2408 &image, &min_address, &max_address);
2409 if (ERROR_OK != retval)
2410 return retval;
2411
2412 struct target *target = get_current_target(cmd_ctx);
2413
2414 struct duration bench;
2415 duration_start(&bench);
2416
2417 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2418 {
2419 return ERROR_OK;
2420 }
2421
2422 image_size = 0x0;
2423 retval = ERROR_OK;
2424 for (i = 0; i < image.num_sections; i++)
2425 {
2426 buffer = malloc(image.sections[i].size);
2427 if (buffer == NULL)
2428 {
2429 command_print(cmd_ctx,
2430 "error allocating buffer for section (%d bytes)",
2431 (int)(image.sections[i].size));
2432 break;
2433 }
2434
2435 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2436 {
2437 free(buffer);
2438 break;
2439 }
2440
2441 uint32_t offset = 0;
2442 uint32_t length = buf_cnt;
2443
2444 /* DANGER!!! beware of unsigned comparision here!!! */
2445
2446 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2447 (image.sections[i].base_address < max_address))
2448 {
2449 if (image.sections[i].base_address < min_address)
2450 {
2451 /* clip addresses below */
2452 offset += min_address-image.sections[i].base_address;
2453 length -= offset;
2454 }
2455
2456 if (image.sections[i].base_address + buf_cnt > max_address)
2457 {
2458 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2459 }
2460
2461 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2462 {
2463 free(buffer);
2464 break;
2465 }
2466 image_size += length;
2467 command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2468 (unsigned int)length,
2469 image.sections[i].base_address + offset);
2470 }
2471
2472 free(buffer);
2473 }
2474
2475 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2476 {
2477 command_print(cmd_ctx, "downloaded %" PRIu32 " bytes "
2478 "in %fs (%0.3f kb/s)", image_size,
2479 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2480 }
2481
2482 image_close(&image);
2483
2484 return retval;
2485
2486 }
2487
2488 COMMAND_HANDLER(handle_dump_image_command)
2489 {
2490 struct fileio fileio;
2491
2492 uint8_t buffer[560];
2493 int retvaltemp;
2494
2495
2496 struct target *target = get_current_target(cmd_ctx);
2497
2498 if (CMD_ARGC != 3)
2499 {
2500 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2501 return ERROR_OK;
2502 }
2503
2504 uint32_t address;
2505 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2506 uint32_t size;
2507 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2508
2509 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2510 {
2511 return ERROR_OK;
2512 }
2513
2514 struct duration bench;
2515 duration_start(&bench);
2516
2517 int retval = ERROR_OK;
2518 while (size > 0)
2519 {
2520 size_t size_written;
2521 uint32_t this_run_size = (size > 560) ? 560 : size;
2522 retval = target_read_buffer(target, address, this_run_size, buffer);
2523 if (retval != ERROR_OK)
2524 {
2525 break;
2526 }
2527
2528 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2529 if (retval != ERROR_OK)
2530 {
2531 break;
2532 }
2533
2534 size -= this_run_size;
2535 address += this_run_size;
2536 }
2537
2538 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2539 return retvaltemp;
2540
2541 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2542 {
2543 command_print(cmd_ctx,
2544 "dumped %zu bytes in %fs (%0.3f kb/s)", fileio.size,
2545 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2546 }
2547
2548 return retval;
2549 }
2550
2551 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2552 {
2553 uint8_t *buffer;
2554 size_t buf_cnt;
2555 uint32_t image_size;
2556 int i;
2557 int retval;
2558 uint32_t checksum = 0;
2559 uint32_t mem_checksum = 0;
2560
2561 struct image image;
2562
2563 struct target *target = get_current_target(cmd_ctx);
2564
2565 if (CMD_ARGC < 1)
2566 {
2567 return ERROR_COMMAND_SYNTAX_ERROR;
2568 }
2569
2570 if (!target)
2571 {
2572 LOG_ERROR("no target selected");
2573 return ERROR_FAIL;
2574 }
2575
2576 struct duration bench;
2577 duration_start(&bench);
2578
2579 if (CMD_ARGC >= 2)
2580 {
2581 uint32_t addr;
2582 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2583 image.base_address = addr;
2584 image.base_address_set = 1;
2585 }
2586 else
2587 {
2588 image.base_address_set = 0;
2589 image.base_address = 0x0;
2590 }
2591
2592 image.start_address_set = 0;
2593
2594 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2595 {
2596 return retval;
2597 }
2598
2599 image_size = 0x0;
2600 retval = ERROR_OK;
2601 for (i = 0; i < image.num_sections; i++)
2602 {
2603 buffer = malloc(image.sections[i].size);
2604 if (buffer == NULL)
2605 {
2606 command_print(cmd_ctx,
2607 "error allocating buffer for section (%d bytes)",
2608 (int)(image.sections[i].size));
2609 break;
2610 }
2611 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2612 {
2613 free(buffer);
2614 break;
2615 }
2616
2617 if (verify)
2618 {
2619 /* calculate checksum of image */
2620 image_calculate_checksum(buffer, buf_cnt, &checksum);
2621
2622 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2623 if (retval != ERROR_OK)
2624 {
2625 free(buffer);
2626 break;
2627 }
2628
2629 if (checksum != mem_checksum)
2630 {
2631 /* failed crc checksum, fall back to a binary compare */
2632 uint8_t *data;
2633
2634 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2635
2636 data = (uint8_t*)malloc(buf_cnt);
2637
2638 /* Can we use 32bit word accesses? */
2639 int size = 1;
2640 int count = buf_cnt;
2641 if ((count % 4) == 0)
2642 {
2643 size *= 4;
2644 count /= 4;
2645 }
2646 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2647 if (retval == ERROR_OK)
2648 {
2649 uint32_t t;
2650 for (t = 0; t < buf_cnt; t++)
2651 {
2652 if (data[t] != buffer[t])
2653 {
2654 command_print(cmd_ctx,
2655 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2656 (unsigned)(t + image.sections[i].base_address),
2657 data[t],
2658 buffer[t]);
2659 free(data);
2660 free(buffer);
2661 retval = ERROR_FAIL;
2662 goto done;
2663 }
2664 if ((t%16384) == 0)
2665 {
2666 keep_alive();
2667 }
2668 }
2669 }
2670
2671 free(data);
2672 }
2673 } else
2674 {
2675 command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08zx",
2676 image.sections[i].base_address,
2677 buf_cnt);
2678 }
2679
2680 free(buffer);
2681 image_size += buf_cnt;
2682 }
2683 done:
2684 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2685 {
2686 command_print(cmd_ctx, "verified %" PRIu32 " bytes "
2687 "in %fs (%0.3f kb/s)", image_size,
2688 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2689 }
2690
2691 image_close(&image);
2692
2693 return retval;
2694 }
2695
2696 COMMAND_HANDLER(handle_verify_image_command)
2697 {
2698 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2699 }
2700
2701 COMMAND_HANDLER(handle_test_image_command)
2702 {
2703 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2704 }
2705
2706 static int handle_bp_command_list(struct command_context *cmd_ctx)
2707 {
2708 struct target *target = get_current_target(cmd_ctx);
2709 struct breakpoint *breakpoint = target->breakpoints;
2710 while (breakpoint)
2711 {
2712 if (breakpoint->type == BKPT_SOFT)
2713 {
2714 char* buf = buf_to_str(breakpoint->orig_instr,
2715 breakpoint->length, 16);
2716 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2717 breakpoint->address,
2718 breakpoint->length,
2719 breakpoint->set, buf);
2720 free(buf);
2721 }
2722 else
2723 {
2724 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2725 breakpoint->address,
2726 breakpoint->length, breakpoint->set);
2727 }
2728
2729 breakpoint = breakpoint->next;
2730 }
2731 return ERROR_OK;
2732 }
2733
2734 static int handle_bp_command_set(struct command_context *cmd_ctx,
2735 uint32_t addr, uint32_t length, int hw)
2736 {
2737 struct target *target = get_current_target(cmd_ctx);
2738 int retval = breakpoint_add(target, addr, length, hw);
2739 if (ERROR_OK == retval)
2740 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2741 else
2742 LOG_ERROR("Failure setting breakpoint");
2743 return retval;
2744 }
2745
2746 COMMAND_HANDLER(handle_bp_command)
2747 {
2748 if (CMD_ARGC == 0)
2749 return handle_bp_command_list(cmd_ctx);
2750
2751 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2752 {
2753 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2754 return ERROR_COMMAND_SYNTAX_ERROR;
2755 }
2756
2757 uint32_t addr;
2758 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2759 uint32_t length;
2760 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2761
2762 int hw = BKPT_SOFT;
2763 if (CMD_ARGC == 3)
2764 {
2765 if (strcmp(CMD_ARGV[2], "hw") == 0)
2766 hw = BKPT_HARD;
2767 else
2768 return ERROR_COMMAND_SYNTAX_ERROR;
2769 }
2770
2771 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2772 }
2773
2774 COMMAND_HANDLER(handle_rbp_command)
2775 {
2776 if (CMD_ARGC != 1)
2777 return ERROR_COMMAND_SYNTAX_ERROR;
2778
2779 uint32_t addr;
2780 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2781
2782 struct target *target = get_current_target(cmd_ctx);
2783 breakpoint_remove(target, addr);
2784
2785 return ERROR_OK;
2786 }
2787
2788 COMMAND_HANDLER(handle_wp_command)
2789 {
2790 struct target *target = get_current_target(cmd_ctx);
2791
2792 if (CMD_ARGC == 0)
2793 {
2794 struct watchpoint *watchpoint = target->watchpoints;
2795
2796 while (watchpoint)
2797 {
2798 command_print(cmd_ctx, "address: 0x%8.8" PRIx32
2799 ", len: 0x%8.8" PRIx32
2800 ", r/w/a: %i, value: 0x%8.8" PRIx32
2801 ", mask: 0x%8.8" PRIx32,
2802 watchpoint->address,
2803 watchpoint->length,
2804 (int)watchpoint->rw,
2805 watchpoint->value,
2806 watchpoint->mask);
2807 watchpoint = watchpoint->next;
2808 }
2809 return ERROR_OK;
2810 }
2811
2812 enum watchpoint_rw type = WPT_ACCESS;
2813 uint32_t addr = 0;
2814 uint32_t length = 0;
2815 uint32_t data_value = 0x0;
2816 uint32_t data_mask = 0xffffffff;
2817
2818 switch (CMD_ARGC)
2819 {
2820 case 5:
2821 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2822 // fall through
2823 case 4:
2824 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2825 // fall through
2826 case 3:
2827 switch (CMD_ARGV[2][0])
2828 {
2829 case 'r':
2830 type = WPT_READ;
2831 break;
2832 case 'w':
2833 type = WPT_WRITE;
2834 break;
2835 case 'a':
2836 type = WPT_ACCESS;
2837 break;
2838 default:
2839 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2840 return ERROR_COMMAND_SYNTAX_ERROR;
2841 }
2842 // fall through
2843 case 2:
2844 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2845 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2846 break;
2847
2848 default:
2849 command_print(cmd_ctx, "usage: wp [address length "
2850 "[(r|w|a) [value [mask]]]]");
2851 return ERROR_COMMAND_SYNTAX_ERROR;
2852 }
2853
2854 int retval = watchpoint_add(target, addr, length, type,
2855 data_value, data_mask);
2856 if (ERROR_OK != retval)
2857 LOG_ERROR("Failure setting watchpoints");
2858
2859 return retval;
2860 }
2861
2862 COMMAND_HANDLER(handle_rwp_command)
2863 {
2864 if (CMD_ARGC != 1)
2865 return ERROR_COMMAND_SYNTAX_ERROR;
2866
2867 uint32_t addr;
2868 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2869
2870 struct target *target = get_current_target(cmd_ctx);
2871 watchpoint_remove(target, addr);
2872
2873 return ERROR_OK;
2874 }
2875
2876
2877 /**
2878 * Translate a virtual address to a physical address.
2879 *
2880 * The low-level target implementation must have logged a detailed error
2881 * which is forwarded to telnet/GDB session.
2882 */
2883 COMMAND_HANDLER(handle_virt2phys_command)
2884 {
2885 if (CMD_ARGC != 1)
2886 return ERROR_COMMAND_SYNTAX_ERROR;
2887
2888 uint32_t va;
2889 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2890 uint32_t pa;
2891
2892 struct target *target = get_current_target(cmd_ctx);
2893 int retval = target->type->virt2phys(target, va, &pa);
2894 if (retval == ERROR_OK)
2895 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2896
2897 return retval;
2898 }
2899
2900 static void writeData(FILE *f, const void *data, size_t len)
2901 {
2902 size_t written = fwrite(data, 1, len, f);
2903 if (written != len)
2904 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2905 }
2906
2907 static void writeLong(FILE *f, int l)
2908 {
2909 int i;
2910 for (i = 0; i < 4; i++)
2911 {
2912 char c = (l >> (i*8))&0xff;
2913 writeData(f, &c, 1);
2914 }
2915
2916 }
2917
2918 static void writeString(FILE *f, char *s)
2919 {
2920 writeData(f, s, strlen(s));
2921 }
2922
2923 /* Dump a gmon.out histogram file. */
2924 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2925 {
2926 uint32_t i;
2927 FILE *f = fopen(filename, "w");
2928 if (f == NULL)
2929 return;
2930 writeString(f, "gmon");
2931 writeLong(f, 0x00000001); /* Version */
2932 writeLong(f, 0); /* padding */
2933 writeLong(f, 0); /* padding */
2934 writeLong(f, 0); /* padding */
2935
2936 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
2937 writeData(f, &zero, 1);
2938
2939 /* figure out bucket size */
2940 uint32_t min = samples[0];
2941 uint32_t max = samples[0];
2942 for (i = 0; i < sampleNum; i++)
2943 {
2944 if (min > samples[i])
2945 {
2946 min = samples[i];
2947 }
2948 if (max < samples[i])
2949 {
2950 max = samples[i];
2951 }
2952 }
2953
2954 int addressSpace = (max-min + 1);
2955
2956 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2957 uint32_t length = addressSpace;
2958 if (length > maxBuckets)
2959 {
2960 length = maxBuckets;
2961 }
2962 int *buckets = malloc(sizeof(int)*length);
2963 if (buckets == NULL)
2964 {
2965 fclose(f);
2966 return;
2967 }
2968 memset(buckets, 0, sizeof(int)*length);
2969 for (i = 0; i < sampleNum;i++)
2970 {
2971 uint32_t address = samples[i];
2972 long long a = address-min;
2973 long long b = length-1;
2974 long long c = addressSpace-1;
2975 int index = (a*b)/c; /* danger!!!! int32 overflows */
2976 buckets[index]++;
2977 }
2978
2979 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2980 writeLong(f, min); /* low_pc */
2981 writeLong(f, max); /* high_pc */
2982 writeLong(f, length); /* # of samples */
2983 writeLong(f, 64000000); /* 64MHz */
2984 writeString(f, "seconds");
2985 for (i = 0; i < (15-strlen("seconds")); i++)
2986 writeData(f, &zero, 1);
2987 writeString(f, "s");
2988
2989 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2990
2991 char *data = malloc(2*length);
2992 if (data != NULL)
2993 {
2994 for (i = 0; i < length;i++)
2995 {
2996 int val;
2997 val = buckets[i];
2998 if (val > 65535)
2999 {
3000 val = 65535;
3001 }
3002 data[i*2]=val&0xff;
3003 data[i*2 + 1]=(val >> 8)&0xff;
3004 }
3005 free(buckets);
3006 writeData(f, data, length * 2);
3007 free(data);
3008 } else
3009 {
3010 free(buckets);
3011 }
3012
3013 fclose(f);
3014 }
3015
3016 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3017 COMMAND_HANDLER(handle_profile_command)
3018 {
3019 struct target *target = get_current_target(cmd_ctx);
3020 struct timeval timeout, now;
3021
3022 gettimeofday(&timeout, NULL);
3023 if (CMD_ARGC != 2)
3024 {
3025 return ERROR_COMMAND_SYNTAX_ERROR;
3026 }
3027 unsigned offset;
3028 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3029
3030 timeval_add_time(&timeout, offset, 0);
3031
3032 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
3033
3034 static const int maxSample = 10000;
3035 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3036 if (samples == NULL)
3037 return ERROR_OK;
3038
3039 int numSamples = 0;
3040 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3041 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3042
3043 for (;;)
3044 {
3045 int retval;
3046 target_poll(target);
3047 if (target->state == TARGET_HALTED)
3048 {
3049 uint32_t t=*((uint32_t *)reg->value);
3050 samples[numSamples++]=t;
3051 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3052 target_poll(target);
3053 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3054 } else if (target->state == TARGET_RUNNING)
3055 {
3056 /* We want to quickly sample the PC. */
3057 if ((retval = target_halt(target)) != ERROR_OK)
3058 {
3059 free(samples);
3060 return retval;
3061 }
3062 } else
3063 {
3064 command_print(cmd_ctx, "Target not halted or running");
3065 retval = ERROR_OK;
3066 break;
3067 }
3068 if (retval != ERROR_OK)
3069 {
3070 break;
3071 }
3072
3073 gettimeofday(&now, NULL);
3074 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3075 {
3076 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
3077 if ((retval = target_poll(target)) != ERROR_OK)
3078 {
3079 free(samples);
3080 return retval;
3081 }
3082 if (target->state == TARGET_HALTED)
3083 {
3084 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3085 }
3086 if ((retval = target_poll(target)) != ERROR_OK)
3087 {
3088 free(samples);
3089 return retval;
3090 }
3091 writeGmon(samples, numSamples, CMD_ARGV[1]);
3092 command_print(cmd_ctx, "Wrote %s", CMD_ARGV[1]);
3093 break;
3094 }
3095 }
3096 free(samples);
3097
3098 return ERROR_OK;
3099 }
3100
3101 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3102 {
3103 char *namebuf;
3104 Jim_Obj *nameObjPtr, *valObjPtr;
3105 int result;
3106
3107 namebuf = alloc_printf("%s(%d)", varname, idx);
3108 if (!namebuf)
3109 return JIM_ERR;
3110
3111 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3112 valObjPtr = Jim_NewIntObj(interp, val);
3113 if (!nameObjPtr || !valObjPtr)
3114 {
3115 free(namebuf);
3116 return JIM_ERR;
3117 }
3118
3119 Jim_IncrRefCount(nameObjPtr);
3120 Jim_IncrRefCount(valObjPtr);
3121 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3122 Jim_DecrRefCount(interp, nameObjPtr);
3123 Jim_DecrRefCount(interp, valObjPtr);
3124 free(namebuf);
3125 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3126 return result;
3127 }
3128
3129 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3130 {
3131 struct command_context *context;
3132 struct target *target;
3133
3134 context = Jim_GetAssocData(interp, "context");
3135 if (context == NULL)
3136 {
3137 LOG_ERROR("mem2array: no command context");
3138 return JIM_ERR;
3139 }
3140 target = get_current_target(context);
3141 if (target == NULL)
3142 {
3143 LOG_ERROR("mem2array: no current target");
3144 return JIM_ERR;
3145 }
3146
3147 return target_mem2array(interp, target, argc-1, argv + 1);
3148 }
3149
3150 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3151 {
3152 long l;
3153 uint32_t width;
3154 int len;
3155 uint32_t addr;
3156 uint32_t count;
3157 uint32_t v;
3158 const char *varname;
3159 uint8_t buffer[4096];
3160 int n, e, retval;
3161 uint32_t i;
3162
3163 /* argv[1] = name of array to receive the data
3164 * argv[2] = desired width
3165 * argv[3] = memory address
3166 * argv[4] = count of times to read
3167 */
3168 if (argc != 4) {
3169 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3170 return JIM_ERR;
3171 }
3172 varname = Jim_GetString(argv[0], &len);
3173 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3174
3175 e = Jim_GetLong(interp, argv[1], &l);
3176 width = l;
3177 if (e != JIM_OK) {
3178 return e;
3179 }
3180
3181 e = Jim_GetLong(interp, argv[2], &l);
3182 addr = l;
3183 if (e != JIM_OK) {
3184 return e;
3185 }
3186 e = Jim_GetLong(interp, argv[3], &l);
3187 len = l;
3188 if (e != JIM_OK) {
3189 return e;
3190 }
3191 switch (width) {
3192 case 8:
3193 width = 1;
3194 break;
3195 case 16:
3196 width = 2;
3197 break;
3198 case 32:
3199 width = 4;
3200 break;
3201 default:
3202 Jim_SetResult(int