- jtag_khz/speed are now single parameter only. These are used
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54
55 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
78 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
79
80
81 /* targets */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95 &arm7tdmi_target,
96 &arm9tdmi_target,
97 &arm920t_target,
98 &arm720t_target,
99 &arm966e_target,
100 &arm926ejs_target,
101 &feroceon_target,
102 &xscale_target,
103 &cortexm3_target,
104 &arm11_target,
105 NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114 "unknown",
115 "running",
116 "halted",
117 "reset",
118 "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123 "debug request", "breakpoint", "watchpoint",
124 "watchpoint and breakpoint", "single step",
125 "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130 "big endian",
131 "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139 if (target->endianness == TARGET_LITTLE_ENDIAN)
140 return le_to_h_u32(buffer);
141 else
142 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148 if (target->endianness == TARGET_LITTLE_ENDIAN)
149 return le_to_h_u16(buffer);
150 else
151 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157 if (target->endianness == TARGET_LITTLE_ENDIAN)
158 h_u32_to_le(buffer, value);
159 else
160 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166 if (target->endianness == TARGET_LITTLE_ENDIAN)
167 h_u16_to_le(buffer, value);
168 else
169 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175 target_t *target = targets;
176 int i = 0;
177
178 while (target)
179 {
180 if (num == i)
181 return target;
182 target = target->next;
183 i++;
184 }
185
186 return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191 target_t *target = targets;
192 int i = 0;
193
194 while (target)
195 {
196 if (target == query_target)
197 return i;
198 target = target->next;
199 i++;
200 }
201
202 return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207 target_t *target = get_target_by_num(cmd_ctx->current_target);
208
209 if (target == NULL)
210 {
211 LOG_ERROR("BUG: current_target out of bounds");
212 exit(-1);
213 }
214
215 return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219 * the handler is unregistered at the end of this function, so it's only called once
220 */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223 struct command_context_s *cmd_ctx = priv;
224
225 if (event == TARGET_EVENT_HALTED)
226 {
227 target_unregister_event_callback(target_init_handler, priv);
228 target_invoke_script(cmd_ctx, target, "post_reset");
229 jtag_execute_queue();
230 }
231
232 return ERROR_OK;
233 }
234
235 int target_run_and_halt_handler(void *priv)
236 {
237 target_t *target = priv;
238
239 target_halt(target);
240
241 return ERROR_OK;
242 }
243
244 int target_poll(struct target_s *target)
245 {
246 /* We can't poll until after examine */
247 if (!target->type->examined)
248 {
249 /* Fail silently lest we pollute the log */
250 return ERROR_FAIL;
251 }
252 return target->type->poll(target);
253 }
254
255 int target_halt(struct target_s *target)
256 {
257 /* We can't poll until after examine */
258 if (!target->type->examined)
259 {
260 LOG_ERROR("Target not examined yet");
261 return ERROR_FAIL;
262 }
263 return target->type->halt(target);
264 }
265
266 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
267 {
268 int retval;
269
270 /* We can't poll until after examine */
271 if (!target->type->examined)
272 {
273 LOG_ERROR("Target not examined yet");
274 return ERROR_FAIL;
275 }
276
277 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
278 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
279 * the application.
280 */
281 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
282 return retval;
283
284 return retval;
285 }
286
287 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
288 {
289 int retval = ERROR_OK;
290 target_t *target;
291 struct timeval timeout, now;
292
293 target = targets;
294 while (target)
295 {
296 target_invoke_script(cmd_ctx, target, "pre_reset");
297 target = target->next;
298 }
299
300 if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
301 return retval;
302
303 keep_alive(); /* we might be running on a very slow JTAG clk */
304
305 /* First time this is executed after launching OpenOCD, it will read out
306 * the type of CPU, etc. and init Embedded ICE registers in host
307 * memory.
308 *
309 * It will also set up ICE registers in the target.
310 *
311 * However, if we assert TRST later, we need to set up the registers again.
312 *
313 * For the "reset halt/init" case we must only set up the registers here.
314 */
315 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
316 return retval;
317
318 keep_alive(); /* we might be running on a very slow JTAG clk */
319
320 target = targets;
321 while (target)
322 {
323 /* we have no idea what state the target is in, so we
324 * have to drop working areas
325 */
326 target_free_all_working_areas_restore(target, 0);
327 target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT));
328 target->type->assert_reset(target);
329 target = target->next;
330 }
331 if ((retval = jtag_execute_queue()) != ERROR_OK)
332 {
333 LOG_WARNING("JTAG communication failed asserting reset.");
334 retval = ERROR_OK;
335 }
336
337 /* request target halt if necessary, and schedule further action */
338 target = targets;
339 while (target)
340 {
341 switch (reset_mode)
342 {
343 case RESET_RUN:
344 /* nothing to do if target just wants to be run */
345 break;
346 case RESET_RUN_AND_HALT:
347 /* schedule halt */
348 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
349 break;
350 case RESET_RUN_AND_INIT:
351 /* schedule halt */
352 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
353 target_register_event_callback(target_init_handler, cmd_ctx);
354 break;
355 case RESET_HALT:
356 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
357 target_halt(target);
358 break;
359 case RESET_INIT:
360 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
361 target_halt(target);
362 target_register_event_callback(target_init_handler, cmd_ctx);
363 break;
364 default:
365 LOG_ERROR("BUG: unknown target->reset_mode");
366 }
367 target = target->next;
368 }
369
370 if ((retval = jtag_execute_queue()) != ERROR_OK)
371 {
372 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
373 retval = ERROR_OK;
374 }
375
376 target = targets;
377 while (target)
378 {
379 target->type->deassert_reset(target);
380 /* We can fail to bring the target into the halted state */
381 target_poll(target);
382 if (target->reset_halt&&((target->state != TARGET_HALTED)))
383 {
384 LOG_WARNING("Failed to reset target into halted mode - issuing halt");
385 target->type->halt(target);
386 }
387
388 target = target->next;
389 }
390
391 if ((retval = jtag_execute_queue()) != ERROR_OK)
392 {
393 LOG_WARNING("JTAG communication failed while deasserting reset.");
394 retval = ERROR_OK;
395 }
396
397 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
398 {
399 /* If TRST was asserted we need to set up registers again */
400 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
401 return retval;
402 }
403
404 LOG_DEBUG("Waiting for halted stated as approperiate");
405
406 /* Wait for reset to complete, maximum 5 seconds. */
407 gettimeofday(&timeout, NULL);
408 timeval_add_time(&timeout, 5, 0);
409 for(;;)
410 {
411 gettimeofday(&now, NULL);
412
413 target_call_timer_callbacks_now();
414
415 target = targets;
416 while (target)
417 {
418 LOG_DEBUG("Polling target");
419 target_poll(target);
420 if ((reset_mode == RESET_RUN_AND_INIT) ||
421 (reset_mode == RESET_RUN_AND_HALT) ||
422 (reset_mode == RESET_HALT) ||
423 (reset_mode == RESET_INIT))
424 {
425 if (target->state != TARGET_HALTED)
426 {
427 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
428 {
429 LOG_USER("Timed out waiting for halt after reset");
430 goto done;
431 }
432 /* this will send alive messages on e.g. GDB remote protocol. */
433 usleep(500*1000);
434 LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/
435 goto again;
436 }
437 }
438 target = target->next;
439 }
440 /* All targets we're waiting for are halted */
441 break;
442
443 again:;
444 }
445 done:
446
447
448 /* We want any events to be processed before the prompt */
449 target_call_timer_callbacks_now();
450
451 /* if we timed out we need to unregister these handlers */
452 target = targets;
453 while (target)
454 {
455 target_unregister_timer_callback(target_run_and_halt_handler, target);
456 target = target->next;
457 }
458 target_unregister_event_callback(target_init_handler, cmd_ctx);
459
460 return retval;
461 }
462
463 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
464 {
465 *physical = virtual;
466 return ERROR_OK;
467 }
468
469 static int default_mmu(struct target_s *target, int *enabled)
470 {
471 *enabled = 0;
472 return ERROR_OK;
473 }
474
475 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
476 {
477 target->type->examined = 1;
478 return ERROR_OK;
479 }
480
481
482 /* Targets that correctly implement init+examine, i.e.
483 * no communication with target during init:
484 *
485 * XScale
486 */
487 int target_examine(struct command_context_s *cmd_ctx)
488 {
489 int retval = ERROR_OK;
490 target_t *target = targets;
491 while (target)
492 {
493 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
494 return retval;
495 target = target->next;
496 }
497 return retval;
498 }
499
500 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
501 {
502 if (!target->type->examined)
503 {
504 LOG_ERROR("Target not examined yet");
505 return ERROR_FAIL;
506 }
507 return target->type->write_memory_imp(target, address, size, count, buffer);
508 }
509
510 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
511 {
512 if (!target->type->examined)
513 {
514 LOG_ERROR("Target not examined yet");
515 return ERROR_FAIL;
516 }
517 return target->type->read_memory_imp(target, address, size, count, buffer);
518 }
519
520 static int target_soft_reset_halt_imp(struct target_s *target)
521 {
522 if (!target->type->examined)
523 {
524 LOG_ERROR("Target not examined yet");
525 return ERROR_FAIL;
526 }
527 return target->type->soft_reset_halt_imp(target);
528 }
529
530 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
531 {
532 if (!target->type->examined)
533 {
534 LOG_ERROR("Target not examined yet");
535 return ERROR_FAIL;
536 }
537 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
538 }
539
540 int target_init(struct command_context_s *cmd_ctx)
541 {
542 target_t *target = targets;
543
544 while (target)
545 {
546 target->type->examined = 0;
547 if (target->type->examine == NULL)
548 {
549 target->type->examine = default_examine;
550 }
551
552 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
553 {
554 LOG_ERROR("target '%s' init failed", target->type->name);
555 exit(-1);
556 }
557
558 /* Set up default functions if none are provided by target */
559 if (target->type->virt2phys == NULL)
560 {
561 target->type->virt2phys = default_virt2phys;
562 }
563 target->type->virt2phys = default_virt2phys;
564 /* a non-invasive way(in terms of patches) to add some code that
565 * runs before the type->write/read_memory implementation
566 */
567 target->type->write_memory_imp = target->type->write_memory;
568 target->type->write_memory = target_write_memory_imp;
569 target->type->read_memory_imp = target->type->read_memory;
570 target->type->read_memory = target_read_memory_imp;
571 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
572 target->type->soft_reset_halt = target_soft_reset_halt_imp;
573 target->type->run_algorithm_imp = target->type->run_algorithm;
574 target->type->run_algorithm = target_run_algorithm_imp;
575
576
577 if (target->type->mmu == NULL)
578 {
579 target->type->mmu = default_mmu;
580 }
581 target = target->next;
582 }
583
584 if (targets)
585 {
586 target_register_user_commands(cmd_ctx);
587 target_register_timer_callback(handle_target, 100, 1, NULL);
588 }
589
590 return ERROR_OK;
591 }
592
593 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
594 {
595 target_event_callback_t **callbacks_p = &target_event_callbacks;
596
597 if (callback == NULL)
598 {
599 return ERROR_INVALID_ARGUMENTS;
600 }
601
602 if (*callbacks_p)
603 {
604 while ((*callbacks_p)->next)
605 callbacks_p = &((*callbacks_p)->next);
606 callbacks_p = &((*callbacks_p)->next);
607 }
608
609 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
610 (*callbacks_p)->callback = callback;
611 (*callbacks_p)->priv = priv;
612 (*callbacks_p)->next = NULL;
613
614 return ERROR_OK;
615 }
616
617 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
618 {
619 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
620 struct timeval now;
621
622 if (callback == NULL)
623 {
624 return ERROR_INVALID_ARGUMENTS;
625 }
626
627 if (*callbacks_p)
628 {
629 while ((*callbacks_p)->next)
630 callbacks_p = &((*callbacks_p)->next);
631 callbacks_p = &((*callbacks_p)->next);
632 }
633
634 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
635 (*callbacks_p)->callback = callback;
636 (*callbacks_p)->periodic = periodic;
637 (*callbacks_p)->time_ms = time_ms;
638
639 gettimeofday(&now, NULL);
640 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
641 time_ms -= (time_ms % 1000);
642 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
643 if ((*callbacks_p)->when.tv_usec > 1000000)
644 {
645 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
646 (*callbacks_p)->when.tv_sec += 1;
647 }
648
649 (*callbacks_p)->priv = priv;
650 (*callbacks_p)->next = NULL;
651
652 return ERROR_OK;
653 }
654
655 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
656 {
657 target_event_callback_t **p = &target_event_callbacks;
658 target_event_callback_t *c = target_event_callbacks;
659
660 if (callback == NULL)
661 {
662 return ERROR_INVALID_ARGUMENTS;
663 }
664
665 while (c)
666 {
667 target_event_callback_t *next = c->next;
668 if ((c->callback == callback) && (c->priv == priv))
669 {
670 *p = next;
671 free(c);
672 return ERROR_OK;
673 }
674 else
675 p = &(c->next);
676 c = next;
677 }
678
679 return ERROR_OK;
680 }
681
682 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
683 {
684 target_timer_callback_t **p = &target_timer_callbacks;
685 target_timer_callback_t *c = target_timer_callbacks;
686
687 if (callback == NULL)
688 {
689 return ERROR_INVALID_ARGUMENTS;
690 }
691
692 while (c)
693 {
694 target_timer_callback_t *next = c->next;
695 if ((c->callback == callback) && (c->priv == priv))
696 {
697 *p = next;
698 free(c);
699 return ERROR_OK;
700 }
701 else
702 p = &(c->next);
703 c = next;
704 }
705
706 return ERROR_OK;
707 }
708
709 int target_call_event_callbacks(target_t *target, enum target_event event)
710 {
711 target_event_callback_t *callback = target_event_callbacks;
712 target_event_callback_t *next_callback;
713
714 LOG_DEBUG("target event %i", event);
715
716 while (callback)
717 {
718 next_callback = callback->next;
719 callback->callback(target, event, callback->priv);
720 callback = next_callback;
721 }
722
723 return ERROR_OK;
724 }
725
726 static int target_call_timer_callbacks_check_time(int checktime)
727 {
728 target_timer_callback_t *callback = target_timer_callbacks;
729 target_timer_callback_t *next_callback;
730 struct timeval now;
731
732 keep_alive();
733
734 gettimeofday(&now, NULL);
735
736 while (callback)
737 {
738 next_callback = callback->next;
739
740 if ((!checktime&&callback->periodic)||
741 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
742 || (now.tv_sec > callback->when.tv_sec)))
743 {
744 if(callback->callback != NULL)
745 {
746 callback->callback(callback->priv);
747 if (callback->periodic)
748 {
749 int time_ms = callback->time_ms;
750 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
751 time_ms -= (time_ms % 1000);
752 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
753 if (callback->when.tv_usec > 1000000)
754 {
755 callback->when.tv_usec = callback->when.tv_usec - 1000000;
756 callback->when.tv_sec += 1;
757 }
758 }
759 else
760 target_unregister_timer_callback(callback->callback, callback->priv);
761 }
762 }
763
764 callback = next_callback;
765 }
766
767 return ERROR_OK;
768 }
769
770 int target_call_timer_callbacks()
771 {
772 return target_call_timer_callbacks_check_time(1);
773 }
774
775 /* invoke periodic callbacks immediately */
776 int target_call_timer_callbacks_now()
777 {
778 return target_call_timer_callbacks(0);
779 }
780
781 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
782 {
783 working_area_t *c = target->working_areas;
784 working_area_t *new_wa = NULL;
785
786 /* Reevaluate working area address based on MMU state*/
787 if (target->working_areas == NULL)
788 {
789 int retval;
790 int enabled;
791 retval = target->type->mmu(target, &enabled);
792 if (retval != ERROR_OK)
793 {
794 return retval;
795 }
796 if (enabled)
797 {
798 target->working_area = target->working_area_virt;
799 }
800 else
801 {
802 target->working_area = target->working_area_phys;
803 }
804 }
805
806 /* only allocate multiples of 4 byte */
807 if (size % 4)
808 {
809 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
810 size = CEIL(size, 4);
811 }
812
813 /* see if there's already a matching working area */
814 while (c)
815 {
816 if ((c->free) && (c->size == size))
817 {
818 new_wa = c;
819 break;
820 }
821 c = c->next;
822 }
823
824 /* if not, allocate a new one */
825 if (!new_wa)
826 {
827 working_area_t **p = &target->working_areas;
828 u32 first_free = target->working_area;
829 u32 free_size = target->working_area_size;
830
831 LOG_DEBUG("allocating new working area");
832
833 c = target->working_areas;
834 while (c)
835 {
836 first_free += c->size;
837 free_size -= c->size;
838 p = &c->next;
839 c = c->next;
840 }
841
842 if (free_size < size)
843 {
844 LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
845 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
846 }
847
848 new_wa = malloc(sizeof(working_area_t));
849 new_wa->next = NULL;
850 new_wa->size = size;
851 new_wa->address = first_free;
852
853 if (target->backup_working_area)
854 {
855 new_wa->backup = malloc(new_wa->size);
856 target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
857 }
858 else
859 {
860 new_wa->backup = NULL;
861 }
862
863 /* put new entry in list */
864 *p = new_wa;
865 }
866
867 /* mark as used, and return the new (reused) area */
868 new_wa->free = 0;
869 *area = new_wa;
870
871 /* user pointer */
872 new_wa->user = area;
873
874 return ERROR_OK;
875 }
876
877 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
878 {
879 if (area->free)
880 return ERROR_OK;
881
882 if (restore&&target->backup_working_area)
883 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
884
885 area->free = 1;
886
887 /* mark user pointer invalid */
888 *area->user = NULL;
889 area->user = NULL;
890
891 return ERROR_OK;
892 }
893
894 int target_free_working_area(struct target_s *target, working_area_t *area)
895 {
896 return target_free_working_area_restore(target, area, 1);
897 }
898
899 int target_free_all_working_areas_restore(struct target_s *target, int restore)
900 {
901 working_area_t *c = target->working_areas;
902
903 while (c)
904 {
905 working_area_t *next = c->next;
906 target_free_working_area_restore(target, c, restore);
907
908 if (c->backup)
909 free(c->backup);
910
911 free(c);
912
913 c = next;
914 }
915
916 target->working_areas = NULL;
917
918 return ERROR_OK;
919 }
920
921 int target_free_all_working_areas(struct target_s *target)
922 {
923 return target_free_all_working_areas_restore(target, 1);
924 }
925
926 int target_register_commands(struct command_context_s *cmd_ctx)
927 {
928 register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
929 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
930 register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
931 register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
932 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
933 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
934
935
936 /* script procedures */
937 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
938 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
939 return ERROR_OK;
940 }
941
942 int target_arch_state(struct target_s *target)
943 {
944 int retval;
945 if (target==NULL)
946 {
947 LOG_USER("No target has been configured");
948 return ERROR_OK;
949 }
950
951 LOG_USER("target state: %s", target_state_strings[target->state]);
952
953 if (target->state!=TARGET_HALTED)
954 return ERROR_OK;
955
956 retval=target->type->arch_state(target);
957 return retval;
958 }
959
960 /* Single aligned words are guaranteed to use 16 or 32 bit access
961 * mode respectively, otherwise data is handled as quickly as
962 * possible
963 */
964 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
965 {
966 int retval;
967 if (!target->type->examined)
968 {
969 LOG_ERROR("Target not examined yet");
970 return ERROR_FAIL;
971 }
972
973 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
974
975 if (((address % 2) == 0) && (size == 2))
976 {
977 return target->type->write_memory(target, address, 2, 1, buffer);
978 }
979
980 /* handle unaligned head bytes */
981 if (address % 4)
982 {
983 int unaligned = 4 - (address % 4);
984
985 if (unaligned > size)
986 unaligned = size;
987
988 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
989 return retval;
990
991 buffer += unaligned;
992 address += unaligned;
993 size -= unaligned;
994 }
995
996 /* handle aligned words */
997 if (size >= 4)
998 {
999 int aligned = size - (size % 4);
1000
1001 /* use bulk writes above a certain limit. This may have to be changed */
1002 if (aligned > 128)
1003 {
1004 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1005 return retval;
1006 }
1007 else
1008 {
1009 if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1010 return retval;
1011 }
1012
1013 buffer += aligned;
1014 address += aligned;
1015 size -= aligned;
1016 }
1017
1018 /* handle tail writes of less than 4 bytes */
1019 if (size > 0)
1020 {
1021 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1022 return retval;
1023 }
1024
1025 return ERROR_OK;
1026 }
1027
1028
1029 /* Single aligned words are guaranteed to use 16 or 32 bit access
1030 * mode respectively, otherwise data is handled as quickly as
1031 * possible
1032 */
1033 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1034 {
1035 int retval;
1036 if (!target->type->examined)
1037 {
1038 LOG_ERROR("Target not examined yet");
1039 return ERROR_FAIL;
1040 }
1041
1042 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1043
1044 if (((address % 2) == 0) && (size == 2))
1045 {
1046 return target->type->read_memory(target, address, 2, 1, buffer);
1047 }
1048
1049 /* handle unaligned head bytes */
1050 if (address % 4)
1051 {
1052 int unaligned = 4 - (address % 4);
1053
1054 if (unaligned > size)
1055 unaligned = size;
1056
1057 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1058 return retval;
1059
1060 buffer += unaligned;
1061 address += unaligned;
1062 size -= unaligned;
1063 }
1064
1065 /* handle aligned words */
1066 if (size >= 4)
1067 {
1068 int aligned = size - (size % 4);
1069
1070 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1071 return retval;
1072
1073 buffer += aligned;
1074 address += aligned;
1075 size -= aligned;
1076 }
1077
1078 /* handle tail writes of less than 4 bytes */
1079 if (size > 0)
1080 {
1081 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1082 return retval;
1083 }
1084
1085 return ERROR_OK;
1086 }
1087
1088 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1089 {
1090 u8 *buffer;
1091 int retval;
1092 int i;
1093 u32 checksum = 0;
1094 if (!target->type->examined)
1095 {
1096 LOG_ERROR("Target not examined yet");
1097 return ERROR_FAIL;
1098 }
1099
1100 if ((retval = target->type->checksum_memory(target, address,
1101 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1102 {
1103 buffer = malloc(size);
1104 if (buffer == NULL)
1105 {
1106 LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1107 return ERROR_INVALID_ARGUMENTS;
1108 }
1109 retval = target_read_buffer(target, address, size, buffer);
1110 if (retval != ERROR_OK)
1111 {
1112 free(buffer);
1113 return retval;
1114 }
1115
1116 /* convert to target endianess */
1117 for (i = 0; i < (size/sizeof(u32)); i++)
1118 {
1119 u32 target_data;
1120 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1121 target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1122 }
1123
1124 retval = image_calculate_checksum( buffer, size, &checksum );
1125 free(buffer);
1126 }
1127
1128 *crc = checksum;
1129
1130 return retval;
1131 }
1132
1133 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1134 {
1135 int retval;
1136 if (!target->type->examined)
1137 {
1138 LOG_ERROR("Target not examined yet");
1139 return ERROR_FAIL;
1140 }
1141
1142 if (target->type->blank_check_memory == 0)
1143 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1144
1145 retval = target->type->blank_check_memory(target, address, size, blank);
1146
1147 return retval;
1148 }
1149
1150 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1151 {
1152 u8 value_buf[4];
1153 if (!target->type->examined)
1154 {
1155 LOG_ERROR("Target not examined yet");
1156 return ERROR_FAIL;
1157 }
1158
1159 int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1160
1161 if (retval == ERROR_OK)
1162 {
1163 *value = target_buffer_get_u32(target, value_buf);
1164 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1165 }
1166 else
1167 {
1168 *value = 0x0;
1169 LOG_DEBUG("address: 0x%8.8x failed", address);
1170 }
1171
1172 return retval;
1173 }
1174
1175 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1176 {
1177 u8 value_buf[2];
1178 if (!target->type->examined)
1179 {
1180 LOG_ERROR("Target not examined yet");
1181 return ERROR_FAIL;
1182 }
1183
1184 int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1185
1186 if (retval == ERROR_OK)
1187 {
1188 *value = target_buffer_get_u16(target, value_buf);
1189 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1190 }
1191 else
1192 {
1193 *value = 0x0;
1194 LOG_DEBUG("address: 0x%8.8x failed", address);
1195 }
1196
1197 return retval;
1198 }
1199
1200 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1201 {
1202 int retval = target->type->read_memory(target, address, 1, 1, value);
1203 if (!target->type->examined)
1204 {
1205 LOG_ERROR("Target not examined yet");
1206 return ERROR_FAIL;
1207 }
1208
1209 if (retval == ERROR_OK)
1210 {
1211 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1212 }
1213 else
1214 {
1215 *value = 0x0;
1216 LOG_DEBUG("address: 0x%8.8x failed", address);
1217 }
1218
1219 return retval;
1220 }
1221
1222 int target_write_u32(struct target_s *target, u32 address, u32 value)
1223 {
1224 int retval;
1225 u8 value_buf[4];
1226 if (!target->type->examined)
1227 {
1228 LOG_ERROR("Target not examined yet");
1229 return ERROR_FAIL;
1230 }
1231
1232 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1233
1234 target_buffer_set_u32(target, value_buf, value);
1235 if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1236 {
1237 LOG_DEBUG("failed: %i", retval);
1238 }
1239
1240 return retval;
1241 }
1242
1243 int target_write_u16(struct target_s *target, u32 address, u16 value)
1244 {
1245 int retval;
1246 u8 value_buf[2];
1247 if (!target->type->examined)
1248 {
1249 LOG_ERROR("Target not examined yet");
1250 return ERROR_FAIL;
1251 }
1252
1253 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1254
1255 target_buffer_set_u16(target, value_buf, value);
1256 if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1257 {
1258 LOG_DEBUG("failed: %i", retval);
1259 }
1260
1261 return retval;
1262 }
1263
1264 int target_write_u8(struct target_s *target, u32 address, u8 value)
1265 {
1266 int retval;
1267 if (!target->type->examined)
1268 {
1269 LOG_ERROR("Target not examined yet");
1270 return ERROR_FAIL;
1271 }
1272
1273 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1274
1275 if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1276 {
1277 LOG_DEBUG("failed: %i", retval);
1278 }
1279
1280 return retval;
1281 }
1282
1283 int target_register_user_commands(struct command_context_s *cmd_ctx)
1284 {
1285 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1286 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1287 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1288 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1289 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1290 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1291 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1292 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1293
1294 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1295 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1296 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1297
1298 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1299 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1300 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1301
1302 register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1303 register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1304 register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1305 register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1306
1307 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1308 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1309 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1310 register_command(cmd_ctx, NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1311 register_command(cmd_ctx, NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1312
1313 target_request_register_commands(cmd_ctx);
1314 trace_register_commands(cmd_ctx);
1315
1316 return ERROR_OK;
1317 }
1318
1319 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1320 {
1321 target_t *target = targets;
1322 int count = 0;
1323
1324 if (argc == 1)
1325 {
1326 int num = strtoul(args[0], NULL, 0);
1327
1328 while (target)
1329 {
1330 count++;
1331 target = target->next;
1332 }
1333
1334 if (num < count)
1335 cmd_ctx->current_target = num;
1336 else
1337 command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1338
1339 return ERROR_OK;
1340 }
1341
1342 while (target)
1343 {
1344 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1345 target = target->next;
1346 }
1347
1348 return ERROR_OK;
1349 }
1350
1351 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1352 {
1353 int i;
1354 int found = 0;
1355
1356 if (argc < 3)
1357 {
1358 return ERROR_COMMAND_SYNTAX_ERROR;
1359 }
1360
1361 /* search for the specified target */
1362 if (args[0] && (args[0][0] != 0))
1363 {
1364 for (i = 0; target_types[i]; i++)
1365 {
1366 if (strcmp(args[0], target_types[i]->name) == 0)
1367 {
1368 target_t **last_target_p = &targets;
1369
1370 /* register target specific commands */
1371 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1372 {
1373 LOG_ERROR("couldn't register '%s' commands", args[0]);
1374 exit(-1);
1375 }
1376
1377 if (*last_target_p)
1378 {
1379 while ((*last_target_p)->next)
1380 last_target_p = &((*last_target_p)->next);
1381 last_target_p = &((*last_target_p)->next);
1382 }
1383
1384 *last_target_p = malloc(sizeof(target_t));
1385
1386 /* allocate memory for each unique target type */
1387 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1388 *((*last_target_p)->type) = *target_types[i];
1389
1390 if (strcmp(args[1], "big") == 0)
1391 (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1392 else if (strcmp(args[1], "little") == 0)
1393 (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1394 else
1395 {
1396 LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1397 return ERROR_COMMAND_SYNTAX_ERROR;
1398 }
1399
1400 if (strcmp(args[2], "reset_halt") == 0)
1401 {
1402 LOG_WARNING("reset_mode argument is obsolete.");
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404 }
1405 else if (strcmp(args[2], "reset_run") == 0)
1406 {
1407 LOG_WARNING("reset_mode argument is obsolete.");
1408 return ERROR_COMMAND_SYNTAX_ERROR;
1409 }
1410 else if (strcmp(args[2], "reset_init") == 0)
1411 {
1412 LOG_WARNING("reset_mode argument is obsolete.");
1413 return ERROR_COMMAND_SYNTAX_ERROR;
1414 }
1415 else if (strcmp(args[2], "run_and_halt") == 0)
1416 {
1417 LOG_WARNING("reset_mode argument is obsolete.");
1418 return ERROR_COMMAND_SYNTAX_ERROR;
1419 }
1420 else if (strcmp(args[2], "run_and_init") == 0)
1421 {
1422 LOG_WARNING("reset_mode argument is obsolete.");
1423 return ERROR_COMMAND_SYNTAX_ERROR;
1424 }
1425 else
1426 {
1427 /* Kludge! we want to make this reset arg optional while remaining compatible! */
1428 args--;
1429 argc++;
1430 }
1431 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1432
1433 (*last_target_p)->working_area = 0x0;
1434 (*last_target_p)->working_area_size = 0x0;
1435 (*last_target_p)->working_areas = NULL;
1436 (*last_target_p)->backup_working_area = 0;
1437
1438 (*last_target_p)->state = TARGET_UNKNOWN;
1439 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1440 (*last_target_p)->reg_cache = NULL;
1441 (*last_target_p)->breakpoints = NULL;
1442 (*last_target_p)->watchpoints = NULL;
1443 (*last_target_p)->next = NULL;
1444 (*last_target_p)->arch_info = NULL;
1445
1446 /* initialize trace information */
1447 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1448 (*last_target_p)->trace_info->num_trace_points = 0;
1449 (*last_target_p)->trace_info->trace_points_size = 0;
1450 (*last_target_p)->trace_info->trace_points = NULL;
1451 (*last_target_p)->trace_info->trace_history_size = 0;
1452 (*last_target_p)->trace_info->trace_history = NULL;
1453 (*last_target_p)->trace_info->trace_history_pos = 0;
1454 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1455
1456 (*last_target_p)->dbgmsg = NULL;
1457 (*last_target_p)->dbg_msg_enabled = 0;
1458
1459 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1460
1461 found = 1;
1462 break;
1463 }
1464 }
1465 }
1466
1467 /* no matching target found */
1468 if (!found)
1469 {
1470 LOG_ERROR("target '%s' not found", args[0]);
1471 return ERROR_COMMAND_SYNTAX_ERROR;
1472 }
1473
1474 return ERROR_OK;
1475 }
1476
1477 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1478 {
1479 return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}",
1480 get_num_by_target(target), name,
1481 get_num_by_target(target), name);
1482 }
1483
1484 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1485 {
1486 target_t *target = NULL;
1487
1488 if (argc < 2)
1489 {
1490 return ERROR_COMMAND_SYNTAX_ERROR;
1491 }
1492
1493 target = get_target_by_num(strtoul(args[0], NULL, 0));
1494 if (!target)
1495 {
1496 return ERROR_COMMAND_SYNTAX_ERROR;
1497 }
1498
1499 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1500
1501 return ERROR_OK;
1502 }
1503
1504 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1505 {
1506 target_t *target = NULL;
1507
1508 if ((argc < 4) || (argc > 5))
1509 {
1510 return ERROR_COMMAND_SYNTAX_ERROR;
1511 }
1512
1513 target = get_target_by_num(strtoul(args[0], NULL, 0));
1514 if (!target)
1515 {
1516 return ERROR_COMMAND_SYNTAX_ERROR;
1517 }
1518 target_free_all_working_areas(target);
1519
1520 target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1521 if (argc == 5)
1522 {
1523 target->working_area_virt = strtoul(args[4], NULL, 0);
1524 }
1525 target->working_area_size = strtoul(args[2], NULL, 0);
1526
1527 if (strcmp(args[3], "backup") == 0)
1528 {
1529 target->backup_working_area = 1;
1530 }
1531 else if (strcmp(args[3], "nobackup") == 0)
1532 {
1533 target->backup_working_area = 0;
1534 }
1535 else
1536 {
1537 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1538 return ERROR_COMMAND_SYNTAX_ERROR;
1539 }
1540
1541 return ERROR_OK;
1542 }
1543
1544
1545 /* process target state changes */
1546 int handle_target(void *priv)
1547 {
1548 target_t *target = targets;
1549
1550 while (target)
1551 {
1552 if (target_continous_poll)
1553 {
1554 /* polling may fail silently until the target has been examined */
1555 target_poll(target);
1556 }
1557
1558 target = target->next;
1559 }
1560
1561 return ERROR_OK;
1562 }
1563
1564 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1565 {
1566 target_t *target;
1567 reg_t *reg = NULL;
1568 int count = 0;
1569 char *value;
1570
1571 LOG_DEBUG("-");
1572
1573 target = get_current_target(cmd_ctx);
1574
1575 /* list all available registers for the current target */
1576 if (argc == 0)
1577 {
1578 reg_cache_t *cache = target->reg_cache;
1579
1580 count = 0;
1581 while(cache)
1582 {
1583 int i;
1584 for (i = 0; i < cache->num_regs; i++)
1585 {
1586 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1587 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1588 free(value);
1589 }
1590 cache = cache->next;
1591 }
1592
1593 return ERROR_OK;
1594 }
1595
1596 /* access a single register by its ordinal number */
1597 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1598 {
1599 int num = strtoul(args[0], NULL, 0);
1600 reg_cache_t *cache = target->reg_cache;
1601
1602 count = 0;
1603 while(cache)
1604 {
1605 int i;
1606 for (i = 0; i < cache->num_regs; i++)
1607 {
1608 if (count++ == num)
1609 {
1610 reg = &cache->reg_list[i];
1611 break;
1612 }
1613 }
1614 if (reg)
1615 break;
1616 cache = cache->next;
1617 }
1618
1619 if (!reg)
1620 {
1621 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1622 return ERROR_OK;
1623 }
1624 } else /* access a single register by its name */
1625 {
1626 reg = register_get_by_name(target->reg_cache, args[0], 1);
1627
1628 if (!reg)
1629 {
1630 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1631 return ERROR_OK;
1632 }
1633 }
1634
1635 /* display a register */
1636 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1637 {
1638 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1639 reg->valid = 0;
1640
1641 if (reg->valid == 0)
1642 {
1643 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1644 if (arch_type == NULL)
1645 {
1646 LOG_ERROR("BUG: encountered unregistered arch type");
1647 return ERROR_OK;
1648 }
1649 arch_type->get(reg);
1650 }
1651 value = buf_to_str(reg->value, reg->size, 16);
1652 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1653 free(value);
1654 return ERROR_OK;
1655 }
1656
1657 /* set register value */
1658 if (argc == 2)
1659 {
1660 u8 *buf = malloc(CEIL(reg->size, 8));
1661 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1662
1663 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1664 if (arch_type == NULL)
1665 {
1666 LOG_ERROR("BUG: encountered unregistered arch type");
1667 return ERROR_OK;
1668 }
1669
1670 arch_type->set(reg, buf);
1671
1672 value = buf_to_str(reg->value, reg->size, 16);
1673 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1674 free(value);
1675
1676 free(buf);
1677
1678 return ERROR_OK;
1679 }
1680
1681 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1682
1683 return ERROR_OK;
1684 }
1685
1686 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1687
1688 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1689 {
1690 target_t *target = get_current_target(cmd_ctx);
1691
1692 if (argc == 0)
1693 {
1694 target_poll(target);
1695 target_arch_state(target);
1696 }
1697 else
1698 {
1699 if (strcmp(args[0], "on") == 0)
1700 {
1701 target_continous_poll = 1;
1702 }
1703 else if (strcmp(args[0], "off") == 0)
1704 {
1705 target_continous_poll = 0;
1706 }
1707 else
1708 {
1709 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1710 }
1711 }
1712
1713
1714 return ERROR_OK;
1715 }
1716
1717 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1718 {
1719 int ms = 5000;
1720
1721 if (argc > 0)
1722 {
1723 char *end;
1724
1725 ms = strtoul(args[0], &end, 0) * 1000;
1726 if (*end)
1727 {
1728 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1729 return ERROR_OK;
1730 }
1731 }
1732
1733 return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms);
1734 }
1735
1736 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1737 {
1738 int retval;
1739 struct timeval timeout, now;
1740 int once=1;
1741 gettimeofday(&timeout, NULL);
1742 timeval_add_time(&timeout, 0, ms * 1000);
1743
1744 target_t *target = get_current_target(cmd_ctx);
1745 for (;;)
1746 {
1747 if ((retval=target_poll(target))!=ERROR_OK)
1748 return retval;
1749 target_call_timer_callbacks_now();
1750 if (target->state == state)
1751 {
1752 break;
1753 }
1754 if (once)
1755 {
1756 once=0;
1757 command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1758 }
1759
1760 gettimeofday(&now, NULL);
1761 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1762 {
1763 LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1764 break;
1765 }
1766 }
1767
1768 return ERROR_OK;
1769 }
1770
1771 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1772 {
1773 int retval;
1774 target_t *target = get_current_target(cmd_ctx);
1775
1776 LOG_DEBUG("-");
1777
1778 if ((retval = target_halt(target)) != ERROR_OK)
1779 {
1780 return retval;
1781 }
1782
1783 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1784 }
1785
1786 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788 target_t *target = get_current_target(cmd_ctx);
1789
1790 LOG_USER("requesting target halt and executing a soft reset");
1791
1792 target->type->soft_reset_halt(target);
1793
1794 return ERROR_OK;
1795 }
1796
1797 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1798 {
1799 target_t *target = get_current_target(cmd_ctx);
1800 enum target_reset_mode reset_mode = RESET_RUN;
1801
1802 LOG_DEBUG("-");
1803
1804 if (argc >= 1)
1805 {
1806 if (strcmp("run", args[0]) == 0)
1807 reset_mode = RESET_RUN;
1808 else if (strcmp("halt", args[0]) == 0)
1809 reset_mode = RESET_HALT;
1810 else if (strcmp("init", args[0]) == 0)
1811 reset_mode = RESET_INIT;
1812 else if (strcmp("run_and_halt", args[0]) == 0)
1813 {
1814 reset_mode = RESET_RUN_AND_HALT;
1815 if (argc >= 2)
1816 {
1817 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1818 }
1819 }
1820 else if (strcmp("run_and_init", args[0]) == 0)
1821 {
1822 reset_mode = RESET_RUN_AND_INIT;
1823 if (argc >= 2)
1824 {
1825 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1826 }
1827 }
1828 else
1829 {
1830 command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1831 return ERROR_OK;
1832 }
1833 }
1834
1835 /* reset *all* targets */
1836 target_process_reset(cmd_ctx, reset_mode);
1837
1838 return ERROR_OK;
1839 }
1840
1841 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1842 {
1843 int retval;
1844 target_t *target = get_current_target(cmd_ctx);
1845
1846 target_invoke_script(cmd_ctx, target, "pre_resume");
1847
1848 if (argc == 0)
1849 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1850 else if (argc == 1)
1851 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1852 else
1853 {
1854 return ERROR_COMMAND_SYNTAX_ERROR;
1855 }
1856
1857 return retval;
1858 }
1859
1860 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1861 {
1862 target_t *target = get_current_target(cmd_ctx);
1863
1864 LOG_DEBUG("-");
1865
1866 if (argc == 0)
1867 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1868
1869 if (argc == 1)
1870 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1871
1872 return ERROR_OK;
1873 }
1874
1875 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1876 {
1877 const int line_bytecnt = 32;
1878 int count = 1;
1879 int size = 4;
1880 u32 address = 0;
1881 int line_modulo;
1882 int i;
1883
1884 char output[128];
1885 int output_len;
1886
1887 int retval;
1888
1889 u8 *buffer;
1890 target_t *target = get_current_target(cmd_ctx);
1891
1892 if (argc < 1)
1893 return ERROR_OK;
1894
1895 if (argc == 2)
1896 count = strtoul(args[1], NULL, 0);
1897
1898 address = strtoul(args[0], NULL, 0);
1899
1900
1901 switch (cmd[2])
1902 {
1903 case 'w':
1904 size = 4; line_modulo = line_bytecnt / 4;
1905 break;
1906 case 'h':
1907 size = 2; line_modulo = line_bytecnt / 2;
1908 break;
1909 case 'b':
1910 size = 1; line_modulo = line_bytecnt / 1;
1911 break;
1912 default:
1913 return ERROR_OK;
1914 }
1915
1916 buffer = calloc(count, size);
1917 retval = target->type->read_memory(target, address, size, count, buffer);
1918 if (retval == ERROR_OK)
1919 {
1920 output_len = 0;
1921
1922 for (i = 0; i < count; i++)
1923 {
1924 if (i%line_modulo == 0)
1925 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1926
1927 switch (size)
1928 {
1929 case 4:
1930 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1931 break;
1932 case 2:
1933 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1934 break;
1935 case 1:
1936 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1937 break;
1938 }
1939
1940 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1941 {
1942 command_print(cmd_ctx, output);
1943 output_len = 0;
1944 }
1945 }
1946 }
1947
1948 free(buffer);
1949
1950 return retval;
1951 }
1952
1953 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1954 {
1955 u32 address = 0;
1956 u32 value = 0;
1957 int count = 1;
1958 int i;
1959 int wordsize;
1960 target_t *target = get_current_target(cmd_ctx);
1961 u8 value_buf[4];
1962
1963 if ((argc < 2) || (argc > 3))
1964 return ERROR_COMMAND_SYNTAX_ERROR;
1965
1966 address = strtoul(args[0], NULL, 0);
1967 value = strtoul(args[1], NULL, 0);
1968 if (argc == 3)
1969 count = strtoul(args[2], NULL, 0);
1970
1971 switch (cmd[2])
1972 {
1973 case 'w':
1974 wordsize = 4;
1975 target_buffer_set_u32(target, value_buf, value);
1976 break;
1977 case 'h':
1978 wordsize = 2;
1979 target_buffer_set_u16(target, value_buf, value);
1980 break;
1981 case 'b':
1982 wordsize = 1;
1983 value_buf[0] = value;
1984 break;
1985 default:
1986 return ERROR_COMMAND_SYNTAX_ERROR;
1987 }
1988 for (i=0; i<count; i++)
1989 {
1990 int retval;
1991 switch (wordsize)
1992 {
1993 case 4:
1994 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1995 break;
1996 case 2:
1997 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1998 break;
1999 case 1:
2000 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2001 break;
2002 default:
2003 return ERROR_OK;
2004 }
2005 if (retval!=ERROR_OK)
2006 {
2007 return retval;
2008 }
2009 }
2010
2011 return ERROR_OK;
2012
2013 }
2014
2015 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2016 {
2017 u8 *buffer;
2018 u32 buf_cnt;
2019 u32 image_size;
2020 int i;
2021 int retval;
2022
2023 image_t image;
2024
2025 duration_t duration;
2026 char *duration_text;
2027
2028 target_t *target = get_current_target(cmd_ctx);
2029
2030 if (argc < 1)
2031 {
2032 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2033 return ERROR_OK;
2034 }
2035
2036 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2037 if (argc >= 2)
2038 {
2039 image.base_address_set = 1;
2040 image.base_address = strtoul(args[1], NULL, 0);
2041 }
2042 else
2043 {
2044 image.base_address_set = 0;
2045 }
2046
2047 image.start_address_set = 0;
2048
2049 duration_start_measure(&duration);
2050
2051 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2052 {
2053 return ERROR_OK;
2054 }
2055
2056 image_size = 0x0;
2057 retval = ERROR_OK;
2058 for (i = 0; i < image.num_sections; i++)
2059 {
2060 buffer = malloc(image.sections[i].size);
2061 if (buffer == NULL)
2062 {
2063 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2064 break;
2065 }
2066
2067 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2068 {
2069 free(buffer);
2070 break;
2071 }
2072 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2073 {
2074 free(buffer);
2075 break;
2076 }
2077 image_size += buf_cnt;
2078 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2079
2080 free(buffer);
2081 }
2082
2083 duration_stop_measure(&duration, &duration_text);
2084 if (retval==ERROR_OK)
2085 {
2086 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2087 }
2088 free(duration_text);
2089
2090 image_close(&image);
2091
2092 return retval;
2093
2094 }
2095
2096 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2097 {
2098 fileio_t fileio;
2099
2100 u32 address;
2101 u32 size;
2102 u8 buffer[560];
2103 int retval=ERROR_OK;
2104
2105 duration_t duration;
2106 char *duration_text;
2107
2108 target_t *target = get_current_target(cmd_ctx);
2109
2110 if (argc != 3)
2111 {
2112 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2113 return ERROR_OK;
2114 }
2115
2116 address = strtoul(args[1], NULL, 0);
2117 size = strtoul(args[2], NULL, 0);
2118
2119 if ((address & 3) || (size & 3))
2120 {
2121 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2122 return ERROR_OK;
2123 }
2124
2125 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2126 {
2127 return ERROR_OK;
2128 }
2129
2130 duration_start_measure(&duration);
2131
2132 while (size > 0)
2133 {
2134 u32 size_written;
2135 u32 this_run_size = (size > 560) ? 560 : size;
2136
2137 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2138 if (retval != ERROR_OK)
2139 {
2140 break;
2141 }
2142
2143 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2144 if (retval != ERROR_OK)
2145 {
2146 break;
2147 }
2148
2149 size -= this_run_size;
2150 address += this_run_size;
2151 }
2152
2153 fileio_close(&fileio);
2154
2155 duration_stop_measure(&duration, &duration_text);
2156 if (retval==ERROR_OK)
2157 {
2158 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2159 }
2160 free(duration_text);
2161
2162 return ERROR_OK;
2163 }
2164
2165 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2166 {
2167 u8 *buffer;
2168 u32 buf_cnt;
2169 u32 image_size;
2170 int i;
2171 int retval;
2172 u32 checksum = 0;
2173 u32 mem_checksum = 0;
2174
2175 image_t image;
2176
2177 duration_t duration;
2178 char *duration_text;
2179
2180 target_t *target = get_current_target(cmd_ctx);
2181
2182 if (argc < 1)
2183 {
2184 return ERROR_COMMAND_SYNTAX_ERROR;
2185 }
2186
2187 if (!target)
2188 {
2189 LOG_ERROR("no target selected");
2190 return ERROR_FAIL;
2191 }
2192
2193 duration_start_measure(&duration);
2194
2195 if (argc >= 2)
2196 {
2197 image.base_address_set = 1;
2198 image.base_address = strtoul(args[1], NULL, 0);
2199 }
2200 else
2201 {
2202 image.base_address_set = 0;
2203 image.base_address = 0x0;
2204 }
2205
2206 image.start_address_set = 0;
2207
2208 if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2209 {
2210 return retval;
2211 }
2212
2213 image_size = 0x0;
2214 retval=ERROR_OK;
2215 for (i = 0; i < image.num_sections; i++)
2216 {
2217 buffer = malloc(image.sections[i].size);
2218 if (buffer == NULL)
2219 {
2220 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2221 break;
2222 }
2223 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2224 {
2225 free(buffer);
2226 break;
2227 }
2228
2229 /* calculate checksum of image */
2230 image_calculate_checksum( buffer, buf_cnt, &checksum );
2231
2232 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2233 if( retval != ERROR_OK )
2234 {
2235 free(buffer);
2236 break;
2237 }
2238
2239 if( checksum != mem_checksum )
2240 {
2241 /* failed crc checksum, fall back to a binary compare */
2242 u8 *data;
2243
2244 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2245
2246 data = (u8*)malloc(buf_cnt);
2247
2248 /* Can we use 32bit word accesses? */
2249 int size = 1;
2250 int count = buf_cnt;
2251 if ((count % 4) == 0)
2252 {
2253 size *= 4;
2254 count /= 4;
2255 }
2256 retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2257 if (retval == ERROR_OK)
2258 {
2259 int t;
2260 for (t = 0; t < buf_cnt; t++)
2261 {
2262 if (data[t] != buffer[t])
2263 {
2264 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2265 free(data);
2266 free(buffer);
2267 retval=ERROR_FAIL;
2268 goto done;
2269 }
2270 }
2271 }
2272
2273 free(data);
2274 }
2275
2276 free(buffer);
2277 image_size += buf_cnt;
2278 }
2279 done:
2280 duration_stop_measure(&duration, &duration_text);
2281 if (retval==ERROR_OK)
2282 {
2283 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2284 }
2285 free(duration_text);
2286
2287 image_close(&image);
2288
2289 return retval;
2290 }
2291
2292 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2293 {
2294 int retval;
2295 target_t *target = get_current_target(cmd_ctx);
2296
2297 if (argc == 0)
2298 {
2299 breakpoint_t *breakpoint = target->breakpoints;
2300
2301 while (breakpoint)
2302 {
2303 if (breakpoint->type == BKPT_SOFT)
2304 {
2305 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2306 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2307 free(buf);
2308 }
2309 else
2310 {
2311 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2312 }
2313 breakpoint = breakpoint->next;
2314 }
2315 }
2316 else if (argc >= 2)
2317 {
2318 int hw = BKPT_SOFT;
2319 u32 length = 0;
2320
2321 length = strtoul(args[1], NULL, 0);
2322
2323 if (argc >= 3)
2324 if (strcmp(args[2], "hw") == 0)
2325 hw = BKPT_HARD;
2326
2327 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2328 {
2329 LOG_ERROR("Failure setting breakpoints");
2330 }
2331 else
2332 {
2333 command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2334 }
2335 }
2336 else
2337 {
2338 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2339 }
2340
2341 return ERROR_OK;
2342 }
2343
2344 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2345 {
2346 target_t *target = get_current_target(cmd_ctx);
2347
2348 if (argc > 0)
2349 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2350
2351 return ERROR_OK;
2352 }
2353
2354 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2355 {
2356 target_t *target = get_current_target(cmd_ctx);
2357 int retval;
2358
2359 if (argc == 0)
2360 {
2361 watchpoint_t *watchpoint = target->watchpoints;
2362
2363 while (watchpoint)
2364 {
2365 command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2366 watchpoint = watchpoint->next;
2367 }
2368 }
2369 else if (argc >= 2)
2370 {
2371 enum watchpoint_rw type = WPT_ACCESS;
2372 u32 data_value = 0x0;
2373 u32 data_mask = 0xffffffff;
2374
2375 if (argc >= 3)
2376 {
2377 switch(args[2][0])
2378 {
2379 case 'r':
2380 type = WPT_READ;
2381 break;
2382 case 'w':
2383 type = WPT_WRITE;
2384 break;
2385 case 'a':
2386 type = WPT_ACCESS;
2387 break;
2388 default:
2389 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2390 return ERROR_OK;
2391 }
2392 }
2393 if (argc >= 4)
2394 {
2395 data_value = strtoul(args[3], NULL, 0);
2396 }
2397 if (argc >= 5)
2398 {
2399 data_mask = strtoul(args[4], NULL, 0);
2400 }
2401
2402 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2403 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2404 {
2405 LOG_ERROR("Failure setting breakpoints");
2406 }
2407 }
2408 else
2409 {
2410 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2411 }
2412
2413 return ERROR_OK;
2414 }
2415
2416 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2417 {
2418 target_t *target = get_current_target(cmd_ctx);
2419
2420 if (argc > 0)
2421 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2422
2423 return ERROR_OK;
2424 }
2425
2426 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2427 {
2428 int retval;
2429 target_t *target = get_current_target(cmd_ctx);
2430 u32 va;
2431 u32 pa;
2432
2433 if (argc != 1)
2434 {
2435 return ERROR_COMMAND_SYNTAX_ERROR;
2436 }
2437 va = strtoul(args[0], NULL, 0);
2438
2439 retval = target->type->virt2phys(target, va, &pa);
2440 if (retval == ERROR_OK)
2441 {
2442 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2443 }
2444 else
2445 {
2446 /* lower levels will have logged a detailed error which is
2447 * forwarded to telnet/GDB session.
2448 */
2449 }
2450 return retval;
2451 }
2452 static void writeLong(FILE *f, int l)
2453 {
2454 int i;
2455 for (i=0; i<4; i++)
2456 {
2457 char c=(l>>(i*8))&0xff;
2458 fwrite(&c, 1, 1, f);
2459 }
2460
2461 }
2462 static void writeString(FILE *f, char *s)
2463 {
2464 fwrite(s, 1, strlen(s), f);
2465 }
2466
2467
2468
2469 // Dump a gmon.out histogram file.
2470 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2471 {
2472 int i;
2473 FILE *f=fopen(filename, "w");
2474 if (f==NULL)
2475 return;
2476 fwrite("gmon", 1, 4, f);
2477 writeLong(f, 0x00000001); // Version
2478 writeLong(f, 0); // padding
2479 writeLong(f, 0); // padding
2480 writeLong(f, 0); // padding
2481
2482 fwrite("", 1, 1, f); // GMON_TAG_TIME_HIST
2483
2484 // figure out bucket size
2485 u32 min=samples[0];
2486 u32 max=samples[0];
2487 for (i=0; i<sampleNum; i++)
2488 {
2489 if (min>samples[i])
2490 {
2491 min=samples[i];
2492 }
2493 if (max<samples[i])
2494 {
2495 max=samples[i];
2496 }
2497 }
2498
2499 int addressSpace=(max-min+1);
2500
2501 static int const maxBuckets=256*1024; // maximum buckets.
2502 int length=addressSpace;
2503 if (length > maxBuckets)
2504 {
2505 length=maxBuckets;
2506 }
2507 int *buckets=malloc(sizeof(int)*length);
2508 if (buckets==NULL)
2509 {
2510 fclose(f);
2511 return;
2512 }
2513 memset(buckets, 0, sizeof(int)*length);
2514 for (i=0; i<sampleNum;i++)
2515 {
2516 u32 address=samples[i];
2517 long long a=address-min;
2518 long long b=length-1;
2519 long long c=addressSpace-1;
2520 int index=(a*b)/c; // danger!!!! int32 overflows
2521 buckets[index]++;
2522 }
2523
2524 // append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2525 writeLong(f, min); // low_pc
2526 writeLong(f, max); // high_pc
2527 writeLong(f, length); // # of samples
2528 writeLong(f, 64000000); // 64MHz
2529 writeString(f, "seconds");
2530 for (i=0; i<(15-strlen("seconds")); i++)
2531 {
2532 fwrite("", 1, 1, f); // padding
2533 }
2534 writeString(f, "s");
2535
2536 // append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2537
2538 char *data=malloc(2*length);
2539 if (data!=NULL)
2540 {
2541 for (i=0; i<length;i++)
2542 {
2543 int val;
2544 val=buckets[i];
2545 if (val>65535)
2546 {
2547 val=65535;
2548 }
2549 data[i*2]=val&0xff;
2550 data[i*2+1]=(val>>8)&0xff;
2551 }
2552 free(buckets);
2553 fwrite(data, 1, length*2, f);
2554 free(data);
2555 } else
2556 {
2557 free(buckets);
2558 }
2559
2560 fclose(f);
2561 }
2562
2563 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2564 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2565 {
2566 target_t *target = get_current_target(cmd_ctx);
2567 struct timeval timeout, now;
2568
2569 gettimeofday(&timeout, NULL);
2570 if (argc!=2)
2571 {
2572 return ERROR_COMMAND_SYNTAX_ERROR;
2573 }
2574 char *end;
2575 timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2576 if (*end)
2577 {
2578 return ERROR_OK;
2579 }
2580
2581 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2582
2583 static const int maxSample=10000;
2584 u32 *samples=malloc(sizeof(u32)*maxSample);
2585 if (samples==NULL)
2586 return ERROR_OK;
2587
2588 int numSamples=0;
2589 int retval=ERROR_OK;
2590 // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2591 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2592
2593 for (;;)
2594 {
2595 target_poll(target);
2596 if (target->state == TARGET_HALTED)
2597 {
2598 u32 t=*((u32 *)reg->value);
2599 samples[numSamples++]=t;
2600 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2601 target_poll(target);
2602 usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2603 } else if (target->state == TARGET_RUNNING)
2604 {
2605 // We want to quickly sample the PC.
2606 target_halt(target);
2607 } else
2608 {
2609 command_print(cmd_ctx, "Target not halted or running");
2610 retval=ERROR_OK;
2611 break;
2612 }
2613 if (retval!=ERROR_OK)
2614 {
2615 break;
2616 }
2617
2618 gettimeofday(&now, NULL);
2619 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2620 {
2621 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2622 target_poll(target);
2623 if (target->state == TARGET_HALTED)
2624 {
2625 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2626 }
2627 target_poll(target);
2628 writeGmon(samples, numSamples, args[1]);
2629 command_print(cmd_ctx, "Wrote %s", args[1]);
2630 break;
2631 }
2632 }
2633 free(samples);
2634
2635 return ERROR_OK;
2636 }
2637
2638 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2639 {
2640 char *namebuf;
2641 Jim_Obj *nameObjPtr, *valObjPtr;
2642 int result;
2643
2644 namebuf = alloc_printf("%s(%d)", varname, idx);
2645 if (!namebuf)
2646 return JIM_ERR;
2647
2648 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2649 valObjPtr = Jim_NewIntObj(interp, val);
2650 if (!nameObjPtr || !valObjPtr)
2651 {
2652 free(namebuf);
2653 return JIM_ERR;
2654 }
2655
2656 Jim_IncrRefCount(nameObjPtr);
2657 Jim_IncrRefCount(valObjPtr);
2658 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2659 Jim_DecrRefCount(interp, nameObjPtr);
2660 Jim_DecrRefCount(interp, valObjPtr);
2661 free(namebuf);
2662 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2663 return result;
2664 }
2665
2666 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2667 {
2668 target_t *target;
2669 command_context_t *context;
2670 long l;
2671 u32 width;
2672 u32 len;
2673 u32 addr;
2674 u32 count;
2675 u32 v;
2676 const char *varname;
2677 u8 buffer[4096];
2678 int i, n, e, retval;
2679
2680 /* argv[1] = name of array to receive the data
2681 * argv[2] = desired width
2682 * argv[3] = memory address
2683 * argv[4] = count of times to read
2684 */
2685 if (argc != 5) {
2686 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2687 return JIM_ERR;
2688 }
2689 varname = Jim_GetString(argv[1], &len);
2690 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2691
2692 e = Jim_GetLong(interp, argv[2], &l);
2693 width = l;
2694 if (e != JIM_OK) {
2695 return e;
2696 }
2697
2698 e = Jim_GetLong(interp, argv[3], &l);
2699 addr = l;
2700 if (e != JIM_OK) {
2701 return e;
2702 }
2703 e = Jim_GetLong(interp, argv[4], &l);
2704 len = l;
2705 if (e != JIM_OK) {
2706 return e;
2707 }
2708 switch (width) {
2709 case 8:
2710 width = 1;
2711 break;
2712 case 16:
2713 width = 2;
2714 break;
2715 case 32:
2716 width = 4;
2717 break;
2718 default:
2719 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2720 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2721 return JIM_ERR;
2722 }
2723 if (len == 0) {
2724 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2725 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2726 return JIM_ERR;
2727 }
2728 if ((addr + (len * width)) < addr) {
2729 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2730 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2731 return JIM_ERR;
2732 }
2733 /* absurd transfer size? */
2734 if (len > 65536) {
2735 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2736 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2737 return JIM_ERR;
2738 }
2739
2740 if ((width == 1) ||
2741 ((width == 2) && ((addr & 1) == 0)) ||
2742 ((width == 4) && ((addr & 3) == 0))) {
2743 /* all is well */
2744 } else {
2745 char buf[100];
2746 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2747 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2748 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2749 return JIM_ERR;
2750 }
2751
2752 context = Jim_GetAssocData(interp, "context");
2753 if (context == NULL)
2754 {
2755 LOG_ERROR("mem2array: no command context");
2756 return JIM_ERR;
2757 }
2758 target = get_current_target(context);
2759 if (target == NULL)
2760 {
2761 LOG_ERROR("mem2array: no current target");
2762 return JIM_ERR;
2763 }
2764
2765 /* Transfer loop */
2766
2767 /* index counter */
2768 n = 0;
2769 /* assume ok */
2770 e = JIM_OK;
2771 while (len) {
2772 /* Slurp... in buffer size chunks */
2773
2774 count = len; /* in objects.. */
2775 if (count > (sizeof(buffer)/width)) {
2776 count = (sizeof(buffer)/width);
2777 }
2778
2779 retval = target->type->read_memory( target, addr, width, count, buffer );
2780 if (retval != ERROR_OK) {
2781 /* BOO !*/
2782 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2783 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2784 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2785 e = JIM_ERR;
2786 len = 0;
2787 } else {
2788 v = 0; /* shut up gcc */
2789 for (i = 0 ;i < count ;i++, n++) {
2790 switch (width) {
2791 case 4:
2792 v = target_buffer_get_u32(target, &buffer[i*width]);
2793 break;
2794 case 2:
2795 v = target_buffer_get_u16(target, &buffer[i*width]);
2796 break;
2797 case 1:
2798 v = buffer[i] & 0x0ff;
2799 break;
2800 }
2801 new_int_array_element(interp, varname, n, v);
2802 }
2803 len -= count;
2804 }
2805 }
2806
2807 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2808
2809 return JIM_OK;
2810 }
2811
2812 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2813 {
2814 char *namebuf;
2815 Jim_Obj *nameObjPtr, *valObjPtr;
2816 int result;
2817 long l;
2818
2819 namebuf = alloc_printf("%s(%d)", varname, idx);
2820 if (!namebuf)
2821 return JIM_ERR;
2822
2823 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2824 if (!nameObjPtr)
2825 {
2826 free(namebuf);
2827 return JIM_ERR;
2828 }
2829
2830 Jim_IncrRefCount(nameObjPtr);
2831 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2832 Jim_DecrRefCount(interp, nameObjPtr);
2833 free(namebuf);
2834 if (valObjPtr == NULL)
2835 return JIM_ERR;
2836
2837 result = Jim_GetLong(interp, valObjPtr, &l);
2838 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2839 *val = l;
2840 return result;
2841 }
2842
2843 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2844 {
2845 target_t *target;
2846 command_context_t *context;
2847 long l;
2848 u32 width;
2849 u32 len;
2850 u32 addr;
2851 u32 count;
2852 u32 v;
2853 const char *varname;
2854 u8 buffer[4096];
2855 int i, n, e, retval;
2856
2857 /* argv[1] = name of array to get the data
2858 * argv[2] = desired width
2859 * argv[3] = memory address
2860 * argv[4] = count to write
2861 */
2862 if (argc != 5) {
2863 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2864 return JIM_ERR;
2865 }
2866 varname = Jim_GetString(argv[1], &len);
2867 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2868
2869 e = Jim_GetLong(interp, argv[2], &l);
2870 width = l;
2871 if (e != JIM_OK) {
2872 return e;
2873 }
2874
2875 e = Jim_GetLong(interp, argv[3], &l);
2876 addr = l;
2877 if (e != JIM_OK) {
2878 return e;
2879 }
2880 e = Jim_GetLong(interp, argv[4], &l);
2881 len = l;
2882 if (e != JIM_OK) {
2883 return e;
2884 }
2885 switch (width) {
2886 case 8:
2887 width = 1;
2888 break;
2889 case 16:
2890 width = 2;
2891 break;
2892 case 32:
2893 width = 4;
2894 break;
2895 default:
2896 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2897 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2898 return JIM_ERR;
2899 }
2900 if (len == 0) {
2901 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2902 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2903 return JIM_ERR;
2904 }
2905 if ((addr + (len * width)) < addr) {
2906 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2907 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2908 return JIM_ERR;
2909 }
2910 /* absurd transfer size? */
2911 if (len > 65536) {
2912 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2913 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2914 return JIM_ERR;
2915 }
2916
2917 if ((width == 1) ||
2918 ((width == 2) && ((addr & 1) == 0)) ||
2919 ((width == 4) && ((addr & 3) == 0))) {
2920 /* all is well */
2921 } else {
2922 char buf[100];
2923 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2924 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
2925 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2926 return JIM_ERR;
2927 }
2928
2929 context = Jim_GetAssocData(interp, "context");
2930 if (context == NULL)
2931 {
2932 LOG_ERROR("array2mem: no command context");
2933 return JIM_ERR;
2934 }
2935 target = get_current_target(context);
2936 if (target == NULL)
2937 {
2938 LOG_ERROR("array2mem: no current target");
2939 return JIM_ERR;
2940 }
2941
2942 /* Transfer loop */
2943
2944 /* index counter */
2945 n = 0;
2946 /* assume ok */
2947 e = JIM_OK;
2948 while (len) {
2949 /* Slurp... in buffer size chunks */
2950
2951 count = len; /* in objects.. */
2952 if (count > (sizeof(buffer)/width)) {
2953 count = (sizeof(buffer)/width);
2954 }
2955
2956 v = 0; /* shut up gcc */
2957 for (i = 0 ;i < count ;i++, n++) {
2958 get_int_array_element(interp, varname, n, &v);
2959 switch (width) {
2960 case 4:
2961 target_buffer_set_u32(target, &buffer[i*width], v);
2962 break;
2963 case 2:
2964 target_buffer_set_u16(target, &buffer[i*width], v);
2965 break;
2966 case 1:
2967 buffer[i] = v & 0x0ff;
2968 break;
2969 }
2970 }
2971 len -= count;
2972
2973 retval = target->type->write_memory(target, addr, width, count, buffer);
2974 if (retval != ERROR_OK) {
2975 /* BOO !*/
2976 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2977 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2978 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2979 e = JIM_ERR;
2980 len = 0;
2981 }
2982 }
2983
2984 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2985
2986 return JIM_OK;
2987 }