223a035610afa07ca32017d9cb9f68bb67bd5c26
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t fa526_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96 &arm7tdmi_target,
97 &arm9tdmi_target,
98 &arm920t_target,
99 &arm720t_target,
100 &arm966e_target,
101 &arm926ejs_target,
102 &fa526_target,
103 &feroceon_target,
104 &xscale_target,
105 &cortexm3_target,
106 &cortexa8_target,
107 &arm11_target,
108 &mips_m4k_target,
109 &avr_target,
110 NULL,
111 };
112
113 target_t *all_targets = NULL;
114 target_event_callback_t *target_event_callbacks = NULL;
115 target_timer_callback_t *target_timer_callbacks = NULL;
116
117 const Jim_Nvp nvp_assert[] = {
118 { .name = "assert", NVP_ASSERT },
119 { .name = "deassert", NVP_DEASSERT },
120 { .name = "T", NVP_ASSERT },
121 { .name = "F", NVP_DEASSERT },
122 { .name = "t", NVP_ASSERT },
123 { .name = "f", NVP_DEASSERT },
124 { .name = NULL, .value = -1 }
125 };
126
127 const Jim_Nvp nvp_error_target[] = {
128 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
129 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
130 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
131 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
132 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
133 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
134 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
135 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
136 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
137 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
138 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
139 { .value = -1, .name = NULL }
140 };
141
142 const char *target_strerror_safe(int err)
143 {
144 const Jim_Nvp *n;
145
146 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
147 if (n->name == NULL) {
148 return "unknown";
149 } else {
150 return n->name;
151 }
152 }
153
154 static const Jim_Nvp nvp_target_event[] = {
155 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
156 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
157
158 { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
159 { .value = TARGET_EVENT_HALTED, .name = "halted" },
160 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
161 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
162 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
163
164 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
165 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
166
167 /* historical name */
168
169 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
170
171 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
172 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
173 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
174 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
176 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
177 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
178 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
179 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
180 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
181
182 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
193
194 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
196
197 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
198 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
199 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
200
201 { .name = NULL, .value = -1 }
202 };
203
204 const Jim_Nvp nvp_target_state[] = {
205 { .name = "unknown", .value = TARGET_UNKNOWN },
206 { .name = "running", .value = TARGET_RUNNING },
207 { .name = "halted", .value = TARGET_HALTED },
208 { .name = "reset", .value = TARGET_RESET },
209 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
210 { .name = NULL, .value = -1 },
211 };
212
213 const Jim_Nvp nvp_target_debug_reason [] = {
214 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
215 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
216 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
217 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
218 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
219 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
220 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
221 { .name = NULL, .value = -1 },
222 };
223
224 const Jim_Nvp nvp_target_endian[] = {
225 { .name = "big", .value = TARGET_BIG_ENDIAN },
226 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
227 { .name = "be", .value = TARGET_BIG_ENDIAN },
228 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
229 { .name = NULL, .value = -1 },
230 };
231
232 const Jim_Nvp nvp_reset_modes[] = {
233 { .name = "unknown", .value = RESET_UNKNOWN },
234 { .name = "run" , .value = RESET_RUN },
235 { .name = "halt" , .value = RESET_HALT },
236 { .name = "init" , .value = RESET_INIT },
237 { .name = NULL , .value = -1 },
238 };
239
240 const char *
241 target_state_name( target_t *t )
242 {
243 const char *cp;
244 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
245 if( !cp ){
246 LOG_ERROR("Invalid target state: %d", (int)(t->state));
247 cp = "(*BUG*unknown*BUG*)";
248 }
249 return cp;
250 }
251
252 /* determine the number of the new target */
253 static int new_target_number(void)
254 {
255 target_t *t;
256 int x;
257
258 /* number is 0 based */
259 x = -1;
260 t = all_targets;
261 while (t) {
262 if (x < t->target_number) {
263 x = t->target_number;
264 }
265 t = t->next;
266 }
267 return x + 1;
268 }
269
270 static int target_continuous_poll = 1;
271
272 /* read a uint32_t from a buffer in target memory endianness */
273 uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
274 {
275 if (target->endianness == TARGET_LITTLE_ENDIAN)
276 return le_to_h_u32(buffer);
277 else
278 return be_to_h_u32(buffer);
279 }
280
281 /* read a uint16_t from a buffer in target memory endianness */
282 uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
283 {
284 if (target->endianness == TARGET_LITTLE_ENDIAN)
285 return le_to_h_u16(buffer);
286 else
287 return be_to_h_u16(buffer);
288 }
289
290 /* read a uint8_t from a buffer in target memory endianness */
291 uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
292 {
293 return *buffer & 0x0ff;
294 }
295
296 /* write a uint32_t to a buffer in target memory endianness */
297 void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
298 {
299 if (target->endianness == TARGET_LITTLE_ENDIAN)
300 h_u32_to_le(buffer, value);
301 else
302 h_u32_to_be(buffer, value);
303 }
304
305 /* write a uint16_t to a buffer in target memory endianness */
306 void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
307 {
308 if (target->endianness == TARGET_LITTLE_ENDIAN)
309 h_u16_to_le(buffer, value);
310 else
311 h_u16_to_be(buffer, value);
312 }
313
314 /* write a uint8_t to a buffer in target memory endianness */
315 void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
316 {
317 *buffer = value;
318 }
319
320 /* return a pointer to a configured target; id is name or number */
321 target_t *get_target(const char *id)
322 {
323 target_t *target;
324
325 /* try as tcltarget name */
326 for (target = all_targets; target; target = target->next) {
327 if (target->cmd_name == NULL)
328 continue;
329 if (strcmp(id, target->cmd_name) == 0)
330 return target;
331 }
332
333 /* It's OK to remove this fallback sometime after August 2010 or so */
334
335 /* no match, try as number */
336 unsigned num;
337 if (parse_uint(id, &num) != ERROR_OK)
338 return NULL;
339
340 for (target = all_targets; target; target = target->next) {
341 if (target->target_number == (int)num) {
342 LOG_WARNING("use '%s' as target identifier, not '%u'",
343 target->cmd_name, num);
344 return target;
345 }
346 }
347
348 return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354 target_t *target = all_targets;
355
356 while (target) {
357 if (target->target_number == num) {
358 return target;
359 }
360 target = target->next;
361 }
362
363 return NULL;
364 }
365
366 target_t* get_current_target(command_context_t *cmd_ctx)
367 {
368 target_t *target = get_target_by_num(cmd_ctx->current_target);
369
370 if (target == NULL)
371 {
372 LOG_ERROR("BUG: current_target out of bounds");
373 exit(-1);
374 }
375
376 return target;
377 }
378
379 int target_poll(struct target_s *target)
380 {
381 /* We can't poll until after examine */
382 if (!target_was_examined(target))
383 {
384 /* Fail silently lest we pollute the log */
385 return ERROR_FAIL;
386 }
387 return target->type->poll(target);
388 }
389
390 int target_halt(struct target_s *target)
391 {
392 /* We can't poll until after examine */
393 if (!target_was_examined(target))
394 {
395 LOG_ERROR("Target not examined yet");
396 return ERROR_FAIL;
397 }
398 return target->type->halt(target);
399 }
400
401 int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
402 {
403 int retval;
404
405 /* We can't poll until after examine */
406 if (!target_was_examined(target))
407 {
408 LOG_ERROR("Target not examined yet");
409 return ERROR_FAIL;
410 }
411
412 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
413 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
414 * the application.
415 */
416 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
417 return retval;
418
419 return retval;
420 }
421
422 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
423 {
424 char buf[100];
425 int retval;
426 Jim_Nvp *n;
427 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
428 if (n->name == NULL) {
429 LOG_ERROR("invalid reset mode");
430 return ERROR_FAIL;
431 }
432
433 /* disable polling during reset to make reset event scripts
434 * more predictable, i.e. dr/irscan & pathmove in events will
435 * not have JTAG operations injected into the middle of a sequence.
436 */
437 int save_poll = target_continuous_poll;
438 target_continuous_poll = 0;
439
440 sprintf(buf, "ocd_process_reset %s", n->name);
441 retval = Jim_Eval(interp, buf);
442
443 target_continuous_poll = save_poll;
444
445 if (retval != JIM_OK) {
446 Jim_PrintErrorMessage(interp);
447 return ERROR_FAIL;
448 }
449
450 /* We want any events to be processed before the prompt */
451 retval = target_call_timer_callbacks_now();
452
453 return retval;
454 }
455
456 static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical)
457 {
458 *physical = virtual;
459 return ERROR_OK;
460 }
461
462 static int default_mmu(struct target_s *target, int *enabled)
463 {
464 *enabled = 0;
465 return ERROR_OK;
466 }
467
468 static int default_examine(struct target_s *target)
469 {
470 target_set_examined(target);
471 return ERROR_OK;
472 }
473
474 int target_examine_one(struct target_s *target)
475 {
476 return target->type->examine(target);
477 }
478
479 static int jtag_enable_callback(enum jtag_event event, void *priv)
480 {
481 target_t *target = priv;
482
483 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
484 return ERROR_OK;
485
486 jtag_unregister_event_callback(jtag_enable_callback, target);
487 return target_examine_one(target);
488 }
489
490
491 /* Targets that correctly implement init + examine, i.e.
492 * no communication with target during init:
493 *
494 * XScale
495 */
496 int target_examine(void)
497 {
498 int retval = ERROR_OK;
499 target_t *target;
500
501 for (target = all_targets; target; target = target->next)
502 {
503 /* defer examination, but don't skip it */
504 if (!target->tap->enabled) {
505 jtag_register_event_callback(jtag_enable_callback,
506 target);
507 continue;
508 }
509 if ((retval = target_examine_one(target)) != ERROR_OK)
510 return retval;
511 }
512 return retval;
513 }
514 const char *target_get_name(struct target_s *target)
515 {
516 return target->type->name;
517 }
518
519 static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
520 {
521 if (!target_was_examined(target))
522 {
523 LOG_ERROR("Target not examined yet");
524 return ERROR_FAIL;
525 }
526 return target->type->write_memory_imp(target, address, size, count, buffer);
527 }
528
529 static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
530 {
531 if (!target_was_examined(target))
532 {
533 LOG_ERROR("Target not examined yet");
534 return ERROR_FAIL;
535 }
536 return target->type->read_memory_imp(target, address, size, count, buffer);
537 }
538
539 static int target_soft_reset_halt_imp(struct target_s *target)
540 {
541 if (!target_was_examined(target))
542 {
543 LOG_ERROR("Target not examined yet");
544 return ERROR_FAIL;
545 }
546 if (!target->type->soft_reset_halt_imp) {
547 LOG_ERROR("Target %s does not support soft_reset_halt",
548 target->cmd_name);
549 return ERROR_FAIL;
550 }
551 return target->type->soft_reset_halt_imp(target);
552 }
553
554 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
555 {
556 if (!target_was_examined(target))
557 {
558 LOG_ERROR("Target not examined yet");
559 return ERROR_FAIL;
560 }
561 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
562 }
563
564 int target_read_memory(struct target_s *target,
565 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
566 {
567 return target->type->read_memory(target, address, size, count, buffer);
568 }
569
570 int target_write_memory(struct target_s *target,
571 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
572 {
573 return target->type->write_memory(target, address, size, count, buffer);
574 }
575 int target_bulk_write_memory(struct target_s *target,
576 uint32_t address, uint32_t count, uint8_t *buffer)
577 {
578 return target->type->bulk_write_memory(target, address, count, buffer);
579 }
580
581 int target_add_breakpoint(struct target_s *target,
582 struct breakpoint_s *breakpoint)
583 {
584 return target->type->add_breakpoint(target, breakpoint);
585 }
586 int target_remove_breakpoint(struct target_s *target,
587 struct breakpoint_s *breakpoint)
588 {
589 return target->type->remove_breakpoint(target, breakpoint);
590 }
591
592 int target_add_watchpoint(struct target_s *target,
593 struct watchpoint_s *watchpoint)
594 {
595 return target->type->add_watchpoint(target, watchpoint);
596 }
597 int target_remove_watchpoint(struct target_s *target,
598 struct watchpoint_s *watchpoint)
599 {
600 return target->type->remove_watchpoint(target, watchpoint);
601 }
602
603 int target_get_gdb_reg_list(struct target_s *target,
604 struct reg_s **reg_list[], int *reg_list_size)
605 {
606 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
607 }
608 int target_step(struct target_s *target,
609 int current, uint32_t address, int handle_breakpoints)
610 {
611 return target->type->step(target, current, address, handle_breakpoints);
612 }
613
614
615 int target_run_algorithm(struct target_s *target,
616 int num_mem_params, mem_param_t *mem_params,
617 int num_reg_params, reg_param_t *reg_param,
618 uint32_t entry_point, uint32_t exit_point,
619 int timeout_ms, void *arch_info)
620 {
621 return target->type->run_algorithm(target,
622 num_mem_params, mem_params, num_reg_params, reg_param,
623 entry_point, exit_point, timeout_ms, arch_info);
624 }
625
626 /// @returns @c true if the target has been examined.
627 bool target_was_examined(struct target_s *target)
628 {
629 return target->type->examined;
630 }
631 /// Sets the @c examined flag for the given target.
632 void target_set_examined(struct target_s *target)
633 {
634 target->type->examined = true;
635 }
636 // Reset the @c examined flag for the given target.
637 void target_reset_examined(struct target_s *target)
638 {
639 target->type->examined = false;
640 }
641
642
643 int target_init(struct command_context_s *cmd_ctx)
644 {
645 target_t *target = all_targets;
646 int retval;
647
648 while (target)
649 {
650 target_reset_examined(target);
651 if (target->type->examine == NULL)
652 {
653 target->type->examine = default_examine;
654 }
655
656 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
657 {
658 LOG_ERROR("target '%s' init failed", target_get_name(target));
659 return retval;
660 }
661
662 /* Set up default functions if none are provided by target */
663 if (target->type->virt2phys == NULL)
664 {
665 target->type->virt2phys = default_virt2phys;
666 }
667 target->type->virt2phys = default_virt2phys;
668 /* a non-invasive way(in terms of patches) to add some code that
669 * runs before the type->write/read_memory implementation
670 */
671 target->type->write_memory_imp = target->type->write_memory;
672 target->type->write_memory = target_write_memory_imp;
673 target->type->read_memory_imp = target->type->read_memory;
674 target->type->read_memory = target_read_memory_imp;
675 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
676 target->type->soft_reset_halt = target_soft_reset_halt_imp;
677 target->type->run_algorithm_imp = target->type->run_algorithm;
678 target->type->run_algorithm = target_run_algorithm_imp;
679
680 if (target->type->mmu == NULL)
681 {
682 target->type->mmu = default_mmu;
683 }
684 target = target->next;
685 }
686
687 if (all_targets)
688 {
689 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
690 return retval;
691 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
692 return retval;
693 }
694
695 return ERROR_OK;
696 }
697
698 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
699 {
700 target_event_callback_t **callbacks_p = &target_event_callbacks;
701
702 if (callback == NULL)
703 {
704 return ERROR_INVALID_ARGUMENTS;
705 }
706
707 if (*callbacks_p)
708 {
709 while ((*callbacks_p)->next)
710 callbacks_p = &((*callbacks_p)->next);
711 callbacks_p = &((*callbacks_p)->next);
712 }
713
714 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
715 (*callbacks_p)->callback = callback;
716 (*callbacks_p)->priv = priv;
717 (*callbacks_p)->next = NULL;
718
719 return ERROR_OK;
720 }
721
722 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
723 {
724 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
725 struct timeval now;
726
727 if (callback == NULL)
728 {
729 return ERROR_INVALID_ARGUMENTS;
730 }
731
732 if (*callbacks_p)
733 {
734 while ((*callbacks_p)->next)
735 callbacks_p = &((*callbacks_p)->next);
736 callbacks_p = &((*callbacks_p)->next);
737 }
738
739 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
740 (*callbacks_p)->callback = callback;
741 (*callbacks_p)->periodic = periodic;
742 (*callbacks_p)->time_ms = time_ms;
743
744 gettimeofday(&now, NULL);
745 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
746 time_ms -= (time_ms % 1000);
747 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
748 if ((*callbacks_p)->when.tv_usec > 1000000)
749 {
750 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
751 (*callbacks_p)->when.tv_sec += 1;
752 }
753
754 (*callbacks_p)->priv = priv;
755 (*callbacks_p)->next = NULL;
756
757 return ERROR_OK;
758 }
759
760 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
761 {
762 target_event_callback_t **p = &target_event_callbacks;
763 target_event_callback_t *c = target_event_callbacks;
764
765 if (callback == NULL)
766 {
767 return ERROR_INVALID_ARGUMENTS;
768 }
769
770 while (c)
771 {
772 target_event_callback_t *next = c->next;
773 if ((c->callback == callback) && (c->priv == priv))
774 {
775 *p = next;
776 free(c);
777 return ERROR_OK;
778 }
779 else
780 p = &(c->next);
781 c = next;
782 }
783
784 return ERROR_OK;
785 }
786
787 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
788 {
789 target_timer_callback_t **p = &target_timer_callbacks;
790 target_timer_callback_t *c = target_timer_callbacks;
791
792 if (callback == NULL)
793 {
794 return ERROR_INVALID_ARGUMENTS;
795 }
796
797 while (c)
798 {
799 target_timer_callback_t *next = c->next;
800 if ((c->callback == callback) && (c->priv == priv))
801 {
802 *p = next;
803 free(c);
804 return ERROR_OK;
805 }
806 else
807 p = &(c->next);
808 c = next;
809 }
810
811 return ERROR_OK;
812 }
813
814 int target_call_event_callbacks(target_t *target, enum target_event event)
815 {
816 target_event_callback_t *callback = target_event_callbacks;
817 target_event_callback_t *next_callback;
818
819 if (event == TARGET_EVENT_HALTED)
820 {
821 /* execute early halted first */
822 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
823 }
824
825 LOG_DEBUG("target event %i (%s)",
826 event,
827 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
828
829 target_handle_event(target, event);
830
831 while (callback)
832 {
833 next_callback = callback->next;
834 callback->callback(target, event, callback->priv);
835 callback = next_callback;
836 }
837
838 return ERROR_OK;
839 }
840
841 static int target_timer_callback_periodic_restart(
842 target_timer_callback_t *cb, struct timeval *now)
843 {
844 int time_ms = cb->time_ms;
845 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
846 time_ms -= (time_ms % 1000);
847 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
848 if (cb->when.tv_usec > 1000000)
849 {
850 cb->when.tv_usec = cb->when.tv_usec - 1000000;
851 cb->when.tv_sec += 1;
852 }
853 return ERROR_OK;
854 }
855
856 static int target_call_timer_callback(target_timer_callback_t *cb,
857 struct timeval *now)
858 {
859 cb->callback(cb->priv);
860
861 if (cb->periodic)
862 return target_timer_callback_periodic_restart(cb, now);
863
864 return target_unregister_timer_callback(cb->callback, cb->priv);
865 }
866
867 static int target_call_timer_callbacks_check_time(int checktime)
868 {
869 keep_alive();
870
871 struct timeval now;
872 gettimeofday(&now, NULL);
873
874 target_timer_callback_t *callback = target_timer_callbacks;
875 while (callback)
876 {
877 // cleaning up may unregister and free this callback
878 target_timer_callback_t *next_callback = callback->next;
879
880 bool call_it = callback->callback &&
881 ((!checktime && callback->periodic) ||
882 now.tv_sec > callback->when.tv_sec ||
883 (now.tv_sec == callback->when.tv_sec &&
884 now.tv_usec >= callback->when.tv_usec));
885
886 if (call_it)
887 {
888 int retval = target_call_timer_callback(callback, &now);
889 if (retval != ERROR_OK)
890 return retval;
891 }
892
893 callback = next_callback;
894 }
895
896 return ERROR_OK;
897 }
898
899 int target_call_timer_callbacks(void)
900 {
901 return target_call_timer_callbacks_check_time(1);
902 }
903
904 /* invoke periodic callbacks immediately */
905 int target_call_timer_callbacks_now(void)
906 {
907 return target_call_timer_callbacks_check_time(0);
908 }
909
910 int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
911 {
912 working_area_t *c = target->working_areas;
913 working_area_t *new_wa = NULL;
914
915 /* Reevaluate working area address based on MMU state*/
916 if (target->working_areas == NULL)
917 {
918 int retval;
919 int enabled;
920 retval = target->type->mmu(target, &enabled);
921 if (retval != ERROR_OK)
922 {
923 return retval;
924 }
925 if (enabled)
926 {
927 target->working_area = target->working_area_virt;
928 }
929 else
930 {
931 target->working_area = target->working_area_phys;
932 }
933 }
934
935 /* only allocate multiples of 4 byte */
936 if (size % 4)
937 {
938 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
939 size = (size + 3) & (~3);
940 }
941
942 /* see if there's already a matching working area */
943 while (c)
944 {
945 if ((c->free) && (c->size == size))
946 {
947 new_wa = c;
948 break;
949 }
950 c = c->next;
951 }
952
953 /* if not, allocate a new one */
954 if (!new_wa)
955 {
956 working_area_t **p = &target->working_areas;
957 uint32_t first_free = target->working_area;
958 uint32_t free_size = target->working_area_size;
959
960 LOG_DEBUG("allocating new working area");
961
962 c = target->working_areas;
963 while (c)
964 {
965 first_free += c->size;
966 free_size -= c->size;
967 p = &c->next;
968 c = c->next;
969 }
970
971 if (free_size < size)
972 {
973 LOG_WARNING("not enough working area available(requested %u, free %u)",
974 (unsigned)(size), (unsigned)(free_size));
975 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
976 }
977
978 new_wa = malloc(sizeof(working_area_t));
979 new_wa->next = NULL;
980 new_wa->size = size;
981 new_wa->address = first_free;
982
983 if (target->backup_working_area)
984 {
985 int retval;
986 new_wa->backup = malloc(new_wa->size);
987 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
988 {
989 free(new_wa->backup);
990 free(new_wa);
991 return retval;
992 }
993 }
994 else
995 {
996 new_wa->backup = NULL;
997 }
998
999 /* put new entry in list */
1000 *p = new_wa;
1001 }
1002
1003 /* mark as used, and return the new (reused) area */
1004 new_wa->free = 0;
1005 *area = new_wa;
1006
1007 /* user pointer */
1008 new_wa->user = area;
1009
1010 return ERROR_OK;
1011 }
1012
1013 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
1014 {
1015 if (area->free)
1016 return ERROR_OK;
1017
1018 if (restore && target->backup_working_area)
1019 {
1020 int retval;
1021 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1022 return retval;
1023 }
1024
1025 area->free = 1;
1026
1027 /* mark user pointer invalid */
1028 *area->user = NULL;
1029 area->user = NULL;
1030
1031 return ERROR_OK;
1032 }
1033
1034 int target_free_working_area(struct target_s *target, working_area_t *area)
1035 {
1036 return target_free_working_area_restore(target, area, 1);
1037 }
1038
1039 /* free resources and restore memory, if restoring memory fails,
1040 * free up resources anyway
1041 */
1042 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1043 {
1044 working_area_t *c = target->working_areas;
1045
1046 while (c)
1047 {
1048 working_area_t *next = c->next;
1049 target_free_working_area_restore(target, c, restore);
1050
1051 if (c->backup)
1052 free(c->backup);
1053
1054 free(c);
1055
1056 c = next;
1057 }
1058
1059 target->working_areas = NULL;
1060 }
1061
1062 void target_free_all_working_areas(struct target_s *target)
1063 {
1064 target_free_all_working_areas_restore(target, 1);
1065 }
1066
1067 int target_register_commands(struct command_context_s *cmd_ctx)
1068 {
1069
1070 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1071
1072
1073
1074
1075 register_jim(cmd_ctx, "target", jim_target, "configure target");
1076
1077 return ERROR_OK;
1078 }
1079
1080 int target_arch_state(struct target_s *target)
1081 {
1082 int retval;
1083 if (target == NULL)
1084 {
1085 LOG_USER("No target has been configured");
1086 return ERROR_OK;
1087 }
1088
1089 LOG_USER("target state: %s", target_state_name( target ));
1090
1091 if (target->state != TARGET_HALTED)
1092 return ERROR_OK;
1093
1094 retval = target->type->arch_state(target);
1095 return retval;
1096 }
1097
1098 /* Single aligned words are guaranteed to use 16 or 32 bit access
1099 * mode respectively, otherwise data is handled as quickly as
1100 * possible
1101 */
1102 int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1103 {
1104 int retval;
1105 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1106 (int)size, (unsigned)address);
1107
1108 if (!target_was_examined(target))
1109 {
1110 LOG_ERROR("Target not examined yet");
1111 return ERROR_FAIL;
1112 }
1113
1114 if (size == 0) {
1115 return ERROR_OK;
1116 }
1117
1118 if ((address + size - 1) < address)
1119 {
1120 /* GDB can request this when e.g. PC is 0xfffffffc*/
1121 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1122 (unsigned)address,
1123 (unsigned)size);
1124 return ERROR_FAIL;
1125 }
1126
1127 if (((address % 2) == 0) && (size == 2))
1128 {
1129 return target_write_memory(target, address, 2, 1, buffer);
1130 }
1131
1132 /* handle unaligned head bytes */
1133 if (address % 4)
1134 {
1135 uint32_t unaligned = 4 - (address % 4);
1136
1137 if (unaligned > size)
1138 unaligned = size;
1139
1140 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1141 return retval;
1142
1143 buffer += unaligned;
1144 address += unaligned;
1145 size -= unaligned;
1146 }
1147
1148 /* handle aligned words */
1149 if (size >= 4)
1150 {
1151 int aligned = size - (size % 4);
1152
1153 /* use bulk writes above a certain limit. This may have to be changed */
1154 if (aligned > 128)
1155 {
1156 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1157 return retval;
1158 }
1159 else
1160 {
1161 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1162 return retval;
1163 }
1164
1165 buffer += aligned;
1166 address += aligned;
1167 size -= aligned;
1168 }
1169
1170 /* handle tail writes of less than 4 bytes */
1171 if (size > 0)
1172 {
1173 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1174 return retval;
1175 }
1176
1177 return ERROR_OK;
1178 }
1179
1180 /* Single aligned words are guaranteed to use 16 or 32 bit access
1181 * mode respectively, otherwise data is handled as quickly as
1182 * possible
1183 */
1184 int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1185 {
1186 int retval;
1187 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1188 (int)size, (unsigned)address);
1189
1190 if (!target_was_examined(target))
1191 {
1192 LOG_ERROR("Target not examined yet");
1193 return ERROR_FAIL;
1194 }
1195
1196 if (size == 0) {
1197 return ERROR_OK;
1198 }
1199
1200 if ((address + size - 1) < address)
1201 {
1202 /* GDB can request this when e.g. PC is 0xfffffffc*/
1203 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1204 address,
1205 size);
1206 return ERROR_FAIL;
1207 }
1208
1209 if (((address % 2) == 0) && (size == 2))
1210 {
1211 return target_read_memory(target, address, 2, 1, buffer);
1212 }
1213
1214 /* handle unaligned head bytes */
1215 if (address % 4)
1216 {
1217 uint32_t unaligned = 4 - (address % 4);
1218
1219 if (unaligned > size)
1220 unaligned = size;
1221
1222 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1223 return retval;
1224
1225 buffer += unaligned;
1226 address += unaligned;
1227 size -= unaligned;
1228 }
1229
1230 /* handle aligned words */
1231 if (size >= 4)
1232 {
1233 int aligned = size - (size % 4);
1234
1235 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1236 return retval;
1237
1238 buffer += aligned;
1239 address += aligned;
1240 size -= aligned;
1241 }
1242
1243 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1244 if(size >=2)
1245 {
1246 int aligned = size - (size%2);
1247 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1248 if (retval != ERROR_OK)
1249 return retval;
1250
1251 buffer += aligned;
1252 address += aligned;
1253 size -= aligned;
1254 }
1255 /* handle tail writes of less than 4 bytes */
1256 if (size > 0)
1257 {
1258 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1259 return retval;
1260 }
1261
1262 return ERROR_OK;
1263 }
1264
1265 int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
1266 {
1267 uint8_t *buffer;
1268 int retval;
1269 uint32_t i;
1270 uint32_t checksum = 0;
1271 if (!target_was_examined(target))
1272 {
1273 LOG_ERROR("Target not examined yet");
1274 return ERROR_FAIL;
1275 }
1276
1277 if ((retval = target->type->checksum_memory(target, address,
1278 size, &checksum)) != ERROR_OK)
1279 {
1280 buffer = malloc(size);
1281 if (buffer == NULL)
1282 {
1283 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1284 return ERROR_INVALID_ARGUMENTS;
1285 }
1286 retval = target_read_buffer(target, address, size, buffer);
1287 if (retval != ERROR_OK)
1288 {
1289 free(buffer);
1290 return retval;
1291 }
1292
1293 /* convert to target endianess */
1294 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1295 {
1296 uint32_t target_data;
1297 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1298 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1299 }
1300
1301 retval = image_calculate_checksum(buffer, size, &checksum);
1302 free(buffer);
1303 }
1304
1305 *crc = checksum;
1306
1307 return retval;
1308 }
1309
1310 int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
1311 {
1312 int retval;
1313 if (!target_was_examined(target))
1314 {
1315 LOG_ERROR("Target not examined yet");
1316 return ERROR_FAIL;
1317 }
1318
1319 if (target->type->blank_check_memory == 0)
1320 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1321
1322 retval = target->type->blank_check_memory(target, address, size, blank);
1323
1324 return retval;
1325 }
1326
1327 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
1328 {
1329 uint8_t value_buf[4];
1330 if (!target_was_examined(target))
1331 {
1332 LOG_ERROR("Target not examined yet");
1333 return ERROR_FAIL;
1334 }
1335
1336 int retval = target_read_memory(target, address, 4, 1, value_buf);
1337
1338 if (retval == ERROR_OK)
1339 {
1340 *value = target_buffer_get_u32(target, value_buf);
1341 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1342 address,
1343 *value);
1344 }
1345 else
1346 {
1347 *value = 0x0;
1348 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1349 address);
1350 }
1351
1352 return retval;
1353 }
1354
1355 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
1356 {
1357 uint8_t value_buf[2];
1358 if (!target_was_examined(target))
1359 {
1360 LOG_ERROR("Target not examined yet");
1361 return ERROR_FAIL;
1362 }
1363
1364 int retval = target_read_memory(target, address, 2, 1, value_buf);
1365
1366 if (retval == ERROR_OK)
1367 {
1368 *value = target_buffer_get_u16(target, value_buf);
1369 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1370 address,
1371 *value);
1372 }
1373 else
1374 {
1375 *value = 0x0;
1376 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1377 address);
1378 }
1379
1380 return retval;
1381 }
1382
1383 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
1384 {
1385 int retval = target_read_memory(target, address, 1, 1, value);
1386 if (!target_was_examined(target))
1387 {
1388 LOG_ERROR("Target not examined yet");
1389 return ERROR_FAIL;
1390 }
1391
1392 if (retval == ERROR_OK)
1393 {
1394 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1395 address,
1396 *value);
1397 }
1398 else
1399 {
1400 *value = 0x0;
1401 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1402 address);
1403 }
1404
1405 return retval;
1406 }
1407
1408 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
1409 {
1410 int retval;
1411 uint8_t value_buf[4];
1412 if (!target_was_examined(target))
1413 {
1414 LOG_ERROR("Target not examined yet");
1415 return ERROR_FAIL;
1416 }
1417
1418 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1419 address,
1420 value);
1421
1422 target_buffer_set_u32(target, value_buf, value);
1423 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1424 {
1425 LOG_DEBUG("failed: %i", retval);
1426 }
1427
1428 return retval;
1429 }
1430
1431 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
1432 {
1433 int retval;
1434 uint8_t value_buf[2];
1435 if (!target_was_examined(target))
1436 {
1437 LOG_ERROR("Target not examined yet");
1438 return ERROR_FAIL;
1439 }
1440
1441 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1442 address,
1443 value);
1444
1445 target_buffer_set_u16(target, value_buf, value);
1446 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1447 {
1448 LOG_DEBUG("failed: %i", retval);
1449 }
1450
1451 return retval;
1452 }
1453
1454 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
1455 {
1456 int retval;
1457 if (!target_was_examined(target))
1458 {
1459 LOG_ERROR("Target not examined yet");
1460 return ERROR_FAIL;
1461 }
1462
1463 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1464 address, value);
1465
1466 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1467 {
1468 LOG_DEBUG("failed: %i", retval);
1469 }
1470
1471 return retval;
1472 }
1473
1474 int target_register_user_commands(struct command_context_s *cmd_ctx)
1475 {
1476 int retval = ERROR_OK;
1477
1478
1479 /* script procedures */
1480 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1481 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1482 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1483
1484 register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1485 "same args as load_image, image stored in memory - mainly for profiling purposes");
1486
1487 register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1488 "loads active fast load image to current target - mainly for profiling purposes");
1489
1490
1491 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1492 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1493 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1494 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1495 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1496 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1497 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1498 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run");
1499 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1500
1501 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1502 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1503 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1504
1505 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1506 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1507 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1508
1509 register_command(cmd_ctx, NULL, "bp",
1510 handle_bp_command, COMMAND_EXEC,
1511 "list or set breakpoint [<address> <length> [hw]]");
1512 register_command(cmd_ctx, NULL, "rbp",
1513 handle_rbp_command, COMMAND_EXEC,
1514 "remove breakpoint <address>");
1515 register_command(cmd_ctx, NULL, "wp",
1516 handle_wp_command, COMMAND_EXEC,
1517 "list or set watchpoint "
1518 "[<address> <length> <r/w/a> [value] [mask]]");
1519 register_command(cmd_ctx, NULL, "rwp",
1520 handle_rwp_command, COMMAND_EXEC,
1521 "remove watchpoint <address>");
1522
1523 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1524 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1525 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1526 register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1527
1528 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1529 return retval;
1530 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1531 return retval;
1532
1533 return retval;
1534 }
1535
1536 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1537 {
1538 target_t *target = all_targets;
1539
1540 if (argc == 1)
1541 {
1542 target = get_target(args[0]);
1543 if (target == NULL) {
1544 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1545 goto DumpTargets;
1546 }
1547 if (!target->tap->enabled) {
1548 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1549 "can't be the current target\n",
1550 target->tap->dotted_name);
1551 return ERROR_FAIL;
1552 }
1553
1554 cmd_ctx->current_target = target->target_number;
1555 return ERROR_OK;
1556 }
1557 DumpTargets:
1558
1559 target = all_targets;
1560 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1561 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1562 while (target)
1563 {
1564 const char *state;
1565 char marker = ' ';
1566
1567 if (target->tap->enabled)
1568 state = target_state_name( target );
1569 else
1570 state = "tap-disabled";
1571
1572 if (cmd_ctx->current_target == target->target_number)
1573 marker = '*';
1574
1575 /* keep columns lined up to match the headers above */
1576 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1577 target->target_number,
1578 marker,
1579 target->cmd_name,
1580 target_get_name(target),
1581 Jim_Nvp_value2name_simple(nvp_target_endian,
1582 target->endianness)->name,
1583 target->tap->dotted_name,
1584 state);
1585 target = target->next;
1586 }
1587
1588 return ERROR_OK;
1589 }
1590
1591 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1592
1593 static int powerDropout;
1594 static int srstAsserted;
1595
1596 static int runPowerRestore;
1597 static int runPowerDropout;
1598 static int runSrstAsserted;
1599 static int runSrstDeasserted;
1600
1601 static int sense_handler(void)
1602 {
1603 static int prevSrstAsserted = 0;
1604 static int prevPowerdropout = 0;
1605
1606 int retval;
1607 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1608 return retval;
1609
1610 int powerRestored;
1611 powerRestored = prevPowerdropout && !powerDropout;
1612 if (powerRestored)
1613 {
1614 runPowerRestore = 1;
1615 }
1616
1617 long long current = timeval_ms();
1618 static long long lastPower = 0;
1619 int waitMore = lastPower + 2000 > current;
1620 if (powerDropout && !waitMore)
1621 {
1622 runPowerDropout = 1;
1623 lastPower = current;
1624 }
1625
1626 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1627 return retval;
1628
1629 int srstDeasserted;
1630 srstDeasserted = prevSrstAsserted && !srstAsserted;
1631
1632 static long long lastSrst = 0;
1633 waitMore = lastSrst + 2000 > current;
1634 if (srstDeasserted && !waitMore)
1635 {
1636 runSrstDeasserted = 1;
1637 lastSrst = current;
1638 }
1639
1640 if (!prevSrstAsserted && srstAsserted)
1641 {
1642 runSrstAsserted = 1;
1643 }
1644
1645 prevSrstAsserted = srstAsserted;
1646 prevPowerdropout = powerDropout;
1647
1648 if (srstDeasserted || powerRestored)
1649 {
1650 /* Other than logging the event we can't do anything here.
1651 * Issuing a reset is a particularly bad idea as we might
1652 * be inside a reset already.
1653 */
1654 }
1655
1656 return ERROR_OK;
1657 }
1658
1659 /* process target state changes */
1660 int handle_target(void *priv)
1661 {
1662 int retval = ERROR_OK;
1663
1664 /* we do not want to recurse here... */
1665 static int recursive = 0;
1666 if (! recursive)
1667 {
1668 recursive = 1;
1669 sense_handler();
1670 /* danger! running these procedures can trigger srst assertions and power dropouts.
1671 * We need to avoid an infinite loop/recursion here and we do that by
1672 * clearing the flags after running these events.
1673 */
1674 int did_something = 0;
1675 if (runSrstAsserted)
1676 {
1677 Jim_Eval(interp, "srst_asserted");
1678 did_something = 1;
1679 }
1680 if (runSrstDeasserted)
1681 {
1682 Jim_Eval(interp, "srst_deasserted");
1683 did_something = 1;
1684 }
1685 if (runPowerDropout)
1686 {
1687 Jim_Eval(interp, "power_dropout");
1688 did_something = 1;
1689 }
1690 if (runPowerRestore)
1691 {
1692 Jim_Eval(interp, "power_restore");
1693 did_something = 1;
1694 }
1695
1696 if (did_something)
1697 {
1698 /* clear detect flags */
1699 sense_handler();
1700 }
1701
1702 /* clear action flags */
1703
1704 runSrstAsserted = 0;
1705 runSrstDeasserted = 0;
1706 runPowerRestore = 0;
1707 runPowerDropout = 0;
1708
1709 recursive = 0;
1710 }
1711
1712 /* Poll targets for state changes unless that's globally disabled.
1713 * Skip targets that are currently disabled.
1714 */
1715 for (target_t *target = all_targets;
1716 target_continuous_poll && target;
1717 target = target->next)
1718 {
1719 if (!target->tap->enabled)
1720 continue;
1721
1722 /* only poll target if we've got power and srst isn't asserted */
1723 if (!powerDropout && !srstAsserted)
1724 {
1725 /* polling may fail silently until the target has been examined */
1726 if ((retval = target_poll(target)) != ERROR_OK)
1727 return retval;
1728 }
1729 }
1730
1731 return retval;
1732 }
1733
1734 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1735 {
1736 target_t *target;
1737 reg_t *reg = NULL;
1738 int count = 0;
1739 char *value;
1740
1741 LOG_DEBUG("-");
1742
1743 target = get_current_target(cmd_ctx);
1744
1745 /* list all available registers for the current target */
1746 if (argc == 0)
1747 {
1748 reg_cache_t *cache = target->reg_cache;
1749
1750 count = 0;
1751 while (cache)
1752 {
1753 int i;
1754
1755 for (i = 0, reg = cache->reg_list;
1756 i < cache->num_regs;
1757 i++, reg++, count++)
1758 {
1759 /* only print cached values if they are valid */
1760 if (reg->valid) {
1761 value = buf_to_str(reg->value,
1762 reg->size, 16);
1763 command_print(cmd_ctx,
1764 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1765 count, reg->name,
1766 reg->size, value,
1767 reg->dirty
1768 ? " (dirty)"
1769 : "");
1770 free(value);
1771 } else {
1772 command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1773 count, reg->name,
1774 reg->size) ;
1775 }
1776 }
1777 cache = cache->next;
1778 }
1779
1780 return ERROR_OK;
1781 }
1782
1783 /* access a single register by its ordinal number */
1784 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1785 {
1786 unsigned num;
1787 int retval = parse_uint(args[0], &num);
1788 if (ERROR_OK != retval)
1789 return ERROR_COMMAND_SYNTAX_ERROR;
1790
1791 reg_cache_t *cache = target->reg_cache;
1792 count = 0;
1793 while (cache)
1794 {
1795 int i;
1796 for (i = 0; i < cache->num_regs; i++)
1797 {
1798 if (count++ == (int)num)
1799 {
1800 reg = &cache->reg_list[i];
1801 break;
1802 }
1803 }
1804 if (reg)
1805 break;
1806 cache = cache->next;
1807 }
1808
1809 if (!reg)
1810 {
1811 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1812 return ERROR_OK;
1813 }
1814 } else /* access a single register by its name */
1815 {
1816 reg = register_get_by_name(target->reg_cache, args[0], 1);
1817
1818 if (!reg)
1819 {
1820 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1821 return ERROR_OK;
1822 }
1823 }
1824
1825 /* display a register */
1826 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1827 {
1828 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1829 reg->valid = 0;
1830
1831 if (reg->valid == 0)
1832 {
1833 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1834 arch_type->get(reg);
1835 }
1836 value = buf_to_str(reg->value, reg->size, 16);
1837 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1838 free(value);
1839 return ERROR_OK;
1840 }
1841
1842 /* set register value */
1843 if (argc == 2)
1844 {
1845 uint8_t *buf = malloc(CEIL(reg->size, 8));
1846 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1847
1848 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1849 arch_type->set(reg, buf);
1850
1851 value = buf_to_str(reg->value, reg->size, 16);
1852 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1853 free(value);
1854
1855 free(buf);
1856
1857 return ERROR_OK;
1858 }
1859
1860 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1861
1862 return ERROR_OK;
1863 }
1864
1865 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1866 {
1867 int retval = ERROR_OK;
1868 target_t *target = get_current_target(cmd_ctx);
1869
1870 if (argc == 0)
1871 {
1872 command_print(cmd_ctx, "background polling: %s",
1873 target_continuous_poll ? "on" : "off");
1874 command_print(cmd_ctx, "TAP: %s (%s)",
1875 target->tap->dotted_name,
1876 target->tap->enabled ? "enabled" : "disabled");
1877 if (!target->tap->enabled)
1878 return ERROR_OK;
1879 if ((retval = target_poll(target)) != ERROR_OK)
1880 return retval;
1881 if ((retval = target_arch_state(target)) != ERROR_OK)
1882 return retval;
1883
1884 }
1885 else if (argc == 1)
1886 {
1887 if (strcmp(args[0], "on") == 0)
1888 {
1889 target_continuous_poll = 1;
1890 }
1891 else if (strcmp(args[0], "off") == 0)
1892 {
1893 target_continuous_poll = 0;
1894 }
1895 else
1896 {
1897 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1898 }
1899 } else
1900 {
1901 return ERROR_COMMAND_SYNTAX_ERROR;
1902 }
1903
1904 return retval;
1905 }
1906
1907 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1908 {
1909 if (argc > 1)
1910 return ERROR_COMMAND_SYNTAX_ERROR;
1911
1912 unsigned ms = 5000;
1913 if (1 == argc)
1914 {
1915 int retval = parse_uint(args[0], &ms);
1916 if (ERROR_OK != retval)
1917 {
1918 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1919 return ERROR_COMMAND_SYNTAX_ERROR;
1920 }
1921 // convert seconds (given) to milliseconds (needed)
1922 ms *= 1000;
1923 }
1924
1925 target_t *target = get_current_target(cmd_ctx);
1926 return target_wait_state(target, TARGET_HALTED, ms);
1927 }
1928
1929 /* wait for target state to change. The trick here is to have a low
1930 * latency for short waits and not to suck up all the CPU time
1931 * on longer waits.
1932 *
1933 * After 500ms, keep_alive() is invoked
1934 */
1935 int target_wait_state(target_t *target, enum target_state state, int ms)
1936 {
1937 int retval;
1938 long long then = 0, cur;
1939 int once = 1;
1940
1941 for (;;)
1942 {
1943 if ((retval = target_poll(target)) != ERROR_OK)
1944 return retval;
1945 if (target->state == state)
1946 {
1947 break;
1948 }
1949 cur = timeval_ms();
1950 if (once)
1951 {
1952 once = 0;
1953 then = timeval_ms();
1954 LOG_DEBUG("waiting for target %s...",
1955 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1956 }
1957
1958 if (cur-then > 500)
1959 {
1960 keep_alive();
1961 }
1962
1963 if ((cur-then) > ms)
1964 {
1965 LOG_ERROR("timed out while waiting for target %s",
1966 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1967 return ERROR_FAIL;
1968 }
1969 }
1970
1971 return ERROR_OK;
1972 }
1973
1974 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1975 {
1976 LOG_DEBUG("-");
1977
1978 target_t *target = get_current_target(cmd_ctx);
1979 int retval = target_halt(target);
1980 if (ERROR_OK != retval)
1981 return retval;
1982
1983 if (argc == 1)
1984 {
1985 unsigned wait;
1986 retval = parse_uint(args[0], &wait);
1987 if (ERROR_OK != retval)
1988 return ERROR_COMMAND_SYNTAX_ERROR;
1989 if (!wait)
1990 return ERROR_OK;
1991 }
1992
1993 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1994 }
1995
1996 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1997 {
1998 target_t *target = get_current_target(cmd_ctx);
1999
2000 LOG_USER("requesting target halt and executing a soft reset");
2001
2002 target->type->soft_reset_halt(target);
2003
2004 return ERROR_OK;
2005 }
2006
2007 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2008 {
2009 if (argc > 1)
2010 return ERROR_COMMAND_SYNTAX_ERROR;
2011
2012 enum target_reset_mode reset_mode = RESET_RUN;
2013 if (argc == 1)
2014 {
2015 const Jim_Nvp *n;
2016 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2017 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2018 return ERROR_COMMAND_SYNTAX_ERROR;
2019 }
2020 reset_mode = n->value;
2021 }
2022
2023 /* reset *all* targets */
2024 return target_process_reset(cmd_ctx, reset_mode);
2025 }
2026
2027
2028 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2029 {
2030 int current = 1;
2031 if (argc > 1)
2032 return ERROR_COMMAND_SYNTAX_ERROR;
2033
2034 target_t *target = get_current_target(cmd_ctx);
2035 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2036
2037 /* with no args, resume from current pc, addr = 0,
2038 * with one arguments, addr = args[0],
2039 * handle breakpoints, not debugging */
2040 uint32_t addr = 0;
2041 if (argc == 1)
2042 {
2043 int retval = parse_u32(args[0], &addr);
2044 if (ERROR_OK != retval)
2045 return retval;
2046 current = 0;
2047 }
2048
2049 return target_resume(target, current, addr, 1, 0);
2050 }
2051
2052 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2053 {
2054 if (argc > 1)
2055 return ERROR_COMMAND_SYNTAX_ERROR;
2056
2057 LOG_DEBUG("-");
2058
2059 /* with no args, step from current pc, addr = 0,
2060 * with one argument addr = args[0],
2061 * handle breakpoints, debugging */
2062 uint32_t addr = 0;
2063 int current_pc = 1;
2064 if (argc == 1)
2065 {
2066 int retval = parse_u32(args[0], &addr);
2067 if (ERROR_OK != retval)
2068 return retval;
2069 current_pc = 0;
2070 }
2071
2072 target_t *target = get_current_target(cmd_ctx);
2073
2074 return target->type->step(target, current_pc, addr, 1);
2075 }
2076
2077 static void handle_md_output(struct command_context_s *cmd_ctx,
2078 struct target_s *target, uint32_t address, unsigned size,
2079 unsigned count, const uint8_t *buffer)
2080 {
2081 const unsigned line_bytecnt = 32;
2082 unsigned line_modulo = line_bytecnt / size;
2083
2084 char output[line_bytecnt * 4 + 1];
2085 unsigned output_len = 0;
2086
2087 const char *value_fmt;
2088 switch (size) {
2089 case 4: value_fmt = "%8.8x "; break;
2090 case 2: value_fmt = "%4.2x "; break;
2091 case 1: value_fmt = "%2.2x "; break;
2092 default:
2093 LOG_ERROR("invalid memory read size: %u", size);
2094 exit(-1);
2095 }
2096
2097 for (unsigned i = 0; i < count; i++)
2098 {
2099 if (i % line_modulo == 0)
2100 {
2101 output_len += snprintf(output + output_len,
2102 sizeof(output) - output_len,
2103 "0x%8.8x: ",
2104 (unsigned)(address + (i*size)));
2105 }
2106
2107 uint32_t value = 0;
2108 const uint8_t *value_ptr = buffer + i * size;
2109 switch (size) {
2110 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2111 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2112 case 1: value = *value_ptr;
2113 }
2114 output_len += snprintf(output + output_len,
2115 sizeof(output) - output_len,
2116 value_fmt, value);
2117
2118 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2119 {
2120 command_print(cmd_ctx, "%s", output);
2121 output_len = 0;
2122 }
2123 }
2124 }
2125
2126 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2127 {
2128 if (argc < 1)
2129 return ERROR_COMMAND_SYNTAX_ERROR;
2130
2131 unsigned size = 0;
2132 switch (cmd[2]) {
2133 case 'w': size = 4; break;
2134 case 'h': size = 2; break;
2135 case 'b': size = 1; break;
2136 default: return ERROR_COMMAND_SYNTAX_ERROR;
2137 }
2138
2139 uint32_t address;
2140 int retval = parse_u32(args[0], &address);
2141 if (ERROR_OK != retval)
2142 return retval;
2143
2144 unsigned count = 1;
2145 if (argc == 2)
2146 {
2147 retval = parse_uint(args[1], &count);
2148 if (ERROR_OK != retval)
2149 return retval;
2150 }
2151
2152 uint8_t *buffer = calloc(count, size);
2153
2154 target_t *target = get_current_target(cmd_ctx);
2155 retval = target_read_memory(target,
2156 address, size, count, buffer);
2157 if (ERROR_OK == retval)
2158 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2159
2160 free(buffer);
2161
2162 return retval;
2163 }
2164
2165 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2166 {
2167 if ((argc < 2) || (argc > 3))
2168 return ERROR_COMMAND_SYNTAX_ERROR;
2169
2170 uint32_t address;
2171 int retval = parse_u32(args[0], &address);
2172 if (ERROR_OK != retval)
2173 return retval;
2174
2175 uint32_t value;
2176 retval = parse_u32(args[1], &value);
2177 if (ERROR_OK != retval)
2178 return retval;
2179
2180 unsigned count = 1;
2181 if (argc == 3)
2182 {
2183 retval = parse_uint(args[2], &count);
2184 if (ERROR_OK != retval)
2185 return retval;
2186 }
2187
2188 target_t *target = get_current_target(cmd_ctx);
2189 unsigned wordsize;
2190 uint8_t value_buf[4];
2191 switch (cmd[2])
2192 {
2193 case 'w':
2194 wordsize = 4;
2195 target_buffer_set_u32(target, value_buf, value);
2196 break;
2197 case 'h':
2198 wordsize = 2;
2199 target_buffer_set_u16(target, value_buf, value);
2200 break;
2201 case 'b':
2202 wordsize = 1;
2203 value_buf[0] = value;
2204 break;
2205 default:
2206 return ERROR_COMMAND_SYNTAX_ERROR;
2207 }
2208 for (unsigned i = 0; i < count; i++)
2209 {
2210 retval = target_write_memory(target,
2211 address + i * wordsize, wordsize, 1, value_buf);
2212 if (ERROR_OK != retval)
2213 return retval;
2214 keep_alive();
2215 }
2216
2217 return ERROR_OK;
2218
2219 }
2220
2221 static int parse_load_image_command_args(char **args, int argc,
2222 image_t *image, uint32_t *min_address, uint32_t *max_address)
2223 {
2224 if (argc < 1 || argc > 5)
2225 return ERROR_COMMAND_SYNTAX_ERROR;
2226
2227 /* a base address isn't always necessary,
2228 * default to 0x0 (i.e. don't relocate) */
2229 if (argc >= 2)
2230 {
2231 uint32_t addr;
2232 int retval = parse_u32(args[1], &addr);
2233 if (ERROR_OK != retval)
2234 return ERROR_COMMAND_SYNTAX_ERROR;
2235 image->base_address = addr;
2236 image->base_address_set = 1;
2237 }
2238 else
2239 image->base_address_set = 0;
2240
2241 image->start_address_set = 0;
2242
2243 if (argc >= 4)
2244 {
2245 int retval = parse_u32(args[3], min_address);
2246 if (ERROR_OK != retval)
2247 return ERROR_COMMAND_SYNTAX_ERROR;
2248 }
2249 if (argc == 5)
2250 {
2251 int retval = parse_u32(args[4], max_address);
2252 if (ERROR_OK != retval)
2253 return ERROR_COMMAND_SYNTAX_ERROR;
2254 // use size (given) to find max (required)
2255 *max_address += *min_address;
2256 }
2257
2258 if (*min_address > *max_address)
2259 return ERROR_COMMAND_SYNTAX_ERROR;
2260
2261 return ERROR_OK;
2262 }
2263
2264 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2265 {
2266 uint8_t *buffer;
2267 uint32_t buf_cnt;
2268 uint32_t image_size;
2269 uint32_t min_address = 0;
2270 uint32_t max_address = 0xffffffff;
2271 int i;
2272 int retvaltemp;
2273
2274 image_t image;
2275
2276 duration_t duration;
2277 char *duration_text;
2278
2279 int retval = parse_load_image_command_args(args, argc,
2280 &image, &min_address, &max_address);
2281 if (ERROR_OK != retval)
2282 return retval;
2283
2284 target_t *target = get_current_target(cmd_ctx);
2285 duration_start_measure(&duration);
2286
2287 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2288 {
2289 return ERROR_OK;
2290 }
2291
2292 image_size = 0x0;
2293 retval = ERROR_OK;
2294 for (i = 0; i < image.num_sections; i++)
2295 {
2296 buffer = malloc(image.sections[i].size);
2297 if (buffer == NULL)
2298 {
2299 command_print(cmd_ctx,
2300 "error allocating buffer for section (%d bytes)",
2301 (int)(image.sections[i].size));
2302 break;
2303 }
2304
2305 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2306 {
2307 free(buffer);
2308 break;
2309 }
2310
2311 uint32_t offset = 0;
2312 uint32_t length = buf_cnt;
2313
2314 /* DANGER!!! beware of unsigned comparision here!!! */
2315
2316 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2317 (image.sections[i].base_address < max_address))
2318 {
2319 if (image.sections[i].base_address < min_address)
2320 {
2321 /* clip addresses below */
2322 offset += min_address-image.sections[i].base_address;
2323 length -= offset;
2324 }
2325
2326 if (image.sections[i].base_address + buf_cnt > max_address)
2327 {
2328 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2329 }
2330
2331 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2332 {
2333 free(buffer);
2334 break;
2335 }
2336 image_size += length;
2337 command_print(cmd_ctx, "%u byte written at address 0x%8.8" PRIx32 "",
2338 (unsigned int)length,
2339 image.sections[i].base_address + offset);
2340 }
2341
2342 free(buffer);
2343 }
2344
2345 if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2346 {
2347 image_close(&image);
2348 return retvaltemp;
2349 }
2350
2351 if (retval == ERROR_OK)
2352 {
2353 command_print(cmd_ctx, "downloaded %u byte in %s",
2354 (unsigned int)image_size,
2355 duration_text);
2356 }
2357 free(duration_text);
2358
2359 image_close(&image);
2360
2361 return retval;
2362
2363 }
2364
2365 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2366 {
2367 fileio_t fileio;
2368
2369 uint8_t buffer[560];
2370 int retvaltemp;
2371
2372 duration_t duration;
2373 char *duration_text;
2374
2375 target_t *target = get_current_target(cmd_ctx);
2376
2377 if (argc != 3)
2378 {
2379 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2380 return ERROR_OK;
2381 }
2382
2383 uint32_t address;
2384 int retval = parse_u32(args[1], &address);
2385 if (ERROR_OK != retval)
2386 return retval;
2387
2388 uint32_t size;
2389 retval = parse_u32(args[2], &size);
2390 if (ERROR_OK != retval)
2391 return retval;
2392
2393 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2394 {
2395 return ERROR_OK;
2396 }
2397
2398 duration_start_measure(&duration);
2399
2400 while (size > 0)
2401 {
2402 uint32_t size_written;
2403 uint32_t this_run_size = (size > 560) ? 560 : size;
2404
2405 retval = target_read_buffer(target, address, this_run_size, buffer);
2406 if (retval != ERROR_OK)
2407 {
2408 break;
2409 }
2410
2411 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2412 if (retval != ERROR_OK)
2413 {
2414 break;
2415 }
2416
2417 size -= this_run_size;
2418 address += this_run_size;
2419 }
2420
2421 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2422 return retvaltemp;
2423
2424 if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2425 return retvaltemp;
2426
2427 if (retval == ERROR_OK)
2428 {
2429 command_print(cmd_ctx, "dumped %lld byte in %s",
2430 fileio.size, duration_text);
2431 free(duration_text);
2432 }
2433
2434 return retval;
2435 }
2436
2437 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2438 {
2439 uint8_t *buffer;
2440 uint32_t buf_cnt;
2441 uint32_t image_size;
2442 int i;
2443 int retval, retvaltemp;
2444 uint32_t checksum = 0;
2445 uint32_t mem_checksum = 0;
2446
2447 image_t image;
2448
2449 duration_t duration;
2450 char *duration_text;
2451
2452 target_t *target = get_current_target(cmd_ctx);
2453
2454 if (argc < 1)
2455 {
2456 return ERROR_COMMAND_SYNTAX_ERROR;
2457 }
2458
2459 if (!target)
2460 {
2461 LOG_ERROR("no target selected");
2462 return ERROR_FAIL;
2463 }
2464
2465 duration_start_measure(&duration);
2466
2467 if (argc >= 2)
2468 {
2469 uint32_t addr;
2470 retval = parse_u32(args[1], &addr);
2471 if (ERROR_OK != retval)
2472 return ERROR_COMMAND_SYNTAX_ERROR;
2473 image.base_address = addr;
2474 image.base_address_set = 1;
2475 }
2476 else
2477 {
2478 image.base_address_set = 0;
2479 image.base_address = 0x0;
2480 }
2481
2482 image.start_address_set = 0;
2483
2484 if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2485 {
2486 return retval;
2487 }
2488
2489 image_size = 0x0;
2490 retval = ERROR_OK;
2491 for (i = 0; i < image.num_sections; i++)
2492 {
2493 buffer = malloc(image.sections[i].size);
2494 if (buffer == NULL)
2495 {
2496 command_print(cmd_ctx,
2497 "error allocating buffer for section (%d bytes)",
2498 (int)(image.sections[i].size));
2499 break;
2500 }
2501 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2502 {
2503 free(buffer);
2504 break;
2505 }
2506
2507 if (verify)
2508 {
2509 /* calculate checksum of image */
2510 image_calculate_checksum(buffer, buf_cnt, &checksum);
2511
2512 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2513 if (retval != ERROR_OK)
2514 {
2515 free(buffer);
2516 break;
2517 }
2518
2519 if (checksum != mem_checksum)
2520 {
2521 /* failed crc checksum, fall back to a binary compare */
2522 uint8_t *data;
2523
2524 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2525
2526 data = (uint8_t*)malloc(buf_cnt);
2527
2528 /* Can we use 32bit word accesses? */
2529 int size = 1;
2530 int count = buf_cnt;
2531 if ((count % 4) == 0)
2532 {
2533 size *= 4;
2534 count /= 4;
2535 }
2536 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2537 if (retval == ERROR_OK)
2538 {
2539 uint32_t t;
2540 for (t = 0; t < buf_cnt; t++)
2541 {
2542 if (data[t] != buffer[t])
2543 {
2544 command_print(cmd_ctx,
2545 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2546 (unsigned)(t + image.sections[i].base_address),
2547 data[t],
2548 buffer[t]);
2549 free(data);
2550 free(buffer);
2551 retval = ERROR_FAIL;
2552 goto done;
2553 }
2554 if ((t%16384) == 0)
2555 {
2556 keep_alive();
2557 }
2558 }
2559 }
2560
2561 free(data);
2562 }
2563 } else
2564 {
2565 command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2566 image.sections[i].base_address,
2567 buf_cnt);
2568 }
2569
2570 free(buffer);
2571 image_size += buf_cnt;
2572 }
2573 done:
2574
2575 if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2576 {
2577 image_close(&image);
2578 return retvaltemp;
2579 }
2580
2581 if (retval == ERROR_OK)
2582 {
2583 command_print(cmd_ctx, "verified %u bytes in %s",
2584 (unsigned int)image_size,
2585 duration_text);
2586 }
2587 free(duration_text);
2588
2589 image_close(&image);
2590
2591 return retval;
2592 }
2593
2594 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2595 {
2596 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2597 }
2598
2599 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2600 {
2601 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2602 }
2603
2604 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2605 {
2606 target_t *target = get_current_target(cmd_ctx);
2607 breakpoint_t *breakpoint = target->breakpoints;
2608 while (breakpoint)
2609 {
2610 if (breakpoint->type == BKPT_SOFT)
2611 {
2612 char* buf = buf_to_str(breakpoint->orig_instr,
2613 breakpoint->length, 16);
2614 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2615 breakpoint->address,
2616 breakpoint->length,
2617 breakpoint->set, buf);
2618 free(buf);
2619 }
2620 else
2621 {
2622 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2623 breakpoint->address,
2624 breakpoint->length, breakpoint->set);
2625 }
2626
2627 breakpoint = breakpoint->next;
2628 }
2629 return ERROR_OK;
2630 }
2631
2632 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2633 uint32_t addr, uint32_t length, int hw)
2634 {
2635 target_t *target = get_current_target(cmd_ctx);
2636 int retval = breakpoint_add(target, addr, length, hw);
2637 if (ERROR_OK == retval)
2638 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2639 else
2640 LOG_ERROR("Failure setting breakpoint");
2641 return retval;
2642 }
2643
2644 static int handle_bp_command(struct command_context_s *cmd_ctx,
2645 char *cmd, char **args, int argc)
2646 {
2647 if (argc == 0)
2648 return handle_bp_command_list(cmd_ctx);
2649
2650 if (argc < 2 || argc > 3)
2651 {
2652 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2653 return ERROR_COMMAND_SYNTAX_ERROR;
2654 }
2655
2656 uint32_t addr;
2657 int retval = parse_u32(args[0], &addr);
2658 if (ERROR_OK != retval)
2659 return retval;
2660
2661 uint32_t length;
2662 retval = parse_u32(args[1], &length);
2663 if (ERROR_OK != retval)
2664 return retval;
2665
2666 int hw = BKPT_SOFT;
2667 if (argc == 3)
2668 {
2669 if (strcmp(args[2], "hw") == 0)
2670 hw = BKPT_HARD;
2671 else
2672 return ERROR_COMMAND_SYNTAX_ERROR;
2673 }
2674
2675 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2676 }
2677
2678 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2679 {
2680 if (argc != 1)
2681 return ERROR_COMMAND_SYNTAX_ERROR;
2682
2683 uint32_t addr;
2684 int retval = parse_u32(args[0], &addr);
2685 if (ERROR_OK != retval)
2686 return retval;
2687
2688 target_t *target = get_current_target(cmd_ctx);
2689 breakpoint_remove(target, addr);
2690
2691 return ERROR_OK;
2692 }
2693
2694 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2695 {
2696 target_t *target = get_current_target(cmd_ctx);
2697
2698 if (argc == 0)
2699 {
2700 watchpoint_t *watchpoint = target->watchpoints;
2701
2702 while (watchpoint)
2703 {
2704 command_print(cmd_ctx,
2705 "address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "",
2706 watchpoint->address,
2707 watchpoint->length,
2708 (int)(watchpoint->rw),
2709 watchpoint->value,
2710 watchpoint->mask);
2711 watchpoint = watchpoint->next;
2712 }
2713 return ERROR_OK;
2714 }
2715
2716 enum watchpoint_rw type = WPT_ACCESS;
2717 uint32_t addr = 0;
2718 uint32_t length = 0;
2719 uint32_t data_value = 0x0;
2720 uint32_t data_mask = 0xffffffff;
2721 int retval;
2722
2723 switch (argc)
2724 {
2725 case 5:
2726 retval = parse_u32(args[4], &data_mask);
2727 if (ERROR_OK != retval)
2728 return retval;
2729 // fall through
2730 case 4:
2731 retval = parse_u32(args[3], &data_value);
2732 if (ERROR_OK != retval)
2733 return retval;
2734 // fall through
2735 case 3:
2736 switch (args[2][0])
2737 {
2738 case 'r':
2739 type = WPT_READ;
2740 break;
2741 case 'w':
2742 type = WPT_WRITE;
2743 break;
2744 case 'a':
2745 type = WPT_ACCESS;
2746 break;
2747 default:
2748 LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2749 return ERROR_COMMAND_SYNTAX_ERROR;
2750 }
2751 // fall through
2752 case 2:
2753 retval = parse_u32(args[1], &length);
2754 if (ERROR_OK != retval)
2755 return retval;
2756 retval = parse_u32(args[0], &addr);
2757 if (ERROR_OK != retval)
2758 return retval;
2759 break;
2760
2761 default:
2762 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2763 return ERROR_COMMAND_SYNTAX_ERROR;
2764 }
2765
2766 retval = watchpoint_add(target, addr, length, type,
2767 data_value, data_mask);
2768 if (ERROR_OK != retval)
2769 LOG_ERROR("Failure setting watchpoints");
2770
2771 return retval;
2772 }
2773
2774 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2775 {
2776 if (argc != 1)
2777 return ERROR_COMMAND_SYNTAX_ERROR;
2778
2779 uint32_t addr;
2780 int retval = parse_u32(args[0], &addr);
2781 if (ERROR_OK != retval)
2782 return retval;
2783
2784 target_t *target = get_current_target(cmd_ctx);
2785 watchpoint_remove(target, addr);
2786
2787 return ERROR_OK;
2788 }
2789
2790
2791 /**
2792 * Translate a virtual address to a physical address.
2793 *
2794 * The low-level target implementation must have logged a detailed error
2795 * which is forwarded to telnet/GDB session.
2796 */
2797 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2798 char *cmd, char **args, int argc)
2799 {
2800 if (argc != 1)
2801 return ERROR_COMMAND_SYNTAX_ERROR;
2802
2803 uint32_t va;
2804 int retval = parse_u32(args[0], &va);
2805 if (ERROR_OK != retval)
2806 return retval;
2807 uint32_t pa;
2808
2809 target_t *target = get_current_target(cmd_ctx);
2810 retval = target->type->virt2phys(target, va, &pa);
2811 if (retval == ERROR_OK)
2812 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2813
2814 return retval;
2815 }
2816
2817 static void writeData(FILE *f, const void *data, size_t len)
2818 {
2819 size_t written = fwrite(data, 1, len, f);
2820 if (written != len)
2821 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2822 }
2823
2824 static void writeLong(FILE *f, int l)
2825 {
2826 int i;
2827 for (i = 0; i < 4; i++)
2828 {
2829 char c = (l >> (i*8))&0xff;
2830 writeData(f, &c, 1);
2831 }
2832
2833 }
2834
2835 static void writeString(FILE *f, char *s)
2836 {
2837 writeData(f, s, strlen(s));
2838 }
2839
2840 /* Dump a gmon.out histogram file. */
2841 static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename)
2842 {
2843 uint32_t i;
2844 FILE *f = fopen(filename, "w");
2845 if (f == NULL)
2846 return;
2847 writeString(f, "gmon");
2848 writeLong(f, 0x00000001); /* Version */
2849 writeLong(f, 0); /* padding */
2850 writeLong(f, 0); /* padding */
2851 writeLong(f, 0); /* padding */
2852
2853 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
2854 writeData(f, &zero, 1);
2855
2856 /* figure out bucket size */
2857 uint32_t min = samples[0];
2858 uint32_t max = samples[0];
2859 for (i = 0; i < sampleNum; i++)
2860 {
2861 if (min > samples[i])
2862 {
2863 min = samples[i];
2864 }
2865 if (max < samples[i])
2866 {
2867 max = samples[i];
2868 }
2869 }
2870
2871 int addressSpace = (max-min + 1);
2872
2873 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2874 uint32_t length = addressSpace;
2875 if (length > maxBuckets)
2876 {
2877 length = maxBuckets;
2878 }
2879 int *buckets = malloc(sizeof(int)*length);
2880 if (buckets == NULL)
2881 {
2882 fclose(f);
2883 return;
2884 }
2885 memset(buckets, 0, sizeof(int)*length);
2886 for (i = 0; i < sampleNum;i++)
2887 {
2888 uint32_t address = samples[i];
2889 long long a = address-min;
2890 long long b = length-1;
2891 long long c = addressSpace-1;
2892 int index = (a*b)/c; /* danger!!!! int32 overflows */
2893 buckets[index]++;
2894 }
2895
2896 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2897 writeLong(f, min); /* low_pc */
2898 writeLong(f, max); /* high_pc */
2899 writeLong(f, length); /* # of samples */
2900 writeLong(f, 64000000); /* 64MHz */
2901 writeString(f, "seconds");
2902 for (i = 0; i < (15-strlen("seconds")); i++)
2903 writeData(f, &zero, 1);
2904 writeString(f, "s");
2905
2906 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2907
2908 char *data = malloc(2*length);
2909 if (data != NULL)
2910 {
2911 for (i = 0; i < length;i++)
2912 {
2913 int val;
2914 val = buckets[i];
2915 if (val > 65535)
2916 {
2917 val = 65535;
2918 }
2919 data[i*2]=val&0xff;
2920 data[i*2 + 1]=(val >> 8)&0xff;
2921 }
2922 free(buckets);
2923 writeData(f, data, length * 2);
2924 free(data);
2925 } else
2926 {
2927 free(buckets);
2928 }
2929
2930 fclose(f);
2931 }
2932
2933 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2934 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2935 {
2936 target_t *target = get_current_target(cmd_ctx);
2937 struct timeval timeout, now;
2938
2939 gettimeofday(&timeout, NULL);
2940 if (argc != 2)
2941 {
2942 return ERROR_COMMAND_SYNTAX_ERROR;
2943 }
2944 unsigned offset;
2945 int retval = parse_uint(args[0], &offset);
2946 if (ERROR_OK != retval)
2947 return retval;
2948
2949 timeval_add_time(&timeout, offset, 0);
2950
2951 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2952
2953 static const int maxSample = 10000;
2954 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
2955 if (samples == NULL)
2956 return ERROR_OK;
2957
2958 int numSamples = 0;
2959 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2960 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2961
2962 for (;;)
2963 {
2964 target_poll(target);
2965 if (target->state == TARGET_HALTED)
2966 {
2967 uint32_t t=*((uint32_t *)reg->value);
2968 samples[numSamples++]=t;
2969 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2970 target_poll(target);
2971 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2972 } else if (target->state == TARGET_RUNNING)
2973 {
2974 /* We want to quickly sample the PC. */
2975 if ((retval = target_halt(target)) != ERROR_OK)
2976 {
2977 free(samples);
2978 return retval;
2979 }
2980 } else
2981 {
2982 command_print(cmd_ctx, "Target not halted or running");
2983 retval = ERROR_OK;
2984 break;
2985 }
2986 if (retval != ERROR_OK)
2987 {
2988 break;
2989 }
2990
2991 gettimeofday(&now, NULL);
2992 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2993 {
2994 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2995 if ((retval = target_poll(target)) != ERROR_OK)
2996 {
2997 free(samples);
2998 return retval;
2999 }
3000 if (target->state == TARGET_HALTED)
3001 {
3002 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3003 }
3004 if ((retval = target_poll(target)) != ERROR_OK)
3005 {
3006 free(samples);
3007 return retval;
3008 }
3009 writeGmon(samples, numSamples, args[1]);
3010 command_print(cmd_ctx, "Wrote %s", args[1]);
3011 break;
3012 }
3013 }
3014 free(samples);
3015
3016 return ERROR_OK;
3017 }
3018
3019 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3020 {
3021 char *namebuf;
3022 Jim_Obj *nameObjPtr, *valObjPtr;
3023 int result;
3024
3025 namebuf = alloc_printf("%s(%d)", varname, idx);
3026 if (!namebuf)
3027 return JIM_ERR;
3028
3029 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3030 valObjPtr = Jim_NewIntObj(interp, val);
3031 if (!nameObjPtr || !valObjPtr)
3032 {
3033 free(namebuf);
3034 return JIM_ERR;
3035 }
3036
3037 Jim_IncrRefCount(nameObjPtr);
3038 Jim_IncrRefCount(valObjPtr);
3039 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3040 Jim_DecrRefCount(interp, nameObjPtr);
3041 Jim_DecrRefCount(interp, valObjPtr);
3042 free(namebuf);
3043 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3044 return result;
3045 }
3046
3047 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3048 {
3049 command_context_t *context;
3050 target_t *target;
3051
3052 context = Jim_GetAssocData(interp, "context");
3053 if (context == NULL)
3054 {
3055 LOG_ERROR("mem2array: no command context");
3056 return JIM_ERR;
3057 }
3058 target = get_current_target(context);
3059 if (target == NULL)
3060 {
3061 LOG_ERROR("mem2array: no current target");
3062 return JIM_ERR;
3063 }
3064
3065 return target_mem2array(interp, target, argc-1, argv + 1);
3066 }
3067
3068 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3069 {
3070 long l;
3071 uint32_t width;
3072 int len;
3073 uint32_t addr;
3074 uint32_t count;
3075 uint32_t v;
3076 const char *varname;
3077 uint8_t buffer[4096];
3078 int n, e, retval;
3079 uint32_t i;
3080
3081 /* argv[1] = name of array to receive the data
3082 * argv[2] = desired width
3083 * argv[3] = memory address
3084 * argv[4] = count of times to read
3085 */
3086 if (argc != 4) {
3087 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3088 return JIM_ERR;
3089 }
3090 varname = Jim_GetString(argv[0], &len);
3091 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3092
3093 e = Jim_GetLong(interp, argv[1], &l);
3094 width = l;
3095 if (e != JIM_OK) {
3096 return e;
3097 }
3098
3099 e = Jim_GetLong(interp, argv[2], &l);
3100 addr = l;
3101 if (e != JIM_OK) {
3102 return e;
3103 }
3104 e = Jim_GetLong(interp, argv[3], &l);
3105 len = l;
3106 if (e != JIM_OK) {
3107 return e;
3108 }
3109 switch (width) {
3110 case 8:
3111 width = 1;
3112 break;
3113 case 16:
3114 width = 2;
3115 break;
3116 case 32:
3117 width = 4;
3118 break;
3119 default:
3120 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3121 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3122 return JIM_ERR;
3123 }
3124 if (len == 0) {
3125 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3126 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3127 return JIM_ERR;
3128 }
3129 if ((addr + (len * width)) < addr) {
3130 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3131 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3132 return JIM_ERR;
3133 }
3134 /* absurd transfer size? */
3135 if (len > 65536) {
3136 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3137 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3138 return JIM_ERR;
3139 }
3140
3141 if ((width == 1) ||
3142 ((width == 2) && ((addr & 1) == 0)) ||
3143 ((width == 4) && ((addr & 3) == 0))) {
3144 /* all is well */
3145 } else {
3146 char buf[100];
3147 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3148 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3149 addr,
3150 width);
3151 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3152 return JIM_ERR;
3153 }
3154
3155 /* Transfer loop */
3156
3157 /* index counter */
3158 n = 0;
3159 /* assume ok */
3160 e = JIM_OK;
3161 while (len) {
3162 /* Slurp... in buffer size chunks */
3163
3164 count = len; /* in objects.. */
3165 if (count > (sizeof(buffer)/width)) {
3166 count = (sizeof(buffer)/width);
3167 }
3168
3169 retval = target_read_memory(target, addr, width, count, buffer);
3170 if (retval != ERROR_OK) {
3171 /* BOO !*/
3172 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3173 (unsigned int)addr,
3174 (int)width,
3175 (int)count);
3176 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3177 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3178 e = JIM_ERR;
3179 len = 0;
3180 } else {
3181 v = 0; /* shut up gcc */
3182 for (i = 0 ;i < count ;i++, n++) {
3183 switch (width) {
3184 case 4:
3185 v = target_buffer_get_u32(target, &buffer[i*width]);
3186 break;
3187 case 2:
3188 v = target_buffer_get_u16(target, &buffer[i*width]);
3189 break;
3190 case 1:
3191 v = buffer[i] & 0x0ff;
3192 break;
3193 }
3194 new_int_array_element(interp, varname, n, v);
3195 }
3196 len -= count;
3197 }
3198 }
3199
3200 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3201
3202 return JIM_OK;
3203 }
3204
3205 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3206 {
3207 char *namebuf;
3208 Jim_Obj *nameObjPtr, *valObjPtr;
3209 int result;
3210 long l;
3211
3212 namebuf = alloc_printf("%s(%d)", varname, idx);
3213 if (!namebuf)
3214 return JIM_ERR;
3215
3216 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3217 if (!nameObjPtr)
3218 {
3219 free(namebuf);
3220 return JIM_ERR;
3221 }
3222
3223 Jim_IncrRefCount(nameObjPtr);
3224 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3225 Jim_DecrRefCount(interp, nameObjPtr);
3226 free(namebuf);
3227 if (valObjPtr == NULL)
3228 return JIM_ERR;
3229
3230 result = Jim_GetLong(interp, valObjPtr, &l);
3231 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3232 *val = l;
3233 return result;
3234 }
3235
3236 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3237 {
3238 command_context_t *context;
3239 target_t *target;
3240
3241 context = Jim_GetAssocData(interp, "context");
3242 if (context == NULL) {
3243 LOG_ERROR("array2mem: no command context");
3244 return JIM_ERR;
3245 }
3246 target = get_current_target(context);
3247 if (target == NULL) {
3248 LOG_ERROR("array2mem: no current target");
3249 return JIM_ERR;
3250 }
3251
3252 return target_array2mem(interp,target, argc-1, argv + 1);
3253 }
3254
3255 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3256 {
3257 long l;
3258 uint32_t width;
3259 int len;
3260 uint32_t addr;
3261 uint32_t count;
3262 uint32_t v;
3263 const char *varname;
3264 uint8_t buffer[4096];
3265 int n, e, retval;
3266 uint32_t i;
3267
3268 /* argv[1] = name of array to get the data
3269 * argv[2] = desired width
3270 * argv[3] = memory address
3271 * argv[4] = count to write
3272 */
3273 if (argc != 4) {
3274 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3275 return JIM_ERR;
3276 }
3277 varname = Jim_GetString(argv[0], &len);
3278 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3279
3280 e = Jim_GetLong(interp, argv[1], &l);
3281 width = l;
3282 if (e != JIM_OK) {
3283 return e;
3284 }
3285
3286 e = Jim_GetLong(interp, argv[2], &l);
3287 addr = l;
3288 if (e != JIM_OK) {
3289 return e;
3290 }
3291 e = Jim_GetLong(interp, argv[3], &l);
3292 len = l;
3293 if (e != JIM_OK) {
3294 return e;
3295 }
3296 switch (width) {
3297 case 8:
3298 width = 1;
3299 break;
3300 case 16:
3301 width = 2;
3302 break;
3303 case 32:
3304 width = 4;
3305 break;
3306 default:
3307 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3308 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3309 return JIM_ERR;
3310 }
3311 if (len == 0) {
3312 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3313 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3314 return JIM_ERR;
3315 }
3316 if ((addr + (len * width)) < addr) {
3317 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3318 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3319 return JIM_ERR;
3320 }
3321 /* absurd transfer size? */
3322 if (len > 65536) {
3323 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3324 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3325 return JIM_ERR;
3326 }
3327
3328 if ((width == 1) ||
3329 ((width == 2) && ((addr & 1) == 0)) ||
3330 ((width == 4) && ((addr & 3) == 0))) {
3331 /* all is well */
3332 } else {
3333 char buf[100];
3334 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3335 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3336 (unsigned int)addr,
3337 (int)width);
3338 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3339 return JIM_ERR;
3340 }
3341
3342 /* Transfer loop */
3343
3344 /* index counter */
3345 n = 0;
3346 /* assume ok */
3347 e = JIM_OK;
3348 while (len) {
3349 /* Slurp... in buffer size chunks */
3350
3351 count = len; /* in objects.. */
3352 if (count > (sizeof(buffer)/width)) {
3353 count = (sizeof(buffer)/width);
3354 }
3355
3356 v = 0; /* shut up gcc */
3357 for (i = 0 ;i < count ;i++, n++) {
3358 get_int_array_element(interp, varname, n, &v);
3359 switch (width) {
3360 case 4:
3361 target_buffer_set_u32(target, &buffer[i*width], v);
3362 break;
3363 case 2:
3364 target_buffer_set_u16(target, &buffer[i*width], v);
3365 break;
3366 case 1:
3367 buffer[i] = v & 0x0ff;
3368 break;
3369 }
3370 }
3371 len -= count;
3372
3373 retval = target_write_memory(target, addr, width, count, buffer);
3374 if (retval != ERROR_OK) {
3375 /* BOO !*/
3376 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3377 (unsigned int)addr,
3378 (int)width,
3379 (int)count);
3380 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3381 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3382 e = JIM_ERR;
3383 len = 0;
3384 }
3385 }
3386
3387 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3388
3389 return JIM_OK;
3390 }
3391
3392 void target_all_handle_event(enum target_event e)
3393 {
3394 target_t *target;
3395
3396 LOG_DEBUG("**all*targets: event: %d, %s",
3397 (int)e,
3398 Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3399
3400 target = all_targets;
3401 while (target) {
3402 target_handle_event(target, e);
3403 target = target->next;
3404 }
3405 }
3406
3407 void target_handle_event(target_t *target, enum target_event e)
3408 {
3409 target_event_action_t *teap;
3410 int done;
3411
3412 teap = target->event_action;
3413
3414 done = 0;
3415 while (teap) {
3416 if (teap->event == e) {
3417 done = 1;
3418 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3419 target->target_number,
3420 target->cmd_name,
3421 target_get_name(target),
3422 e,
3423 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3424 Jim_GetString(teap->body, NULL));
3425 if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3426 {
3427 Jim_PrintErrorMessage(interp);
3428 }
3429 }
3430 teap = teap->next;
3431 }
3432 if (!done) {
3433 LOG_DEBUG("event: %d %s - no action",
3434 e,
3435 Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3436 }
3437 }
3438
3439 enum target_cfg_param {
3440 TCFG_TYPE,
3441 TCFG_EVENT,
3442 TCFG_WORK_AREA_VIRT,
3443 TCFG_WORK_AREA_PHYS,
3444 TCFG_WORK_AREA_SIZE,
3445 TCFG_WORK_AREA_BACKUP,
3446 TCFG_ENDIAN,
3447 TCFG_VARIANT,
3448 TCFG_CHAIN_POSITION,
3449 };
3450
3451 static Jim_Nvp nvp_config_opts[] = {
3452 { .name = "-type", .value = TCFG_TYPE },
3453 { .name = "-event", .value = TCFG_EVENT },
3454 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3455 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3456 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3457 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3458 { .name = "-endian" , .value = TCFG_ENDIAN },
3459 { .name = "-variant", .value = TCFG_VARIANT },
3460 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3461
3462 { .name = NULL, .value = -1 }
3463 };
3464
3465 static int target_configure(Jim_GetOptInfo *goi, target_t *target)
3466 {
3467 Jim_Nvp *n;
3468 Jim_Obj *o;
3469 jim_wide w;
3470 char *cp;
3471 int e;
3472
3473 /* parse config or cget options ... */
3474 while (goi->argc > 0) {
3475 Jim_SetEmptyResult(goi->interp);
3476 /* Jim_GetOpt_Debug(goi); */
3477
3478 if (target->type->target_jim_configure) {
3479 /* target defines a configure function */
3480 /* target gets first dibs on parameters */
3481 e = (*(target->type->target_jim_configure))(target, goi);
3482 if (e == JIM_OK) {
3483 /* more? */
3484 continue;
3485 }
3486 if (e == JIM_ERR) {
3487 /* An error */
3488 return e;
3489 }
3490 /* otherwise we 'continue' below */
3491 }
3492 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3493 if (e != JIM_OK) {
3494 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3495 return e;
3496 }
3497 switch (n->value) {
3498 case TCFG_TYPE:
3499 /* not setable */
3500 if (goi->isconfigure) {
3501 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3502 return JIM_ERR;
3503 } else {
3504 no_params:
3505 if (goi->argc != 0) {
3506 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3507 return JIM_ERR;
3508 }
3509 }
3510 Jim_SetResultString(goi->interp, target_get_name(target), -1);
3511 /* loop for more */
3512 break;
3513 case TCFG_EVENT:
3514 if (goi->argc == 0) {
3515 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3516 return JIM_ERR;
3517 }
3518
3519 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3520 if (e != JIM_OK) {
3521 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3522 return e;
3523 }
3524
3525 if (goi->isconfigure) {
3526 if (goi->argc != 1) {
3527 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3528 return JIM_ERR;
3529 }
3530 } else {
3531 if (goi->argc != 0) {
3532 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3533 return JIM_ERR;
3534 }
3535 }
3536
3537 {
3538 target_event_action_t *teap;
3539
3540 teap = target->event_action;
3541 /* replace existing? */
3542 while (teap) {
3543 if (teap->event == (enum target_event)n->value) {
3544 break;
3545 }
3546 teap = teap->next;
3547 }
3548
3549 if (goi->isconfigure) {
3550 bool replace = true;
3551 if (teap == NULL) {
3552 /* create new */
3553 teap = calloc(1, sizeof(*teap));
3554 replace = false;
3555 }
3556 teap->event = n->value;
3557 Jim_GetOpt_Obj(goi, &o);
3558 if (teap->body) {
3559 Jim_DecrRefCount(interp, teap->body);
3560 }
3561 teap->body = Jim_DuplicateObj(goi->interp, o);
3562 /*
3563 * FIXME:
3564 * Tcl/TK - "tk events" have a nice feature.
3565 * See the "BIND" command.
3566 * We should support that here.
3567 * You can specify %X and %Y in the event code.
3568 * The idea is: %T - target name.
3569 * The idea is: %N - target number
3570 * The idea is: %E - event name.
3571 */
3572 Jim_IncrRefCount(teap->body);
3573
3574 if (!replace)
3575 {
3576 /* add to head of event list */
3577 teap->next = target->event_action;
3578 target->event_action = teap;
3579 }
3580 Jim_SetEmptyResult(goi->interp);
3581 } else {
3582 /* get */
3583 if (teap == NULL) {
3584 Jim_SetEmptyResult(goi->interp);
3585 } else {
3586 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3587 }
3588 }
3589 }
3590 /* loop for more */
3591 break;
3592
3593 case TCFG_WORK_AREA_VIRT:
3594 if (goi->isconfigure) {
3595 target_free_all_working_areas(target);
3596 e = Jim_GetOpt_Wide(goi, &w);
3597 if (e != JIM_OK) {
3598 return e;
3599 }
3600 target->working_area_virt = w;
3601 } else {
3602 if (goi->argc != 0) {
3603 goto no_params;
3604 }
3605 }
3606 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3607 /* loop for more */
3608 break;
3609
3610 case TCFG_WORK_AREA_PHYS:
3611 if (goi->isconfigure) {
3612 target_free_all_working_areas(target);
3613 e = Jim_GetOpt_Wide(goi, &w);
3614 if (e != JIM_OK) {
3615 return e;
3616 }
3617 target->working_area_phys = w;
3618 } else {