11b12e5e84d4c20eb4e97dd1900571e09bdc5350
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm3_target;
89 extern struct target_type cortexa8_target;
90 extern struct target_type cortexr4_target;
91 extern struct target_type arm11_target;
92 extern struct target_type mips_m4k_target;
93 extern struct target_type avr_target;
94 extern struct target_type dsp563xx_target;
95 extern struct target_type dsp5680xx_target;
96 extern struct target_type testee_target;
97 extern struct target_type avr32_ap7k_target;
98 extern struct target_type hla_target;
99 extern struct target_type nds32_v2_target;
100 extern struct target_type nds32_v3_target;
101 extern struct target_type nds32_v3m_target;
102
103 static struct target_type *target_types[] = {
104 &arm7tdmi_target,
105 &arm9tdmi_target,
106 &arm920t_target,
107 &arm720t_target,
108 &arm966e_target,
109 &arm946e_target,
110 &arm926ejs_target,
111 &fa526_target,
112 &feroceon_target,
113 &dragonite_target,
114 &xscale_target,
115 &cortexm3_target,
116 &cortexa8_target,
117 &cortexr4_target,
118 &arm11_target,
119 &mips_m4k_target,
120 &avr_target,
121 &dsp563xx_target,
122 &dsp5680xx_target,
123 &testee_target,
124 &avr32_ap7k_target,
125 &hla_target,
126 &nds32_v2_target,
127 &nds32_v3_target,
128 &nds32_v3m_target,
129 NULL,
130 };
131
132 struct target *all_targets;
133 static struct target_event_callback *target_event_callbacks;
134 static struct target_timer_callback *target_timer_callbacks;
135 static const int polling_interval = 100;
136
137 static const Jim_Nvp nvp_assert[] = {
138 { .name = "assert", NVP_ASSERT },
139 { .name = "deassert", NVP_DEASSERT },
140 { .name = "T", NVP_ASSERT },
141 { .name = "F", NVP_DEASSERT },
142 { .name = "t", NVP_ASSERT },
143 { .name = "f", NVP_DEASSERT },
144 { .name = NULL, .value = -1 }
145 };
146
147 static const Jim_Nvp nvp_error_target[] = {
148 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
149 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
150 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
151 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
152 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
153 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
154 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
155 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
156 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
157 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
158 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
159 { .value = -1, .name = NULL }
160 };
161
162 static const char *target_strerror_safe(int err)
163 {
164 const Jim_Nvp *n;
165
166 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
167 if (n->name == NULL)
168 return "unknown";
169 else
170 return n->name;
171 }
172
173 static const Jim_Nvp nvp_target_event[] = {
174
175 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
176 { .value = TARGET_EVENT_HALTED, .name = "halted" },
177 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
178 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
179 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
180
181 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
182 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
183
184 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
185 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
186 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
187 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
188 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
189 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
190 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
191 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
192 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
193 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
194 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
195 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
196
197 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
198 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
199
200 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
201 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
202
203 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
204 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
205
206 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
207 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
208
209 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
210 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
211
212 { .name = NULL, .value = -1 }
213 };
214
215 static const Jim_Nvp nvp_target_state[] = {
216 { .name = "unknown", .value = TARGET_UNKNOWN },
217 { .name = "running", .value = TARGET_RUNNING },
218 { .name = "halted", .value = TARGET_HALTED },
219 { .name = "reset", .value = TARGET_RESET },
220 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
221 { .name = NULL, .value = -1 },
222 };
223
224 static const Jim_Nvp nvp_target_debug_reason[] = {
225 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
226 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
227 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
228 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
229 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
230 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
231 { .name = "program-exit" , .value = DBG_REASON_EXIT },
232 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
233 { .name = NULL, .value = -1 },
234 };
235
236 static const Jim_Nvp nvp_target_endian[] = {
237 { .name = "big", .value = TARGET_BIG_ENDIAN },
238 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
239 { .name = "be", .value = TARGET_BIG_ENDIAN },
240 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
241 { .name = NULL, .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_reset_modes[] = {
245 { .name = "unknown", .value = RESET_UNKNOWN },
246 { .name = "run" , .value = RESET_RUN },
247 { .name = "halt" , .value = RESET_HALT },
248 { .name = "init" , .value = RESET_INIT },
249 { .name = NULL , .value = -1 },
250 };
251
252 const char *debug_reason_name(struct target *t)
253 {
254 const char *cp;
255
256 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
257 t->debug_reason)->name;
258 if (!cp) {
259 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
260 cp = "(*BUG*unknown*BUG*)";
261 }
262 return cp;
263 }
264
265 const char *target_state_name(struct target *t)
266 {
267 const char *cp;
268 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
269 if (!cp) {
270 LOG_ERROR("Invalid target state: %d", (int)(t->state));
271 cp = "(*BUG*unknown*BUG*)";
272 }
273 return cp;
274 }
275
276 /* determine the number of the new target */
277 static int new_target_number(void)
278 {
279 struct target *t;
280 int x;
281
282 /* number is 0 based */
283 x = -1;
284 t = all_targets;
285 while (t) {
286 if (x < t->target_number)
287 x = t->target_number;
288 t = t->next;
289 }
290 return x + 1;
291 }
292
293 /* read a uint32_t from a buffer in target memory endianness */
294 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
295 {
296 if (target->endianness == TARGET_LITTLE_ENDIAN)
297 return le_to_h_u32(buffer);
298 else
299 return be_to_h_u32(buffer);
300 }
301
302 /* read a uint24_t from a buffer in target memory endianness */
303 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
304 {
305 if (target->endianness == TARGET_LITTLE_ENDIAN)
306 return le_to_h_u24(buffer);
307 else
308 return be_to_h_u24(buffer);
309 }
310
311 /* read a uint16_t from a buffer in target memory endianness */
312 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
313 {
314 if (target->endianness == TARGET_LITTLE_ENDIAN)
315 return le_to_h_u16(buffer);
316 else
317 return be_to_h_u16(buffer);
318 }
319
320 /* read a uint8_t from a buffer in target memory endianness */
321 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
322 {
323 return *buffer & 0x0ff;
324 }
325
326 /* write a uint32_t to a buffer in target memory endianness */
327 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
328 {
329 if (target->endianness == TARGET_LITTLE_ENDIAN)
330 h_u32_to_le(buffer, value);
331 else
332 h_u32_to_be(buffer, value);
333 }
334
335 /* write a uint24_t to a buffer in target memory endianness */
336 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
337 {
338 if (target->endianness == TARGET_LITTLE_ENDIAN)
339 h_u24_to_le(buffer, value);
340 else
341 h_u24_to_be(buffer, value);
342 }
343
344 /* write a uint16_t to a buffer in target memory endianness */
345 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
346 {
347 if (target->endianness == TARGET_LITTLE_ENDIAN)
348 h_u16_to_le(buffer, value);
349 else
350 h_u16_to_be(buffer, value);
351 }
352
353 /* write a uint8_t to a buffer in target memory endianness */
354 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
355 {
356 *buffer = value;
357 }
358
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
361 {
362 uint32_t i;
363 for (i = 0; i < count; i++)
364 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
365 }
366
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
369 {
370 uint32_t i;
371 for (i = 0; i < count; i++)
372 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
373 }
374
375 /* write a uint32_t array to a buffer in target memory endianness */
376 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
377 {
378 uint32_t i;
379 for (i = 0; i < count; i++)
380 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
381 }
382
383 /* write a uint16_t array to a buffer in target memory endianness */
384 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
385 {
386 uint32_t i;
387 for (i = 0; i < count; i++)
388 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
389 }
390
391 /* return a pointer to a configured target; id is name or number */
392 struct target *get_target(const char *id)
393 {
394 struct target *target;
395
396 /* try as tcltarget name */
397 for (target = all_targets; target; target = target->next) {
398 if (target_name(target) == NULL)
399 continue;
400 if (strcmp(id, target_name(target)) == 0)
401 return target;
402 }
403
404 /* It's OK to remove this fallback sometime after August 2010 or so */
405
406 /* no match, try as number */
407 unsigned num;
408 if (parse_uint(id, &num) != ERROR_OK)
409 return NULL;
410
411 for (target = all_targets; target; target = target->next) {
412 if (target->target_number == (int)num) {
413 LOG_WARNING("use '%s' as target identifier, not '%u'",
414 target_name(target), num);
415 return target;
416 }
417 }
418
419 return NULL;
420 }
421
422 /* returns a pointer to the n-th configured target */
423 static struct target *get_target_by_num(int num)
424 {
425 struct target *target = all_targets;
426
427 while (target) {
428 if (target->target_number == num)
429 return target;
430 target = target->next;
431 }
432
433 return NULL;
434 }
435
436 struct target *get_current_target(struct command_context *cmd_ctx)
437 {
438 struct target *target = get_target_by_num(cmd_ctx->current_target);
439
440 if (target == NULL) {
441 LOG_ERROR("BUG: current_target out of bounds");
442 exit(-1);
443 }
444
445 return target;
446 }
447
448 int target_poll(struct target *target)
449 {
450 int retval;
451
452 /* We can't poll until after examine */
453 if (!target_was_examined(target)) {
454 /* Fail silently lest we pollute the log */
455 return ERROR_FAIL;
456 }
457
458 retval = target->type->poll(target);
459 if (retval != ERROR_OK)
460 return retval;
461
462 if (target->halt_issued) {
463 if (target->state == TARGET_HALTED)
464 target->halt_issued = false;
465 else {
466 long long t = timeval_ms() - target->halt_issued_time;
467 if (t > DEFAULT_HALT_TIMEOUT) {
468 target->halt_issued = false;
469 LOG_INFO("Halt timed out, wake up GDB.");
470 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
471 }
472 }
473 }
474
475 return ERROR_OK;
476 }
477
478 int target_halt(struct target *target)
479 {
480 int retval;
481 /* We can't poll until after examine */
482 if (!target_was_examined(target)) {
483 LOG_ERROR("Target not examined yet");
484 return ERROR_FAIL;
485 }
486
487 retval = target->type->halt(target);
488 if (retval != ERROR_OK)
489 return retval;
490
491 target->halt_issued = true;
492 target->halt_issued_time = timeval_ms();
493
494 return ERROR_OK;
495 }
496
497 /**
498 * Make the target (re)start executing using its saved execution
499 * context (possibly with some modifications).
500 *
501 * @param target Which target should start executing.
502 * @param current True to use the target's saved program counter instead
503 * of the address parameter
504 * @param address Optionally used as the program counter.
505 * @param handle_breakpoints True iff breakpoints at the resumption PC
506 * should be skipped. (For example, maybe execution was stopped by
507 * such a breakpoint, in which case it would be counterprodutive to
508 * let it re-trigger.
509 * @param debug_execution False if all working areas allocated by OpenOCD
510 * should be released and/or restored to their original contents.
511 * (This would for example be true to run some downloaded "helper"
512 * algorithm code, which resides in one such working buffer and uses
513 * another for data storage.)
514 *
515 * @todo Resolve the ambiguity about what the "debug_execution" flag
516 * signifies. For example, Target implementations don't agree on how
517 * it relates to invalidation of the register cache, or to whether
518 * breakpoints and watchpoints should be enabled. (It would seem wrong
519 * to enable breakpoints when running downloaded "helper" algorithms
520 * (debug_execution true), since the breakpoints would be set to match
521 * target firmware being debugged, not the helper algorithm.... and
522 * enabling them could cause such helpers to malfunction (for example,
523 * by overwriting data with a breakpoint instruction. On the other
524 * hand the infrastructure for running such helpers might use this
525 * procedure but rely on hardware breakpoint to detect termination.)
526 */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529 int retval;
530
531 /* We can't poll until after examine */
532 if (!target_was_examined(target)) {
533 LOG_ERROR("Target not examined yet");
534 return ERROR_FAIL;
535 }
536
537 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
538
539 /* note that resume *must* be asynchronous. The CPU can halt before
540 * we poll. The CPU can even halt at the current PC as a result of
541 * a software breakpoint being inserted by (a bug?) the application.
542 */
543 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
544 if (retval != ERROR_OK)
545 return retval;
546
547 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
548
549 return retval;
550 }
551
552 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
553 {
554 char buf[100];
555 int retval;
556 Jim_Nvp *n;
557 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
558 if (n->name == NULL) {
559 LOG_ERROR("invalid reset mode");
560 return ERROR_FAIL;
561 }
562
563 /* disable polling during reset to make reset event scripts
564 * more predictable, i.e. dr/irscan & pathmove in events will
565 * not have JTAG operations injected into the middle of a sequence.
566 */
567 bool save_poll = jtag_poll_get_enabled();
568
569 jtag_poll_set_enabled(false);
570
571 sprintf(buf, "ocd_process_reset %s", n->name);
572 retval = Jim_Eval(cmd_ctx->interp, buf);
573
574 jtag_poll_set_enabled(save_poll);
575
576 if (retval != JIM_OK) {
577 Jim_MakeErrorMessage(cmd_ctx->interp);
578 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
579 return ERROR_FAIL;
580 }
581
582 /* We want any events to be processed before the prompt */
583 retval = target_call_timer_callbacks_now();
584
585 struct target *target;
586 for (target = all_targets; target; target = target->next) {
587 target->type->check_reset(target);
588 target->running_alg = false;
589 }
590
591 return retval;
592 }
593
594 static int identity_virt2phys(struct target *target,
595 uint32_t virtual, uint32_t *physical)
596 {
597 *physical = virtual;
598 return ERROR_OK;
599 }
600
601 static int no_mmu(struct target *target, int *enabled)
602 {
603 *enabled = 0;
604 return ERROR_OK;
605 }
606
607 static int default_examine(struct target *target)
608 {
609 target_set_examined(target);
610 return ERROR_OK;
611 }
612
613 /* no check by default */
614 static int default_check_reset(struct target *target)
615 {
616 return ERROR_OK;
617 }
618
619 int target_examine_one(struct target *target)
620 {
621 return target->type->examine(target);
622 }
623
624 static int jtag_enable_callback(enum jtag_event event, void *priv)
625 {
626 struct target *target = priv;
627
628 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
629 return ERROR_OK;
630
631 jtag_unregister_event_callback(jtag_enable_callback, target);
632
633 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
634
635 int retval = target_examine_one(target);
636 if (retval != ERROR_OK)
637 return retval;
638
639 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
640
641 return retval;
642 }
643
644 /* Targets that correctly implement init + examine, i.e.
645 * no communication with target during init:
646 *
647 * XScale
648 */
649 int target_examine(void)
650 {
651 int retval = ERROR_OK;
652 struct target *target;
653
654 for (target = all_targets; target; target = target->next) {
655 /* defer examination, but don't skip it */
656 if (!target->tap->enabled) {
657 jtag_register_event_callback(jtag_enable_callback,
658 target);
659 continue;
660 }
661
662 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
663
664 retval = target_examine_one(target);
665 if (retval != ERROR_OK)
666 return retval;
667
668 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
669 }
670 return retval;
671 }
672
673 const char *target_type_name(struct target *target)
674 {
675 return target->type->name;
676 }
677
678 static int target_soft_reset_halt(struct target *target)
679 {
680 if (!target_was_examined(target)) {
681 LOG_ERROR("Target not examined yet");
682 return ERROR_FAIL;
683 }
684 if (!target->type->soft_reset_halt) {
685 LOG_ERROR("Target %s does not support soft_reset_halt",
686 target_name(target));
687 return ERROR_FAIL;
688 }
689 return target->type->soft_reset_halt(target);
690 }
691
692 /**
693 * Downloads a target-specific native code algorithm to the target,
694 * and executes it. * Note that some targets may need to set up, enable,
695 * and tear down a breakpoint (hard or * soft) to detect algorithm
696 * termination, while others may support lower overhead schemes where
697 * soft breakpoints embedded in the algorithm automatically terminate the
698 * algorithm.
699 *
700 * @param target used to run the algorithm
701 * @param arch_info target-specific description of the algorithm.
702 */
703 int target_run_algorithm(struct target *target,
704 int num_mem_params, struct mem_param *mem_params,
705 int num_reg_params, struct reg_param *reg_param,
706 uint32_t entry_point, uint32_t exit_point,
707 int timeout_ms, void *arch_info)
708 {
709 int retval = ERROR_FAIL;
710
711 if (!target_was_examined(target)) {
712 LOG_ERROR("Target not examined yet");
713 goto done;
714 }
715 if (!target->type->run_algorithm) {
716 LOG_ERROR("Target type '%s' does not support %s",
717 target_type_name(target), __func__);
718 goto done;
719 }
720
721 target->running_alg = true;
722 retval = target->type->run_algorithm(target,
723 num_mem_params, mem_params,
724 num_reg_params, reg_param,
725 entry_point, exit_point, timeout_ms, arch_info);
726 target->running_alg = false;
727
728 done:
729 return retval;
730 }
731
732 /**
733 * Downloads a target-specific native code algorithm to the target,
734 * executes and leaves it running.
735 *
736 * @param target used to run the algorithm
737 * @param arch_info target-specific description of the algorithm.
738 */
739 int target_start_algorithm(struct target *target,
740 int num_mem_params, struct mem_param *mem_params,
741 int num_reg_params, struct reg_param *reg_params,
742 uint32_t entry_point, uint32_t exit_point,
743 void *arch_info)
744 {
745 int retval = ERROR_FAIL;
746
747 if (!target_was_examined(target)) {
748 LOG_ERROR("Target not examined yet");
749 goto done;
750 }
751 if (!target->type->start_algorithm) {
752 LOG_ERROR("Target type '%s' does not support %s",
753 target_type_name(target), __func__);
754 goto done;
755 }
756 if (target->running_alg) {
757 LOG_ERROR("Target is already running an algorithm");
758 goto done;
759 }
760
761 target->running_alg = true;
762 retval = target->type->start_algorithm(target,
763 num_mem_params, mem_params,
764 num_reg_params, reg_params,
765 entry_point, exit_point, arch_info);
766
767 done:
768 return retval;
769 }
770
771 /**
772 * Waits for an algorithm started with target_start_algorithm() to complete.
773 *
774 * @param target used to run the algorithm
775 * @param arch_info target-specific description of the algorithm.
776 */
777 int target_wait_algorithm(struct target *target,
778 int num_mem_params, struct mem_param *mem_params,
779 int num_reg_params, struct reg_param *reg_params,
780 uint32_t exit_point, int timeout_ms,
781 void *arch_info)
782 {
783 int retval = ERROR_FAIL;
784
785 if (!target->type->wait_algorithm) {
786 LOG_ERROR("Target type '%s' does not support %s",
787 target_type_name(target), __func__);
788 goto done;
789 }
790 if (!target->running_alg) {
791 LOG_ERROR("Target is not running an algorithm");
792 goto done;
793 }
794
795 retval = target->type->wait_algorithm(target,
796 num_mem_params, mem_params,
797 num_reg_params, reg_params,
798 exit_point, timeout_ms, arch_info);
799 if (retval != ERROR_TARGET_TIMEOUT)
800 target->running_alg = false;
801
802 done:
803 return retval;
804 }
805
806 /**
807 * Executes a target-specific native code algorithm in the target.
808 * It differs from target_run_algorithm in that the algorithm is asynchronous.
809 * Because of this it requires an compliant algorithm:
810 * see contrib/loaders/flash/stm32f1x.S for example.
811 *
812 * @param target used to run the algorithm
813 */
814
815 int target_run_flash_async_algorithm(struct target *target,
816 uint8_t *buffer, uint32_t count, int block_size,
817 int num_mem_params, struct mem_param *mem_params,
818 int num_reg_params, struct reg_param *reg_params,
819 uint32_t buffer_start, uint32_t buffer_size,
820 uint32_t entry_point, uint32_t exit_point, void *arch_info)
821 {
822 int retval;
823 int timeout = 0;
824
825 /* Set up working area. First word is write pointer, second word is read pointer,
826 * rest is fifo data area. */
827 uint32_t wp_addr = buffer_start;
828 uint32_t rp_addr = buffer_start + 4;
829 uint32_t fifo_start_addr = buffer_start + 8;
830 uint32_t fifo_end_addr = buffer_start + buffer_size;
831
832 uint32_t wp = fifo_start_addr;
833 uint32_t rp = fifo_start_addr;
834
835 /* validate block_size is 2^n */
836 assert(!block_size || !(block_size & (block_size - 1)));
837
838 retval = target_write_u32(target, wp_addr, wp);
839 if (retval != ERROR_OK)
840 return retval;
841 retval = target_write_u32(target, rp_addr, rp);
842 if (retval != ERROR_OK)
843 return retval;
844
845 /* Start up algorithm on target and let it idle while writing the first chunk */
846 retval = target_start_algorithm(target, num_mem_params, mem_params,
847 num_reg_params, reg_params,
848 entry_point,
849 exit_point,
850 arch_info);
851
852 if (retval != ERROR_OK) {
853 LOG_ERROR("error starting target flash write algorithm");
854 return retval;
855 }
856
857 while (count > 0) {
858
859 retval = target_read_u32(target, rp_addr, &rp);
860 if (retval != ERROR_OK) {
861 LOG_ERROR("failed to get read pointer");
862 break;
863 }
864
865 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
866
867 if (rp == 0) {
868 LOG_ERROR("flash write algorithm aborted by target");
869 retval = ERROR_FLASH_OPERATION_FAILED;
870 break;
871 }
872
873 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
874 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
875 break;
876 }
877
878 /* Count the number of bytes available in the fifo without
879 * crossing the wrap around. Make sure to not fill it completely,
880 * because that would make wp == rp and that's the empty condition. */
881 uint32_t thisrun_bytes;
882 if (rp > wp)
883 thisrun_bytes = rp - wp - block_size;
884 else if (rp > fifo_start_addr)
885 thisrun_bytes = fifo_end_addr - wp;
886 else
887 thisrun_bytes = fifo_end_addr - wp - block_size;
888
889 if (thisrun_bytes == 0) {
890 /* Throttle polling a bit if transfer is (much) faster than flash
891 * programming. The exact delay shouldn't matter as long as it's
892 * less than buffer size / flash speed. This is very unlikely to
893 * run when using high latency connections such as USB. */
894 alive_sleep(10);
895
896 /* to stop an infinite loop on some targets check and increment a timeout
897 * this issue was observed on a stellaris using the new ICDI interface */
898 if (timeout++ >= 500) {
899 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
900 return ERROR_FLASH_OPERATION_FAILED;
901 }
902 continue;
903 }
904
905 /* reset our timeout */
906 timeout = 0;
907
908 /* Limit to the amount of data we actually want to write */
909 if (thisrun_bytes > count * block_size)
910 thisrun_bytes = count * block_size;
911
912 /* Write data to fifo */
913 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
914 if (retval != ERROR_OK)
915 break;
916
917 /* Update counters and wrap write pointer */
918 buffer += thisrun_bytes;
919 count -= thisrun_bytes / block_size;
920 wp += thisrun_bytes;
921 if (wp >= fifo_end_addr)
922 wp = fifo_start_addr;
923
924 /* Store updated write pointer to target */
925 retval = target_write_u32(target, wp_addr, wp);
926 if (retval != ERROR_OK)
927 break;
928 }
929
930 if (retval != ERROR_OK) {
931 /* abort flash write algorithm on target */
932 target_write_u32(target, wp_addr, 0);
933 }
934
935 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
936 num_reg_params, reg_params,
937 exit_point,
938 10000,
939 arch_info);
940
941 if (retval2 != ERROR_OK) {
942 LOG_ERROR("error waiting for target flash write algorithm");
943 retval = retval2;
944 }
945
946 return retval;
947 }
948
949 int target_read_memory(struct target *target,
950 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
951 {
952 if (!target_was_examined(target)) {
953 LOG_ERROR("Target not examined yet");
954 return ERROR_FAIL;
955 }
956 return target->type->read_memory(target, address, size, count, buffer);
957 }
958
959 int target_read_phys_memory(struct target *target,
960 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
961 {
962 if (!target_was_examined(target)) {
963 LOG_ERROR("Target not examined yet");
964 return ERROR_FAIL;
965 }
966 return target->type->read_phys_memory(target, address, size, count, buffer);
967 }
968
969 int target_write_memory(struct target *target,
970 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
971 {
972 if (!target_was_examined(target)) {
973 LOG_ERROR("Target not examined yet");
974 return ERROR_FAIL;
975 }
976 return target->type->write_memory(target, address, size, count, buffer);
977 }
978
979 int target_write_phys_memory(struct target *target,
980 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
981 {
982 if (!target_was_examined(target)) {
983 LOG_ERROR("Target not examined yet");
984 return ERROR_FAIL;
985 }
986 return target->type->write_phys_memory(target, address, size, count, buffer);
987 }
988
989 int target_add_breakpoint(struct target *target,
990 struct breakpoint *breakpoint)
991 {
992 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
993 LOG_WARNING("target %s is not halted", target_name(target));
994 return ERROR_TARGET_NOT_HALTED;
995 }
996 return target->type->add_breakpoint(target, breakpoint);
997 }
998
999 int target_add_context_breakpoint(struct target *target,
1000 struct breakpoint *breakpoint)
1001 {
1002 if (target->state != TARGET_HALTED) {
1003 LOG_WARNING("target %s is not halted", target_name(target));
1004 return ERROR_TARGET_NOT_HALTED;
1005 }
1006 return target->type->add_context_breakpoint(target, breakpoint);
1007 }
1008
1009 int target_add_hybrid_breakpoint(struct target *target,
1010 struct breakpoint *breakpoint)
1011 {
1012 if (target->state != TARGET_HALTED) {
1013 LOG_WARNING("target %s is not halted", target_name(target));
1014 return ERROR_TARGET_NOT_HALTED;
1015 }
1016 return target->type->add_hybrid_breakpoint(target, breakpoint);
1017 }
1018
1019 int target_remove_breakpoint(struct target *target,
1020 struct breakpoint *breakpoint)
1021 {
1022 return target->type->remove_breakpoint(target, breakpoint);
1023 }
1024
1025 int target_add_watchpoint(struct target *target,
1026 struct watchpoint *watchpoint)
1027 {
1028 if (target->state != TARGET_HALTED) {
1029 LOG_WARNING("target %s is not halted", target_name(target));
1030 return ERROR_TARGET_NOT_HALTED;
1031 }
1032 return target->type->add_watchpoint(target, watchpoint);
1033 }
1034 int target_remove_watchpoint(struct target *target,
1035 struct watchpoint *watchpoint)
1036 {
1037 return target->type->remove_watchpoint(target, watchpoint);
1038 }
1039 int target_hit_watchpoint(struct target *target,
1040 struct watchpoint **hit_watchpoint)
1041 {
1042 if (target->state != TARGET_HALTED) {
1043 LOG_WARNING("target %s is not halted", target->cmd_name);
1044 return ERROR_TARGET_NOT_HALTED;
1045 }
1046
1047 if (target->type->hit_watchpoint == NULL) {
1048 /* For backward compatible, if hit_watchpoint is not implemented,
1049 * return ERROR_FAIL such that gdb_server will not take the nonsense
1050 * information. */
1051 return ERROR_FAIL;
1052 }
1053
1054 return target->type->hit_watchpoint(target, hit_watchpoint);
1055 }
1056
1057 int target_get_gdb_reg_list(struct target *target,
1058 struct reg **reg_list[], int *reg_list_size,
1059 enum target_register_class reg_class)
1060 {
1061 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1062 }
1063 int target_step(struct target *target,
1064 int current, uint32_t address, int handle_breakpoints)
1065 {
1066 return target->type->step(target, current, address, handle_breakpoints);
1067 }
1068
1069 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1070 {
1071 if (target->state != TARGET_HALTED) {
1072 LOG_WARNING("target %s is not halted", target->cmd_name);
1073 return ERROR_TARGET_NOT_HALTED;
1074 }
1075 return target->type->get_gdb_fileio_info(target, fileio_info);
1076 }
1077
1078 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1079 {
1080 if (target->state != TARGET_HALTED) {
1081 LOG_WARNING("target %s is not halted", target->cmd_name);
1082 return ERROR_TARGET_NOT_HALTED;
1083 }
1084 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1085 }
1086
1087 /**
1088 * Reset the @c examined flag for the given target.
1089 * Pure paranoia -- targets are zeroed on allocation.
1090 */
1091 static void target_reset_examined(struct target *target)
1092 {
1093 target->examined = false;
1094 }
1095
1096 static int err_read_phys_memory(struct target *target, uint32_t address,
1097 uint32_t size, uint32_t count, uint8_t *buffer)
1098 {
1099 LOG_ERROR("Not implemented: %s", __func__);
1100 return ERROR_FAIL;
1101 }
1102
1103 static int err_write_phys_memory(struct target *target, uint32_t address,
1104 uint32_t size, uint32_t count, const uint8_t *buffer)
1105 {
1106 LOG_ERROR("Not implemented: %s", __func__);
1107 return ERROR_FAIL;
1108 }
1109
1110 static int handle_target(void *priv);
1111
1112 static int target_init_one(struct command_context *cmd_ctx,
1113 struct target *target)
1114 {
1115 target_reset_examined(target);
1116
1117 struct target_type *type = target->type;
1118 if (type->examine == NULL)
1119 type->examine = default_examine;
1120
1121 if (type->check_reset == NULL)
1122 type->check_reset = default_check_reset;
1123
1124 assert(type->init_target != NULL);
1125
1126 int retval = type->init_target(cmd_ctx, target);
1127 if (ERROR_OK != retval) {
1128 LOG_ERROR("target '%s' init failed", target_name(target));
1129 return retval;
1130 }
1131
1132 /* Sanity-check MMU support ... stub in what we must, to help
1133 * implement it in stages, but warn if we need to do so.
1134 */
1135 if (type->mmu) {
1136 if (type->write_phys_memory == NULL) {
1137 LOG_ERROR("type '%s' is missing write_phys_memory",
1138 type->name);
1139 type->write_phys_memory = err_write_phys_memory;
1140 }
1141 if (type->read_phys_memory == NULL) {
1142 LOG_ERROR("type '%s' is missing read_phys_memory",
1143 type->name);
1144 type->read_phys_memory = err_read_phys_memory;
1145 }
1146 if (type->virt2phys == NULL) {
1147 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1148 type->virt2phys = identity_virt2phys;
1149 }
1150 } else {
1151 /* Make sure no-MMU targets all behave the same: make no
1152 * distinction between physical and virtual addresses, and
1153 * ensure that virt2phys() is always an identity mapping.
1154 */
1155 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1156 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1157
1158 type->mmu = no_mmu;
1159 type->write_phys_memory = type->write_memory;
1160 type->read_phys_memory = type->read_memory;
1161 type->virt2phys = identity_virt2phys;
1162 }
1163
1164 if (target->type->read_buffer == NULL)
1165 target->type->read_buffer = target_read_buffer_default;
1166
1167 if (target->type->write_buffer == NULL)
1168 target->type->write_buffer = target_write_buffer_default;
1169
1170 if (target->type->get_gdb_fileio_info == NULL)
1171 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1172
1173 if (target->type->gdb_fileio_end == NULL)
1174 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1175
1176 return ERROR_OK;
1177 }
1178
1179 static int target_init(struct command_context *cmd_ctx)
1180 {
1181 struct target *target;
1182 int retval;
1183
1184 for (target = all_targets; target; target = target->next) {
1185 retval = target_init_one(cmd_ctx, target);
1186 if (ERROR_OK != retval)
1187 return retval;
1188 }
1189
1190 if (!all_targets)
1191 return ERROR_OK;
1192
1193 retval = target_register_user_commands(cmd_ctx);
1194 if (ERROR_OK != retval)
1195 return retval;
1196
1197 retval = target_register_timer_callback(&handle_target,
1198 polling_interval, 1, cmd_ctx->interp);
1199 if (ERROR_OK != retval)
1200 return retval;
1201
1202 return ERROR_OK;
1203 }
1204
1205 COMMAND_HANDLER(handle_target_init_command)
1206 {
1207 int retval;
1208
1209 if (CMD_ARGC != 0)
1210 return ERROR_COMMAND_SYNTAX_ERROR;
1211
1212 static bool target_initialized;
1213 if (target_initialized) {
1214 LOG_INFO("'target init' has already been called");
1215 return ERROR_OK;
1216 }
1217 target_initialized = true;
1218
1219 retval = command_run_line(CMD_CTX, "init_targets");
1220 if (ERROR_OK != retval)
1221 return retval;
1222
1223 retval = command_run_line(CMD_CTX, "init_board");
1224 if (ERROR_OK != retval)
1225 return retval;
1226
1227 LOG_DEBUG("Initializing targets...");
1228 return target_init(CMD_CTX);
1229 }
1230
1231 int target_register_event_callback(int (*callback)(struct target *target,
1232 enum target_event event, void *priv), void *priv)
1233 {
1234 struct target_event_callback **callbacks_p = &target_event_callbacks;
1235
1236 if (callback == NULL)
1237 return ERROR_COMMAND_SYNTAX_ERROR;
1238
1239 if (*callbacks_p) {
1240 while ((*callbacks_p)->next)
1241 callbacks_p = &((*callbacks_p)->next);
1242 callbacks_p = &((*callbacks_p)->next);
1243 }
1244
1245 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1246 (*callbacks_p)->callback = callback;
1247 (*callbacks_p)->priv = priv;
1248 (*callbacks_p)->next = NULL;
1249
1250 return ERROR_OK;
1251 }
1252
1253 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1254 {
1255 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1256 struct timeval now;
1257
1258 if (callback == NULL)
1259 return ERROR_COMMAND_SYNTAX_ERROR;
1260
1261 if (*callbacks_p) {
1262 while ((*callbacks_p)->next)
1263 callbacks_p = &((*callbacks_p)->next);
1264 callbacks_p = &((*callbacks_p)->next);
1265 }
1266
1267 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1268 (*callbacks_p)->callback = callback;
1269 (*callbacks_p)->periodic = periodic;
1270 (*callbacks_p)->time_ms = time_ms;
1271
1272 gettimeofday(&now, NULL);
1273 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1274 time_ms -= (time_ms % 1000);
1275 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1276 if ((*callbacks_p)->when.tv_usec > 1000000) {
1277 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1278 (*callbacks_p)->when.tv_sec += 1;
1279 }
1280
1281 (*callbacks_p)->priv = priv;
1282 (*callbacks_p)->next = NULL;
1283
1284 return ERROR_OK;
1285 }
1286
1287 int target_unregister_event_callback(int (*callback)(struct target *target,
1288 enum target_event event, void *priv), void *priv)
1289 {
1290 struct target_event_callback **p = &target_event_callbacks;
1291 struct target_event_callback *c = target_event_callbacks;
1292
1293 if (callback == NULL)
1294 return ERROR_COMMAND_SYNTAX_ERROR;
1295
1296 while (c) {
1297 struct target_event_callback *next = c->next;
1298 if ((c->callback == callback) && (c->priv == priv)) {
1299 *p = next;
1300 free(c);
1301 return ERROR_OK;
1302 } else
1303 p = &(c->next);
1304 c = next;
1305 }
1306
1307 return ERROR_OK;
1308 }
1309
1310 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1311 {
1312 struct target_timer_callback **p = &target_timer_callbacks;
1313 struct target_timer_callback *c = target_timer_callbacks;
1314
1315 if (callback == NULL)
1316 return ERROR_COMMAND_SYNTAX_ERROR;
1317
1318 while (c) {
1319 struct target_timer_callback *next = c->next;
1320 if ((c->callback == callback) && (c->priv == priv)) {
1321 *p = next;
1322 free(c);
1323 return ERROR_OK;
1324 } else
1325 p = &(c->next);
1326 c = next;
1327 }
1328
1329 return ERROR_OK;
1330 }
1331
1332 int target_call_event_callbacks(struct target *target, enum target_event event)
1333 {
1334 struct target_event_callback *callback = target_event_callbacks;
1335 struct target_event_callback *next_callback;
1336
1337 if (event == TARGET_EVENT_HALTED) {
1338 /* execute early halted first */
1339 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1340 }
1341
1342 LOG_DEBUG("target event %i (%s)", event,
1343 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1344
1345 target_handle_event(target, event);
1346
1347 while (callback) {
1348 next_callback = callback->next;
1349 callback->callback(target, event, callback->priv);
1350 callback = next_callback;
1351 }
1352
1353 return ERROR_OK;
1354 }
1355
1356 static int target_timer_callback_periodic_restart(
1357 struct target_timer_callback *cb, struct timeval *now)
1358 {
1359 int time_ms = cb->time_ms;
1360 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1361 time_ms -= (time_ms % 1000);
1362 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1363 if (cb->when.tv_usec > 1000000) {
1364 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1365 cb->when.tv_sec += 1;
1366 }
1367 return ERROR_OK;
1368 }
1369
1370 static int target_call_timer_callback(struct target_timer_callback *cb,
1371 struct timeval *now)
1372 {
1373 cb->callback(cb->priv);
1374
1375 if (cb->periodic)
1376 return target_timer_callback_periodic_restart(cb, now);
1377
1378 return target_unregister_timer_callback(cb->callback, cb->priv);
1379 }
1380
1381 static int target_call_timer_callbacks_check_time(int checktime)
1382 {
1383 keep_alive();
1384
1385 struct timeval now;
1386 gettimeofday(&now, NULL);
1387
1388 struct target_timer_callback *callback = target_timer_callbacks;
1389 while (callback) {
1390 /* cleaning up may unregister and free this callback */
1391 struct target_timer_callback *next_callback = callback->next;
1392
1393 bool call_it = callback->callback &&
1394 ((!checktime && callback->periodic) ||
1395 now.tv_sec > callback->when.tv_sec ||
1396 (now.tv_sec == callback->when.tv_sec &&
1397 now.tv_usec >= callback->when.tv_usec));
1398
1399 if (call_it) {
1400 int retval = target_call_timer_callback(callback, &now);
1401 if (retval != ERROR_OK)
1402 return retval;
1403 }
1404
1405 callback = next_callback;
1406 }
1407
1408 return ERROR_OK;
1409 }
1410
1411 int target_call_timer_callbacks(void)
1412 {
1413 return target_call_timer_callbacks_check_time(1);
1414 }
1415
1416 /* invoke periodic callbacks immediately */
1417 int target_call_timer_callbacks_now(void)
1418 {
1419 return target_call_timer_callbacks_check_time(0);
1420 }
1421
1422 /* Prints the working area layout for debug purposes */
1423 static void print_wa_layout(struct target *target)
1424 {
1425 struct working_area *c = target->working_areas;
1426
1427 while (c) {
1428 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1429 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1430 c->address, c->address + c->size - 1, c->size);
1431 c = c->next;
1432 }
1433 }
1434
1435 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1436 static void target_split_working_area(struct working_area *area, uint32_t size)
1437 {
1438 assert(area->free); /* Shouldn't split an allocated area */
1439 assert(size <= area->size); /* Caller should guarantee this */
1440
1441 /* Split only if not already the right size */
1442 if (size < area->size) {
1443 struct working_area *new_wa = malloc(sizeof(*new_wa));
1444
1445 if (new_wa == NULL)
1446 return;
1447
1448 new_wa->next = area->next;
1449 new_wa->size = area->size - size;
1450 new_wa->address = area->address + size;
1451 new_wa->backup = NULL;
1452 new_wa->user = NULL;
1453 new_wa->free = true;
1454
1455 area->next = new_wa;
1456 area->size = size;
1457
1458 /* If backup memory was allocated to this area, it has the wrong size
1459 * now so free it and it will be reallocated if/when needed */
1460 if (area->backup) {
1461 free(area->backup);
1462 area->backup = NULL;
1463 }
1464 }
1465 }
1466
1467 /* Merge all adjacent free areas into one */
1468 static void target_merge_working_areas(struct target *target)
1469 {
1470 struct working_area *c = target->working_areas;
1471
1472 while (c && c->next) {
1473 assert(c->next->address == c->address + c->size); /* This is an invariant */
1474
1475 /* Find two adjacent free areas */
1476 if (c->free && c->next->free) {
1477 /* Merge the last into the first */
1478 c->size += c->next->size;
1479
1480 /* Remove the last */
1481 struct working_area *to_be_freed = c->next;
1482 c->next = c->next->next;
1483 if (to_be_freed->backup)
1484 free(to_be_freed->backup);
1485 free(to_be_freed);
1486
1487 /* If backup memory was allocated to the remaining area, it's has
1488 * the wrong size now */
1489 if (c->backup) {
1490 free(c->backup);
1491 c->backup = NULL;
1492 }
1493 } else {
1494 c = c->next;
1495 }
1496 }
1497 }
1498
1499 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1500 {
1501 /* Reevaluate working area address based on MMU state*/
1502 if (target->working_areas == NULL) {
1503 int retval;
1504 int enabled;
1505
1506 retval = target->type->mmu(target, &enabled);
1507 if (retval != ERROR_OK)
1508 return retval;
1509
1510 if (!enabled) {
1511 if (target->working_area_phys_spec) {
1512 LOG_DEBUG("MMU disabled, using physical "
1513 "address for working memory 0x%08"PRIx32,
1514 target->working_area_phys);
1515 target->working_area = target->working_area_phys;
1516 } else {
1517 LOG_ERROR("No working memory available. "
1518 "Specify -work-area-phys to target.");
1519 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1520 }
1521 } else {
1522 if (target->working_area_virt_spec) {
1523 LOG_DEBUG("MMU enabled, using virtual "
1524 "address for working memory 0x%08"PRIx32,
1525 target->working_area_virt);
1526 target->working_area = target->working_area_virt;
1527 } else {
1528 LOG_ERROR("No working memory available. "
1529 "Specify -work-area-virt to target.");
1530 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1531 }
1532 }
1533
1534 /* Set up initial working area on first call */
1535 struct working_area *new_wa = malloc(sizeof(*new_wa));
1536 if (new_wa) {
1537 new_wa->next = NULL;
1538 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1539 new_wa->address = target->working_area;
1540 new_wa->backup = NULL;
1541 new_wa->user = NULL;
1542 new_wa->free = true;
1543 }
1544
1545 target->working_areas = new_wa;
1546 }
1547
1548 /* only allocate multiples of 4 byte */
1549 if (size % 4)
1550 size = (size + 3) & (~3UL);
1551
1552 struct working_area *c = target->working_areas;
1553
1554 /* Find the first large enough working area */
1555 while (c) {
1556 if (c->free && c->size >= size)
1557 break;
1558 c = c->next;
1559 }
1560
1561 if (c == NULL)
1562 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1563
1564 /* Split the working area into the requested size */
1565 target_split_working_area(c, size);
1566
1567 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1568
1569 if (target->backup_working_area) {
1570 if (c->backup == NULL) {
1571 c->backup = malloc(c->size);
1572 if (c->backup == NULL)
1573 return ERROR_FAIL;
1574 }
1575
1576 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1577 if (retval != ERROR_OK)
1578 return retval;
1579 }
1580
1581 /* mark as used, and return the new (reused) area */
1582 c->free = false;
1583 *area = c;
1584
1585 /* user pointer */
1586 c->user = area;
1587
1588 print_wa_layout(target);
1589
1590 return ERROR_OK;
1591 }
1592
1593 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1594 {
1595 int retval;
1596
1597 retval = target_alloc_working_area_try(target, size, area);
1598 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1599 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1600 return retval;
1601
1602 }
1603
1604 static int target_restore_working_area(struct target *target, struct working_area *area)
1605 {
1606 int retval = ERROR_OK;
1607
1608 if (target->backup_working_area && area->backup != NULL) {
1609 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1610 if (retval != ERROR_OK)
1611 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1612 area->size, area->address);
1613 }
1614
1615 return retval;
1616 }
1617
1618 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1619 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1620 {
1621 int retval = ERROR_OK;
1622
1623 if (area->free)
1624 return retval;
1625
1626 if (restore) {
1627 retval = target_restore_working_area(target, area);
1628 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1629 if (retval != ERROR_OK)
1630 return retval;
1631 }
1632
1633 area->free = true;
1634
1635 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1636 area->size, area->address);
1637
1638 /* mark user pointer invalid */
1639 /* TODO: Is this really safe? It points to some previous caller's memory.
1640 * How could we know that the area pointer is still in that place and not
1641 * some other vital data? What's the purpose of this, anyway? */
1642 *area->user = NULL;
1643 area->user = NULL;
1644
1645 target_merge_working_areas(target);
1646
1647 print_wa_layout(target);
1648
1649 return retval;
1650 }
1651
1652 int target_free_working_area(struct target *target, struct working_area *area)
1653 {
1654 return target_free_working_area_restore(target, area, 1);
1655 }
1656
1657 /* free resources and restore memory, if restoring memory fails,
1658 * free up resources anyway
1659 */
1660 static void target_free_all_working_areas_restore(struct target *target, int restore)
1661 {
1662 struct working_area *c = target->working_areas;
1663
1664 LOG_DEBUG("freeing all working areas");
1665
1666 /* Loop through all areas, restoring the allocated ones and marking them as free */
1667 while (c) {
1668 if (!c->free) {
1669 if (restore)
1670 target_restore_working_area(target, c);
1671 c->free = true;
1672 *c->user = NULL; /* Same as above */
1673 c->user = NULL;
1674 }
1675 c = c->next;
1676 }
1677
1678 /* Run a merge pass to combine all areas into one */
1679 target_merge_working_areas(target);
1680
1681 print_wa_layout(target);
1682 }
1683
1684 void target_free_all_working_areas(struct target *target)
1685 {
1686 target_free_all_working_areas_restore(target, 1);
1687 }
1688
1689 /* Find the largest number of bytes that can be allocated */
1690 uint32_t target_get_working_area_avail(struct target *target)
1691 {
1692 struct working_area *c = target->working_areas;
1693 uint32_t max_size = 0;
1694
1695 if (c == NULL)
1696 return target->working_area_size;
1697
1698 while (c) {
1699 if (c->free && max_size < c->size)
1700 max_size = c->size;
1701
1702 c = c->next;
1703 }
1704
1705 return max_size;
1706 }
1707
1708 int target_arch_state(struct target *target)
1709 {
1710 int retval;
1711 if (target == NULL) {
1712 LOG_USER("No target has been configured");
1713 return ERROR_OK;
1714 }
1715
1716 LOG_USER("target state: %s", target_state_name(target));
1717
1718 if (target->state != TARGET_HALTED)
1719 return ERROR_OK;
1720
1721 retval = target->type->arch_state(target);
1722 return retval;
1723 }
1724
1725 static int target_get_gdb_fileio_info_default(struct target *target,
1726 struct gdb_fileio_info *fileio_info)
1727 {
1728 /* If target does not support semi-hosting function, target
1729 has no need to provide .get_gdb_fileio_info callback.
1730 It just return ERROR_FAIL and gdb_server will return "Txx"
1731 as target halted every time. */
1732 return ERROR_FAIL;
1733 }
1734
1735 static int target_gdb_fileio_end_default(struct target *target,
1736 int retcode, int fileio_errno, bool ctrl_c)
1737 {
1738 return ERROR_OK;
1739 }
1740
1741 /* Single aligned words are guaranteed to use 16 or 32 bit access
1742 * mode respectively, otherwise data is handled as quickly as
1743 * possible
1744 */
1745 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1746 {
1747 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1748 (int)size, (unsigned)address);
1749
1750 if (!target_was_examined(target)) {
1751 LOG_ERROR("Target not examined yet");
1752 return ERROR_FAIL;
1753 }
1754
1755 if (size == 0)
1756 return ERROR_OK;
1757
1758 if ((address + size - 1) < address) {
1759 /* GDB can request this when e.g. PC is 0xfffffffc*/
1760 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1761 (unsigned)address,
1762 (unsigned)size);
1763 return ERROR_FAIL;
1764 }
1765
1766 return target->type->write_buffer(target, address, size, buffer);
1767 }
1768
1769 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1770 {
1771 uint32_t size;
1772
1773 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1774 * will have something to do with the size we leave to it. */
1775 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1776 if (address & size) {
1777 int retval = target_write_memory(target, address, size, 1, buffer);
1778 if (retval != ERROR_OK)
1779 return retval;
1780 address += size;
1781 count -= size;
1782 buffer += size;
1783 }
1784 }
1785
1786 /* Write the data with as large access size as possible. */
1787 for (; size > 0; size /= 2) {
1788 uint32_t aligned = count - count % size;
1789 if (aligned > 0) {
1790 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1791 if (retval != ERROR_OK)
1792 return retval;
1793 address += aligned;
1794 count -= aligned;
1795 buffer += aligned;
1796 }
1797 }
1798
1799 return ERROR_OK;
1800 }
1801
1802 /* Single aligned words are guaranteed to use 16 or 32 bit access
1803 * mode respectively, otherwise data is handled as quickly as
1804 * possible
1805 */
1806 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1807 {
1808 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1809 (int)size, (unsigned)address);
1810
1811 if (!target_was_examined(target)) {
1812 LOG_ERROR("Target not examined yet");
1813 return ERROR_FAIL;
1814 }
1815
1816 if (size == 0)
1817 return ERROR_OK;
1818
1819 if ((address + size - 1) < address) {
1820 /* GDB can request this when e.g. PC is 0xfffffffc*/
1821 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1822 address,
1823 size);
1824 return ERROR_FAIL;
1825 }
1826
1827 return target->type->read_buffer(target, address, size, buffer);
1828 }
1829
1830 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1831 {
1832 uint32_t size;
1833
1834 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1835 * will have something to do with the size we leave to it. */
1836 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1837 if (address & size) {
1838 int retval = target_read_memory(target, address, size, 1, buffer);
1839 if (retval != ERROR_OK)
1840 return retval;
1841 address += size;
1842 count -= size;
1843 buffer += size;
1844 }
1845 }
1846
1847 /* Read the data with as large access size as possible. */
1848 for (; size > 0; size /= 2) {
1849 uint32_t aligned = count - count % size;
1850 if (aligned > 0) {
1851 int retval = target_read_memory(target, address, size, aligned / size, buffer);
1852 if (retval != ERROR_OK)
1853 return retval;
1854 address += aligned;
1855 count -= aligned;
1856 buffer += aligned;
1857 }
1858 }
1859
1860 return ERROR_OK;
1861 }
1862
1863 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1864 {
1865 uint8_t *buffer;
1866 int retval;
1867 uint32_t i;
1868 uint32_t checksum = 0;
1869 if (!target_was_examined(target)) {
1870 LOG_ERROR("Target not examined yet");
1871 return ERROR_FAIL;
1872 }
1873
1874 retval = target->type->checksum_memory(target, address, size, &checksum);
1875 if (retval != ERROR_OK) {
1876 buffer = malloc(size);
1877 if (buffer == NULL) {
1878 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1879 return ERROR_COMMAND_SYNTAX_ERROR;
1880 }
1881 retval = target_read_buffer(target, address, size, buffer);
1882 if (retval != ERROR_OK) {
1883 free(buffer);
1884 return retval;
1885 }
1886
1887 /* convert to target endianness */
1888 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1889 uint32_t target_data;
1890 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1891 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1892 }
1893
1894 retval = image_calculate_checksum(buffer, size, &checksum);
1895 free(buffer);
1896 }
1897
1898 *crc = checksum;
1899
1900 return retval;
1901 }
1902
1903 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1904 {
1905 int retval;
1906 if (!target_was_examined(target)) {
1907 LOG_ERROR("Target not examined yet");
1908 return ERROR_FAIL;
1909 }
1910
1911 if (target->type->blank_check_memory == 0)
1912 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1913
1914 retval = target->type->blank_check_memory(target, address, size, blank);
1915
1916 return retval;
1917 }
1918
1919 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1920 {
1921 uint8_t value_buf[4];
1922 if (!target_was_examined(target)) {
1923 LOG_ERROR("Target not examined yet");
1924 return ERROR_FAIL;
1925 }
1926
1927 int retval = target_read_memory(target, address, 4, 1, value_buf);
1928
1929 if (retval == ERROR_OK) {
1930 *value = target_buffer_get_u32(target, value_buf);
1931 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1932 address,
1933 *value);
1934 } else {
1935 *value = 0x0;
1936 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1937 address);
1938 }
1939
1940 return retval;
1941 }
1942
1943 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1944 {
1945 uint8_t value_buf[2];
1946 if (!target_was_examined(target)) {
1947 LOG_ERROR("Target not examined yet");
1948 return ERROR_FAIL;
1949 }
1950
1951 int retval = target_read_memory(target, address, 2, 1, value_buf);
1952
1953 if (retval == ERROR_OK) {
1954 *value = target_buffer_get_u16(target, value_buf);
1955 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1956 address,
1957 *value);
1958 } else {
1959 *value = 0x0;
1960 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1961 address);
1962 }
1963
1964 return retval;
1965 }
1966
1967 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1968 {
1969 int retval = target_read_memory(target, address, 1, 1, value);
1970 if (!target_was_examined(target)) {
1971 LOG_ERROR("Target not examined yet");
1972 return ERROR_FAIL;
1973 }
1974
1975 if (retval == ERROR_OK) {
1976 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1977 address,
1978 *value);
1979 } else {
1980 *value = 0x0;
1981 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1982 address);
1983 }
1984
1985 return retval;
1986 }
1987
1988 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1989 {
1990 int retval;
1991 uint8_t value_buf[4];
1992 if (!target_was_examined(target)) {
1993 LOG_ERROR("Target not examined yet");
1994 return ERROR_FAIL;
1995 }
1996
1997 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1998 address,
1999 value);
2000
2001 target_buffer_set_u32(target, value_buf, value);
2002 retval = target_write_memory(target, address, 4, 1, value_buf);
2003 if (retval != ERROR_OK)
2004 LOG_DEBUG("failed: %i", retval);
2005
2006 return retval;
2007 }
2008
2009 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2010 {
2011 int retval;
2012 uint8_t value_buf[2];
2013 if (!target_was_examined(target)) {
2014 LOG_ERROR("Target not examined yet");
2015 return ERROR_FAIL;
2016 }
2017
2018 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2019 address,
2020 value);
2021
2022 target_buffer_set_u16(target, value_buf, value);
2023 retval = target_write_memory(target, address, 2, 1, value_buf);
2024 if (retval != ERROR_OK)
2025 LOG_DEBUG("failed: %i", retval);
2026
2027 return retval;
2028 }
2029
2030 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2031 {
2032 int retval;
2033 if (!target_was_examined(target)) {
2034 LOG_ERROR("Target not examined yet");
2035 return ERROR_FAIL;
2036 }
2037
2038 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2039 address, value);
2040
2041 retval = target_write_memory(target, address, 1, 1, &value);
2042 if (retval != ERROR_OK)
2043 LOG_DEBUG("failed: %i", retval);
2044
2045 return retval;
2046 }
2047
2048 static int find_target(struct command_context *cmd_ctx, const char *name)
2049 {
2050 struct target *target = get_target(name);
2051 if (target == NULL) {
2052 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2053 return ERROR_FAIL;
2054 }
2055 if (!target->tap->enabled) {
2056 LOG_USER("Target: TAP %s is disabled, "
2057 "can't be the current target\n",
2058 target->tap->dotted_name);
2059 return ERROR_FAIL;
2060 }
2061
2062 cmd_ctx->current_target = target->target_number;
2063 return ERROR_OK;
2064 }
2065
2066
2067 COMMAND_HANDLER(handle_targets_command)
2068 {
2069 int retval = ERROR_OK;
2070 if (CMD_ARGC == 1) {
2071 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2072 if (retval == ERROR_OK) {
2073 /* we're done! */
2074 return retval;
2075 }
2076 }
2077
2078 struct target *target = all_targets;
2079 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2080 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2081 while (target) {
2082 const char *state;
2083 char marker = ' ';
2084
2085 if (target->tap->enabled)
2086 state = target_state_name(target);
2087 else
2088 state = "tap-disabled";
2089
2090 if (CMD_CTX->current_target == target->target_number)
2091 marker = '*';
2092
2093 /* keep columns lined up to match the headers above */
2094 command_print(CMD_CTX,
2095 "%2d%c %-18s %-10s %-6s %-18s %s",
2096 target->target_number,
2097 marker,
2098 target_name(target),
2099 target_type_name(target),
2100 Jim_Nvp_value2name_simple(nvp_target_endian,
2101 target->endianness)->name,
2102 target->tap->dotted_name,
2103 state);
2104 target = target->next;
2105 }
2106
2107 return retval;
2108 }
2109
2110 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2111
2112 static int powerDropout;
2113 static int srstAsserted;
2114
2115 static int runPowerRestore;
2116 static int runPowerDropout;
2117 static int runSrstAsserted;
2118 static int runSrstDeasserted;
2119
2120 static int sense_handler(void)
2121 {
2122 static int prevSrstAsserted;
2123 static int prevPowerdropout;
2124
2125 int retval = jtag_power_dropout(&powerDropout);
2126 if (retval != ERROR_OK)
2127 return retval;
2128
2129 int powerRestored;
2130 powerRestored = prevPowerdropout && !powerDropout;
2131 if (powerRestored)
2132 runPowerRestore = 1;
2133
2134 long long current = timeval_ms();
2135 static long long lastPower;
2136 int waitMore = lastPower + 2000 > current;
2137 if (powerDropout && !waitMore) {
2138 runPowerDropout = 1;
2139 lastPower = current;
2140 }
2141
2142 retval = jtag_srst_asserted(&srstAsserted);
2143 if (retval != ERROR_OK)
2144 return retval;
2145
2146 int srstDeasserted;
2147 srstDeasserted = prevSrstAsserted && !srstAsserted;
2148
2149 static long long lastSrst;
2150 waitMore = lastSrst + 2000 > current;
2151 if (srstDeasserted && !waitMore) {
2152 runSrstDeasserted = 1;
2153 lastSrst = current;
2154 }
2155
2156 if (!prevSrstAsserted && srstAsserted)
2157 runSrstAsserted = 1;
2158
2159 prevSrstAsserted = srstAsserted;
2160 prevPowerdropout = powerDropout;
2161
2162 if (srstDeasserted || powerRestored) {
2163 /* Other than logging the event we can't do anything here.
2164 * Issuing a reset is a particularly bad idea as we might
2165 * be inside a reset already.
2166 */
2167 }
2168
2169 return ERROR_OK;
2170 }
2171
2172 /* process target state changes */
2173 static int handle_target(void *priv)
2174 {
2175 Jim_Interp *interp = (Jim_Interp *)priv;
2176 int retval = ERROR_OK;
2177
2178 if (!is_jtag_poll_safe()) {
2179 /* polling is disabled currently */
2180 return ERROR_OK;
2181 }
2182
2183 /* we do not want to recurse here... */
2184 static int recursive;
2185 if (!recursive) {
2186 recursive = 1;
2187 sense_handler();
2188 /* danger! running these procedures can trigger srst assertions and power dropouts.
2189 * We need to avoid an infinite loop/recursion here and we do that by
2190 * clearing the flags after running these events.
2191 */
2192 int did_something = 0;
2193 if (runSrstAsserted) {
2194 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2195 Jim_Eval(interp, "srst_asserted");
2196 did_something = 1;
2197 }
2198 if (runSrstDeasserted) {
2199 Jim_Eval(interp, "srst_deasserted");
2200 did_something = 1;
2201 }
2202 if (runPowerDropout) {
2203 LOG_INFO("Power dropout detected, running power_dropout proc.");
2204 Jim_Eval(interp, "power_dropout");
2205 did_something = 1;
2206 }
2207 if (runPowerRestore) {
2208 Jim_Eval(interp, "power_restore");
2209 did_something = 1;
2210 }
2211
2212 if (did_something) {
2213 /* clear detect flags */
2214 sense_handler();
2215 }
2216
2217 /* clear action flags */
2218
2219 runSrstAsserted = 0;
2220 runSrstDeasserted = 0;
2221 runPowerRestore = 0;
2222 runPowerDropout = 0;
2223
2224 recursive = 0;
2225 }
2226
2227 /* Poll targets for state changes unless that's globally disabled.
2228 * Skip targets that are currently disabled.
2229 */
2230 for (struct target *target = all_targets;
2231 is_jtag_poll_safe() && target;
2232 target = target->next) {
2233 if (!target->tap->enabled)
2234 continue;
2235
2236 if (target->backoff.times > target->backoff.count) {
2237 /* do not poll this time as we failed previously */
2238 target->backoff.count++;
2239 continue;
2240 }
2241 target->backoff.count = 0;
2242
2243 /* only poll target if we've got power and srst isn't asserted */
2244 if (!powerDropout && !srstAsserted) {
2245 /* polling may fail silently until the target has been examined */
2246 retval = target_poll(target);
2247 if (retval != ERROR_OK) {
2248 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2249 if (target->backoff.times * polling_interval < 5000) {
2250 target->backoff.times *= 2;
2251 target->backoff.times++;
2252 }
2253 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2254 target_name(target),
2255 target->backoff.times * polling_interval);
2256
2257 /* Tell GDB to halt the debugger. This allows the user to
2258 * run monitor commands to handle the situation.
2259 */
2260 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2261 return retval;
2262 }
2263 /* Since we succeeded, we reset backoff count */
2264 if (target->backoff.times > 0)
2265 LOG_USER("Polling target %s succeeded again", target_name(target));
2266 target->backoff.times = 0;
2267 }
2268 }
2269
2270 return retval;
2271 }
2272
2273 COMMAND_HANDLER(handle_reg_command)
2274 {
2275 struct target *target;
2276 struct reg *reg = NULL;
2277 unsigned count = 0;
2278 char *value;
2279
2280 LOG_DEBUG("-");
2281
2282 target = get_current_target(CMD_CTX);
2283
2284 /* list all available registers for the current target */
2285 if (CMD_ARGC == 0) {
2286 struct reg_cache *cache = target->reg_cache;
2287
2288 count = 0;
2289 while (cache) {
2290 unsigned i;
2291
2292 command_print(CMD_CTX, "===== %s", cache->name);
2293
2294 for (i = 0, reg = cache->reg_list;
2295 i < cache->num_regs;
2296 i++, reg++, count++) {
2297 /* only print cached values if they are valid */
2298 if (reg->valid) {
2299 value = buf_to_str(reg->value,
2300 reg->size, 16);
2301 command_print(CMD_CTX,
2302 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2303 count, reg->name,
2304 reg->size, value,
2305 reg->dirty
2306 ? " (dirty)"
2307 : "");
2308 free(value);
2309 } else {
2310 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2311 count, reg->name,
2312 reg->size) ;
2313 }
2314 }
2315 cache = cache->next;
2316 }
2317
2318 return ERROR_OK;
2319 }
2320
2321 /* access a single register by its ordinal number */
2322 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2323 unsigned num;
2324 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2325
2326 struct reg_cache *cache = target->reg_cache;
2327 count = 0;
2328 while (cache) {
2329 unsigned i;
2330 for (i = 0; i < cache->num_regs; i++) {
2331 if (count++ == num) {
2332 reg = &cache->reg_list[i];
2333 break;
2334 }
2335 }
2336 if (reg)
2337 break;
2338 cache = cache->next;
2339 }
2340
2341 if (!reg) {
2342 command_print(CMD_CTX, "%i is out of bounds, the current target "
2343 "has only %i registers (0 - %i)", num, count, count - 1);
2344 return ERROR_OK;
2345 }
2346 } else {
2347 /* access a single register by its name */
2348 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2349
2350 if (!reg) {
2351 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2352 return ERROR_OK;
2353 }
2354 }
2355
2356 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2357
2358 /* display a register */
2359 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2360 && (CMD_ARGV[1][0] <= '9')))) {
2361 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2362 reg->valid = 0;
2363
2364 if (reg->valid == 0)
2365 reg->type->get(reg);
2366 value = buf_to_str(reg->value, reg->size, 16);
2367 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2368 free(value);
2369 return ERROR_OK;
2370 }
2371
2372 /* set register value */
2373 if (CMD_ARGC == 2) {
2374 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2375 if (buf == NULL)
2376 return ERROR_FAIL;
2377 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2378
2379 reg->type->set(reg, buf);
2380
2381 value = buf_to_str(reg->value, reg->size, 16);
2382 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2383 free(value);
2384
2385 free(buf);
2386
2387 return ERROR_OK;
2388 }
2389
2390 return ERROR_COMMAND_SYNTAX_ERROR;
2391 }
2392
2393 COMMAND_HANDLER(handle_poll_command)
2394 {
2395 int retval = ERROR_OK;
2396 struct target *target = get_current_target(CMD_CTX);
2397
2398 if (CMD_ARGC == 0) {
2399 command_print(CMD_CTX, "background polling: %s",
2400 jtag_poll_get_enabled() ? "on" : "off");
2401 command_print(CMD_CTX, "TAP: %s (%s)",
2402 target->tap->dotted_name,
2403 target->tap->enabled ? "enabled" : "disabled");
2404 if (!target->tap->enabled)
2405 return ERROR_OK;
2406 retval = target_poll(target);
2407 if (retval != ERROR_OK)
2408 return retval;
2409 retval = target_arch_state(target);
2410 if (retval != ERROR_OK)
2411 return retval;
2412 } else if (CMD_ARGC == 1) {
2413 bool enable;
2414 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2415 jtag_poll_set_enabled(enable);
2416 } else
2417 return ERROR_COMMAND_SYNTAX_ERROR;
2418
2419 return retval;
2420 }
2421
2422 COMMAND_HANDLER(handle_wait_halt_command)
2423 {
2424 if (CMD_ARGC > 1)
2425 return ERROR_COMMAND_SYNTAX_ERROR;
2426
2427 unsigned ms = DEFAULT_HALT_TIMEOUT;
2428 if (1 == CMD_ARGC) {
2429 int retval = parse_uint(CMD_ARGV[0], &ms);
2430 if (ERROR_OK != retval)
2431 return ERROR_COMMAND_SYNTAX_ERROR;
2432 }
2433
2434 struct target *target = get_current_target(CMD_CTX);
2435 return target_wait_state(target, TARGET_HALTED, ms);
2436 }
2437
2438 /* wait for target state to change. The trick here is to have a low
2439 * latency for short waits and not to suck up all the CPU time
2440 * on longer waits.
2441 *
2442 * After 500ms, keep_alive() is invoked
2443 */
2444 int target_wait_state(struct target *target, enum target_state state, int ms)
2445 {
2446 int retval;
2447 long long then = 0, cur;
2448 int once = 1;
2449
2450 for (;;) {
2451 retval = target_poll(target);
2452 if (retval != ERROR_OK)
2453 return retval;
2454 if (target->state == state)
2455 break;
2456 cur = timeval_ms();
2457 if (once) {
2458 once = 0;
2459 then = timeval_ms();
2460 LOG_DEBUG("waiting for target %s...",
2461 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2462 }
2463
2464 if (cur-then > 500)
2465 keep_alive();
2466
2467 if ((cur-then) > ms) {
2468 LOG_ERROR("timed out while waiting for target %s",
2469 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2470 return ERROR_FAIL;
2471 }
2472 }
2473
2474 return ERROR_OK;
2475 }
2476
2477 COMMAND_HANDLER(handle_halt_command)
2478 {
2479 LOG_DEBUG("-");
2480
2481 struct target *target = get_current_target(CMD_CTX);
2482 int retval = target_halt(target);
2483 if (ERROR_OK != retval)
2484 return retval;
2485
2486 if (CMD_ARGC == 1) {
2487 unsigned wait_local;
2488 retval = parse_uint(CMD_ARGV[0], &wait_local);
2489 if (ERROR_OK != retval)
2490 return ERROR_COMMAND_SYNTAX_ERROR;
2491 if (!wait_local)
2492 return ERROR_OK;
2493 }
2494
2495 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2496 }
2497
2498 COMMAND_HANDLER(handle_soft_reset_halt_command)
2499 {
2500 struct target *target = get_current_target(CMD_CTX);
2501
2502 LOG_USER("requesting target halt and executing a soft reset");
2503
2504 target_soft_reset_halt(target);
2505
2506 return ERROR_OK;
2507 }
2508
2509 COMMAND_HANDLER(handle_reset_command)
2510 {
2511 if (CMD_ARGC > 1)
2512 return ERROR_COMMAND_SYNTAX_ERROR;
2513
2514 enum target_reset_mode reset_mode = RESET_RUN;
2515 if (CMD_ARGC == 1) {
2516 const Jim_Nvp *n;
2517 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2518 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2519 return ERROR_COMMAND_SYNTAX_ERROR;
2520 reset_mode = n->value;
2521 }
2522
2523 /* reset *all* targets */
2524 return target_process_reset(CMD_CTX, reset_mode);
2525 }
2526
2527
2528 COMMAND_HANDLER(handle_resume_command)
2529 {
2530 int current = 1;
2531 if (CMD_ARGC > 1)
2532 return ERROR_COMMAND_SYNTAX_ERROR;
2533
2534 struct target *target = get_current_target(CMD_CTX);
2535
2536 /* with no CMD_ARGV, resume from current pc, addr = 0,
2537 * with one arguments, addr = CMD_ARGV[0],
2538 * handle breakpoints, not debugging */
2539 uint32_t addr = 0;
2540 if (CMD_ARGC == 1) {
2541 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2542 current = 0;
2543 }
2544
2545 return target_resume(target, current, addr, 1, 0);
2546 }
2547
2548 COMMAND_HANDLER(handle_step_command)
2549 {
2550 if (CMD_ARGC > 1)
2551 return ERROR_COMMAND_SYNTAX_ERROR;
2552
2553 LOG_DEBUG("-");
2554
2555 /* with no CMD_ARGV, step from current pc, addr = 0,
2556 * with one argument addr = CMD_ARGV[0],
2557 * handle breakpoints, debugging */
2558 uint32_t addr = 0;
2559 int current_pc = 1;
2560 if (CMD_ARGC == 1) {
2561 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2562 current_pc = 0;
2563 }
2564
2565 struct target *target = get_current_target(CMD_CTX);
2566
2567 return target->type->step(target, current_pc, addr, 1);
2568 }
2569
2570 static void handle_md_output(struct command_context *cmd_ctx,
2571 struct target *target, uint32_t address, unsigned size,
2572 unsigned count, const uint8_t *buffer)
2573 {
2574 const unsigned line_bytecnt = 32;
2575 unsigned line_modulo = line_bytecnt / size;
2576
2577 char output[line_bytecnt * 4 + 1];
2578 unsigned output_len = 0;
2579
2580 const char *value_fmt;
2581 switch (size) {
2582 case 4:
2583 value_fmt = "%8.8x ";
2584 break;
2585 case 2:
2586 value_fmt = "%4.4x ";
2587 break;
2588 case 1:
2589 value_fmt = "%2.2x ";
2590 break;
2591 default:
2592 /* "can't happen", caller checked */
2593 LOG_ERROR("invalid memory read size: %u", size);
2594 return;
2595 }
2596
2597 for (unsigned i = 0; i < count; i++) {
2598 if (i % line_modulo == 0) {
2599 output_len += snprintf(output + output_len,
2600 sizeof(output) - output_len,
2601 "0x%8.8x: ",
2602 (unsigned)(address + (i*size)));
2603 }
2604
2605 uint32_t value = 0;
2606 const uint8_t *value_ptr = buffer + i * size;
2607 switch (size) {
2608 case 4:
2609 value = target_buffer_get_u32(target, value_ptr);
2610 break;
2611 case 2:
2612 value = target_buffer_get_u16(target, value_ptr);
2613 break;
2614 case 1:
2615 value = *value_ptr;
2616 }
2617 output_len += snprintf(output + output_len,
2618 sizeof(output) - output_len,
2619 value_fmt, value);
2620
2621 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2622 command_print(cmd_ctx, "%s", output);
2623 output_len = 0;
2624 }
2625 }
2626 }
2627
2628 COMMAND_HANDLER(handle_md_command)
2629 {
2630 if (CMD_ARGC < 1)
2631 return ERROR_COMMAND_SYNTAX_ERROR;
2632
2633 unsigned size = 0;
2634 switch (CMD_NAME[2]) {
2635 case 'w':
2636 size = 4;
2637 break;
2638 case 'h':
2639 size = 2;
2640 break;
2641 case 'b':
2642 size = 1;
2643 break;
2644 default:
2645 return ERROR_COMMAND_SYNTAX_ERROR;
2646 }
2647
2648 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2649 int (*fn)(struct target *target,
2650 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2651 if (physical) {
2652 CMD_ARGC--;
2653 CMD_ARGV++;
2654 fn = target_read_phys_memory;
2655 } else
2656 fn = target_read_memory;
2657 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2658 return ERROR_COMMAND_SYNTAX_ERROR;
2659
2660 uint32_t address;
2661 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2662
2663 unsigned count = 1;
2664 if (CMD_ARGC == 2)
2665 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2666
2667 uint8_t *buffer = calloc(count, size);
2668
2669 struct target *target = get_current_target(CMD_CTX);
2670 int retval = fn(target, address, size, count, buffer);
2671 if (ERROR_OK == retval)
2672 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2673
2674 free(buffer);
2675
2676 return retval;
2677 }
2678
2679 typedef int (*target_write_fn)(struct target *target,
2680 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2681
2682 static int target_write_memory_fast(struct target *target,
2683 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2684 {
2685 return target_write_buffer(target, address, size * count, buffer);
2686 }
2687
2688 static int target_fill_mem(struct target *target,
2689 uint32_t address,
2690 target_write_fn fn,
2691 unsigned data_size,
2692 /* value */
2693 uint32_t b,
2694 /* count */
2695 unsigned c)
2696 {
2697 /* We have to write in reasonably large chunks to be able
2698 * to fill large memory areas with any sane speed */
2699 const unsigned chunk_size = 16384;
2700 uint8_t *target_buf = malloc(chunk_size * data_size);
2701 if (target_buf == NULL) {
2702 LOG_ERROR("Out of memory");
2703 return ERROR_FAIL;
2704 }
2705
2706 for (unsigned i = 0; i < chunk_size; i++) {
2707 switch (data_size) {
2708 case 4:
2709 target_buffer_set_u32(target, target_buf + i * data_size, b);
2710 break;
2711 case 2:
2712 target_buffer_set_u16(target, target_buf + i * data_size, b);
2713 break;
2714 case 1:
2715 target_buffer_set_u8(target, target_buf + i * data_size, b);
2716 break;
2717 default:
2718 exit(-1);
2719 }
2720 }
2721
2722 int retval = ERROR_OK;
2723
2724 for (unsigned x = 0; x < c; x += chunk_size) {
2725 unsigned current;
2726 current = c - x;
2727 if (current > chunk_size)
2728 current = chunk_size;
2729 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2730 if (retval != ERROR_OK)
2731 break;
2732 /* avoid GDB timeouts */
2733 keep_alive();
2734 }
2735 free(target_buf);
2736
2737 return retval;
2738 }
2739
2740
2741 COMMAND_HANDLER(handle_mw_command)
2742 {
2743 if (CMD_ARGC < 2)
2744 return ERROR_COMMAND_SYNTAX_ERROR;
2745 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2746 target_write_fn fn;
2747 if (physical) {
2748 CMD_ARGC--;
2749 CMD_ARGV++;
2750 fn = target_write_phys_memory;
2751 } else
2752 fn = target_write_memory_fast;
2753 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2754 return ERROR_COMMAND_SYNTAX_ERROR;
2755
2756 uint32_t address;
2757 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2758
2759 uint32_t value;
2760 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2761
2762 unsigned count = 1;
2763 if (CMD_ARGC == 3)
2764 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2765
2766 struct target *target = get_current_target(CMD_CTX);
2767 unsigned wordsize;
2768 switch (CMD_NAME[2]) {
2769 case 'w':
2770 wordsize = 4;
2771 break;
2772 case 'h':
2773 wordsize = 2;
2774 break;
2775 case 'b':
2776 wordsize = 1;
2777 break;
2778 default:
2779 return ERROR_COMMAND_SYNTAX_ERROR;
2780 }
2781
2782 return target_fill_mem(target, address, fn, wordsize, value, count);
2783 }
2784
2785 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2786 uint32_t *min_address, uint32_t *max_address)
2787 {
2788 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2789 return ERROR_COMMAND_SYNTAX_ERROR;
2790
2791 /* a base address isn't always necessary,
2792 * default to 0x0 (i.e. don't relocate) */
2793 if (CMD_ARGC >= 2) {
2794 uint32_t addr;
2795 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2796 image->base_address = addr;
2797 image->base_address_set = 1;
2798 } else
2799 image->base_address_set = 0;
2800
2801 image->start_address_set = 0;
2802
2803 if (CMD_ARGC >= 4)
2804 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2805 if (CMD_ARGC == 5) {
2806 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2807 /* use size (given) to find max (required) */
2808 *max_address += *min_address;
2809 }
2810
2811 if (*min_address > *max_address)
2812 return ERROR_COMMAND_SYNTAX_ERROR;
2813
2814 return ERROR_OK;
2815 }
2816
2817 COMMAND_HANDLER(handle_load_image_command)
2818 {
2819 uint8_t *buffer;
2820 size_t buf_cnt;
2821 uint32_t image_size;
2822 uint32_t min_address = 0;
2823 uint32_t max_address = 0xffffffff;
2824 int i;
2825 struct image image;
2826
2827 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2828 &image, &min_address, &max_address);
2829 if (ERROR_OK != retval)
2830 return retval;
2831
2832 struct target *target = get_current_target(CMD_CTX);
2833
2834 struct duration bench;
2835 duration_start(&bench);
2836
2837 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2838 return ERROR_OK;
2839
2840 image_size = 0x0;
2841 retval = ERROR_OK;
2842 for (i = 0; i < image.num_sections; i++) {
2843 buffer = malloc(image.sections[i].size);
2844 if (buffer == NULL) {
2845 command_print(CMD_CTX,
2846 "error allocating buffer for section (%d bytes)",
2847 (int)(image.sections[i].size));
2848 break;
2849 }
2850
2851 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2852 if (retval != ERROR_OK) {
2853 free(buffer);
2854 break;
2855 }
2856
2857 uint32_t offset = 0;
2858 uint32_t length = buf_cnt;
2859
2860 /* DANGER!!! beware of unsigned comparision here!!! */
2861
2862 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2863 (image.sections[i].base_address < max_address)) {
2864
2865 if (image.sections[i].base_address < min_address) {
2866 /* clip addresses below */
2867 offset += min_address-image.sections[i].base_address;
2868 length -= offset;
2869 }
2870
2871 if (image.sections[i].base_address + buf_cnt > max_address)
2872 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2873
2874 retval = target_write_buffer(target,
2875 image.sections[i].base_address + offset, length, buffer + offset);
2876 if (retval != ERROR_OK) {
2877 free(buffer);
2878 break;
2879 }
2880 image_size += length;
2881 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2882 (unsigned int)length,
2883 image.sections[i].base_address + offset);
2884 }
2885
2886 free(buffer);
2887 }
2888
2889 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2890 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2891 "in %fs (%0.3f KiB/s)", image_size,
2892 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2893 }
2894
2895 image_close(&image);
2896
2897 return retval;
2898
2899 }
2900
2901 COMMAND_HANDLER(handle_dump_image_command)
2902 {
2903 struct fileio fileio;
2904 uint8_t *buffer;
2905 int retval, retvaltemp;
2906 uint32_t address, size;
2907 struct duration bench;
2908 struct target *target = get_current_target(CMD_CTX);
2909
2910 if (CMD_ARGC != 3)
2911 return ERROR_COMMAND_SYNTAX_ERROR;
2912
2913 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2914 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2915
2916 uint32_t buf_size = (size > 4096) ? 4096 : size;
2917 buffer = malloc(buf_size);
2918 if (!buffer)
2919 return ERROR_FAIL;
2920
2921 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2922 if (retval != ERROR_OK) {
2923 free(buffer);
2924 return retval;
2925 }
2926
2927 duration_start(&bench);
2928
2929 while (size > 0) {
2930 size_t size_written;
2931 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2932 retval = target_read_buffer(target, address, this_run_size, buffer);
2933 if (retval != ERROR_OK)
2934 break;
2935
2936 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2937 if (retval != ERROR_OK)
2938 break;
2939
2940 size -= this_run_size;
2941 address += this_run_size;
2942 }
2943
2944 free(buffer);
2945
2946 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2947 int filesize;
2948 retval = fileio_size(&fileio, &filesize);
2949 if (retval != ERROR_OK)
2950 return retval;
2951 command_print(CMD_CTX,
2952 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2953 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2954 }
2955
2956 retvaltemp = fileio_close(&fileio);
2957 if (retvaltemp != ERROR_OK)
2958 return retvaltemp;
2959
2960 return retval;
2961 }
2962
2963 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2964 {
2965 uint8_t *buffer;
2966 size_t buf_cnt;
2967 uint32_t image_size;
2968 int i;
2969 int retval;
2970 uint32_t checksum = 0;
2971 uint32_t mem_checksum = 0;
2972
2973 struct image image;
2974
2975 struct target *target = get_current_target(CMD_CTX);
2976
2977 if (CMD_ARGC < 1)
2978 return ERROR_COMMAND_SYNTAX_ERROR;
2979
2980 if (!target) {
2981 LOG_ERROR("no target selected");
2982 return ERROR_FAIL;
2983 }
2984
2985 struct duration bench;
2986 duration_start(&bench);
2987
2988 if (CMD_ARGC >= 2) {
2989 uint32_t addr;
2990 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2991 image.base_address = addr;
2992 image.base_address_set = 1;
2993 } else {
2994 image.base_address_set = 0;
2995 image.base_address = 0x0;
2996 }
2997
2998 image.start_address_set = 0;
2999
3000 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3001 if (retval != ERROR_OK)
3002 return retval;
3003
3004 image_size = 0x0;
3005 int diffs = 0;
3006 retval = ERROR_OK;
3007 for (i = 0; i < image.num_sections; i++) {
3008 buffer = malloc(image.sections[i].size);
3009 if (buffer == NULL) {
3010 command_print(CMD_CTX,
3011 "error allocating buffer for section (%d bytes)",
3012 (int)(image.sections[i].size));
3013 break;
3014 }
3015 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3016 if (retval != ERROR_OK) {
3017 free(buffer);
3018 break;
3019 }
3020
3021 if (verify) {
3022 /* calculate checksum of image */
3023 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3024 if (retval != ERROR_OK) {
3025 free(buffer);
3026 break;
3027 }
3028
3029 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3030 if (retval != ERROR_OK) {
3031 free(buffer);
3032 break;
3033 }
3034
3035 if (checksum != mem_checksum) {
3036 /* failed crc checksum, fall back to a binary compare */
3037 uint8_t *data;
3038
3039 if (diffs == 0)
3040 LOG_ERROR("checksum mismatch - attempting binary compare");
3041
3042 data = (uint8_t *)malloc(buf_cnt);
3043
3044 /* Can we use 32bit word accesses? */
3045 int size = 1;
3046 int count = buf_cnt;
3047 if ((count % 4) == 0) {
3048 size *= 4;
3049 count /= 4;
3050 }
3051 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3052 if (retval == ERROR_OK) {
3053 uint32_t t;
3054 for (t = 0; t < buf_cnt; t++) {
3055 if (data[t] != buffer[t]) {
3056 command_print(CMD_CTX,
3057 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3058 diffs,
3059 (unsigned)(t + image.sections[i].base_address),
3060 data[t],
3061 buffer[t]);
3062 if (diffs++ >= 127) {
3063 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3064 free(data);
3065 free(buffer);
3066 goto done;
3067 }
3068 }
3069 keep_alive();
3070 }
3071 }
3072 free(data);
3073 }
3074 } else {
3075 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3076 image.sections[i].base_address,
3077 buf_cnt);
3078 }
3079
3080 free(buffer);
3081 image_size += buf_cnt;
3082 }
3083 if (diffs > 0)
3084 command_print(CMD_CTX, "No more differences found.");
3085 done:
3086 if (diffs > 0)
3087 retval = ERROR_FAIL;
3088 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3089 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3090 "in %fs (%0.3f KiB/s)", image_size,
3091 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3092 }
3093
3094 image_close(&image);
3095
3096 return retval;
3097 }
3098
3099 COMMAND_HANDLER(handle_verify_image_command)
3100 {
3101 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3102 }
3103
3104 COMMAND_HANDLER(handle_test_image_command)
3105 {
3106 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3107 }
3108
3109 static int handle_bp_command_list(struct command_context *cmd_ctx)
3110 {
3111 struct target *target = get_current_target(cmd_ctx);
3112 struct breakpoint *breakpoint = target->breakpoints;
3113 while (breakpoint) {
3114 if (breakpoint->type == BKPT_SOFT) {
3115 char *buf = buf_to_str(breakpoint->orig_instr,
3116 breakpoint->length, 16);
3117 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3118 breakpoint->address,
3119 breakpoint->length,
3120 breakpoint->set, buf);
3121 free(buf);
3122 } else {
3123 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3124 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3125 breakpoint->asid,
3126 breakpoint->length, breakpoint->set);
3127 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3128 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3129 breakpoint->address,
3130 breakpoint->length, breakpoint->set);
3131 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3132 breakpoint->asid);
3133 } else
3134 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3135 breakpoint->address,
3136 breakpoint->length, breakpoint->set);
3137 }
3138
3139 breakpoint = breakpoint->next;
3140 }
3141 return ERROR_OK;
3142 }
3143
3144 static int handle_bp_command_set(struct command_context *cmd_ctx,
3145 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3146 {
3147 struct target *target = get_current_target(cmd_ctx);
3148
3149 if (asid == 0) {
3150 int retval = breakpoint_add(target, addr, length, hw);
3151 if (ERROR_OK == retval)
3152 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3153 else {
3154 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3155 return retval;
3156 }
3157 } else if (addr == 0) {
3158 int retval = context_breakpoint_add(target, asid, length, hw);
3159 if (ERROR_OK == retval)
3160 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3161 else {
3162 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3163 return retval;
3164 }
3165 } else {
3166 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3167 if (ERROR_OK == retval)
3168 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3169 else {
3170 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3171 return retval;
3172 }
3173 }
3174 return ERROR_OK;
3175 }
3176
3177 COMMAND_HANDLER(handle_bp_command)
3178 {
3179 uint32_t addr;
3180 uint32_t asid;
3181 uint32_t length;
3182 int hw = BKPT_SOFT;
3183
3184 switch (CMD_ARGC) {
3185 case 0:
3186 return handle_bp_command_list(CMD_CTX);
3187
3188 case 2:
3189 asid = 0;
3190 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3191 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3192 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3193
3194 case 3:
3195 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3196 hw = BKPT_HARD;
3197 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3198
3199 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3200
3201 asid = 0;
3202 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3203 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3204 hw = BKPT_HARD;
3205 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3206 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3207 addr = 0;
3208 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3209 }
3210
3211 case 4:
3212 hw = BKPT_HARD;
3213 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3214 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3215 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3216 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3217
3218 default:
3219 return ERROR_COMMAND_SYNTAX_ERROR;
3220 }
3221 }
3222
3223 COMMAND_HANDLER(handle_rbp_command)
3224 {
3225 if (CMD_ARGC != 1)
3226 return ERROR_COMMAND_SYNTAX_ERROR;
3227
3228 uint32_t addr;
3229 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3230
3231 struct target *target = get_current_target(CMD_CTX);
3232 breakpoint_remove(target, addr);
3233
3234 return ERROR_OK;
3235 }
3236
3237 COMMAND_HANDLER(handle_wp_command)
3238 {
3239 struct target *target = get_current_target(CMD_CTX);
3240
3241 if (CMD_ARGC == 0) {
3242 struct watchpoint *watchpoint = target->watchpoints;
3243
3244 while (watchpoint) {
3245 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3246 ", len: 0x%8.8" PRIx32
3247 ", r/w/a: %i, value: 0x%8.8" PRIx32
3248 ", mask: 0x%8.8" PRIx32,
3249 watchpoint->address,
3250 watchpoint->length,
3251 (int)watchpoint->rw,
3252 watchpoint->value,
3253 watchpoint->mask);
3254 watchpoint = watchpoint->next;
3255 }
3256 return ERROR_OK;
3257 }
3258
3259 enum watchpoint_rw type = WPT_ACCESS;
3260 uint32_t addr = 0;
3261 uint32_t length = 0;
3262 uint32_t data_value = 0x0;
3263 uint32_t data_mask = 0xffffffff;
3264
3265 switch (CMD_ARGC) {
3266 case 5:
3267 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3268 /* fall through */
3269 case 4:
3270 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3271 /* fall through */
3272 case 3:
3273 switch (CMD_ARGV[2][0]) {
3274 case 'r':
3275 type = WPT_READ;
3276 break;
3277 case 'w':
3278 type = WPT_WRITE;
3279 break;
3280 case 'a':
3281 type = WPT_ACCESS;
3282 break;
3283 default:
3284 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3285 return ERROR_COMMAND_SYNTAX_ERROR;
3286 }
3287 /* fall through */
3288 case 2:
3289 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3290 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3291 break;
3292
3293 default:
3294 return ERROR_COMMAND_SYNTAX_ERROR;
3295 }
3296
3297 int retval = watchpoint_add(target, addr, length, type,
3298 data_value, data_mask);
3299 if (ERROR_OK != retval)
3300 LOG_ERROR("Failure setting watchpoints");
3301
3302 return retval;
3303 }
3304
3305 COMMAND_HANDLER(handle_rwp_command)
3306 {
3307 if (CMD_ARGC != 1)
3308 return ERROR_COMMAND_SYNTAX_ERROR;
3309
3310 uint32_t addr;
3311 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3312
3313 struct target *target = get_current_target(CMD_CTX);
3314 watchpoint_remove(target, addr);
3315
3316 return ERROR_OK;
3317 }
3318
3319 /**
3320 * Translate a virtual address to a physical address.
3321 *
3322 * The low-level target implementation must have logged a detailed error
3323 * which is forwarded to telnet/GDB session.
3324 */
3325 COMMAND_HANDLER(handle_virt2phys_command)
3326 {
3327 if (CMD_ARGC != 1)
3328 return ERROR_COMMAND_SYNTAX_ERROR;
3329
3330 uint32_t va;
3331 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3332 uint32_t pa;
3333
3334 struct target *target = get_current_target(CMD_CTX);
3335 int retval = target->type->virt2phys(target, va, &pa);
3336 if (retval == ERROR_OK)
3337 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3338
3339 return retval;
3340 }
3341
3342 static void writeData(FILE *f, const void *data, size_t len)
3343 {
3344 size_t written = fwrite(data, 1, len, f);
3345 if (written != len)
3346 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3347 }
3348
3349 static void writeLong(FILE *f, int l)
3350 {
3351 int i;
3352 for (i = 0; i < 4; i++) {
3353 char c = (l >> (i*8))&0xff;
3354 writeData(f, &c, 1);
3355 }
3356
3357 }
3358
3359 static void writeString(FILE *f, char *s)
3360 {
3361 writeData(f, s, strlen(s));
3362 }
3363
3364 /* Dump a gmon.out histogram file. */
3365 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3366 {
3367 uint32_t i;
3368 FILE *f = fopen(filename, "w");
3369 if (f == NULL)
3370 return;
3371 writeString(f, "gmon");
3372 writeLong(f, 0x00000001); /* Version */
3373 writeLong(f, 0); /* padding */
3374 writeLong(f, 0); /* padding */
3375 writeLong(f, 0); /* padding */
3376
3377 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3378 writeData(f, &zero, 1);
3379
3380 /* figure out bucket size */
3381 uint32_t min = samples[0];
3382 uint32_t max = samples[0];
3383 for (i = 0; i < sampleNum; i++) {
3384 if (min > samples[i])
3385 min = samples[i];
3386 if (max < samples[i])
3387 max = samples[i];
3388 }
3389
3390 int addressSpace = (max - min + 1);
3391 assert(addressSpace >= 2);
3392
3393 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3394 uint32_t numBuckets = addressSpace;
3395 if (numBuckets > maxBuckets)
3396 numBuckets = maxBuckets;
3397 int *buckets = malloc(sizeof(int) * numBuckets);
3398 if (buckets == NULL) {
3399 fclose(f);
3400 return;
3401 }
3402 memset(buckets, 0, sizeof(int) * numBuckets);
3403 for (i = 0; i < sampleNum; i++) {
3404 uint32_t address = samples[i];
3405 long long a = address - min;
3406 long long b = numBuckets - 1;
3407 long long c = addressSpace - 1;
3408 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3409 buckets[index_t]++;
3410 }
3411
3412 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3413 writeLong(f, min); /* low_pc */
3414 writeLong(f, max); /* high_pc */
3415 writeLong(f, numBuckets); /* # of buckets */
3416 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3417 writeString(f, "seconds");
3418 for (i = 0; i < (15-strlen("seconds")); i++)
3419 writeData(f, &zero, 1);
3420 writeString(f, "s");
3421
3422 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3423
3424 char *data = malloc(2 * numBuckets);
3425 if (data != NULL) {
3426 for (i = 0; i < numBuckets; i++) {
3427 int val;
3428 val = buckets[i];
3429 if (val > 65535)
3430 val = 65535;
3431 data[i * 2] = val&0xff;
3432 data[i * 2 + 1] = (val >> 8) & 0xff;
3433 }
3434 free(buckets);
3435 writeData(f, data, numBuckets * 2);
3436 free(data);
3437 } else
3438 free(buckets);
3439
3440 fclose(f);
3441 }
3442
3443 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3444 * which will be used as a random sampling of PC */
3445 COMMAND_HANDLER(handle_profile_command)
3446 {
3447 struct target *target = get_current_target(CMD_CTX);
3448 struct timeval timeout, now;
3449
3450 gettimeofday(&timeout, NULL);
3451 if (CMD_ARGC != 2)
3452 return ERROR_COMMAND_SYNTAX_ERROR;
3453 unsigned offset;
3454 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3455
3456 timeval_add_time(&timeout, offset, 0);
3457
3458 /**
3459 * @todo: Some cores let us sample the PC without the
3460 * annoying halt/resume step; for example, ARMv7 PCSR.
3461 * Provide a way to use that more efficient mechanism.
3462 */
3463
3464 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3465
3466 static const int maxSample = 10000;
3467 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3468 if (samples == NULL)
3469 return ERROR_OK;
3470
3471 int numSamples = 0;
3472 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3473 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3474
3475 int retval = ERROR_OK;
3476 for (;;) {
3477 target_poll(target);
3478 if (target->state == TARGET_HALTED) {
3479 uint32_t t = *((uint32_t *)reg->value);
3480 samples[numSamples++] = t;
3481 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3482 retval = target_resume(target, 1, 0, 0, 0);
3483 target_poll(target);
3484 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3485 } else if (target->state == TARGET_RUNNING) {
3486 /* We want to quickly sample the PC. */
3487 retval = target_halt(target);
3488 if (retval != ERROR_OK) {
3489 free(samples);
3490 return retval;
3491 }
3492 } else {
3493 command_print(CMD_CTX, "Target not halted or running");
3494 retval = ERROR_OK;
3495 break;
3496 }
3497 if (retval != ERROR_OK)
3498 break;
3499
3500 gettimeofday(&now, NULL);
3501 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3502 && (now.tv_usec >= timeout.tv_usec))) {
3503 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3504 retval = target_poll(target);
3505 if (retval != ERROR_OK) {
3506 free(samples);
3507 return retval;
3508 }
3509 if (target->state == TARGET_HALTED) {
3510 /* current pc, addr = 0, do not handle
3511 * breakpoints, not debugging */
3512 target_resume(target, 1, 0, 0, 0);
3513 }
3514 retval = target_poll(target);
3515 if (retval != ERROR_OK) {
3516 free(samples);
3517 return retval;
3518 }
3519 writeGmon(samples, numSamples, CMD_ARGV[1]);
3520 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3521 break;
3522 }
3523 }
3524 free(samples);
3525
3526 return retval;
3527 }
3528
3529 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3530 {
3531 char *namebuf;
3532 Jim_Obj *nameObjPtr, *valObjPtr;
3533 int result;
3534
3535 namebuf = alloc_printf("%s(%d)", varname, idx);
3536 if (!namebuf)
3537 return JIM_ERR;
3538
3539 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3540 valObjPtr = Jim_NewIntObj(interp, val);
3541 if (!nameObjPtr || !valObjPtr) {
3542 free(namebuf);
3543 return JIM_ERR;
3544 }
3545
3546 Jim_IncrRefCount(nameObjPtr);
3547 Jim_IncrRefCount(valObjPtr);
3548 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3549 Jim_DecrRefCount(interp, nameObjPtr);
3550 Jim_DecrRefCount(interp, valObjPtr);
3551 free(namebuf);
3552 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3553 return result;
3554 }
3555
3556 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3557 {
3558 struct command_context *context;
3559 struct target *target;
3560
3561 context = current_command_context(interp);
3562 assert(context != NULL);
3563
3564 target = get_current_target(context);
3565 if (target == NULL) {
3566 LOG_ERROR("mem2array: no current target");
3567 return JIM_ERR;
3568 }
3569
3570 return target_mem2array(interp, target, argc - 1, argv + 1);
3571 }
3572
3573 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3574 {
3575 long l;
3576 uint32_t width;
3577 int len;
3578 uint32_t addr;
3579 uint32_t count;
3580 uint32_t v;
3581 const char *varname;
3582 int n, e, retval;
3583 uint32_t i;
3584
3585 /* argv[1] = name of array to receive the data
3586 * argv[2] = desired width
3587 * argv[3] = memory address
3588 * argv[4] = count of times to read
3589 */
3590 if (argc != 4) {
3591 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3592 return JIM_ERR;
3593 }
3594 varname = Jim_GetString(argv[0], &len);
3595 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3596
3597 e = Jim_GetLong(interp, argv[1], &l);
3598 width = l;
3599 if (e != JIM_OK)
3600 return e;
3601
3602 e = Jim_GetLong(interp, argv[2], &l);
3603 addr = l;
3604 if (e != JIM_OK)
3605 return e;
3606 e = Jim_GetLong(interp, argv[3], &l);
3607 len = l;
3608 if (e != JIM_OK)
3609 return e;
3610 switch (width) {
3611 case 8:
3612 width = 1;
3613 break;
3614 case 16:
3615 width = 2;
3616 break;
3617 case 32:
3618 width = 4;
3619 break;
3620 default:
3621 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3622 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3623 return JIM_ERR;
3624 }
3625 if (len == 0) {
3626 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3627 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3628 return JIM_ERR;
3629 }
3630 if ((addr + (len * width)) < addr) {
3631 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3632 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3633 return JIM_ERR;
3634 }
3635 /* absurd transfer size? */
3636 if (len > 65536) {
3637 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3638 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3639 return JIM_ERR;
3640 }
3641
3642 if ((width == 1) ||
3643 ((width == 2) && ((addr & 1) == 0)) ||
3644 ((width == 4) && ((addr & 3) ==