target/mem_ap: generic mem-ap target
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111 extern struct target_type mem_ap_target;
112
113 static struct target_type *target_types[] = {
114 &arm7tdmi_target,
115 &arm9tdmi_target,
116 &arm920t_target,
117 &arm720t_target,
118 &arm966e_target,
119 &arm946e_target,
120 &arm926ejs_target,
121 &fa526_target,
122 &feroceon_target,
123 &dragonite_target,
124 &xscale_target,
125 &cortexm_target,
126 &cortexa_target,
127 &cortexr4_target,
128 &arm11_target,
129 &ls1_sap_target,
130 &mips_m4k_target,
131 &avr_target,
132 &dsp563xx_target,
133 &dsp5680xx_target,
134 &testee_target,
135 &avr32_ap7k_target,
136 &hla_target,
137 &nds32_v2_target,
138 &nds32_v3_target,
139 &nds32_v3m_target,
140 &or1k_target,
141 &quark_x10xx_target,
142 &quark_d20xx_target,
143 &stm8_target,
144 &riscv_target,
145 #if BUILD_TARGET64
146 &aarch64_target,
147 #endif
148 &mem_ap_target,
149 NULL,
150 };
151
152 struct target *all_targets;
153 static struct target_event_callback *target_event_callbacks;
154 static struct target_timer_callback *target_timer_callbacks;
155 LIST_HEAD(target_reset_callback_list);
156 LIST_HEAD(target_trace_callback_list);
157 static const int polling_interval = 100;
158
159 static const Jim_Nvp nvp_assert[] = {
160 { .name = "assert", NVP_ASSERT },
161 { .name = "deassert", NVP_DEASSERT },
162 { .name = "T", NVP_ASSERT },
163 { .name = "F", NVP_DEASSERT },
164 { .name = "t", NVP_ASSERT },
165 { .name = "f", NVP_DEASSERT },
166 { .name = NULL, .value = -1 }
167 };
168
169 static const Jim_Nvp nvp_error_target[] = {
170 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
171 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
172 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
173 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
174 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
175 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
176 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
177 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
178 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
179 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
180 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
181 { .value = -1, .name = NULL }
182 };
183
184 static const char *target_strerror_safe(int err)
185 {
186 const Jim_Nvp *n;
187
188 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
189 if (n->name == NULL)
190 return "unknown";
191 else
192 return n->name;
193 }
194
195 static const Jim_Nvp nvp_target_event[] = {
196
197 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
198 { .value = TARGET_EVENT_HALTED, .name = "halted" },
199 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
200 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
201 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
202
203 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
204 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
205
206 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
207 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
208 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
209 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
210 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
211 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
212 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
213 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
214
215 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
216 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
217
218 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
219 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
220
221 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
222 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
223
224 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
225 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
226
227 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
228 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
229
230 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
231
232 { .name = NULL, .value = -1 }
233 };
234
235 static const Jim_Nvp nvp_target_state[] = {
236 { .name = "unknown", .value = TARGET_UNKNOWN },
237 { .name = "running", .value = TARGET_RUNNING },
238 { .name = "halted", .value = TARGET_HALTED },
239 { .name = "reset", .value = TARGET_RESET },
240 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
241 { .name = NULL, .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_target_debug_reason[] = {
245 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
246 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
247 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
248 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
249 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
250 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
251 { .name = "program-exit" , .value = DBG_REASON_EXIT },
252 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
253 { .name = NULL, .value = -1 },
254 };
255
256 static const Jim_Nvp nvp_target_endian[] = {
257 { .name = "big", .value = TARGET_BIG_ENDIAN },
258 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
259 { .name = "be", .value = TARGET_BIG_ENDIAN },
260 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
261 { .name = NULL, .value = -1 },
262 };
263
264 static const Jim_Nvp nvp_reset_modes[] = {
265 { .name = "unknown", .value = RESET_UNKNOWN },
266 { .name = "run" , .value = RESET_RUN },
267 { .name = "halt" , .value = RESET_HALT },
268 { .name = "init" , .value = RESET_INIT },
269 { .name = NULL , .value = -1 },
270 };
271
272 const char *debug_reason_name(struct target *t)
273 {
274 const char *cp;
275
276 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
277 t->debug_reason)->name;
278 if (!cp) {
279 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
280 cp = "(*BUG*unknown*BUG*)";
281 }
282 return cp;
283 }
284
285 const char *target_state_name(struct target *t)
286 {
287 const char *cp;
288 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
289 if (!cp) {
290 LOG_ERROR("Invalid target state: %d", (int)(t->state));
291 cp = "(*BUG*unknown*BUG*)";
292 }
293
294 if (!target_was_examined(t) && t->defer_examine)
295 cp = "examine deferred";
296
297 return cp;
298 }
299
300 const char *target_event_name(enum target_event event)
301 {
302 const char *cp;
303 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
304 if (!cp) {
305 LOG_ERROR("Invalid target event: %d", (int)(event));
306 cp = "(*BUG*unknown*BUG*)";
307 }
308 return cp;
309 }
310
311 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
312 {
313 const char *cp;
314 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
315 if (!cp) {
316 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
317 cp = "(*BUG*unknown*BUG*)";
318 }
319 return cp;
320 }
321
322 /* determine the number of the new target */
323 static int new_target_number(void)
324 {
325 struct target *t;
326 int x;
327
328 /* number is 0 based */
329 x = -1;
330 t = all_targets;
331 while (t) {
332 if (x < t->target_number)
333 x = t->target_number;
334 t = t->next;
335 }
336 return x + 1;
337 }
338
339 /* read a uint64_t from a buffer in target memory endianness */
340 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
341 {
342 if (target->endianness == TARGET_LITTLE_ENDIAN)
343 return le_to_h_u64(buffer);
344 else
345 return be_to_h_u64(buffer);
346 }
347
348 /* read a uint32_t from a buffer in target memory endianness */
349 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
350 {
351 if (target->endianness == TARGET_LITTLE_ENDIAN)
352 return le_to_h_u32(buffer);
353 else
354 return be_to_h_u32(buffer);
355 }
356
357 /* read a uint24_t from a buffer in target memory endianness */
358 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
359 {
360 if (target->endianness == TARGET_LITTLE_ENDIAN)
361 return le_to_h_u24(buffer);
362 else
363 return be_to_h_u24(buffer);
364 }
365
366 /* read a uint16_t from a buffer in target memory endianness */
367 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
368 {
369 if (target->endianness == TARGET_LITTLE_ENDIAN)
370 return le_to_h_u16(buffer);
371 else
372 return be_to_h_u16(buffer);
373 }
374
375 /* read a uint8_t from a buffer in target memory endianness */
376 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
377 {
378 return *buffer & 0x0ff;
379 }
380
381 /* write a uint64_t to a buffer in target memory endianness */
382 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
383 {
384 if (target->endianness == TARGET_LITTLE_ENDIAN)
385 h_u64_to_le(buffer, value);
386 else
387 h_u64_to_be(buffer, value);
388 }
389
390 /* write a uint32_t to a buffer in target memory endianness */
391 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
392 {
393 if (target->endianness == TARGET_LITTLE_ENDIAN)
394 h_u32_to_le(buffer, value);
395 else
396 h_u32_to_be(buffer, value);
397 }
398
399 /* write a uint24_t to a buffer in target memory endianness */
400 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
401 {
402 if (target->endianness == TARGET_LITTLE_ENDIAN)
403 h_u24_to_le(buffer, value);
404 else
405 h_u24_to_be(buffer, value);
406 }
407
408 /* write a uint16_t to a buffer in target memory endianness */
409 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
410 {
411 if (target->endianness == TARGET_LITTLE_ENDIAN)
412 h_u16_to_le(buffer, value);
413 else
414 h_u16_to_be(buffer, value);
415 }
416
417 /* write a uint8_t to a buffer in target memory endianness */
418 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
419 {
420 *buffer = value;
421 }
422
423 /* write a uint64_t array to a buffer in target memory endianness */
424 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
425 {
426 uint32_t i;
427 for (i = 0; i < count; i++)
428 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
429 }
430
431 /* write a uint32_t array to a buffer in target memory endianness */
432 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
433 {
434 uint32_t i;
435 for (i = 0; i < count; i++)
436 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
437 }
438
439 /* write a uint16_t array to a buffer in target memory endianness */
440 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
441 {
442 uint32_t i;
443 for (i = 0; i < count; i++)
444 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
445 }
446
447 /* write a uint64_t array to a buffer in target memory endianness */
448 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
449 {
450 uint32_t i;
451 for (i = 0; i < count; i++)
452 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
453 }
454
455 /* write a uint32_t array to a buffer in target memory endianness */
456 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
457 {
458 uint32_t i;
459 for (i = 0; i < count; i++)
460 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
461 }
462
463 /* write a uint16_t array to a buffer in target memory endianness */
464 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
465 {
466 uint32_t i;
467 for (i = 0; i < count; i++)
468 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
469 }
470
471 /* return a pointer to a configured target; id is name or number */
472 struct target *get_target(const char *id)
473 {
474 struct target *target;
475
476 /* try as tcltarget name */
477 for (target = all_targets; target; target = target->next) {
478 if (target_name(target) == NULL)
479 continue;
480 if (strcmp(id, target_name(target)) == 0)
481 return target;
482 }
483
484 /* It's OK to remove this fallback sometime after August 2010 or so */
485
486 /* no match, try as number */
487 unsigned num;
488 if (parse_uint(id, &num) != ERROR_OK)
489 return NULL;
490
491 for (target = all_targets; target; target = target->next) {
492 if (target->target_number == (int)num) {
493 LOG_WARNING("use '%s' as target identifier, not '%u'",
494 target_name(target), num);
495 return target;
496 }
497 }
498
499 return NULL;
500 }
501
502 /* returns a pointer to the n-th configured target */
503 struct target *get_target_by_num(int num)
504 {
505 struct target *target = all_targets;
506
507 while (target) {
508 if (target->target_number == num)
509 return target;
510 target = target->next;
511 }
512
513 return NULL;
514 }
515
516 struct target *get_current_target(struct command_context *cmd_ctx)
517 {
518 struct target *target = cmd_ctx->current_target_override
519 ? cmd_ctx->current_target_override
520 : cmd_ctx->current_target;
521
522 if (target == NULL) {
523 LOG_ERROR("BUG: current_target out of bounds");
524 exit(-1);
525 }
526
527 return target;
528 }
529
530 int target_poll(struct target *target)
531 {
532 int retval;
533
534 /* We can't poll until after examine */
535 if (!target_was_examined(target)) {
536 /* Fail silently lest we pollute the log */
537 return ERROR_FAIL;
538 }
539
540 retval = target->type->poll(target);
541 if (retval != ERROR_OK)
542 return retval;
543
544 if (target->halt_issued) {
545 if (target->state == TARGET_HALTED)
546 target->halt_issued = false;
547 else {
548 int64_t t = timeval_ms() - target->halt_issued_time;
549 if (t > DEFAULT_HALT_TIMEOUT) {
550 target->halt_issued = false;
551 LOG_INFO("Halt timed out, wake up GDB.");
552 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
553 }
554 }
555 }
556
557 return ERROR_OK;
558 }
559
560 int target_halt(struct target *target)
561 {
562 int retval;
563 /* We can't poll until after examine */
564 if (!target_was_examined(target)) {
565 LOG_ERROR("Target not examined yet");
566 return ERROR_FAIL;
567 }
568
569 retval = target->type->halt(target);
570 if (retval != ERROR_OK)
571 return retval;
572
573 target->halt_issued = true;
574 target->halt_issued_time = timeval_ms();
575
576 return ERROR_OK;
577 }
578
579 /**
580 * Make the target (re)start executing using its saved execution
581 * context (possibly with some modifications).
582 *
583 * @param target Which target should start executing.
584 * @param current True to use the target's saved program counter instead
585 * of the address parameter
586 * @param address Optionally used as the program counter.
587 * @param handle_breakpoints True iff breakpoints at the resumption PC
588 * should be skipped. (For example, maybe execution was stopped by
589 * such a breakpoint, in which case it would be counterprodutive to
590 * let it re-trigger.
591 * @param debug_execution False if all working areas allocated by OpenOCD
592 * should be released and/or restored to their original contents.
593 * (This would for example be true to run some downloaded "helper"
594 * algorithm code, which resides in one such working buffer and uses
595 * another for data storage.)
596 *
597 * @todo Resolve the ambiguity about what the "debug_execution" flag
598 * signifies. For example, Target implementations don't agree on how
599 * it relates to invalidation of the register cache, or to whether
600 * breakpoints and watchpoints should be enabled. (It would seem wrong
601 * to enable breakpoints when running downloaded "helper" algorithms
602 * (debug_execution true), since the breakpoints would be set to match
603 * target firmware being debugged, not the helper algorithm.... and
604 * enabling them could cause such helpers to malfunction (for example,
605 * by overwriting data with a breakpoint instruction. On the other
606 * hand the infrastructure for running such helpers might use this
607 * procedure but rely on hardware breakpoint to detect termination.)
608 */
609 int target_resume(struct target *target, int current, target_addr_t address,
610 int handle_breakpoints, int debug_execution)
611 {
612 int retval;
613
614 /* We can't poll until after examine */
615 if (!target_was_examined(target)) {
616 LOG_ERROR("Target not examined yet");
617 return ERROR_FAIL;
618 }
619
620 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
621
622 /* note that resume *must* be asynchronous. The CPU can halt before
623 * we poll. The CPU can even halt at the current PC as a result of
624 * a software breakpoint being inserted by (a bug?) the application.
625 */
626 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
627 if (retval != ERROR_OK)
628 return retval;
629
630 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
631
632 return retval;
633 }
634
635 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
636 {
637 char buf[100];
638 int retval;
639 Jim_Nvp *n;
640 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
641 if (n->name == NULL) {
642 LOG_ERROR("invalid reset mode");
643 return ERROR_FAIL;
644 }
645
646 struct target *target;
647 for (target = all_targets; target; target = target->next)
648 target_call_reset_callbacks(target, reset_mode);
649
650 /* disable polling during reset to make reset event scripts
651 * more predictable, i.e. dr/irscan & pathmove in events will
652 * not have JTAG operations injected into the middle of a sequence.
653 */
654 bool save_poll = jtag_poll_get_enabled();
655
656 jtag_poll_set_enabled(false);
657
658 sprintf(buf, "ocd_process_reset %s", n->name);
659 retval = Jim_Eval(cmd_ctx->interp, buf);
660
661 jtag_poll_set_enabled(save_poll);
662
663 if (retval != JIM_OK) {
664 Jim_MakeErrorMessage(cmd_ctx->interp);
665 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
666 return ERROR_FAIL;
667 }
668
669 /* We want any events to be processed before the prompt */
670 retval = target_call_timer_callbacks_now();
671
672 for (target = all_targets; target; target = target->next) {
673 target->type->check_reset(target);
674 target->running_alg = false;
675 }
676
677 return retval;
678 }
679
680 static int identity_virt2phys(struct target *target,
681 target_addr_t virtual, target_addr_t *physical)
682 {
683 *physical = virtual;
684 return ERROR_OK;
685 }
686
687 static int no_mmu(struct target *target, int *enabled)
688 {
689 *enabled = 0;
690 return ERROR_OK;
691 }
692
693 static int default_examine(struct target *target)
694 {
695 target_set_examined(target);
696 return ERROR_OK;
697 }
698
699 /* no check by default */
700 static int default_check_reset(struct target *target)
701 {
702 return ERROR_OK;
703 }
704
705 int target_examine_one(struct target *target)
706 {
707 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
708
709 int retval = target->type->examine(target);
710 if (retval != ERROR_OK)
711 return retval;
712
713 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
714
715 return ERROR_OK;
716 }
717
718 static int jtag_enable_callback(enum jtag_event event, void *priv)
719 {
720 struct target *target = priv;
721
722 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
723 return ERROR_OK;
724
725 jtag_unregister_event_callback(jtag_enable_callback, target);
726
727 return target_examine_one(target);
728 }
729
730 /* Targets that correctly implement init + examine, i.e.
731 * no communication with target during init:
732 *
733 * XScale
734 */
735 int target_examine(void)
736 {
737 int retval = ERROR_OK;
738 struct target *target;
739
740 for (target = all_targets; target; target = target->next) {
741 /* defer examination, but don't skip it */
742 if (!target->tap->enabled) {
743 jtag_register_event_callback(jtag_enable_callback,
744 target);
745 continue;
746 }
747
748 if (target->defer_examine)
749 continue;
750
751 retval = target_examine_one(target);
752 if (retval != ERROR_OK)
753 return retval;
754 }
755 return retval;
756 }
757
758 const char *target_type_name(struct target *target)
759 {
760 return target->type->name;
761 }
762
763 static int target_soft_reset_halt(struct target *target)
764 {
765 if (!target_was_examined(target)) {
766 LOG_ERROR("Target not examined yet");
767 return ERROR_FAIL;
768 }
769 if (!target->type->soft_reset_halt) {
770 LOG_ERROR("Target %s does not support soft_reset_halt",
771 target_name(target));
772 return ERROR_FAIL;
773 }
774 return target->type->soft_reset_halt(target);
775 }
776
777 /**
778 * Downloads a target-specific native code algorithm to the target,
779 * and executes it. * Note that some targets may need to set up, enable,
780 * and tear down a breakpoint (hard or * soft) to detect algorithm
781 * termination, while others may support lower overhead schemes where
782 * soft breakpoints embedded in the algorithm automatically terminate the
783 * algorithm.
784 *
785 * @param target used to run the algorithm
786 * @param arch_info target-specific description of the algorithm.
787 */
788 int target_run_algorithm(struct target *target,
789 int num_mem_params, struct mem_param *mem_params,
790 int num_reg_params, struct reg_param *reg_param,
791 uint32_t entry_point, uint32_t exit_point,
792 int timeout_ms, void *arch_info)
793 {
794 int retval = ERROR_FAIL;
795
796 if (!target_was_examined(target)) {
797 LOG_ERROR("Target not examined yet");
798 goto done;
799 }
800 if (!target->type->run_algorithm) {
801 LOG_ERROR("Target type '%s' does not support %s",
802 target_type_name(target), __func__);
803 goto done;
804 }
805
806 target->running_alg = true;
807 retval = target->type->run_algorithm(target,
808 num_mem_params, mem_params,
809 num_reg_params, reg_param,
810 entry_point, exit_point, timeout_ms, arch_info);
811 target->running_alg = false;
812
813 done:
814 return retval;
815 }
816
817 /**
818 * Executes a target-specific native code algorithm and leaves it running.
819 *
820 * @param target used to run the algorithm
821 * @param arch_info target-specific description of the algorithm.
822 */
823 int target_start_algorithm(struct target *target,
824 int num_mem_params, struct mem_param *mem_params,
825 int num_reg_params, struct reg_param *reg_params,
826 uint32_t entry_point, uint32_t exit_point,
827 void *arch_info)
828 {
829 int retval = ERROR_FAIL;
830
831 if (!target_was_examined(target)) {
832 LOG_ERROR("Target not examined yet");
833 goto done;
834 }
835 if (!target->type->start_algorithm) {
836 LOG_ERROR("Target type '%s' does not support %s",
837 target_type_name(target), __func__);
838 goto done;
839 }
840 if (target->running_alg) {
841 LOG_ERROR("Target is already running an algorithm");
842 goto done;
843 }
844
845 target->running_alg = true;
846 retval = target->type->start_algorithm(target,
847 num_mem_params, mem_params,
848 num_reg_params, reg_params,
849 entry_point, exit_point, arch_info);
850
851 done:
852 return retval;
853 }
854
855 /**
856 * Waits for an algorithm started with target_start_algorithm() to complete.
857 *
858 * @param target used to run the algorithm
859 * @param arch_info target-specific description of the algorithm.
860 */
861 int target_wait_algorithm(struct target *target,
862 int num_mem_params, struct mem_param *mem_params,
863 int num_reg_params, struct reg_param *reg_params,
864 uint32_t exit_point, int timeout_ms,
865 void *arch_info)
866 {
867 int retval = ERROR_FAIL;
868
869 if (!target->type->wait_algorithm) {
870 LOG_ERROR("Target type '%s' does not support %s",
871 target_type_name(target), __func__);
872 goto done;
873 }
874 if (!target->running_alg) {
875 LOG_ERROR("Target is not running an algorithm");
876 goto done;
877 }
878
879 retval = target->type->wait_algorithm(target,
880 num_mem_params, mem_params,
881 num_reg_params, reg_params,
882 exit_point, timeout_ms, arch_info);
883 if (retval != ERROR_TARGET_TIMEOUT)
884 target->running_alg = false;
885
886 done:
887 return retval;
888 }
889
890 /**
891 * Streams data to a circular buffer on target intended for consumption by code
892 * running asynchronously on target.
893 *
894 * This is intended for applications where target-specific native code runs
895 * on the target, receives data from the circular buffer, does something with
896 * it (most likely writing it to a flash memory), and advances the circular
897 * buffer pointer.
898 *
899 * This assumes that the helper algorithm has already been loaded to the target,
900 * but has not been started yet. Given memory and register parameters are passed
901 * to the algorithm.
902 *
903 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
904 * following format:
905 *
906 * [buffer_start + 0, buffer_start + 4):
907 * Write Pointer address (aka head). Written and updated by this
908 * routine when new data is written to the circular buffer.
909 * [buffer_start + 4, buffer_start + 8):
910 * Read Pointer address (aka tail). Updated by code running on the
911 * target after it consumes data.
912 * [buffer_start + 8, buffer_start + buffer_size):
913 * Circular buffer contents.
914 *
915 * See contrib/loaders/flash/stm32f1x.S for an example.
916 *
917 * @param target used to run the algorithm
918 * @param buffer address on the host where data to be sent is located
919 * @param count number of blocks to send
920 * @param block_size size in bytes of each block
921 * @param num_mem_params count of memory-based params to pass to algorithm
922 * @param mem_params memory-based params to pass to algorithm
923 * @param num_reg_params count of register-based params to pass to algorithm
924 * @param reg_params memory-based params to pass to algorithm
925 * @param buffer_start address on the target of the circular buffer structure
926 * @param buffer_size size of the circular buffer structure
927 * @param entry_point address on the target to execute to start the algorithm
928 * @param exit_point address at which to set a breakpoint to catch the
929 * end of the algorithm; can be 0 if target triggers a breakpoint itself
930 */
931
932 int target_run_flash_async_algorithm(struct target *target,
933 const uint8_t *buffer, uint32_t count, int block_size,
934 int num_mem_params, struct mem_param *mem_params,
935 int num_reg_params, struct reg_param *reg_params,
936 uint32_t buffer_start, uint32_t buffer_size,
937 uint32_t entry_point, uint32_t exit_point, void *arch_info)
938 {
939 int retval;
940 int timeout = 0;
941
942 const uint8_t *buffer_orig = buffer;
943
944 /* Set up working area. First word is write pointer, second word is read pointer,
945 * rest is fifo data area. */
946 uint32_t wp_addr = buffer_start;
947 uint32_t rp_addr = buffer_start + 4;
948 uint32_t fifo_start_addr = buffer_start + 8;
949 uint32_t fifo_end_addr = buffer_start + buffer_size;
950
951 uint32_t wp = fifo_start_addr;
952 uint32_t rp = fifo_start_addr;
953
954 /* validate block_size is 2^n */
955 assert(!block_size || !(block_size & (block_size - 1)));
956
957 retval = target_write_u32(target, wp_addr, wp);
958 if (retval != ERROR_OK)
959 return retval;
960 retval = target_write_u32(target, rp_addr, rp);
961 if (retval != ERROR_OK)
962 return retval;
963
964 /* Start up algorithm on target and let it idle while writing the first chunk */
965 retval = target_start_algorithm(target, num_mem_params, mem_params,
966 num_reg_params, reg_params,
967 entry_point,
968 exit_point,
969 arch_info);
970
971 if (retval != ERROR_OK) {
972 LOG_ERROR("error starting target flash write algorithm");
973 return retval;
974 }
975
976 while (count > 0) {
977
978 retval = target_read_u32(target, rp_addr, &rp);
979 if (retval != ERROR_OK) {
980 LOG_ERROR("failed to get read pointer");
981 break;
982 }
983
984 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
985 (size_t) (buffer - buffer_orig), count, wp, rp);
986
987 if (rp == 0) {
988 LOG_ERROR("flash write algorithm aborted by target");
989 retval = ERROR_FLASH_OPERATION_FAILED;
990 break;
991 }
992
993 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
994 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
995 break;
996 }
997
998 /* Count the number of bytes available in the fifo without
999 * crossing the wrap around. Make sure to not fill it completely,
1000 * because that would make wp == rp and that's the empty condition. */
1001 uint32_t thisrun_bytes;
1002 if (rp > wp)
1003 thisrun_bytes = rp - wp - block_size;
1004 else if (rp > fifo_start_addr)
1005 thisrun_bytes = fifo_end_addr - wp;
1006 else
1007 thisrun_bytes = fifo_end_addr - wp - block_size;
1008
1009 if (thisrun_bytes == 0) {
1010 /* Throttle polling a bit if transfer is (much) faster than flash
1011 * programming. The exact delay shouldn't matter as long as it's
1012 * less than buffer size / flash speed. This is very unlikely to
1013 * run when using high latency connections such as USB. */
1014 alive_sleep(10);
1015
1016 /* to stop an infinite loop on some targets check and increment a timeout
1017 * this issue was observed on a stellaris using the new ICDI interface */
1018 if (timeout++ >= 500) {
1019 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1020 return ERROR_FLASH_OPERATION_FAILED;
1021 }
1022 continue;
1023 }
1024
1025 /* reset our timeout */
1026 timeout = 0;
1027
1028 /* Limit to the amount of data we actually want to write */
1029 if (thisrun_bytes > count * block_size)
1030 thisrun_bytes = count * block_size;
1031
1032 /* Write data to fifo */
1033 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1034 if (retval != ERROR_OK)
1035 break;
1036
1037 /* Update counters and wrap write pointer */
1038 buffer += thisrun_bytes;
1039 count -= thisrun_bytes / block_size;
1040 wp += thisrun_bytes;
1041 if (wp >= fifo_end_addr)
1042 wp = fifo_start_addr;
1043
1044 /* Store updated write pointer to target */
1045 retval = target_write_u32(target, wp_addr, wp);
1046 if (retval != ERROR_OK)
1047 break;
1048 }
1049
1050 if (retval != ERROR_OK) {
1051 /* abort flash write algorithm on target */
1052 target_write_u32(target, wp_addr, 0);
1053 }
1054
1055 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1056 num_reg_params, reg_params,
1057 exit_point,
1058 10000,
1059 arch_info);
1060
1061 if (retval2 != ERROR_OK) {
1062 LOG_ERROR("error waiting for target flash write algorithm");
1063 retval = retval2;
1064 }
1065
1066 if (retval == ERROR_OK) {
1067 /* check if algorithm set rp = 0 after fifo writer loop finished */
1068 retval = target_read_u32(target, rp_addr, &rp);
1069 if (retval == ERROR_OK && rp == 0) {
1070 LOG_ERROR("flash write algorithm aborted by target");
1071 retval = ERROR_FLASH_OPERATION_FAILED;
1072 }
1073 }
1074
1075 return retval;
1076 }
1077
1078 int target_read_memory(struct target *target,
1079 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1080 {
1081 if (!target_was_examined(target)) {
1082 LOG_ERROR("Target not examined yet");
1083 return ERROR_FAIL;
1084 }
1085 if (!target->type->read_memory) {
1086 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1087 return ERROR_FAIL;
1088 }
1089 return target->type->read_memory(target, address, size, count, buffer);
1090 }
1091
1092 int target_read_phys_memory(struct target *target,
1093 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1094 {
1095 if (!target_was_examined(target)) {
1096 LOG_ERROR("Target not examined yet");
1097 return ERROR_FAIL;
1098 }
1099 if (!target->type->read_phys_memory) {
1100 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1101 return ERROR_FAIL;
1102 }
1103 return target->type->read_phys_memory(target, address, size, count, buffer);
1104 }
1105
1106 int target_write_memory(struct target *target,
1107 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1108 {
1109 if (!target_was_examined(target)) {
1110 LOG_ERROR("Target not examined yet");
1111 return ERROR_FAIL;
1112 }
1113 if (!target->type->write_memory) {
1114 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1115 return ERROR_FAIL;
1116 }
1117 return target->type->write_memory(target, address, size, count, buffer);
1118 }
1119
1120 int target_write_phys_memory(struct target *target,
1121 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1122 {
1123 if (!target_was_examined(target)) {
1124 LOG_ERROR("Target not examined yet");
1125 return ERROR_FAIL;
1126 }
1127 if (!target->type->write_phys_memory) {
1128 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1129 return ERROR_FAIL;
1130 }
1131 return target->type->write_phys_memory(target, address, size, count, buffer);
1132 }
1133
1134 int target_add_breakpoint(struct target *target,
1135 struct breakpoint *breakpoint)
1136 {
1137 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1138 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1139 return ERROR_TARGET_NOT_HALTED;
1140 }
1141 return target->type->add_breakpoint(target, breakpoint);
1142 }
1143
1144 int target_add_context_breakpoint(struct target *target,
1145 struct breakpoint *breakpoint)
1146 {
1147 if (target->state != TARGET_HALTED) {
1148 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1149 return ERROR_TARGET_NOT_HALTED;
1150 }
1151 return target->type->add_context_breakpoint(target, breakpoint);
1152 }
1153
1154 int target_add_hybrid_breakpoint(struct target *target,
1155 struct breakpoint *breakpoint)
1156 {
1157 if (target->state != TARGET_HALTED) {
1158 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1159 return ERROR_TARGET_NOT_HALTED;
1160 }
1161 return target->type->add_hybrid_breakpoint(target, breakpoint);
1162 }
1163
1164 int target_remove_breakpoint(struct target *target,
1165 struct breakpoint *breakpoint)
1166 {
1167 return target->type->remove_breakpoint(target, breakpoint);
1168 }
1169
1170 int target_add_watchpoint(struct target *target,
1171 struct watchpoint *watchpoint)
1172 {
1173 if (target->state != TARGET_HALTED) {
1174 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1175 return ERROR_TARGET_NOT_HALTED;
1176 }
1177 return target->type->add_watchpoint(target, watchpoint);
1178 }
1179 int target_remove_watchpoint(struct target *target,
1180 struct watchpoint *watchpoint)
1181 {
1182 return target->type->remove_watchpoint(target, watchpoint);
1183 }
1184 int target_hit_watchpoint(struct target *target,
1185 struct watchpoint **hit_watchpoint)
1186 {
1187 if (target->state != TARGET_HALTED) {
1188 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1189 return ERROR_TARGET_NOT_HALTED;
1190 }
1191
1192 if (target->type->hit_watchpoint == NULL) {
1193 /* For backward compatible, if hit_watchpoint is not implemented,
1194 * return ERROR_FAIL such that gdb_server will not take the nonsense
1195 * information. */
1196 return ERROR_FAIL;
1197 }
1198
1199 return target->type->hit_watchpoint(target, hit_watchpoint);
1200 }
1201
1202 int target_get_gdb_reg_list(struct target *target,
1203 struct reg **reg_list[], int *reg_list_size,
1204 enum target_register_class reg_class)
1205 {
1206 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1207 }
1208 int target_step(struct target *target,
1209 int current, target_addr_t address, int handle_breakpoints)
1210 {
1211 return target->type->step(target, current, address, handle_breakpoints);
1212 }
1213
1214 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1215 {
1216 if (target->state != TARGET_HALTED) {
1217 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1218 return ERROR_TARGET_NOT_HALTED;
1219 }
1220 return target->type->get_gdb_fileio_info(target, fileio_info);
1221 }
1222
1223 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1224 {
1225 if (target->state != TARGET_HALTED) {
1226 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1227 return ERROR_TARGET_NOT_HALTED;
1228 }
1229 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1230 }
1231
1232 int target_profiling(struct target *target, uint32_t *samples,
1233 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1234 {
1235 if (target->state != TARGET_HALTED) {
1236 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1237 return ERROR_TARGET_NOT_HALTED;
1238 }
1239 return target->type->profiling(target, samples, max_num_samples,
1240 num_samples, seconds);
1241 }
1242
1243 /**
1244 * Reset the @c examined flag for the given target.
1245 * Pure paranoia -- targets are zeroed on allocation.
1246 */
1247 static void target_reset_examined(struct target *target)
1248 {
1249 target->examined = false;
1250 }
1251
1252 static int handle_target(void *priv);
1253
1254 static int target_init_one(struct command_context *cmd_ctx,
1255 struct target *target)
1256 {
1257 target_reset_examined(target);
1258
1259 struct target_type *type = target->type;
1260 if (type->examine == NULL)
1261 type->examine = default_examine;
1262
1263 if (type->check_reset == NULL)
1264 type->check_reset = default_check_reset;
1265
1266 assert(type->init_target != NULL);
1267
1268 int retval = type->init_target(cmd_ctx, target);
1269 if (ERROR_OK != retval) {
1270 LOG_ERROR("target '%s' init failed", target_name(target));
1271 return retval;
1272 }
1273
1274 /* Sanity-check MMU support ... stub in what we must, to help
1275 * implement it in stages, but warn if we need to do so.
1276 */
1277 if (type->mmu) {
1278 if (type->virt2phys == NULL) {
1279 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1280 type->virt2phys = identity_virt2phys;
1281 }
1282 } else {
1283 /* Make sure no-MMU targets all behave the same: make no
1284 * distinction between physical and virtual addresses, and
1285 * ensure that virt2phys() is always an identity mapping.
1286 */
1287 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1288 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1289
1290 type->mmu = no_mmu;
1291 type->write_phys_memory = type->write_memory;
1292 type->read_phys_memory = type->read_memory;
1293 type->virt2phys = identity_virt2phys;
1294 }
1295
1296 if (target->type->read_buffer == NULL)
1297 target->type->read_buffer = target_read_buffer_default;
1298
1299 if (target->type->write_buffer == NULL)
1300 target->type->write_buffer = target_write_buffer_default;
1301
1302 if (target->type->get_gdb_fileio_info == NULL)
1303 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1304
1305 if (target->type->gdb_fileio_end == NULL)
1306 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1307
1308 if (target->type->profiling == NULL)
1309 target->type->profiling = target_profiling_default;
1310
1311 return ERROR_OK;
1312 }
1313
1314 static int target_init(struct command_context *cmd_ctx)
1315 {
1316 struct target *target;
1317 int retval;
1318
1319 for (target = all_targets; target; target = target->next) {
1320 retval = target_init_one(cmd_ctx, target);
1321 if (ERROR_OK != retval)
1322 return retval;
1323 }
1324
1325 if (!all_targets)
1326 return ERROR_OK;
1327
1328 retval = target_register_user_commands(cmd_ctx);
1329 if (ERROR_OK != retval)
1330 return retval;
1331
1332 retval = target_register_timer_callback(&handle_target,
1333 polling_interval, 1, cmd_ctx->interp);
1334 if (ERROR_OK != retval)
1335 return retval;
1336
1337 return ERROR_OK;
1338 }
1339
1340 COMMAND_HANDLER(handle_target_init_command)
1341 {
1342 int retval;
1343
1344 if (CMD_ARGC != 0)
1345 return ERROR_COMMAND_SYNTAX_ERROR;
1346
1347 static bool target_initialized;
1348 if (target_initialized) {
1349 LOG_INFO("'target init' has already been called");
1350 return ERROR_OK;
1351 }
1352 target_initialized = true;
1353
1354 retval = command_run_line(CMD_CTX, "init_targets");
1355 if (ERROR_OK != retval)
1356 return retval;
1357
1358 retval = command_run_line(CMD_CTX, "init_target_events");
1359 if (ERROR_OK != retval)
1360 return retval;
1361
1362 retval = command_run_line(CMD_CTX, "init_board");
1363 if (ERROR_OK != retval)
1364 return retval;
1365
1366 LOG_DEBUG("Initializing targets...");
1367 return target_init(CMD_CTX);
1368 }
1369
1370 int target_register_event_callback(int (*callback)(struct target *target,
1371 enum target_event event, void *priv), void *priv)
1372 {
1373 struct target_event_callback **callbacks_p = &target_event_callbacks;
1374
1375 if (callback == NULL)
1376 return ERROR_COMMAND_SYNTAX_ERROR;
1377
1378 if (*callbacks_p) {
1379 while ((*callbacks_p)->next)
1380 callbacks_p = &((*callbacks_p)->next);
1381 callbacks_p = &((*callbacks_p)->next);
1382 }
1383
1384 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1385 (*callbacks_p)->callback = callback;
1386 (*callbacks_p)->priv = priv;
1387 (*callbacks_p)->next = NULL;
1388
1389 return ERROR_OK;
1390 }
1391
1392 int target_register_reset_callback(int (*callback)(struct target *target,
1393 enum target_reset_mode reset_mode, void *priv), void *priv)
1394 {
1395 struct target_reset_callback *entry;
1396
1397 if (callback == NULL)
1398 return ERROR_COMMAND_SYNTAX_ERROR;
1399
1400 entry = malloc(sizeof(struct target_reset_callback));
1401 if (entry == NULL) {
1402 LOG_ERROR("error allocating buffer for reset callback entry");
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404 }
1405
1406 entry->callback = callback;
1407 entry->priv = priv;
1408 list_add(&entry->list, &target_reset_callback_list);
1409
1410
1411 return ERROR_OK;
1412 }
1413
1414 int target_register_trace_callback(int (*callback)(struct target *target,
1415 size_t len, uint8_t *data, void *priv), void *priv)
1416 {
1417 struct target_trace_callback *entry;
1418
1419 if (callback == NULL)
1420 return ERROR_COMMAND_SYNTAX_ERROR;
1421
1422 entry = malloc(sizeof(struct target_trace_callback));
1423 if (entry == NULL) {
1424 LOG_ERROR("error allocating buffer for trace callback entry");
1425 return ERROR_COMMAND_SYNTAX_ERROR;
1426 }
1427
1428 entry->callback = callback;
1429 entry->priv = priv;
1430 list_add(&entry->list, &target_trace_callback_list);
1431
1432
1433 return ERROR_OK;
1434 }
1435
1436 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1437 {
1438 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1439
1440 if (callback == NULL)
1441 return ERROR_COMMAND_SYNTAX_ERROR;
1442
1443 if (*callbacks_p) {
1444 while ((*callbacks_p)->next)
1445 callbacks_p = &((*callbacks_p)->next);
1446 callbacks_p = &((*callbacks_p)->next);
1447 }
1448
1449 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1450 (*callbacks_p)->callback = callback;
1451 (*callbacks_p)->periodic = periodic;
1452 (*callbacks_p)->time_ms = time_ms;
1453 (*callbacks_p)->removed = false;
1454
1455 gettimeofday(&(*callbacks_p)->when, NULL);
1456 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1457
1458 (*callbacks_p)->priv = priv;
1459 (*callbacks_p)->next = NULL;
1460
1461 return ERROR_OK;
1462 }
1463
1464 int target_unregister_event_callback(int (*callback)(struct target *target,
1465 enum target_event event, void *priv), void *priv)
1466 {
1467 struct target_event_callback **p = &target_event_callbacks;
1468 struct target_event_callback *c = target_event_callbacks;
1469
1470 if (callback == NULL)
1471 return ERROR_COMMAND_SYNTAX_ERROR;
1472
1473 while (c) {
1474 struct target_event_callback *next = c->next;
1475 if ((c->callback == callback) && (c->priv == priv)) {
1476 *p = next;
1477 free(c);
1478 return ERROR_OK;
1479 } else
1480 p = &(c->next);
1481 c = next;
1482 }
1483
1484 return ERROR_OK;
1485 }
1486
1487 int target_unregister_reset_callback(int (*callback)(struct target *target,
1488 enum target_reset_mode reset_mode, void *priv), void *priv)
1489 {
1490 struct target_reset_callback *entry;
1491
1492 if (callback == NULL)
1493 return ERROR_COMMAND_SYNTAX_ERROR;
1494
1495 list_for_each_entry(entry, &target_reset_callback_list, list) {
1496 if (entry->callback == callback && entry->priv == priv) {
1497 list_del(&entry->list);
1498 free(entry);
1499 break;
1500 }
1501 }
1502
1503 return ERROR_OK;
1504 }
1505
1506 int target_unregister_trace_callback(int (*callback)(struct target *target,
1507 size_t len, uint8_t *data, void *priv), void *priv)
1508 {
1509 struct target_trace_callback *entry;
1510
1511 if (callback == NULL)
1512 return ERROR_COMMAND_SYNTAX_ERROR;
1513
1514 list_for_each_entry(entry, &target_trace_callback_list, list) {
1515 if (entry->callback == callback && entry->priv == priv) {
1516 list_del(&entry->list);
1517 free(entry);
1518 break;
1519 }
1520 }
1521
1522 return ERROR_OK;
1523 }
1524
1525 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1526 {
1527 if (callback == NULL)
1528 return ERROR_COMMAND_SYNTAX_ERROR;
1529
1530 for (struct target_timer_callback *c = target_timer_callbacks;
1531 c; c = c->next) {
1532 if ((c->callback == callback) && (c->priv == priv)) {
1533 c->removed = true;
1534 return ERROR_OK;
1535 }
1536 }
1537
1538 return ERROR_FAIL;
1539 }
1540
1541 int target_call_event_callbacks(struct target *target, enum target_event event)
1542 {
1543 struct target_event_callback *callback = target_event_callbacks;
1544 struct target_event_callback *next_callback;
1545
1546 if (event == TARGET_EVENT_HALTED) {
1547 /* execute early halted first */
1548 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1549 }
1550
1551 LOG_DEBUG("target event %i (%s)", event,
1552 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1553
1554 target_handle_event(target, event);
1555
1556 while (callback) {
1557 next_callback = callback->next;
1558 callback->callback(target, event, callback->priv);
1559 callback = next_callback;
1560 }
1561
1562 return ERROR_OK;
1563 }
1564
1565 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1566 {
1567 struct target_reset_callback *callback;
1568
1569 LOG_DEBUG("target reset %i (%s)", reset_mode,
1570 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1571
1572 list_for_each_entry(callback, &target_reset_callback_list, list)
1573 callback->callback(target, reset_mode, callback->priv);
1574
1575 return ERROR_OK;
1576 }
1577
1578 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1579 {
1580 struct target_trace_callback *callback;
1581
1582 list_for_each_entry(callback, &target_trace_callback_list, list)
1583 callback->callback(target, len, data, callback->priv);
1584
1585 return ERROR_OK;
1586 }
1587
1588 static int target_timer_callback_periodic_restart(
1589 struct target_timer_callback *cb, struct timeval *now)
1590 {
1591 cb->when = *now;
1592 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1593 return ERROR_OK;
1594 }
1595
1596 static int target_call_timer_callback(struct target_timer_callback *cb,
1597 struct timeval *now)
1598 {
1599 cb->callback(cb->priv);
1600
1601 if (cb->periodic)
1602 return target_timer_callback_periodic_restart(cb, now);
1603
1604 return target_unregister_timer_callback(cb->callback, cb->priv);
1605 }
1606
1607 static int target_call_timer_callbacks_check_time(int checktime)
1608 {
1609 static bool callback_processing;
1610
1611 /* Do not allow nesting */
1612 if (callback_processing)
1613 return ERROR_OK;
1614
1615 callback_processing = true;
1616
1617 keep_alive();
1618
1619 struct timeval now;
1620 gettimeofday(&now, NULL);
1621
1622 /* Store an address of the place containing a pointer to the
1623 * next item; initially, that's a standalone "root of the
1624 * list" variable. */
1625 struct target_timer_callback **callback = &target_timer_callbacks;
1626 while (*callback) {
1627 if ((*callback)->removed) {
1628 struct target_timer_callback *p = *callback;
1629 *callback = (*callback)->next;
1630 free(p);
1631 continue;
1632 }
1633
1634 bool call_it = (*callback)->callback &&
1635 ((!checktime && (*callback)->periodic) ||
1636 timeval_compare(&now, &(*callback)->when) >= 0);
1637
1638 if (call_it)
1639 target_call_timer_callback(*callback, &now);
1640
1641 callback = &(*callback)->next;
1642 }
1643
1644 callback_processing = false;
1645 return ERROR_OK;
1646 }
1647
1648 int target_call_timer_callbacks(void)
1649 {
1650 return target_call_timer_callbacks_check_time(1);
1651 }
1652
1653 /* invoke periodic callbacks immediately */
1654 int target_call_timer_callbacks_now(void)
1655 {
1656 return target_call_timer_callbacks_check_time(0);
1657 }
1658
1659 /* Prints the working area layout for debug purposes */
1660 static void print_wa_layout(struct target *target)
1661 {
1662 struct working_area *c = target->working_areas;
1663
1664 while (c) {
1665 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1666 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1667 c->address, c->address + c->size - 1, c->size);
1668 c = c->next;
1669 }
1670 }
1671
1672 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1673 static void target_split_working_area(struct working_area *area, uint32_t size)
1674 {
1675 assert(area->free); /* Shouldn't split an allocated area */
1676 assert(size <= area->size); /* Caller should guarantee this */
1677
1678 /* Split only if not already the right size */
1679 if (size < area->size) {
1680 struct working_area *new_wa = malloc(sizeof(*new_wa));
1681
1682 if (new_wa == NULL)
1683 return;
1684
1685 new_wa->next = area->next;
1686 new_wa->size = area->size - size;
1687 new_wa->address = area->address + size;
1688 new_wa->backup = NULL;
1689 new_wa->user = NULL;
1690 new_wa->free = true;
1691
1692 area->next = new_wa;
1693 area->size = size;
1694
1695 /* If backup memory was allocated to this area, it has the wrong size
1696 * now so free it and it will be reallocated if/when needed */
1697 if (area->backup) {
1698 free(area->backup);
1699 area->backup = NULL;
1700 }
1701 }
1702 }
1703
1704 /* Merge all adjacent free areas into one */
1705 static void target_merge_working_areas(struct target *target)
1706 {
1707 struct working_area *c = target->working_areas;
1708
1709 while (c && c->next) {
1710 assert(c->next->address == c->address + c->size); /* This is an invariant */
1711
1712 /* Find two adjacent free areas */
1713 if (c->free && c->next->free) {
1714 /* Merge the last into the first */
1715 c->size += c->next->size;
1716
1717 /* Remove the last */
1718 struct working_area *to_be_freed = c->next;
1719 c->next = c->next->next;
1720 if (to_be_freed->backup)
1721 free(to_be_freed->backup);
1722 free(to_be_freed);
1723
1724 /* If backup memory was allocated to the remaining area, it's has
1725 * the wrong size now */
1726 if (c->backup) {
1727 free(c->backup);
1728 c->backup = NULL;
1729 }
1730 } else {
1731 c = c->next;
1732 }
1733 }
1734 }
1735
1736 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1737 {
1738 /* Reevaluate working area address based on MMU state*/
1739 if (target->working_areas == NULL) {
1740 int retval;
1741 int enabled;
1742
1743 retval = target->type->mmu(target, &enabled);
1744 if (retval != ERROR_OK)
1745 return retval;
1746
1747 if (!enabled) {
1748 if (target->working_area_phys_spec) {
1749 LOG_DEBUG("MMU disabled, using physical "
1750 "address for working memory " TARGET_ADDR_FMT,
1751 target->working_area_phys);
1752 target->working_area = target->working_area_phys;
1753 } else {
1754 LOG_ERROR("No working memory available. "
1755 "Specify -work-area-phys to target.");
1756 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1757 }
1758 } else {
1759 if (target->working_area_virt_spec) {
1760 LOG_DEBUG("MMU enabled, using virtual "
1761 "address for working memory " TARGET_ADDR_FMT,
1762 target->working_area_virt);
1763 target->working_area = target->working_area_virt;
1764 } else {
1765 LOG_ERROR("No working memory available. "
1766 "Specify -work-area-virt to target.");
1767 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1768 }
1769 }
1770
1771 /* Set up initial working area on first call */
1772 struct working_area *new_wa = malloc(sizeof(*new_wa));
1773 if (new_wa) {
1774 new_wa->next = NULL;
1775 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1776 new_wa->address = target->working_area;
1777 new_wa->backup = NULL;
1778 new_wa->user = NULL;
1779 new_wa->free = true;
1780 }
1781
1782 target->working_areas = new_wa;
1783 }
1784
1785 /* only allocate multiples of 4 byte */
1786 if (size % 4)
1787 size = (size + 3) & (~3UL);
1788
1789 struct working_area *c = target->working_areas;
1790
1791 /* Find the first large enough working area */
1792 while (c) {
1793 if (c->free && c->size >= size)
1794 break;
1795 c = c->next;
1796 }
1797
1798 if (c == NULL)
1799 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1800
1801 /* Split the working area into the requested size */
1802 target_split_working_area(c, size);
1803
1804 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1805 size, c->address);
1806
1807 if (target->backup_working_area) {
1808 if (c->backup == NULL) {
1809 c->backup = malloc(c->size);
1810 if (c->backup == NULL)
1811 return ERROR_FAIL;
1812 }
1813
1814 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1815 if (retval != ERROR_OK)
1816 return retval;
1817 }
1818
1819 /* mark as used, and return the new (reused) area */
1820 c->free = false;
1821 *area = c;
1822
1823 /* user pointer */
1824 c->user = area;
1825
1826 print_wa_layout(target);
1827
1828 return ERROR_OK;
1829 }
1830
1831 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1832 {
1833 int retval;
1834
1835 retval = target_alloc_working_area_try(target, size, area);
1836 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1837 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1838 return retval;
1839
1840 }
1841
1842 static int target_restore_working_area(struct target *target, struct working_area *area)
1843 {
1844 int retval = ERROR_OK;
1845
1846 if (target->backup_working_area && area->backup != NULL) {
1847 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1848 if (retval != ERROR_OK)
1849 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1850 area->size, area->address);
1851 }
1852
1853 return retval;
1854 }
1855
1856 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1857 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1858 {
1859 int retval = ERROR_OK;
1860
1861 if (area->free)
1862 return retval;
1863
1864 if (restore) {
1865 retval = target_restore_working_area(target, area);
1866 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1867 if (retval != ERROR_OK)
1868 return retval;
1869 }
1870
1871 area->free = true;
1872
1873 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1874 area->size, area->address);
1875
1876 /* mark user pointer invalid */
1877 /* TODO: Is this really safe? It points to some previous caller's memory.
1878 * How could we know that the area pointer is still in that place and not
1879 * some other vital data? What's the purpose of this, anyway? */
1880 *area->user = NULL;
1881 area->user = NULL;
1882
1883 target_merge_working_areas(target);
1884
1885 print_wa_layout(target);
1886
1887 return retval;
1888 }
1889
1890 int target_free_working_area(struct target *target, struct working_area *area)
1891 {
1892 return target_free_working_area_restore(target, area, 1);
1893 }
1894
1895 static void target_destroy(struct target *target)
1896 {
1897 if (target->type->deinit_target)
1898 target->type->deinit_target(target);
1899
1900 if (target->semihosting)
1901 free(target->semihosting);
1902
1903 jtag_unregister_event_callback(jtag_enable_callback, target);
1904
1905 struct target_event_action *teap = target->event_action;
1906 while (teap) {
1907 struct target_event_action *next = teap->next;
1908 Jim_DecrRefCount(teap->interp, teap->body);
1909 free(teap);
1910 teap = next;
1911 }
1912
1913 target_free_all_working_areas(target);
1914 /* Now we have none or only one working area marked as free */
1915 if (target->working_areas) {
1916 free(target->working_areas->backup);
1917 free(target->working_areas);
1918 }
1919
1920 /* release the targets SMP list */
1921 if (target->smp) {
1922 struct target_list *head = target->head;
1923 while (head != NULL) {
1924 struct target_list *pos = head->next;
1925 head->target->smp = 0;
1926 free(head);
1927 head = pos;
1928 }
1929 target->smp = 0;
1930 }
1931
1932 free(target->gdb_port_override);
1933 free(target->type);
1934 free(target->trace_info);
1935 free(target->fileio_info);
1936 free(target->cmd_name);
1937 free(target);
1938 }
1939
1940 void target_quit(void)
1941 {
1942 struct target_event_callback *pe = target_event_callbacks;
1943 while (pe) {
1944 struct target_event_callback *t = pe->next;
1945 free(pe);
1946 pe = t;
1947 }
1948 target_event_callbacks = NULL;
1949
1950 struct target_timer_callback *pt = target_timer_callbacks;
1951 while (pt) {
1952 struct target_timer_callback *t = pt->next;
1953 free(pt);
1954 pt = t;
1955 }
1956 target_timer_callbacks = NULL;
1957
1958 for (struct target *target = all_targets; target;) {
1959 struct target *tmp;
1960
1961 tmp = target->next;
1962 target_destroy(target);
1963 target = tmp;
1964 }
1965
1966 all_targets = NULL;
1967 }
1968
1969 /* free resources and restore memory, if restoring memory fails,
1970 * free up resources anyway
1971 */
1972 static void target_free_all_working_areas_restore(struct target *target, int restore)
1973 {
1974 struct working_area *c = target->working_areas;
1975
1976 LOG_DEBUG("freeing all working areas");
1977
1978 /* Loop through all areas, restoring the allocated ones and marking them as free */
1979 while (c) {
1980 if (!c->free) {
1981 if (restore)
1982 target_restore_working_area(target, c);
1983 c->free = true;
1984 *c->user = NULL; /* Same as above */
1985 c->user = NULL;
1986 }
1987 c = c->next;
1988 }
1989
1990 /* Run a merge pass to combine all areas into one */
1991 target_merge_working_areas(target);
1992
1993 print_wa_layout(target);
1994 }
1995
1996 void target_free_all_working_areas(struct target *target)
1997 {
1998 target_free_all_working_areas_restore(target, 1);
1999 }
2000
2001 /* Find the largest number of bytes that can be allocated */
2002 uint32_t target_get_working_area_avail(struct target *target)
2003 {
2004 struct working_area *c = target->working_areas;
2005 uint32_t max_size = 0;
2006
2007 if (c == NULL)
2008 return target->working_area_size;
2009
2010 while (c) {
2011 if (c->free && max_size < c->size)
2012 max_size = c->size;
2013
2014 c = c->next;
2015 }
2016
2017 return max_size;
2018 }
2019
2020 int target_arch_state(struct target *target)
2021 {
2022 int retval;
2023 if (target == NULL) {
2024 LOG_WARNING("No target has been configured");
2025 return ERROR_OK;
2026 }
2027
2028 if (target->state != TARGET_HALTED)
2029 return ERROR_OK;
2030
2031 retval = target->type->arch_state(target);
2032 return retval;
2033 }
2034
2035 static int target_get_gdb_fileio_info_default(struct target *target,
2036 struct gdb_fileio_info *fileio_info)
2037 {
2038 /* If target does not support semi-hosting function, target
2039 has no need to provide .get_gdb_fileio_info callback.
2040 It just return ERROR_FAIL and gdb_server will return "Txx"
2041 as target halted every time. */
2042 return ERROR_FAIL;
2043 }
2044
2045 static int target_gdb_fileio_end_default(struct target *target,
2046 int retcode, int fileio_errno, bool ctrl_c)
2047 {
2048 return ERROR_OK;
2049 }
2050
2051 static int target_profiling_default(struct target *target, uint32_t *samples,
2052 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2053 {
2054 struct timeval timeout, now;
2055
2056 gettimeofday(&timeout, NULL);
2057 timeval_add_time(&timeout, seconds, 0);
2058
2059 LOG_INFO("Starting profiling. Halting and resuming the"
2060 " target as often as we can...");
2061
2062 uint32_t sample_count = 0;
2063 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2064 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2065
2066 int retval = ERROR_OK;
2067 for (;;) {
2068 target_poll(target);
2069 if (target->state == TARGET_HALTED) {
2070 uint32_t t = buf_get_u32(reg->value, 0, 32);
2071 samples[sample_count++] = t;
2072 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2073 retval = target_resume(target, 1, 0, 0, 0);
2074 target_poll(target);
2075 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2076 } else if (target->state == TARGET_RUNNING) {
2077 /* We want to quickly sample the PC. */
2078 retval = target_halt(target);
2079 } else {
2080 LOG_INFO("Target not halted or running");
2081 retval = ERROR_OK;
2082 break;
2083 }
2084
2085 if (retval != ERROR_OK)
2086 break;
2087
2088 gettimeofday(&now, NULL);
2089 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2090 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2091 break;
2092 }
2093 }
2094
2095 *num_samples = sample_count;
2096 return retval;
2097 }
2098
2099 /* Single aligned words are guaranteed to use 16 or 32 bit access
2100 * mode respectively, otherwise data is handled as quickly as
2101 * possible
2102 */
2103 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2104 {
2105 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2106 size, address);
2107
2108 if (!target_was_examined(target)) {
2109 LOG_ERROR("Target not examined yet");
2110 return ERROR_FAIL;
2111 }
2112
2113 if (size == 0)
2114 return ERROR_OK;
2115
2116 if ((address + size - 1) < address) {
2117 /* GDB can request this when e.g. PC is 0xfffffffc */
2118 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2119 address,
2120 size);
2121 return ERROR_FAIL;
2122 }
2123
2124 return target->type->write_buffer(target, address, size, buffer);
2125 }
2126
2127 static int target_write_buffer_default(struct target *target,
2128 target_addr_t address, uint32_t count, const uint8_t *buffer)
2129 {
2130 uint32_t size;
2131
2132 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2133 * will have something to do with the size we leave to it. */
2134 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2135 if (address & size) {
2136 int retval = target_write_memory(target, address, size, 1, buffer);
2137 if (retval != ERROR_OK)
2138 return retval;
2139 address += size;
2140 count -= size;
2141 buffer += size;
2142 }
2143 }
2144
2145 /* Write the data with as large access size as possible. */
2146 for (; size > 0; size /= 2) {
2147 uint32_t aligned = count - count % size;
2148 if (aligned > 0) {
2149 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2150 if (retval != ERROR_OK)
2151 return retval;
2152 address += aligned;
2153 count -= aligned;
2154 buffer += aligned;
2155 }
2156 }
2157
2158 return ERROR_OK;
2159 }
2160
2161 /* Single aligned words are guaranteed to use 16 or 32 bit access
2162 * mode respectively, otherwise data is handled as quickly as
2163 * possible
2164 */
2165 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2166 {
2167 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2168 size, address);
2169
2170 if (!target_was_examined(target)) {
2171 LOG_ERROR("Target not examined yet");
2172 return ERROR_FAIL;
2173 }
2174
2175 if (size == 0)
2176 return ERROR_OK;
2177
2178 if ((address + size - 1) < address) {
2179 /* GDB can request this when e.g. PC is 0xfffffffc */
2180 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2181 address,
2182 size);
2183 return ERROR_FAIL;
2184 }
2185
2186 return target->type->read_buffer(target, address, size, buffer);
2187 }
2188
2189 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2190 {
2191 uint32_t size;
2192
2193 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2194 * will have something to do with the size we leave to it. */
2195 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2196 if (address & size) {
2197 int retval = target_read_memory(target, address, size, 1, buffer);
2198 if (retval != ERROR_OK)
2199 return retval;
2200 address += size;
2201 count -= size;
2202 buffer += size;
2203 }
2204 }
2205
2206 /* Read the data with as large access size as possible. */
2207 for (; size > 0; size /= 2) {
2208 uint32_t aligned = count - count % size;
2209 if (aligned > 0) {
2210 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2211 if (retval != ERROR_OK)
2212 return retval;
2213 address += aligned;
2214 count -= aligned;
2215 buffer += aligned;
2216 }
2217 }
2218
2219 return ERROR_OK;
2220 }
2221
2222 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2223 {
2224 uint8_t *buffer;
2225 int retval;
2226 uint32_t i;
2227 uint32_t checksum = 0;
2228 if (!target_was_examined(target)) {
2229 LOG_ERROR("Target not examined yet");
2230 return ERROR_FAIL;
2231 }
2232
2233 retval = target->type->checksum_memory(target, address, size, &checksum);
2234 if (retval != ERROR_OK) {
2235 buffer = malloc(size);
2236 if (buffer == NULL) {
2237 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2238 return ERROR_COMMAND_SYNTAX_ERROR;
2239 }
2240 retval = target_read_buffer(target, address, size, buffer);
2241 if (retval != ERROR_OK) {
2242 free(buffer);
2243 return retval;
2244 }
2245
2246 /* convert to target endianness */
2247 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2248 uint32_t target_data;
2249 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2250 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2251 }
2252
2253 retval = image_calculate_checksum(buffer, size, &checksum);
2254 free(buffer);
2255 }
2256
2257 *crc = checksum;
2258
2259 return retval;
2260 }
2261
2262 int target_blank_check_memory(struct target *target,
2263 struct target_memory_check_block *blocks, int num_blocks,
2264 uint8_t erased_value)
2265 {
2266 if (!target_was_examined(target)) {
2267 LOG_ERROR("Target not examined yet");
2268 return ERROR_FAIL;
2269 }
2270
2271 if (target->type->blank_check_memory == NULL)
2272 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2273
2274 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2275 }
2276
2277 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2278 {
2279 uint8_t value_buf[8];
2280 if (!target_was_examined(target)) {
2281 LOG_ERROR("Target not examined yet");
2282 return ERROR_FAIL;
2283 }
2284
2285 int retval = target_read_memory(target, address, 8, 1, value_buf);
2286
2287 if (retval == ERROR_OK) {
2288 *value = target_buffer_get_u64(target, value_buf);
2289 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2290 address,
2291 *value);
2292 } else {
2293 *value = 0x0;
2294 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2295 address);
2296 }
2297
2298 return retval;
2299 }
2300
2301 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2302 {
2303 uint8_t value_buf[4];
2304 if (!target_was_examined(target)) {
2305 LOG_ERROR("Target not examined yet");
2306 return ERROR_FAIL;
2307 }
2308
2309 int retval = target_read_memory(target, address, 4, 1, value_buf);
2310
2311 if (retval == ERROR_OK) {
2312 *value = target_buffer_get_u32(target, value_buf);
2313 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2314 address,
2315 *value);
2316 } else {
2317 *value = 0x0;
2318 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2319 address);
2320 }
2321
2322 return retval;
2323 }
2324
2325 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2326 {
2327 uint8_t value_buf[2];
2328 if (!target_was_examined(target)) {
2329 LOG_ERROR("Target not examined yet");
2330 return ERROR_FAIL;
2331 }
2332
2333 int retval = target_read_memory(target, address, 2, 1, value_buf);
2334
2335 if (retval == ERROR_OK) {
2336 *value = target_buffer_get_u16(target, value_buf);
2337 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2338 address,
2339 *value);
2340 } else {
2341 *value = 0x0;
2342 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2343 address);
2344 }
2345
2346 return retval;
2347 }
2348
2349 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2350 {
2351 if (!target_was_examined(target)) {
2352 LOG_ERROR("Target not examined yet");
2353 return ERROR_FAIL;
2354 }
2355
2356 int retval = target_read_memory(target, address, 1, 1, value);
2357
2358 if (retval == ERROR_OK) {
2359 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2360 address,
2361 *value);
2362 } else {
2363 *value = 0x0;
2364 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2365 address);
2366 }
2367
2368 return retval;
2369 }
2370
2371 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2372 {
2373 int retval;
2374 uint8_t value_buf[8];
2375 if (!target_was_examined(target)) {
2376 LOG_ERROR("Target not examined yet");
2377 return ERROR_FAIL;
2378 }
2379
2380 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2381 address,
2382 value);
2383
2384 target_buffer_set_u64(target, value_buf, value);
2385 retval = target_write_memory(target, address, 8, 1, value_buf);
2386 if (retval != ERROR_OK)
2387 LOG_DEBUG("failed: %i", retval);
2388
2389 return retval;
2390 }
2391
2392 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2393 {
2394 int retval;
2395 uint8_t value_buf[4];
2396 if (!target_was_examined(target)) {
2397 LOG_ERROR("Target not examined yet");
2398 return ERROR_FAIL;
2399 }
2400
2401 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2402 address,
2403 value);
2404
2405 target_buffer_set_u32(target, value_buf, value);
2406 retval = target_write_memory(target, address, 4, 1, value_buf);
2407 if (retval != ERROR_OK)
2408 LOG_DEBUG("failed: %i", retval);
2409
2410 return retval;
2411 }
2412
2413 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2414 {
2415 int retval;
2416 uint8_t value_buf[2];
2417 if (!target_was_examined(target)) {
2418 LOG_ERROR("Target not examined yet");
2419 return ERROR_FAIL;
2420 }
2421
2422 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2423 address,
2424 value);
2425
2426 target_buffer_set_u16(target, value_buf, value);
2427 retval = target_write_memory(target, address, 2, 1, value_buf);
2428 if (retval != ERROR_OK)
2429 LOG_DEBUG("failed: %i", retval);
2430
2431 return retval;
2432 }
2433
2434 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2435 {
2436 int retval;
2437 if (!target_was_examined(target)) {
2438 LOG_ERROR("Target not examined yet");
2439 return ERROR_FAIL;
2440 }
2441
2442 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2443 address, value);
2444
2445 retval = target_write_memory(target, address, 1, 1, &value);
2446 if (retval != ERROR_OK)
2447 LOG_DEBUG("failed: %i", retval);
2448
2449 return retval;
2450 }
2451
2452 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2453 {
2454 int retval;
2455 uint8_t value_buf[8];
2456 if (!target_was_examined(target)) {
2457 LOG_ERROR("Target not examined yet");
2458 return ERROR_FAIL;
2459 }
2460
2461 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2462 address,
2463 value);
2464
2465 target_buffer_set_u64(target, value_buf, value);
2466 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2467 if (retval != ERROR_OK)
2468 LOG_DEBUG("failed: %i", retval);
2469
2470 return retval;
2471 }
2472
2473 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2474 {
2475 int retval;
2476 uint8_t value_buf[4];
2477 if (!target_was_examined(target)) {
2478 LOG_ERROR("Target not examined yet");
2479 return ERROR_FAIL;
2480 }
2481
2482 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2483 address,
2484 value);
2485
2486 target_buffer_set_u32(target, value_buf, value);
2487 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2488 if (retval != ERROR_OK)
2489 LOG_DEBUG("failed: %i", retval);
2490
2491 return retval;
2492 }
2493
2494 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2495 {
2496 int retval;
2497 uint8_t value_buf[2];
2498 if (!target_was_examined(target)) {
2499 LOG_ERROR("Target not examined yet");
2500 return ERROR_FAIL;
2501 }
2502
2503 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2504 address,
2505 value);
2506
2507 target_buffer_set_u16(target, value_buf, value);
2508 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2509 if (retval != ERROR_OK)
2510 LOG_DEBUG("failed: %i", retval);
2511
2512 return retval;
2513 }
2514
2515 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2516 {
2517 int retval;
2518 if (!target_was_examined(target)) {
2519 LOG_ERROR("Target not examined yet");
2520 return ERROR_FAIL;
2521 }
2522
2523 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2524 address, value);
2525
2526 retval = target_write_phys_memory(target, address, 1, 1, &value);
2527 if (retval != ERROR_OK)
2528 LOG_DEBUG("failed: %i", retval);
2529
2530 return retval;
2531 }
2532
2533 static int find_target(struct command_context *cmd_ctx, const char *name)
2534 {
2535 struct target *target = get_target(name);
2536 if (target == NULL) {
2537 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2538 return ERROR_FAIL;
2539 }
2540 if (!target->tap->enabled) {
2541 LOG_USER("Target: TAP %s is disabled, "
2542 "can't be the current target\n",
2543 target->tap->dotted_name);
2544 return ERROR_FAIL;
2545 }
2546
2547 cmd_ctx->current_target = target;
2548 if (cmd_ctx->current_target_override)
2549 cmd_ctx->current_target_override = target;
2550
2551 return ERROR_OK;
2552 }
2553
2554
2555 COMMAND_HANDLER(handle_targets_command)
2556 {
2557 int retval = ERROR_OK;
2558 if (CMD_ARGC == 1) {
2559 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2560 if (retval == ERROR_OK) {
2561 /* we're done! */
2562 return retval;
2563 }
2564 }
2565
2566 struct target *target = all_targets;
2567 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2568 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2569 while (target) {
2570 const char *state;
2571 char marker = ' ';
2572
2573 if (target->tap->enabled)
2574 state = target_state_name(target);
2575 else
2576 state = "tap-disabled";
2577
2578 if (CMD_CTX->current_target == target)
2579 marker = '*';
2580
2581 /* keep columns lined up to match the headers above */
2582 command_print(CMD_CTX,
2583 "%2d%c %-18s %-10s %-6s %-18s %s",
2584 target->target_number,
2585 marker,
2586 target_name(target),
2587 target_type_name(target),
2588 Jim_Nvp_value2name_simple(nvp_target_endian,
2589 target->endianness)->name,
2590 target->tap->dotted_name,
2591 state);
2592 target = target->next;
2593 }
2594
2595 return retval;
2596 }
2597
2598 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2599
2600 static int powerDropout;
2601 static int srstAsserted;
2602
2603 static int runPowerRestore;
2604 static int runPowerDropout;
2605 static int runSrstAsserted;
2606 static int runSrstDeasserted;
2607
2608 static int sense_handler(void)
2609 {
2610 static int prevSrstAsserted;
2611 static int prevPowerdropout;
2612
2613 int retval = jtag_power_dropout(&powerDropout);
2614 if (retval != ERROR_OK)
2615 return retval;
2616
2617 int powerRestored;
2618 powerRestored = prevPowerdropout && !powerDropout;
2619 if (powerRestored)
2620 runPowerRestore = 1;
2621
2622 int64_t current = timeval_ms();
2623 static int64_t lastPower;
2624 bool waitMore = lastPower + 2000 > current;
2625 if (powerDropout && !waitMore) {
2626 runPowerDropout = 1;
2627 lastPower = current;
2628 }
2629
2630 retval = jtag_srst_asserted(&srstAsserted);
2631 if (retval != ERROR_OK)
2632 return retval;
2633
2634 int srstDeasserted;
2635 srstDeasserted = prevSrstAsserted && !srstAsserted;
2636
2637 static int64_t lastSrst;
2638 waitMore = lastSrst + 2000 > current;
2639 if (srstDeasserted && !waitMore) {
2640 runSrstDeasserted = 1;
2641 lastSrst = current;
2642 }
2643
2644 if (!prevSrstAsserted && srstAsserted)
2645 runSrstAsserted = 1;
2646
2647 prevSrstAsserted = srstAsserted;
2648 prevPowerdropout = powerDropout;
2649
2650 if (srstDeasserted || powerRestored) {
2651 /* Other than logging the event we can't do anything here.
2652 * Issuing a reset is a particularly bad idea as we might
2653 * be inside a reset already.
2654 */
2655 }
2656
2657 return ERROR_OK;
2658 }
2659
2660 /* process target state changes */
2661 static int handle_target(void *priv)
2662 {
2663 Jim_Interp *interp = (Jim_Interp *)priv;
2664 int retval = ERROR_OK;
2665
2666 if (!is_jtag_poll_safe()) {
2667 /* polling is disabled currently */
2668 return ERROR_OK;
2669 }
2670
2671 /* we do not want to recurse here... */
2672 static int recursive;
2673 if (!recursive) {
2674 recursive = 1;
2675 sense_handler();
2676 /* danger! running these procedures can trigger srst assertions and power dropouts.
2677 * We need to avoid an infinite loop/recursion here and we do that by
2678 * clearing the flags after running these events.
2679 */
2680 int did_something = 0;
2681 if (runSrstAsserted) {
2682 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2683 Jim_Eval(interp, "srst_asserted");
2684 did_something = 1;
2685 }
2686 if (runSrstDeasserted) {
2687 Jim_Eval(interp, "srst_deasserted");
2688 did_something = 1;
2689 }
2690 if (runPowerDropout) {
2691 LOG_INFO("Power dropout detected, running power_dropout proc.");
2692 Jim_Eval(interp, "power_dropout");
2693 did_something = 1;
2694 }
2695 if (runPowerRestore) {
2696 Jim_Eval(interp, "power_restore");
2697 did_something = 1;
2698 }
2699
2700 if (did_something) {
2701 /* clear detect flags */
2702 sense_handler();
2703 }
2704
2705 /* clear action flags */
2706
2707 runSrstAsserted = 0;
2708 runSrstDeasserted = 0;
2709 runPowerRestore = 0;
2710 runPowerDropout = 0;
2711
2712 recursive = 0;
2713 }
2714
2715 /* Poll targets for state changes unless that's globally disabled.
2716 * Skip targets that are currently disabled.
2717 */
2718 for (struct target *target = all_targets;
2719 is_jtag_poll_safe() && target;
2720 target = target->next) {
2721
2722 if (!target_was_examined(target))
2723 continue;
2724
2725 if (!target->tap->enabled)
2726 continue;
2727
2728 if (target->backoff.times > target->backoff.count) {
2729 /* do not poll this time as we failed previously */
2730 target->backoff.count++;
2731 continue;
2732 }
2733 target->backoff.count = 0;
2734
2735 /* only poll target if we've got power and srst isn't asserted */
2736 if (!powerDropout && !srstAsserted) {
2737 /* polling may fail silently until the target has been examined */
2738 retval = target_poll(target);
2739 if (retval != ERROR_OK) {
2740 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2741 if (target->backoff.times * polling_interval < 5000) {
2742 target->backoff.times *= 2;
2743 target->backoff.times++;
2744 }
2745
2746 /* Tell GDB to halt the debugger. This allows the user to
2747 * run monitor commands to handle the situation.
2748 */
2749 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2750 }
2751 if (target->backoff.times > 0) {
2752 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2753 target_reset_examined(target);
2754 retval = target_examine_one(target);
2755 /* Target examination could have failed due to unstable connection,
2756 * but we set the examined flag anyway to repoll it later */
2757 if (retval != ERROR_OK) {
2758 target->examined = true;
2759 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2760 target->backoff.times * polling_interval);
2761 return retval;
2762 }
2763 }
2764
2765 /* Since we succeeded, we reset backoff count */
2766 target->backoff.times = 0;
2767 }
2768 }
2769
2770 return retval;
2771 }
2772
2773 COMMAND_HANDLER(handle_reg_command)
2774 {
2775 struct target *target;
2776 struct reg *reg = NULL;
2777 unsigned count = 0;
2778 char *value;
2779
2780 LOG_DEBUG("-");
2781
2782 target = get_current_target(CMD_CTX);
2783
2784 /* list all available registers for the current target */
2785 if (CMD_ARGC == 0) {
2786 struct reg_cache *cache = target->reg_cache;
2787
2788 count = 0;
2789 while (cache) {
2790 unsigned i;
2791
2792 command_print(CMD_CTX, "===== %s", cache->name);
2793
2794 for (i = 0, reg = cache->reg_list;
2795 i < cache->num_regs;
2796 i++, reg++, count++) {
2797 /* only print cached values if they are valid */
2798 if (reg->valid) {
2799 value = buf_to_str(reg->value,
2800 reg->size, 16);
2801 command_print(CMD_CTX,
2802 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2803 count, reg->name,
2804 reg->size, value,
2805 reg->dirty
2806 ? " (dirty)"
2807 : "");
2808 free(value);
2809 } else {
2810 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2811 count, reg->name,
2812 reg->size) ;
2813 }
2814 }
2815 cache = cache->next;
2816 }
2817
2818 return ERROR_OK;
2819 }
2820
2821 /* access a single register by its ordinal number */
2822 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2823 unsigned num;
2824 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2825
2826 struct reg_cache *cache = target->reg_cache;
2827 count = 0;
2828 while (cache) {
2829 unsigned i;
2830 for (i = 0; i < cache->num_regs; i++) {
2831 if (count++ == num) {
2832 reg = &cache->reg_list[i];
2833 break;
2834 }
2835 }
2836 if (reg)
2837 break;
2838 cache = cache->next;
2839 }
2840
2841 if (!reg) {
2842 command_print(CMD_CTX, "%i is out of bounds, the current target "
2843 "has only %i registers (0 - %i)", num, count, count - 1);
2844 return ERROR_OK;
2845 }
2846 } else {
2847 /* access a single register by its name */
2848 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2849
2850 if (!reg) {
2851 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2852 return ERROR_OK;
2853 }
2854 }
2855
2856 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2857
2858 /* display a register */
2859 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2860 && (CMD_ARGV[1][0] <= '9')))) {
2861 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2862 reg->valid = 0;
2863
2864 if (reg->valid == 0)
2865 reg->type->get(reg);
2866 value = buf_to_str(reg->value, reg->size, 16);
2867 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2868 free(value);
2869 return ERROR_OK;
2870 }
2871
2872 /* set register value */
2873 if (CMD_ARGC == 2) {
2874 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2875 if (buf == NULL)
2876 return ERROR_FAIL;
2877 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2878
2879 reg->type->set(reg, buf);
2880
2881 value = buf_to_str(reg->value, reg->size, 16);
2882 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2883 free(value);
2884
2885 free(buf);
2886
2887 return ERROR_OK;
2888 }
2889
2890 return ERROR_COMMAND_SYNTAX_ERROR;
2891 }
2892
2893 COMMAND_HANDLER(handle_poll_command)
2894 {
2895 int retval = ERROR_OK;
2896 struct target *target = get_current_target(CMD_CTX);
2897
2898 if (CMD_ARGC == 0) {
2899 command_print(CMD_CTX, "background polling: %s",
2900 jtag_poll_get_enabled() ? "on" : "off");
2901 command_print(CMD_CTX, "TAP: %s (%s)",
2902 target->tap->dotted_name,
2903 target->tap->enabled ? "enabled" : "disabled");
2904 if (!target->tap->enabled)
2905 return ERROR_OK;
2906 retval = target_poll(target);
2907 if (retval != ERROR_OK)
2908 return retval;
2909 retval = target_arch_state(target);
2910 if (retval != ERROR_OK)
2911 return retval;
2912 } else if (CMD_ARGC == 1) {
2913 bool enable;
2914 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2915 jtag_poll_set_enabled(enable);
2916 } else
2917 return ERROR_COMMAND_SYNTAX_ERROR;
2918
2919 return retval;
2920 }
2921
2922 COMMAND_HANDLER(handle_wait_halt_command)
2923 {
2924 if (CMD_ARGC > 1)
2925 return ERROR_COMMAND_SYNTAX_ERROR;
2926
2927 unsigned ms = DEFAULT_HALT_TIMEOUT;
2928 if (1 == CMD_ARGC) {
2929 int retval = parse_uint(CMD_ARGV[0], &ms);
2930 if (ERROR_OK != retval)
2931 return ERROR_COMMAND_SYNTAX_ERROR;
2932 }
2933
2934 struct target *target = get_current_target(CMD_CTX);
2935 return target_wait_state(target, TARGET_HALTED, ms);
2936 }
2937
2938 /* wait for target state to change. The trick here is to have a low
2939 * latency for short waits and not to suck up all the CPU time
2940 * on longer waits.
2941 *
2942 * After 500ms, keep_alive() is invoked
2943 */
2944 int target_wait_state(struct target *target, enum target_state state, int ms)
2945 {
2946 int retval;
2947 int64_t then = 0, cur;
2948 bool once = true;
2949
2950 for (;;) {
2951 retval = target_poll(target);
2952 if (retval != ERROR_OK)
2953 return retval;
2954 if (target->state == state)
2955 break;
2956 cur = timeval_ms();
2957 if (once) {
2958 once = false;
2959 then = timeval_ms();
2960 LOG_DEBUG("waiting for target %s...",
2961 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2962 }
2963
2964 if (cur-then > 500)
2965 keep_alive();
2966
2967 if ((cur-then) > ms) {
2968 LOG_ERROR("timed out while waiting for target %s",
2969 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2970 return ERROR_FAIL;
2971 }
2972 }
2973
2974 return ERROR_OK;
2975 }
2976
2977 COMMAND_HANDLER(handle_halt_command)
2978 {
2979 LOG_DEBUG("-");
2980
2981 struct target *target = get_current_target(CMD_CTX);
2982
2983 target->verbose_halt_msg = true;
2984
2985 int retval = target_halt(target);
2986 if (ERROR_OK != retval)
2987 return retval;
2988
2989 if (CMD_ARGC == 1) {
2990 unsigned wait_local;
2991 retval = parse_uint(CMD_ARGV[0], &wait_local);
2992 if (ERROR_OK != retval)
2993 return ERROR_COMMAND_SYNTAX_ERROR;
2994 if (!wait_local)
2995 return ERROR_OK;
2996 }
2997
2998 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2999 }
3000
3001 COMMAND_HANDLER(handle_soft_reset_halt_command)
3002 {
3003 struct target *target = get_current_target(CMD_CTX);
3004
3005 LOG_USER("requesting target halt and executing a soft reset");
3006
3007 target_soft_reset_halt(target);
3008
3009 return ERROR_OK;
3010 }
3011
3012 COMMAND_HANDLER(handle_reset_command)
3013 {
3014 if (CMD_ARGC > 1)
3015 return ERROR_COMMAND_SYNTAX_ERROR;
3016
3017 enum target_reset_mode reset_mode = RESET_RUN;
3018 if (CMD_ARGC == 1) {
3019 const Jim_Nvp *n;
3020 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3021 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3022 return ERROR_COMMAND_SYNTAX_ERROR;
3023 reset_mode = n->value;
3024 }
3025
3026 /* reset *all* targets */
3027 return target_process_reset(CMD_CTX, reset_mode);
3028 }
3029
3030
3031 COMMAND_HANDLER(handle_resume_command)
3032 {
3033 int current = 1;
3034 if (CMD_ARGC > 1)
3035 return ERROR_COMMAND_SYNTAX_ERROR;
3036
3037 struct target *target = get_current_target(CMD_CTX);
3038
3039 /* with no CMD_ARGV, resume from current pc, addr = 0,
3040 * with one arguments, addr = CMD_ARGV[0],
3041 * handle breakpoints, not debugging */
3042 target_addr_t addr = 0;
3043 if (CMD_ARGC == 1) {
3044 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3045 current = 0;
3046 }
3047
3048 return target_resume(target, current, addr, 1, 0);
3049 }
3050
3051 COMMAND_HANDLER(handle_step_command)
3052 {
3053 if (CMD_ARGC > 1)
3054 return ERROR_COMMAND_SYNTAX_ERROR;
3055
3056 LOG_DEBUG("-");
3057
3058 /* with no CMD_ARGV, step from current pc, addr = 0,
3059 * with one argument addr = CMD_ARGV[0],
3060 * handle breakpoints, debugging */
3061 target_addr_t addr = 0;
3062 int current_pc = 1;
3063 if (CMD_ARGC == 1) {
3064 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3065 current_pc = 0;
3066 }
3067
3068 struct target *target = get_current_target(CMD_CTX);
3069
3070 return target->type->step(target, current_pc, addr, 1);
3071 }
3072
3073 static void handle_md_output(struct command_context *cmd_ctx,
3074 struct target *target, target_addr_t address, unsigned size,
3075 unsigned count, const uint8_t *buffer)
3076 {
3077 const unsigned line_bytecnt = 32;
3078 unsigned line_modulo = line_bytecnt / size;
3079
3080 char output[line_bytecnt * 4 + 1];
3081 unsigned output_len = 0;
3082
3083 const char *value_fmt;
3084 switch (size) {
3085 case 8:
3086 value_fmt = "%16.16"PRIx64" ";
3087 break;
3088 case 4:
3089 value_fmt = "%8.8"PRIx64" ";
3090 break;
3091 case 2:
3092 value_fmt = "%4.4"PRIx64" ";
3093 break;
3094 case 1:
3095 value_fmt = "%2.2"PRIx64" ";
3096 break;
3097 default:
3098 /* "can't happen", caller checked */
3099 LOG_ERROR("invalid memory read size: %u", size);
3100 return;
3101 }
3102
3103 for (unsigned i = 0; i < count; i++) {
3104 if (i % line_modulo == 0) {
3105 output_len += snprintf(output + output_len,
3106 sizeof(output) - output_len,
3107 TARGET_ADDR_FMT ": ",
3108 (address + (i * size)));
3109 }
3110
3111 uint64_t value = 0;
3112 const uint8_t *value_ptr = buffer + i * size;
3113 switch (size) {
3114 case 8:
3115 value = target_buffer_get_u64(target, value_ptr);
3116 break;
3117 case 4:
3118 value = target_buffer_get_u32(target, value_ptr);
3119 break;
3120 case 2:
3121 value = target_buffer_get_u16(target, value_ptr);
3122 break;
3123 case 1:
3124 value = *value_ptr;
3125 }
3126 output_len += snprintf(output + output_len,
3127 sizeof(output) - output_len,
3128 value_fmt, value);
3129
3130 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3131 command_print(cmd_ctx, "%s", output);
3132 output_len = 0;
3133 }
3134 }
3135 }
3136
3137 COMMAND_HANDLER(handle_md_command)
3138 {
3139 if (CMD_ARGC < 1)
3140 return ERROR_COMMAND_SYNTAX_ERROR;
3141
3142 unsigned size = 0;
3143 switch (CMD_NAME[2]) {
3144 case 'd':
3145 size = 8;
3146 break;
3147 case 'w':
3148 size = 4;
3149 break;
3150 case 'h':
3151 size = 2;
3152 break;
3153 case 'b':
3154 size = 1;
3155 break;
3156 default:
3157 return ERROR_COMMAND_SYNTAX_ERROR;
3158 }
3159
3160 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3161 int (*fn)(struct target *target,
3162 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3163 if (physical) {
3164 CMD_ARGC--;
3165 CMD_ARGV++;
3166 fn = target_read_phys_memory;
3167 } else
3168 fn = target_read_memory;
3169 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3170 return ERROR_COMMAND_SYNTAX_ERROR;
3171
3172 target_addr_t address;
3173 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3174
3175 unsigned count = 1;
3176 if (CMD_ARGC == 2)
3177 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3178
3179 uint8_t *buffer = calloc(count, size);
3180 if (buffer == NULL) {
3181 LOG_ERROR("Failed to allocate md read buffer");
3182 return ERROR_FAIL;
3183 }
3184
3185 struct target *target = get_current_target(CMD_CTX);
3186 int retval = fn(target, address, size, count, buffer);
3187 if (ERROR_OK == retval)
3188 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3189
3190 free(buffer);
3191
3192 return retval;
3193 }
3194
3195 typedef int (*target_write_fn)(struct target *target,
3196 target_addr_t address, uint32_t size, uint32_t count, <