gdb_server: support gdb target description
[openocd.git] / src / target / nds32.c
1 /***************************************************************************
2 * Copyright (C) 2013 Andes Technology *
3 * Hsiangkai Wang <hkwang@andestech.com> *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
19 ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include <helper/log.h>
26 #include <helper/binarybuffer.h>
27 #include "nds32.h"
28 #include "nds32_aice.h"
29 #include "nds32_tlb.h"
30 #include "nds32_disassembler.h"
31
32 const int NDS32_BREAK_16 = 0x00EA; /* 0xEA00 */
33 const int NDS32_BREAK_32 = 0x0A000064; /* 0x6400000A */
34
35 struct nds32_edm_operation nds32_edm_ops[NDS32_EDM_OPERATION_MAX_NUM];
36 uint32_t nds32_edm_ops_num;
37
38 const char *nds32_debug_type_name[11] = {
39 "SOFTWARE BREAK",
40 "SOFTWARE BREAK_16",
41 "HARDWARE BREAKPOINT",
42 "DATA ADDR WATCHPOINT PRECISE",
43 "DATA VALUE WATCHPOINT PRECISE",
44 "DATA VALUE WATCHPOINT IMPRECISE",
45 "DEBUG INTERRUPT",
46 "HARDWARE SINGLE STEP",
47 "DATA ADDR WATCHPOINT NEXT PRECISE",
48 "DATA VALUE WATCHPOINT NEXT PRECISE",
49 "LOAD STORE GLOBAL STOP",
50 };
51
52 static const int NDS32_LM_SIZE_TABLE[16] = {
53 4 * 1024,
54 8 * 1024,
55 16 * 1024,
56 32 * 1024,
57 64 * 1024,
58 128 * 1024,
59 256 * 1024,
60 512 * 1024,
61 1024 * 1024,
62 1 * 1024,
63 2 * 1024,
64 };
65
66 static const int NDS32_LINE_SIZE_TABLE[6] = {
67 0,
68 8,
69 16,
70 32,
71 64,
72 128,
73 };
74
75 static int nds32_get_core_reg(struct reg *reg)
76 {
77 int retval;
78 struct nds32_reg *reg_arch_info = reg->arch_info;
79 struct target *target = reg_arch_info->target;
80 struct nds32 *nds32 = target_to_nds32(target);
81 struct aice_port_s *aice = target_to_aice(target);
82
83 if (target->state != TARGET_HALTED) {
84 LOG_ERROR("Target not halted");
85 return ERROR_TARGET_NOT_HALTED;
86 }
87
88 if (reg->valid) {
89 LOG_DEBUG("reading register(cached) %i(%s), value: 0x%8.8" PRIx32,
90 reg_arch_info->num, reg->name, reg_arch_info->value);
91 return ERROR_OK;
92 }
93
94 int mapped_regnum = nds32->register_map(nds32, reg_arch_info->num);
95
96 if (reg_arch_info->enable == false) {
97 reg_arch_info->value = NDS32_REGISTER_DISABLE;
98 retval = ERROR_FAIL;
99 } else {
100 if ((nds32->fpu_enable == false) &&
101 (NDS32_REG_TYPE_FPU == nds32_reg_type(mapped_regnum))) {
102 reg_arch_info->value = 0;
103 retval = ERROR_OK;
104 } else if ((nds32->audio_enable == false) &&
105 (NDS32_REG_TYPE_AUMR == nds32_reg_type(mapped_regnum))) {
106 reg_arch_info->value = 0;
107 retval = ERROR_OK;
108 } else {
109 retval = aice_read_register(aice,
110 mapped_regnum, &(reg_arch_info->value));
111 }
112
113 LOG_DEBUG("reading register %i(%s), value: 0x%8.8" PRIx32,
114 reg_arch_info->num, reg->name, reg_arch_info->value);
115 }
116
117 if (retval == ERROR_OK) {
118 reg->valid = true;
119 reg->dirty = false;
120 }
121
122 return retval;
123 }
124
125 static int nds32_get_core_reg_64(struct reg *reg)
126 {
127 int retval;
128 struct nds32_reg *reg_arch_info = reg->arch_info;
129 struct target *target = reg_arch_info->target;
130 struct nds32 *nds32 = target_to_nds32(target);
131 struct aice_port_s *aice = target_to_aice(target);
132
133 if (target->state != TARGET_HALTED) {
134 LOG_ERROR("Target not halted");
135 return ERROR_TARGET_NOT_HALTED;
136 }
137
138 if (reg->valid)
139 return ERROR_OK;
140
141 if (reg_arch_info->enable == false) {
142 reg_arch_info->value_64 = NDS32_REGISTER_DISABLE;
143 retval = ERROR_FAIL;
144 } else {
145 if ((nds32->fpu_enable == false) &&
146 ((FD0 <= reg_arch_info->num) && (reg_arch_info->num <= FD31))) {
147 reg_arch_info->value_64 = 0;
148 retval = ERROR_OK;
149 } else {
150 retval = aice_read_reg_64(aice, reg_arch_info->num,
151 &(reg_arch_info->value_64));
152 }
153 }
154
155 if (retval == ERROR_OK) {
156 reg->valid = true;
157 reg->dirty = false;
158 }
159
160 return retval;
161 }
162
163 static int nds32_update_psw(struct nds32 *nds32)
164 {
165 uint32_t value_ir0;
166 struct aice_port_s *aice = target_to_aice(nds32->target);
167
168 nds32_get_mapped_reg(nds32, IR0, &value_ir0);
169
170 /* Save data memory endian */
171 if ((value_ir0 >> 5) & 0x1) {
172 nds32->data_endian = TARGET_BIG_ENDIAN;
173 aice_set_data_endian(aice, AICE_BIG_ENDIAN);
174 } else {
175 nds32->data_endian = TARGET_LITTLE_ENDIAN;
176 aice_set_data_endian(aice, AICE_LITTLE_ENDIAN);
177 }
178
179 /* Save translation status */
180 nds32->memory.address_translation = ((value_ir0 >> 7) & 0x1) ? true : false;
181
182 return ERROR_OK;
183 }
184
185 static int nds32_update_mmu_info(struct nds32 *nds32)
186 {
187 uint32_t value;
188
189 /* Update MMU control status */
190 nds32_get_mapped_reg(nds32, MR0, &value);
191 nds32->mmu_config.default_min_page_size = value & 0x1;
192 nds32->mmu_config.multiple_page_size_in_use = (value >> 10) & 0x1;
193
194 return ERROR_OK;
195 }
196
197 static int nds32_update_cache_info(struct nds32 *nds32)
198 {
199 uint32_t value;
200
201 if (ERROR_OK == nds32_get_mapped_reg(nds32, MR8, &value)) {
202 if (value & 0x1)
203 nds32->memory.icache.enable = true;
204 else
205 nds32->memory.icache.enable = false;
206
207 if (value & 0x2)
208 nds32->memory.dcache.enable = true;
209 else
210 nds32->memory.dcache.enable = false;
211 } else {
212 nds32->memory.icache.enable = false;
213 nds32->memory.dcache.enable = false;
214 }
215
216 return ERROR_OK;
217 }
218
219 static int nds32_update_lm_info(struct nds32 *nds32)
220 {
221 struct nds32_memory *memory = &(nds32->memory);
222 uint32_t value_mr6;
223 uint32_t value_mr7;
224
225 nds32_get_mapped_reg(nds32, MR6, &value_mr6);
226 if (value_mr6 & 0x1)
227 memory->ilm_enable = true;
228 else
229 memory->ilm_enable = false;
230
231 if (memory->ilm_align_ver == 0) { /* 1MB aligned */
232 memory->ilm_start = value_mr6 & 0xFFF00000;
233 memory->ilm_end = memory->ilm_start + memory->ilm_size;
234 } else if (memory->ilm_align_ver == 1) { /* aligned to local memory size */
235 memory->ilm_start = value_mr6 & 0xFFFFFC00;
236 memory->ilm_end = memory->ilm_start + memory->ilm_size;
237 } else {
238 memory->ilm_start = -1;
239 memory->ilm_end = -1;
240 }
241
242 nds32_get_mapped_reg(nds32, MR7, &value_mr7);
243 if (value_mr7 & 0x1)
244 memory->dlm_enable = true;
245 else
246 memory->dlm_enable = false;
247
248 if (memory->dlm_align_ver == 0) { /* 1MB aligned */
249 memory->dlm_start = value_mr7 & 0xFFF00000;
250 memory->dlm_end = memory->dlm_start + memory->dlm_size;
251 } else if (memory->dlm_align_ver == 1) { /* aligned to local memory size */
252 memory->dlm_start = value_mr7 & 0xFFFFFC00;
253 memory->dlm_end = memory->dlm_start + memory->dlm_size;
254 } else {
255 memory->dlm_start = -1;
256 memory->dlm_end = -1;
257 }
258
259 return ERROR_OK;
260 }
261
262 /**
263 * If fpu/audio is disabled, to access fpu/audio registers will cause
264 * exceptions. So, we need to check if fpu/audio is enabled or not as
265 * target is halted. If fpu/audio is disabled, as users access fpu/audio
266 * registers, OpenOCD will return fake value 0 instead of accessing
267 * registers through DIM.
268 */
269 static int nds32_check_extension(struct nds32 *nds32)
270 {
271 uint32_t value;
272
273 nds32_get_mapped_reg(nds32, FUCPR, &value);
274 if (value == NDS32_REGISTER_DISABLE) {
275 nds32->fpu_enable = false;
276 nds32->audio_enable = false;
277 return ERROR_OK;
278 }
279
280 if (value & 0x1)
281 nds32->fpu_enable = true;
282 else
283 nds32->fpu_enable = false;
284
285 if (value & 0x80000000)
286 nds32->audio_enable = true;
287 else
288 nds32->audio_enable = false;
289
290 return ERROR_OK;
291 }
292
293 static int nds32_set_core_reg(struct reg *reg, uint8_t *buf)
294 {
295 struct nds32_reg *reg_arch_info = reg->arch_info;
296 struct target *target = reg_arch_info->target;
297 struct nds32 *nds32 = target_to_nds32(target);
298 struct aice_port_s *aice = target_to_aice(target);
299 uint32_t value = buf_get_u32(buf, 0, 32);
300
301 if (target->state != TARGET_HALTED) {
302 LOG_ERROR("Target not halted");
303 return ERROR_TARGET_NOT_HALTED;
304 }
305
306 int mapped_regnum = nds32->register_map(nds32, reg_arch_info->num);
307
308 /* ignore values that will generate exception */
309 if (nds32_reg_exception(mapped_regnum, value))
310 return ERROR_OK;
311
312 LOG_DEBUG("writing register %i(%s) with value 0x%8.8" PRIx32,
313 reg_arch_info->num, reg->name, value);
314
315 if ((nds32->fpu_enable == false) &&
316 (NDS32_REG_TYPE_FPU == nds32_reg_type(mapped_regnum))) {
317
318 buf_set_u32(reg->value, 0, 32, 0);
319 } else if ((nds32->audio_enable == false) &&
320 (NDS32_REG_TYPE_AUMR == nds32_reg_type(mapped_regnum))) {
321
322 buf_set_u32(reg->value, 0, 32, 0);
323 } else {
324 buf_set_u32(reg->value, 0, 32, value);
325 aice_write_register(aice, mapped_regnum, reg_arch_info->value);
326
327 /* After set value to registers, read the value from target
328 * to avoid W1C inconsistency. */
329 aice_read_register(aice, mapped_regnum, &(reg_arch_info->value));
330 }
331
332 reg->valid = true;
333 reg->dirty = false;
334
335 /* update registers to take effect right now */
336 if (IR0 == mapped_regnum) {
337 nds32_update_psw(nds32);
338 } else if (MR0 == mapped_regnum) {
339 nds32_update_mmu_info(nds32);
340 } else if ((MR6 == mapped_regnum) || (MR7 == mapped_regnum)) {
341 /* update lm information */
342 nds32_update_lm_info(nds32);
343 } else if (MR8 == mapped_regnum) {
344 nds32_update_cache_info(nds32);
345 } else if (FUCPR == mapped_regnum) {
346 /* update audio/fpu setting */
347 nds32_check_extension(nds32);
348 }
349
350 return ERROR_OK;
351 }
352
353 static int nds32_set_core_reg_64(struct reg *reg, uint8_t *buf)
354 {
355 struct nds32_reg *reg_arch_info = reg->arch_info;
356 struct target *target = reg_arch_info->target;
357 struct nds32 *nds32 = target_to_nds32(target);
358 uint32_t low_part = buf_get_u32(buf, 0, 32);
359 uint32_t high_part = buf_get_u32(buf, 32, 32);
360
361 if (target->state != TARGET_HALTED) {
362 LOG_ERROR("Target not halted");
363 return ERROR_TARGET_NOT_HALTED;
364 }
365
366 if ((nds32->fpu_enable == false) &&
367 ((FD0 <= reg_arch_info->num) && (reg_arch_info->num <= FD31))) {
368
369 buf_set_u32(reg->value, 0, 32, 0);
370 buf_set_u32(reg->value, 32, 32, 0);
371
372 reg->valid = true;
373 reg->dirty = false;
374 } else {
375 buf_set_u32(reg->value, 0, 32, low_part);
376 buf_set_u32(reg->value, 32, 32, high_part);
377
378 reg->valid = true;
379 reg->dirty = true;
380 }
381
382 return ERROR_OK;
383 }
384
385 static const struct reg_arch_type nds32_reg_access_type = {
386 .get = nds32_get_core_reg,
387 .set = nds32_set_core_reg,
388 };
389
390 static const struct reg_arch_type nds32_reg_access_type_64 = {
391 .get = nds32_get_core_reg_64,
392 .set = nds32_set_core_reg_64,
393 };
394
395 static struct reg_cache *nds32_build_reg_cache(struct target *target,
396 struct nds32 *nds32)
397 {
398 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
399 struct reg *reg_list = calloc(TOTAL_REG_NUM, sizeof(struct reg));
400 struct nds32_reg *reg_arch_info = calloc(TOTAL_REG_NUM, sizeof(struct nds32_reg));
401 int i;
402
403 if (!cache || !reg_list || !reg_arch_info) {
404 free(cache);
405 free(reg_list);
406 free(reg_arch_info);
407 return NULL;
408 }
409
410 cache->name = "Andes registers";
411 cache->next = NULL;
412 cache->reg_list = reg_list;
413 cache->num_regs = 0;
414
415 for (i = 0; i < TOTAL_REG_NUM; i++) {
416 reg_arch_info[i].num = i;
417 reg_arch_info[i].target = target;
418 reg_arch_info[i].nds32 = nds32;
419 reg_arch_info[i].enable = false;
420
421 reg_list[i].name = nds32_reg_simple_name(i);
422 reg_list[i].number = reg_arch_info[i].num;
423 reg_list[i].size = nds32_reg_size(i);
424 reg_list[i].arch_info = &reg_arch_info[i];
425
426 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
427
428 if (FD0 <= reg_arch_info[i].num && reg_arch_info[i].num <= FD31) {
429 reg_list[i].value = &(reg_arch_info[i].value_64);
430 reg_list[i].type = &nds32_reg_access_type_64;
431
432 reg_list[i].reg_data_type->type = REG_TYPE_IEEE_DOUBLE;
433 reg_list[i].reg_data_type->id = "ieee_double";
434 reg_list[i].group = "float";
435 } else {
436 reg_list[i].value = &(reg_arch_info[i].value);
437 reg_list[i].type = &nds32_reg_access_type;
438 reg_list[i].group = "general";
439
440 if ((FS0 <= reg_arch_info[i].num) && (reg_arch_info[i].num <= FS31)) {
441 reg_list[i].reg_data_type->type = REG_TYPE_IEEE_SINGLE;
442 reg_list[i].reg_data_type->id = "ieee_single";
443 reg_list[i].group = "float";
444 } else if ((reg_arch_info[i].num == FPCSR) ||
445 (reg_arch_info[i].num == FPCFG)) {
446 reg_list[i].group = "float";
447 } else if ((reg_arch_info[i].num == R28) ||
448 (reg_arch_info[i].num == R29) ||
449 (reg_arch_info[i].num == R31)) {
450 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
451 reg_list[i].reg_data_type->id = "data_ptr";
452 } else if ((reg_arch_info[i].num == R30) ||
453 (reg_arch_info[i].num == PC)) {
454 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
455 reg_list[i].reg_data_type->id = "code_ptr";
456 } else {
457 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
458 reg_list[i].reg_data_type->id = "uint32";
459 }
460 }
461
462 if (R16 <= reg_arch_info[i].num && reg_arch_info[i].num <= R25)
463 reg_list[i].caller_save = true;
464 else
465 reg_list[i].caller_save = false;
466
467 reg_list[i].feature = malloc(sizeof(struct reg_feature));
468
469 if (R0 <= reg_arch_info[i].num && reg_arch_info[i].num <= IFC_LP)
470 reg_list[i].feature->name = "org.gnu.gdb.nds32.core";
471 else if (CR0 <= reg_arch_info[i].num && reg_arch_info[i].num <= SECUR0)
472 reg_list[i].feature->name = "org.gnu.gdb.nds32.system";
473 else if (D0L24 <= reg_arch_info[i].num && reg_arch_info[i].num <= CBE3)
474 reg_list[i].feature->name = "org.gnu.gdb.nds32.audio";
475 else if (FPCSR <= reg_arch_info[i].num && reg_arch_info[i].num <= FD31)
476 reg_list[i].feature->name = "org.gnu.gdb.nds32.fpu";
477
478 cache->num_regs++;
479 }
480
481 nds32->core_cache = cache;
482
483 return cache;
484 }
485
486 static int nds32_reg_cache_init(struct target *target, struct nds32 *nds32)
487 {
488 struct reg_cache *cache;
489
490 cache = nds32_build_reg_cache(target, nds32);
491 if (!cache)
492 return ERROR_FAIL;
493
494 *register_get_last_cache_p(&target->reg_cache) = cache;
495
496 return ERROR_OK;
497 }
498
499 static struct reg *nds32_reg_current(struct nds32 *nds32, unsigned regnum)
500 {
501 struct reg *r;
502
503 r = nds32->core_cache->reg_list + regnum;
504
505 return r;
506 }
507
508 int nds32_full_context(struct nds32 *nds32)
509 {
510 uint32_t value, value_ir0;
511
512 /* save $pc & $psw */
513 nds32_get_mapped_reg(nds32, PC, &value);
514 nds32_get_mapped_reg(nds32, IR0, &value_ir0);
515
516 nds32_update_psw(nds32);
517 nds32_update_mmu_info(nds32);
518 nds32_update_cache_info(nds32);
519 nds32_update_lm_info(nds32);
520
521 nds32_check_extension(nds32);
522
523 return ERROR_OK;
524 }
525
526 /* get register value internally */
527 int nds32_get_mapped_reg(struct nds32 *nds32, unsigned regnum, uint32_t *value)
528 {
529 struct reg_cache *reg_cache = nds32->core_cache;
530 struct reg *r;
531
532 if (regnum > reg_cache->num_regs)
533 return ERROR_FAIL;
534
535 r = nds32_reg_current(nds32, regnum);
536
537 if (ERROR_OK != r->type->get(r))
538 return ERROR_FAIL;
539
540 *value = buf_get_u32(r->value, 0, 32);
541
542 return ERROR_OK;
543 }
544
545 /** set register internally */
546 int nds32_set_mapped_reg(struct nds32 *nds32, unsigned regnum, uint32_t value)
547 {
548 struct reg_cache *reg_cache = nds32->core_cache;
549 struct reg *r;
550 uint8_t set_value[4];
551
552 if (regnum > reg_cache->num_regs)
553 return ERROR_FAIL;
554
555 r = nds32_reg_current(nds32, regnum);
556
557 buf_set_u32(set_value, 0, 32, value);
558
559 return r->type->set(r, set_value);
560 }
561
562 /** get general register list */
563 static int nds32_get_general_reg_list(struct nds32 *nds32,
564 struct reg **reg_list[], int *reg_list_size)
565 {
566 struct reg *reg_current;
567 int i;
568 int current_idx;
569
570 /** freed in gdb_server.c */
571 *reg_list = malloc(sizeof(struct reg *) * (IFC_LP - R0 + 1));
572 current_idx = 0;
573
574 for (i = R0; i < IFC_LP + 1; i++) {
575 reg_current = nds32_reg_current(nds32, i);
576 if (((struct nds32_reg *)reg_current->arch_info)->enable) {
577 (*reg_list)[current_idx] = reg_current;
578 current_idx++;
579 }
580 }
581 *reg_list_size = current_idx;
582
583 return ERROR_OK;
584 }
585
586 /** get all register list */
587 static int nds32_get_all_reg_list(struct nds32 *nds32,
588 struct reg **reg_list[], int *reg_list_size)
589 {
590 struct reg_cache *reg_cache = nds32->core_cache;
591 struct reg *reg_current;
592 unsigned int i;
593
594 *reg_list_size = reg_cache->num_regs;
595
596 /** freed in gdb_server.c */
597 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
598
599 for (i = 0; i < reg_cache->num_regs; i++) {
600 reg_current = nds32_reg_current(nds32, i);
601 reg_current->exist = ((struct nds32_reg *)
602 reg_current->arch_info)->enable;
603 (*reg_list)[i] = reg_current;
604 }
605
606 return ERROR_OK;
607 }
608
609 /** get all register list */
610 int nds32_get_gdb_reg_list(struct target *target,
611 struct reg **reg_list[], int *reg_list_size,
612 enum target_register_class reg_class)
613 {
614 struct nds32 *nds32 = target_to_nds32(target);
615
616 switch (reg_class) {
617 case REG_CLASS_ALL:
618 return nds32_get_all_reg_list(nds32, reg_list, reg_list_size);
619 case REG_CLASS_GENERAL:
620 return nds32_get_general_reg_list(nds32, reg_list, reg_list_size);
621 default:
622 return ERROR_FAIL;
623 }
624
625 return ERROR_FAIL;
626 }
627
628 static int nds32_select_memory_mode(struct target *target, uint32_t address,
629 uint32_t length, uint32_t *end_address)
630 {
631 struct nds32 *nds32 = target_to_nds32(target);
632 struct aice_port_s *aice = target_to_aice(target);
633 struct nds32_memory *memory = &(nds32->memory);
634 struct nds32_edm *edm = &(nds32->edm);
635 uint32_t dlm_start, dlm_end;
636 uint32_t ilm_start, ilm_end;
637 uint32_t address_end = address + length;
638
639 /* init end_address */
640 *end_address = address_end;
641
642 if (NDS_MEMORY_ACC_CPU == memory->access_channel)
643 return ERROR_OK;
644
645 if (edm->access_control == false) {
646 LOG_DEBUG("EDM does not support ACC_CTL");
647 return ERROR_OK;
648 }
649
650 if (edm->direct_access_local_memory == false) {
651 LOG_DEBUG("EDM does not support DALM");
652 aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
653 return ERROR_OK;
654 }
655
656 if (NDS_MEMORY_SELECT_AUTO != memory->mode) {
657 LOG_DEBUG("Memory mode is not AUTO");
658 return ERROR_OK;
659 }
660
661 /* set default mode */
662 aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
663
664 if ((memory->ilm_base != 0) && (memory->ilm_enable == true)) {
665 ilm_start = memory->ilm_start;
666 ilm_end = memory->ilm_end;
667
668 /* case 1, address < ilm_start */
669 if (address < ilm_start) {
670 if (ilm_start < address_end) {
671 /* update end_address to split non-ILM from ILM */
672 *end_address = ilm_start;
673 }
674 /* MEM mode */
675 aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
676 } else if ((ilm_start <= address) && (address < ilm_end)) {
677 /* case 2, ilm_start <= address < ilm_end */
678 if (ilm_end < address_end) {
679 /* update end_address to split non-ILM from ILM */
680 *end_address = ilm_end;
681 }
682 /* ILM mode */
683 aice_memory_mode(aice, NDS_MEMORY_SELECT_ILM);
684 } else { /* case 3, ilm_end <= address */
685 /* MEM mode */
686 aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
687 }
688
689 return ERROR_OK;
690 } else {
691 LOG_DEBUG("ILM is not enabled");
692 }
693
694 if ((memory->dlm_base != 0) && (memory->dlm_enable == true)) {
695 dlm_start = memory->dlm_start;
696 dlm_end = memory->dlm_end;
697
698 /* case 1, address < dlm_start */
699 if (address < dlm_start) {
700 if (dlm_start < address_end) {
701 /* update end_address to split non-DLM from DLM */
702 *end_address = dlm_start;
703 }
704 /* MEM mode */
705 aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
706 } else if ((dlm_start <= address) && (address < dlm_end)) {
707 /* case 2, dlm_start <= address < dlm_end */
708 if (dlm_end < address_end) {
709 /* update end_address to split non-DLM from DLM */
710 *end_address = dlm_end;
711 }
712 /* DLM mode */
713 aice_memory_mode(aice, NDS_MEMORY_SELECT_DLM);
714 } else { /* case 3, dlm_end <= address */
715 /* MEM mode */
716 aice_memory_mode(aice, NDS_MEMORY_SELECT_MEM);
717 }
718
719 return ERROR_OK;
720 } else {
721 LOG_DEBUG("DLM is not enabled");
722 }
723
724 return ERROR_OK;
725 }
726
727 int nds32_read_buffer(struct target *target, uint32_t address,
728 uint32_t size, uint8_t *buffer)
729 {
730 struct nds32 *nds32 = target_to_nds32(target);
731 struct nds32_memory *memory = &(nds32->memory);
732
733 if ((NDS_MEMORY_ACC_CPU == memory->access_channel) &&
734 (target->state != TARGET_HALTED)) {
735 LOG_WARNING("target was not halted");
736 return ERROR_TARGET_NOT_HALTED;
737 }
738
739 LOG_DEBUG("READ BUFFER: ADDR %08" PRIx32 " SIZE %08" PRIx32,
740 address,
741 size);
742
743 int retval = ERROR_OK;
744 struct aice_port_s *aice = target_to_aice(target);
745 uint32_t end_address;
746
747 if (((address % 2) == 0) && (size == 2)) {
748 nds32_select_memory_mode(target, address, 2, &end_address);
749 return aice_read_mem_unit(aice, address, 2, 1, buffer);
750 }
751
752 /* handle unaligned head bytes */
753 if (address % 4) {
754 uint32_t unaligned = 4 - (address % 4);
755
756 if (unaligned > size)
757 unaligned = size;
758
759 nds32_select_memory_mode(target, address, unaligned, &end_address);
760 retval = aice_read_mem_unit(aice, address, 1, unaligned, buffer);
761 if (retval != ERROR_OK)
762 return retval;
763
764 buffer += unaligned;
765 address += unaligned;
766 size -= unaligned;
767 }
768
769 /* handle aligned words */
770 if (size >= 4) {
771 int aligned = size - (size % 4);
772 int read_len;
773
774 do {
775 nds32_select_memory_mode(target, address, aligned, &end_address);
776
777 read_len = end_address - address;
778
779 if (read_len > 8)
780 retval = aice_read_mem_bulk(aice, address, read_len, buffer);
781 else
782 retval = aice_read_mem_unit(aice, address, 4, read_len / 4, buffer);
783
784 if (retval != ERROR_OK)
785 return retval;
786
787 buffer += read_len;
788 address += read_len;
789 size -= read_len;
790 aligned -= read_len;
791
792 } while (aligned != 0);
793 }
794
795 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
796 if (size >= 2) {
797 int aligned = size - (size % 2);
798 nds32_select_memory_mode(target, address, aligned, &end_address);
799 retval = aice_read_mem_unit(aice, address, 2, aligned / 2, buffer);
800 if (retval != ERROR_OK)
801 return retval;
802
803 buffer += aligned;
804 address += aligned;
805 size -= aligned;
806 }
807 /* handle tail writes of less than 4 bytes */
808 if (size > 0) {
809 nds32_select_memory_mode(target, address, size, &end_address);
810 retval = aice_read_mem_unit(aice, address, 1, size, buffer);
811 if (retval != ERROR_OK)
812 return retval;
813 }
814
815 return ERROR_OK;
816 }
817
818 int nds32_read_memory(struct target *target, uint32_t address,
819 uint32_t size, uint32_t count, uint8_t *buffer)
820 {
821 struct aice_port_s *aice = target_to_aice(target);
822
823 return aice_read_mem_unit(aice, address, size, count, buffer);
824 }
825
826 int nds32_read_phys_memory(struct target *target, uint32_t address,
827 uint32_t size, uint32_t count, uint8_t *buffer)
828 {
829 struct aice_port_s *aice = target_to_aice(target);
830 struct nds32 *nds32 = target_to_nds32(target);
831 struct nds32_memory *memory = &(nds32->memory);
832 enum nds_memory_access orig_channel;
833 int result;
834
835 /* switch to BUS access mode to skip MMU */
836 orig_channel = memory->access_channel;
837 memory->access_channel = NDS_MEMORY_ACC_BUS;
838 aice_memory_access(aice, memory->access_channel);
839
840 /* The input address is physical address. No need to do address translation. */
841 result = aice_read_mem_unit(aice, address, size, count, buffer);
842
843 /* restore to origin access mode */
844 memory->access_channel = orig_channel;
845 aice_memory_access(aice, memory->access_channel);
846
847 return result;
848 }
849
850 int nds32_write_buffer(struct target *target, uint32_t address,
851 uint32_t size, const uint8_t *buffer)
852 {
853 struct nds32 *nds32 = target_to_nds32(target);
854 struct nds32_memory *memory = &(nds32->memory);
855
856 if ((NDS_MEMORY_ACC_CPU == memory->access_channel) &&
857 (target->state != TARGET_HALTED)) {
858 LOG_WARNING("target was not halted");
859 return ERROR_TARGET_NOT_HALTED;
860 }
861
862 LOG_DEBUG("WRITE BUFFER: ADDR %08" PRIx32 " SIZE %08" PRIx32,
863 address,
864 size);
865
866 struct aice_port_s *aice = target_to_aice(target);
867 int retval = ERROR_OK;
868 uint32_t end_address;
869
870 if (((address % 2) == 0) && (size == 2)) {
871 nds32_select_memory_mode(target, address, 2, &end_address);
872 return aice_write_mem_unit(aice, address, 2, 1, buffer);
873 }
874
875 /* handle unaligned head bytes */
876 if (address % 4) {
877 uint32_t unaligned = 4 - (address % 4);
878
879 if (unaligned > size)
880 unaligned = size;
881
882 nds32_select_memory_mode(target, address, unaligned, &end_address);
883 retval = aice_write_mem_unit(aice, address, 1, unaligned, buffer);
884 if (retval != ERROR_OK)
885 return retval;
886
887 buffer += unaligned;
888 address += unaligned;
889 size -= unaligned;
890 }
891
892 /* handle aligned words */
893 if (size >= 4) {
894 int aligned = size - (size % 4);
895 int write_len;
896
897 do {
898 nds32_select_memory_mode(target, address, aligned, &end_address);
899
900 write_len = end_address - address;
901 if (write_len > 8)
902 retval = aice_write_mem_bulk(aice, address, write_len, buffer);
903 else
904 retval = aice_write_mem_unit(aice, address, 4, write_len / 4, buffer);
905 if (retval != ERROR_OK)
906 return retval;
907
908 buffer += write_len;
909 address += write_len;
910 size -= write_len;
911 aligned -= write_len;
912
913 } while (aligned != 0);
914 }
915
916 /* handle tail writes of less than 4 bytes */
917 if (size > 0) {
918 nds32_select_memory_mode(target, address, size, &end_address);
919 retval = aice_write_mem_unit(aice, address, 1, size, buffer);
920 if (retval != ERROR_OK)
921 return retval;
922 }
923
924 return retval;
925 }
926
927 int nds32_write_memory(struct target *target, uint32_t address,
928 uint32_t size, uint32_t count, const uint8_t *buffer)
929 {
930 struct aice_port_s *aice = target_to_aice(target);
931
932 return aice_write_mem_unit(aice, address, size, count, buffer);
933 }
934
935 int nds32_write_phys_memory(struct target *target, uint32_t address,
936 uint32_t size, uint32_t count, const uint8_t *buffer)
937 {
938 struct aice_port_s *aice = target_to_aice(target);
939 struct nds32 *nds32 = target_to_nds32(target);
940 struct nds32_memory *memory = &(nds32->memory);
941 enum nds_memory_access orig_channel;
942 int result;
943
944 /* switch to BUS access mode to skip MMU */
945 orig_channel = memory->access_channel;
946 memory->access_channel = NDS_MEMORY_ACC_BUS;
947 aice_memory_access(aice, memory->access_channel);
948
949 /* The input address is physical address. No need to do address translation. */
950 result = aice_write_mem_unit(aice, address, size, count, buffer);
951
952 /* restore to origin access mode */
953 memory->access_channel = orig_channel;
954 aice_memory_access(aice, memory->access_channel);
955
956 return result;
957 }
958
959 int nds32_mmu(struct target *target, int *enabled)
960 {
961 if (target->state != TARGET_HALTED) {
962 LOG_ERROR("%s: target not halted", __func__);
963 return ERROR_TARGET_INVALID;
964 }
965
966 struct nds32 *nds32 = target_to_nds32(target);
967 struct nds32_memory *memory = &(nds32->memory);
968 struct nds32_mmu_config *mmu_config = &(nds32->mmu_config);
969
970 if ((mmu_config->memory_protection == 2) && (memory->address_translation == true))
971 *enabled = 1;
972 else
973 *enabled = 0;
974
975 return ERROR_OK;
976 }
977
978 int nds32_arch_state(struct target *target)
979 {
980 struct nds32 *nds32 = target_to_nds32(target);
981
982 if (nds32->common_magic != NDS32_COMMON_MAGIC) {
983 LOG_ERROR("BUG: called for a non-Andes target");
984 return ERROR_FAIL;
985 }
986
987 uint32_t value_pc, value_psw;
988
989 nds32_get_mapped_reg(nds32, PC, &value_pc);
990 nds32_get_mapped_reg(nds32, IR0, &value_psw);
991
992 LOG_USER("target halted due to %s\n"
993 "psw: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s",
994 debug_reason_name(target),
995 value_psw,
996 value_pc,
997 nds32->virtual_hosting ? ", virtual hosting" : "");
998
999 /* save pc value to pseudo register pc */
1000 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1001 buf_set_u32(reg->value, 0, 32, value_pc);
1002
1003 return ERROR_OK;
1004 }
1005
1006 static void nds32_init_must_have_registers(struct nds32 *nds32)
1007 {
1008 struct reg_cache *reg_cache = nds32->core_cache;
1009
1010 /** MUST have general registers */
1011 ((struct nds32_reg *)reg_cache->reg_list[R0].arch_info)->enable = true;
1012 ((struct nds32_reg *)reg_cache->reg_list[R1].arch_info)->enable = true;
1013 ((struct nds32_reg *)reg_cache->reg_list[R2].arch_info)->enable = true;
1014 ((struct nds32_reg *)reg_cache->reg_list[R3].arch_info)->enable = true;
1015 ((struct nds32_reg *)reg_cache->reg_list[R4].arch_info)->enable = true;
1016 ((struct nds32_reg *)reg_cache->reg_list[R5].arch_info)->enable = true;
1017 ((struct nds32_reg *)reg_cache->reg_list[R6].arch_info)->enable = true;
1018 ((struct nds32_reg *)reg_cache->reg_list[R7].arch_info)->enable = true;
1019 ((struct nds32_reg *)reg_cache->reg_list[R8].arch_info)->enable = true;
1020 ((struct nds32_reg *)reg_cache->reg_list[R9].arch_info)->enable = true;
1021 ((struct nds32_reg *)reg_cache->reg_list[R10].arch_info)->enable = true;
1022 ((struct nds32_reg *)reg_cache->reg_list[R15].arch_info)->enable = true;
1023 ((struct nds32_reg *)reg_cache->reg_list[R28].arch_info)->enable = true;
1024 ((struct nds32_reg *)reg_cache->reg_list[R29].arch_info)->enable = true;
1025 ((struct nds32_reg *)reg_cache->reg_list[R30].arch_info)->enable = true;
1026 ((struct nds32_reg *)reg_cache->reg_list[R31].arch_info)->enable = true;
1027 ((struct nds32_reg *)reg_cache->reg_list[PC].arch_info)->enable = true;
1028
1029 /** MUST have configuration system registers */
1030 ((struct nds32_reg *)reg_cache->reg_list[CR0].arch_info)->enable = true;
1031 ((struct nds32_reg *)reg_cache->reg_list[CR1].arch_info)->enable = true;
1032 ((struct nds32_reg *)reg_cache->reg_list[CR2].arch_info)->enable = true;
1033 ((struct nds32_reg *)reg_cache->reg_list[CR3].arch_info)->enable = true;
1034 ((struct nds32_reg *)reg_cache->reg_list[CR4].arch_info)->enable = true;
1035
1036 /** MUST have interrupt system registers */
1037 ((struct nds32_reg *)reg_cache->reg_list[IR0].arch_info)->enable = true;
1038 ((struct nds32_reg *)reg_cache->reg_list[IR1].arch_info)->enable = true;
1039 ((struct nds32_reg *)reg_cache->reg_list[IR3].arch_info)->enable = true;
1040 ((struct nds32_reg *)reg_cache->reg_list[IR4].arch_info)->enable = true;
1041 ((struct nds32_reg *)reg_cache->reg_list[IR6].arch_info)->enable = true;
1042 ((struct nds32_reg *)reg_cache->reg_list[IR9].arch_info)->enable = true;
1043 ((struct nds32_reg *)reg_cache->reg_list[IR11].arch_info)->enable = true;
1044 ((struct nds32_reg *)reg_cache->reg_list[IR14].arch_info)->enable = true;
1045 ((struct nds32_reg *)reg_cache->reg_list[IR15].arch_info)->enable = true;
1046
1047 /** MUST have MMU system registers */
1048 ((struct nds32_reg *)reg_cache->reg_list[MR0].arch_info)->enable = true;
1049
1050 /** MUST have EDM system registers */
1051 ((struct nds32_reg *)reg_cache->reg_list[DR40].arch_info)->enable = true;
1052 ((struct nds32_reg *)reg_cache->reg_list[DR42].arch_info)->enable = true;
1053 }
1054
1055 static int nds32_init_memory_config(struct nds32 *nds32)
1056 {
1057 uint32_t value_cr1; /* ICM_CFG */
1058 uint32_t value_cr2; /* DCM_CFG */
1059 struct nds32_memory *memory = &(nds32->memory);
1060
1061 /* read $cr1 to init instruction memory information */
1062 nds32_get_mapped_reg(nds32, CR1, &value_cr1);
1063 memory->icache.set = value_cr1 & 0x7;
1064 memory->icache.way = (value_cr1 >> 3) & 0x7;
1065 memory->icache.line_size = (value_cr1 >> 6) & 0x7;
1066 memory->icache.lock_support = (value_cr1 >> 9) & 0x1;
1067
1068 memory->ilm_base = (value_cr1 >> 10) & 0x7;
1069 memory->ilm_align_ver = (value_cr1 >> 13) & 0x3;
1070
1071 /* read $cr2 to init data memory information */
1072 nds32_get_mapped_reg(nds32, CR2, &value_cr2);
1073 memory->dcache.set = value_cr2 & 0x7;
1074 memory->dcache.way = (value_cr2 >> 3) & 0x7;
1075 memory->dcache.line_size = (value_cr2 >> 6) & 0x7;
1076 memory->dcache.lock_support = (value_cr2 >> 9) & 0x1;
1077
1078 memory->dlm_base = (value_cr2 >> 10) & 0x7;
1079 memory->dlm_align_ver = (value_cr2 >> 13) & 0x3;
1080
1081 return ERROR_OK;
1082 }
1083
1084 static void nds32_init_config(struct nds32 *nds32)
1085 {
1086 uint32_t value_cr0;
1087 uint32_t value_cr3;
1088 uint32_t value_cr4;
1089 struct nds32_cpu_version *cpu_version = &(nds32->cpu_version);
1090 struct nds32_mmu_config *mmu_config = &(nds32->mmu_config);
1091 struct nds32_misc_config *misc_config = &(nds32->misc_config);
1092
1093 nds32_get_mapped_reg(nds32, CR0, &value_cr0);
1094 nds32_get_mapped_reg(nds32, CR3, &value_cr3);
1095 nds32_get_mapped_reg(nds32, CR4, &value_cr4);
1096
1097 /* config cpu version */
1098 cpu_version->performance_extension = value_cr0 & 0x1;
1099 cpu_version->_16bit_extension = (value_cr0 >> 1) & 0x1;
1100 cpu_version->performance_extension_2 = (value_cr0 >> 2) & 0x1;
1101 cpu_version->cop_fpu_extension = (value_cr0 >> 3) & 0x1;
1102 cpu_version->string_extension = (value_cr0 >> 4) & 0x1;
1103 cpu_version->revision = (value_cr0 >> 16) & 0xFF;
1104 cpu_version->cpu_id_family = (value_cr0 >> 24) & 0xF;
1105 cpu_version->cpu_id_version = (value_cr0 >> 28) & 0xF;
1106
1107 /* config MMU */
1108 mmu_config->memory_protection = value_cr3 & 0x3;
1109 mmu_config->memory_protection_version = (value_cr3 >> 2) & 0x1F;
1110 mmu_config->fully_associative_tlb = (value_cr3 >> 7) & 0x1;
1111 if (mmu_config->fully_associative_tlb) {
1112 mmu_config->tlb_size = (value_cr3 >> 8) & 0x7F;
1113 } else {
1114 mmu_config->tlb_ways = (value_cr3 >> 8) & 0x7;
1115 mmu_config->tlb_sets = (value_cr3 >> 11) & 0x7;
1116 }
1117 mmu_config->_8k_page_support = (value_cr3 >> 15) & 0x1;
1118 mmu_config->extra_page_size_support = (value_cr3 >> 16) & 0xFF;
1119 mmu_config->tlb_lock = (value_cr3 >> 24) & 0x1;
1120 mmu_config->hardware_page_table_walker = (value_cr3 >> 25) & 0x1;
1121 mmu_config->default_endian = (value_cr3 >> 26) & 0x1;
1122 mmu_config->partition_num = (value_cr3 >> 27) & 0x1;
1123 mmu_config->invisible_tlb = (value_cr3 >> 28) & 0x1;
1124 mmu_config->vlpt = (value_cr3 >> 29) & 0x1;
1125 mmu_config->ntme = (value_cr3 >> 30) & 0x1;
1126 mmu_config->drde = (value_cr3 >> 31) & 0x1;
1127
1128 /* config misc */
1129 misc_config->edm = value_cr4 & 0x1;
1130 misc_config->local_memory_dma = (value_cr4 >> 1) & 0x1;
1131 misc_config->performance_monitor = (value_cr4 >> 2) & 0x1;
1132 misc_config->high_speed_memory_port = (value_cr4 >> 3) & 0x1;
1133 misc_config->debug_tracer = (value_cr4 >> 4) & 0x1;
1134 misc_config->div_instruction = (value_cr4 >> 5) & 0x1;
1135 misc_config->mac_instruction = (value_cr4 >> 6) & 0x1;
1136 misc_config->audio_isa = (value_cr4 >> 7) & 0x3;
1137 misc_config->L2_cache = (value_cr4 >> 9) & 0x1;
1138 misc_config->reduce_register = (value_cr4 >> 10) & 0x1;
1139 misc_config->addr_24 = (value_cr4 >> 11) & 0x1;
1140 misc_config->interruption_level = (value_cr4 >> 12) & 0x1;
1141 misc_config->baseline_instruction = (value_cr4 >> 13) & 0x7;
1142 misc_config->no_dx_register = (value_cr4 >> 16) & 0x1;
1143 misc_config->implement_dependant_register = (value_cr4 >> 17) & 0x1;
1144 misc_config->implement_dependant_sr_encoding = (value_cr4 >> 18) & 0x1;
1145 misc_config->ifc = (value_cr4 >> 19) & 0x1;
1146 misc_config->mcu = (value_cr4 >> 20) & 0x1;
1147 misc_config->shadow = (value_cr4 >> 21) & 0x7;
1148 misc_config->ex9 = (value_cr4 >> 24) & 0x1;
1149
1150 nds32_init_memory_config(nds32);
1151 }
1152
1153 static int nds32_init_option_registers(struct nds32 *nds32)
1154 {
1155 struct reg_cache *reg_cache = nds32->core_cache;
1156 struct nds32_cpu_version *cpu_version = &(nds32->cpu_version);
1157 struct nds32_mmu_config *mmu_config = &(nds32->mmu_config);
1158 struct nds32_misc_config *misc_config = &(nds32->misc_config);
1159 struct nds32_memory *memory_config = &(nds32->memory);
1160
1161 bool no_cr5;
1162 bool mr10_exist;
1163 bool no_racr0;
1164
1165 if (((cpu_version->cpu_id_family == 0xC) || (cpu_version->cpu_id_family == 0xD)) &&
1166 ((cpu_version->revision & 0xFC) == 0)) {
1167 no_cr5 = true;
1168 mr10_exist = true;
1169 no_racr0 = true;
1170 } else {
1171 no_cr5 = false;
1172 mr10_exist = false;
1173 no_racr0 = false;
1174 }
1175
1176 if (misc_config->reduce_register == false) {
1177 ((struct nds32_reg *)reg_cache->reg_list[R11].arch_info)->enable = true;
1178 ((struct nds32_reg *)reg_cache->reg_list[R12].arch_info)->enable = true;
1179 ((struct nds32_reg *)reg_cache->reg_list[R13].arch_info)->enable = true;
1180 ((struct nds32_reg *)reg_cache->reg_list[R14].arch_info)->enable = true;
1181 ((struct nds32_reg *)reg_cache->reg_list[R16].arch_info)->enable = true;
1182 ((struct nds32_reg *)reg_cache->reg_list[R17].arch_info)->enable = true;
1183 ((struct nds32_reg *)reg_cache->reg_list[R18].arch_info)->enable = true;
1184 ((struct nds32_reg *)reg_cache->reg_list[R19].arch_info)->enable = true;
1185 ((struct nds32_reg *)reg_cache->reg_list[R20].arch_info)->enable = true;
1186 ((struct nds32_reg *)reg_cache->reg_list[R21].arch_info)->enable = true;
1187 ((struct nds32_reg *)reg_cache->reg_list[R22].arch_info)->enable = true;
1188 ((struct nds32_reg *)reg_cache->reg_list[R23].arch_info)->enable = true;
1189 ((struct nds32_reg *)reg_cache->reg_list[R24].arch_info)->enable = true;
1190 ((struct nds32_reg *)reg_cache->reg_list[R25].arch_info)->enable = true;
1191 ((struct nds32_reg *)reg_cache->reg_list[R26].arch_info)->enable = true;
1192 ((struct nds32_reg *)reg_cache->reg_list[R27].arch_info)->enable = true;
1193 }
1194
1195 if (misc_config->no_dx_register == false) {
1196 ((struct nds32_reg *)reg_cache->reg_list[D0LO].arch_info)->enable = true;
1197 ((struct nds32_reg *)reg_cache->reg_list[D0HI].arch_info)->enable = true;
1198 ((struct nds32_reg *)reg_cache->reg_list[D1LO].arch_info)->enable = true;
1199 ((struct nds32_reg *)reg_cache->reg_list[D1HI].arch_info)->enable = true;
1200 }
1201
1202 if (misc_config->ex9)
1203 ((struct nds32_reg *)reg_cache->reg_list[ITB].arch_info)->enable = true;
1204
1205 if (no_cr5 == false)
1206 ((struct nds32_reg *)reg_cache->reg_list[CR5].arch_info)->enable = true;
1207
1208 if (cpu_version->cop_fpu_extension) {
1209 ((struct nds32_reg *)reg_cache->reg_list[CR6].arch_info)->enable = true;
1210 ((struct nds32_reg *)reg_cache->reg_list[FPCSR].arch_info)->enable = true;
1211 ((struct nds32_reg *)reg_cache->reg_list[FPCFG].arch_info)->enable = true;
1212 }
1213
1214 if (mmu_config->memory_protection == 1) {
1215 /* Secure MPU has no IPC, IPSW, P_ITYPE */
1216 ((struct nds32_reg *)reg_cache->reg_list[IR1].arch_info)->enable = false;
1217 ((struct nds32_reg *)reg_cache->reg_list[IR9].arch_info)->enable = false;
1218 }
1219
1220 if (nds32->privilege_level != 0)
1221 ((struct nds32_reg *)reg_cache->reg_list[IR3].arch_info)->enable = false;
1222
1223 if (misc_config->mcu == true)
1224 ((struct nds32_reg *)reg_cache->reg_list[IR4].arch_info)->enable = false;
1225
1226 if (misc_config->interruption_level == false) {
1227 ((struct nds32_reg *)reg_cache->reg_list[IR2].arch_info)->enable = true;
1228 ((struct nds32_reg *)reg_cache->reg_list[IR5].arch_info)->enable = true;
1229 ((struct nds32_reg *)reg_cache->reg_list[IR10].arch_info)->enable = true;
1230 ((struct nds32_reg *)reg_cache->reg_list[IR12].arch_info)->enable = true;
1231 ((struct nds32_reg *)reg_cache->reg_list[IR13].arch_info)->enable = true;
1232
1233 /* Secure MPU has no IPC, IPSW, P_ITYPE */
1234 if (mmu_config->memory_protection != 1)
1235 ((struct nds32_reg *)reg_cache->reg_list[IR7].arch_info)->enable = true;
1236 }
1237
1238 if ((cpu_version->cpu_id_family == 0x9) ||
1239 (cpu_version->cpu_id_family == 0xA) ||
1240 (cpu_version->cpu_id_family == 0xC) ||
1241 (cpu_version->cpu_id_family == 0xD))
1242 ((struct nds32_reg *)reg_cache->reg_list[IR8].arch_info)->enable = true;
1243
1244 if (misc_config->shadow == 1) {
1245 ((struct nds32_reg *)reg_cache->reg_list[IR16].arch_info)->enable = true;
1246 ((struct nds32_reg *)reg_cache->reg_list[IR17].arch_info)->enable = true;
1247 }
1248
1249 if (misc_config->ifc)
1250 ((struct nds32_reg *)reg_cache->reg_list[IFC_LP].arch_info)->enable = true;
1251
1252 if (nds32->privilege_level != 0)
1253 ((struct nds32_reg *)reg_cache->reg_list[MR0].arch_info)->enable = false;
1254
1255 if (mmu_config->memory_protection == 1) {
1256 if (mmu_config->memory_protection_version == 24)
1257 ((struct nds32_reg *)reg_cache->reg_list[MR4].arch_info)->enable = true;
1258
1259 if (nds32->privilege_level == 0) {
1260 if ((mmu_config->memory_protection_version == 16) ||
1261 (mmu_config->memory_protection_version == 24)) {
1262 ((struct nds32_reg *)reg_cache->reg_list[MR11].arch_info)->enable = true;
1263 ((struct nds32_reg *)reg_cache->reg_list[SECUR0].arch_info)->enable = true;
1264 ((struct nds32_reg *)reg_cache->reg_list[IR20].arch_info)->enable = true;
1265 ((struct nds32_reg *)reg_cache->reg_list[IR22].arch_info)->enable = true;
1266 ((struct nds32_reg *)reg_cache->reg_list[IR24].arch_info)->enable = true;
1267 ((struct nds32_reg *)reg_cache->reg_list[IR30].arch_info)->enable = true;
1268
1269 if (misc_config->shadow == 1) {
1270 ((struct nds32_reg *)reg_cache->reg_list[IR21].arch_info)->enable = true;
1271 ((struct nds32_reg *)reg_cache->reg_list[IR23].arch_info)->enable = true;
1272 ((struct nds32_reg *)reg_cache->reg_list[IR25].arch_info)->enable = true;
1273 }
1274 }
1275 }
1276 } else if (mmu_config->memory_protection == 2) {
1277 ((struct nds32_reg *)reg_cache->reg_list[MR1].arch_info)->enable = true;
1278 ((struct nds32_reg *)reg_cache->reg_list[MR4].arch_info)->enable = true;
1279
1280 if ((cpu_version->cpu_id_family != 0xA) && (cpu_version->cpu_id_family != 0xC) &&
1281 (cpu_version->cpu_id_family != 0xD))
1282 ((struct nds32_reg *)reg_cache->reg_list[MR5].arch_info)->enable = true;
1283 }
1284
1285 if (mmu_config->memory_protection > 0) {
1286 ((struct nds32_reg *)reg_cache->reg_list[MR2].arch_info)->enable = true;
1287 ((struct nds32_reg *)reg_cache->reg_list[MR3].arch_info)->enable = true;
1288 }
1289
1290 if (memory_config->ilm_base != 0)
1291 if (nds32->privilege_level == 0)
1292 ((struct nds32_reg *)reg_cache->reg_list[MR6].arch_info)->enable = true;
1293
1294 if (memory_config->dlm_base != 0)
1295 if (nds32->privilege_level == 0)
1296 ((struct nds32_reg *)reg_cache->reg_list[MR7].arch_info)->enable = true;
1297
1298 if ((memory_config->icache.line_size != 0) && (memory_config->dcache.line_size != 0))
1299 ((struct nds32_reg *)reg_cache->reg_list[MR8].arch_info)->enable = true;
1300
1301 if (misc_config->high_speed_memory_port)
1302 ((struct nds32_reg *)reg_cache->reg_list[MR9].arch_info)->enable = true;
1303
1304 if (mr10_exist)
1305 ((struct nds32_reg *)reg_cache->reg_list[MR10].arch_info)->enable = true;
1306
1307 if (misc_config->edm) {
1308 int dr_reg_n = nds32->edm.breakpoint_num * 5;
1309
1310 for (int i = 0 ; i < dr_reg_n ; i++)
1311 ((struct nds32_reg *)reg_cache->reg_list[DR0 + i].arch_info)->enable = true;
1312
1313 ((struct nds32_reg *)reg_cache->reg_list[DR41].arch_info)->enable = true;
1314 ((struct nds32_reg *)reg_cache->reg_list[DR43].arch_info)->enable = true;
1315 ((struct nds32_reg *)reg_cache->reg_list[DR44].arch_info)->enable = true;
1316 ((struct nds32_reg *)reg_cache->reg_list[DR45].arch_info)->enable = true;
1317 }
1318
1319 if (misc_config->debug_tracer) {
1320 ((struct nds32_reg *)reg_cache->reg_list[DR46].arch_info)->enable = true;
1321 ((struct nds32_reg *)reg_cache->reg_list[DR47].arch_info)->enable = true;
1322 }
1323
1324 if (misc_config->performance_monitor) {
1325 ((struct nds32_reg *)reg_cache->reg_list[PFR0].arch_info)->enable = true;
1326 ((struct nds32_reg *)reg_cache->reg_list[PFR1].arch_info)->enable = true;
1327 ((struct nds32_reg *)reg_cache->reg_list[PFR2].arch_info)->enable = true;
1328 ((struct nds32_reg *)reg_cache->reg_list[PFR3].arch_info)->enable = true;
1329 }
1330
1331 if (misc_config->local_memory_dma) {
1332 ((struct nds32_reg *)reg_cache->reg_list[DMAR0].arch_info)->enable = true;
1333 ((struct nds32_reg *)reg_cache->reg_list[DMAR1].arch_info)->enable = true;
1334 ((struct nds32_reg *)reg_cache->reg_list[DMAR2].arch_info)->enable = true;
1335 ((struct nds32_reg *)reg_cache->reg_list[DMAR3].arch_info)->enable = true;
1336 ((struct nds32_reg *)reg_cache->reg_list[DMAR4].arch_info)->enable = true;
1337 ((struct nds32_reg *)reg_cache->reg_list[DMAR5].arch_info)->enable = true;
1338 ((struct nds32_reg *)reg_cache->reg_list[DMAR6].arch_info)->enable = true;
1339 ((struct nds32_reg *)reg_cache->reg_list[DMAR7].arch_info)->enable = true;
1340 ((struct nds32_reg *)reg_cache->reg_list[DMAR8].arch_info)->enable = true;
1341 ((struct nds32_reg *)reg_cache->reg_list[DMAR9].arch_info)->enable = true;
1342 ((struct nds32_reg *)reg_cache->reg_list[DMAR10].arch_info)->enable = true;
1343 }
1344
1345 if ((misc_config->local_memory_dma || misc_config->performance_monitor) &&
1346 (no_racr0 == false))
1347 ((struct nds32_reg *)reg_cache->reg_list[RACR].arch_info)->enable = true;
1348
1349 if (cpu_version->cop_fpu_extension || (misc_config->audio_isa != 0))
1350 ((struct nds32_reg *)reg_cache->reg_list[FUCPR].arch_info)->enable = true;
1351
1352 if (misc_config->audio_isa != 0) {
1353 if (misc_config->audio_isa > 1) {
1354 ((struct nds32_reg *)reg_cache->reg_list[D0L24].arch_info)->enable = true;
1355 ((struct nds32_reg *)reg_cache->reg_list[D1L24].arch_info)->enable = true;
1356 }
1357
1358 ((struct nds32_reg *)reg_cache->reg_list[I0].arch_info)->enable = true;
1359 ((struct nds32_reg *)reg_cache->reg_list[I1].arch_info)->enable = true;
1360 ((struct nds32_reg *)reg_cache->reg_list[I2].arch_info)->enable = true;
1361 ((struct nds32_reg *)reg_cache->reg_list[I3].arch_info)->enable = true;
1362 ((struct nds32_reg *)reg_cache->reg_list[I4].arch_info)->enable = true;
1363 ((struct nds32_reg *)reg_cache->reg_list[I5].arch_info)->enable = true;
1364 ((struct nds32_reg *)reg_cache->reg_list[I6].arch_info)->enable = true;
1365 ((struct nds32_reg *)reg_cache->reg_list[I7].arch_info)->enable = true;
1366 ((struct nds32_reg *)reg_cache->reg_list[M1].arch_info)->enable = true;
1367 ((struct nds32_reg *)reg_cache->reg_list[M2].arch_info)->enable = true;
1368 ((struct nds32_reg *)reg_cache->reg_list[M3].arch_info)->enable = true;
1369 ((struct nds32_reg *)reg_cache->reg_list[M5].arch_info)->enable = true;
1370 ((struct nds32_reg *)reg_cache->reg_list[M6].arch_info)->enable = true;
1371 ((struct nds32_reg *)reg_cache->reg_list[M7].arch_info)->enable = true;
1372 ((struct nds32_reg *)reg_cache->reg_list[MOD].arch_info)->enable = true;
1373 ((struct nds32_reg *)reg_cache->reg_list[LBE].arch_info)->enable = true;
1374 ((struct nds32_reg *)reg_cache->reg_list[LE].arch_info)->enable = true;
1375 ((struct nds32_reg *)reg_cache->reg_list[LC].arch_info)->enable = true;
1376 ((struct nds32_reg *)reg_cache->reg_list[ADM_VBASE].arch_info)->enable = true;
1377 ((struct nds32_reg *)reg_cache->reg_list[SHFT_CTL0].arch_info)->enable = true;
1378 ((struct nds32_reg *)reg_cache->reg_list[SHFT_CTL1].arch_info)->enable = true;
1379
1380 uint32_t value_mod;
1381 uint32_t fucpr_backup;
1382 /* enable fpu and get configuration */
1383 nds32_get_mapped_reg(nds32, FUCPR, &fucpr_backup);
1384 if ((fucpr_backup & 0x80000000) == 0)
1385 nds32_set_mapped_reg(nds32, FUCPR, fucpr_backup | 0x80000000);
1386 nds32_get_mapped_reg(nds32, MOD, &value_mod);
1387 /* restore origin fucpr value */
1388 if ((fucpr_backup & 0x80000000) == 0)
1389 nds32_set_mapped_reg(nds32, FUCPR, fucpr_backup);
1390
1391 if ((value_mod >> 6) & 0x1) {
1392 ((struct nds32_reg *)reg_cache->reg_list[CB_CTL].arch_info)->enable = true;
1393 ((struct nds32_reg *)reg_cache->reg_list[CBB0].arch_info)->enable = true;
1394 ((struct nds32_reg *)reg_cache->reg_list[CBB1].arch_info)->enable = true;
1395 ((struct nds32_reg *)reg_cache->reg_list[CBB2].arch_info)->enable = true;
1396 ((struct nds32_reg *)reg_cache->reg_list[CBB3].arch_info)->enable = true;
1397 ((struct nds32_reg *)reg_cache->reg_list[CBE0].arch_info)->enable = true;
1398 ((struct nds32_reg *)reg_cache->reg_list[CBE1].arch_info)->enable = true;
1399 ((struct nds32_reg *)reg_cache->reg_list[CBE2].arch_info)->enable = true;
1400 ((struct nds32_reg *)reg_cache->reg_list[CBE3].arch_info)->enable = true;
1401 }
1402 }
1403
1404 if ((cpu_version->cpu_id_family == 0x9) ||
1405 (cpu_version->cpu_id_family == 0xA) ||
1406 (cpu_version->cpu_id_family == 0xC)) {
1407
1408 ((struct nds32_reg *)reg_cache->reg_list[IDR0].arch_info)->enable = true;
1409 ((struct nds32_reg *)reg_cache->reg_list[IDR1].arch_info)->enable = true;
1410
1411 if ((cpu_version->cpu_id_family == 0xC) && (cpu_version->revision == 0x0C))
1412 ((struct nds32_reg *)reg_cache->reg_list[IDR0].arch_info)->enable = false;
1413 }
1414
1415 uint32_t ir3_value;
1416 uint32_t ivb_prog_pri_lvl;
1417 uint32_t ivb_ivic_ver;
1418
1419 nds32_get_mapped_reg(nds32, IR3, &ir3_value);
1420 ivb_prog_pri_lvl = ir3_value & 0x1;
1421 ivb_ivic_ver = (ir3_value >> 11) & 0x3;
1422
1423 if ((ivb_prog_pri_lvl == 1) || (ivb_ivic_ver >= 1)) {
1424 ((struct nds32_reg *)reg_cache->reg_list[IR18].arch_info)->enable = true;
1425 ((struct nds32_reg *)reg_cache->reg_list[IR19].arch_info)->enable = true;
1426 }
1427
1428 if (ivb_ivic_ver >= 1) {
1429 ((struct nds32_reg *)reg_cache->reg_list[IR26].arch_info)->enable = true;
1430 ((struct nds32_reg *)reg_cache->reg_list[IR27].arch_info)->enable = true;
1431 ((struct nds32_reg *)reg_cache->reg_list[IR28].arch_info)->enable = true;
1432 ((struct nds32_reg *)reg_cache->reg_list[IR29].arch_info)->enable = true;
1433 }
1434
1435 return ERROR_OK;
1436 }
1437
1438 int nds32_init_register_table(struct nds32 *nds32)
1439 {
1440 nds32_init_must_have_registers(nds32);
1441
1442 return ERROR_OK;
1443 }
1444
1445 int nds32_add_software_breakpoint(struct target *target,
1446 struct breakpoint *breakpoint)
1447 {
1448 uint32_t data;
1449 uint32_t check_data;
1450 uint32_t break_insn;
1451
1452 /* check the breakpoint size */
1453 target->type->read_buffer(target, breakpoint->address, 4, (uint8_t *)&data);
1454
1455 /* backup origin instruction
1456 * instruction is big-endian */
1457 if (*(char *)&data & 0x80) { /* 16-bits instruction */
1458 breakpoint->length = 2;
1459 break_insn = NDS32_BREAK_16;
1460 } else { /* 32-bits instruction */
1461 breakpoint->length = 4;
1462 break_insn = NDS32_BREAK_32;
1463 }
1464
1465 if (breakpoint->orig_instr != NULL)
1466 free(breakpoint->orig_instr);
1467
1468 breakpoint->orig_instr = malloc(breakpoint->length);
1469 memcpy(breakpoint->orig_instr, &data, breakpoint->length);
1470
1471 /* self-modified code */
1472 target->type->write_buffer(target, breakpoint->address, breakpoint->length, (const uint8_t *)&break_insn);
1473 /* write_back & invalidate dcache & invalidate icache */
1474 nds32_cache_sync(target, breakpoint->address, breakpoint->length);
1475
1476 /* read back to check */
1477 target->type->read_buffer(target, breakpoint->address, breakpoint->length, (uint8_t *)&check_data);
1478 if (memcmp(&check_data, &break_insn, breakpoint->length) == 0)
1479 return ERROR_OK;
1480
1481 return ERROR_FAIL;
1482 }
1483
1484 int nds32_remove_software_breakpoint(struct target *target,
1485 struct breakpoint *breakpoint)
1486 {
1487 uint32_t check_data;
1488 uint32_t break_insn;
1489
1490 if (breakpoint->length == 2)
1491 break_insn = NDS32_BREAK_16;
1492 else if (breakpoint->length == 4)
1493 break_insn = NDS32_BREAK_32;
1494 else
1495 return ERROR_FAIL;
1496
1497 target->type->read_buffer(target, breakpoint->address, breakpoint->length,
1498 (uint8_t *)&check_data);
1499
1500 /* break instruction is modified */
1501 if (memcmp(&check_data, &break_insn, breakpoint->length) != 0)
1502 return ERROR_FAIL;
1503
1504 /* self-modified code */
1505 target->type->write_buffer(target, breakpoint->address, breakpoint->length,
1506 breakpoint->orig_instr);
1507
1508 /* write_back & invalidate dcache & invalidate icache */
1509 nds32_cache_sync(target, breakpoint->address, breakpoint->length);
1510
1511 return ERROR_OK;
1512 }
1513
1514 /**
1515 * Restore the processor context on an Andes target. The full processor
1516 * context is analyzed to see if any of the registers are dirty on this end, but
1517 * have a valid new value. If this is the case, the processor is changed to the
1518 * appropriate mode and the new register values are written out to the
1519 * processor. If there happens to be a dirty register with an invalid value, an
1520 * error will be logged.
1521 *
1522 * @param target Pointer to the Andes target to have its context restored
1523 * @return Error status if the target is not halted.
1524 */
1525 int nds32_restore_context(struct target *target)
1526 {
1527 struct nds32 *nds32 = target_to_nds32(target);
1528 struct aice_port_s *aice = target_to_aice(target);
1529 struct reg_cache *reg_cache = nds32->core_cache;
1530 struct reg *reg;
1531 struct nds32_reg *reg_arch_info;
1532 unsigned int i;
1533
1534 LOG_DEBUG("-");
1535
1536 if (target->state != TARGET_HALTED) {
1537 LOG_WARNING("target not halted");
1538 return ERROR_TARGET_NOT_HALTED;
1539 }
1540
1541 /* check if there are dirty registers */
1542 for (i = 0; i < reg_cache->num_regs; i++) {
1543 reg = &(reg_cache->reg_list[i]);
1544 if (reg->dirty == true) {
1545 if (reg->valid == true) {
1546
1547 LOG_DEBUG("examining dirty reg: %s", reg->name);
1548 LOG_DEBUG("writing register %i "
1549 "with value 0x%8.8" PRIx32, i, buf_get_u32(reg->value, 0, 32));
1550
1551 reg_arch_info = reg->arch_info;
1552 if (FD0 <= reg_arch_info->num && reg_arch_info->num <= FD31)
1553 aice_write_reg_64(aice, reg_arch_info->num, reg_arch_info->value_64);
1554 else
1555 aice_write_register(aice, reg_arch_info->num, reg_arch_info->value);
1556 reg->valid = true;
1557 reg->dirty = false;
1558 }
1559 }
1560 }
1561
1562 return ERROR_OK;
1563 }
1564
1565 int nds32_edm_config(struct nds32 *nds32)
1566 {
1567 struct target *target = nds32->target;
1568 struct aice_port_s *aice = target_to_aice(target);
1569 uint32_t edm_cfg;
1570 uint32_t edm_ctl;
1571
1572 aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CFG, &edm_cfg);
1573
1574 nds32->edm.version = (edm_cfg >> 16) & 0xFFFF;
1575 LOG_INFO("EDM version 0x%04" PRIx32, nds32->edm.version);
1576
1577 nds32->edm.breakpoint_num = (edm_cfg & 0x7) + 1;
1578
1579 if ((nds32->edm.version & 0x1000) || (0x60 <= nds32->edm.version))
1580 nds32->edm.access_control = true;
1581 else
1582 nds32->edm.access_control = false;
1583
1584 if ((edm_cfg >> 4) & 0x1)
1585 nds32->edm.direct_access_local_memory = true;
1586 else
1587 nds32->edm.direct_access_local_memory = false;
1588
1589 if (nds32->edm.version <= 0x20)
1590 nds32->edm.direct_access_local_memory = false;
1591
1592 aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &edm_ctl);
1593 if (edm_ctl & (0x1 << 29))
1594 nds32->edm.support_max_stop = true;
1595 else
1596 nds32->edm.support_max_stop = false;
1597
1598 /* set passcode for secure MCU */
1599 nds32_login(nds32);
1600
1601 return ERROR_OK;
1602 }
1603
1604 int nds32_config(struct nds32 *nds32)
1605 {
1606 nds32_init_config(nds32);
1607
1608 /* init optional system registers according to config registers */
1609 nds32_init_option_registers(nds32);
1610
1611 /* get max interrupt level */
1612 if (nds32->misc_config.interruption_level)
1613 nds32->max_interrupt_level = 2;
1614 else
1615 nds32->max_interrupt_level = 3;
1616
1617 /* get ILM/DLM size from MR6/MR7 */
1618 uint32_t value_mr6, value_mr7;
1619 uint32_t size_index;
1620 nds32_get_mapped_reg(nds32, MR6, &value_mr6);
1621 size_index = (value_mr6 >> 1) & 0xF;
1622 nds32->memory.ilm_size = NDS32_LM_SIZE_TABLE[size_index];
1623
1624 nds32_get_mapped_reg(nds32, MR7, &value_mr7);
1625 size_index = (value_mr7 >> 1) & 0xF;
1626 nds32->memory.dlm_size = NDS32_LM_SIZE_TABLE[size_index];
1627
1628 return ERROR_OK;
1629 }
1630
1631 int nds32_init_arch_info(struct target *target, struct nds32 *nds32)
1632 {
1633 target->arch_info = nds32;
1634 nds32->target = target;
1635
1636 nds32->common_magic = NDS32_COMMON_MAGIC;
1637 nds32->init_arch_info_after_halted = false;
1638 nds32->auto_convert_hw_bp = true;
1639 nds32->global_stop = false;
1640 nds32->soft_reset_halt = false;
1641 nds32->edm_passcode = NULL;
1642 nds32->privilege_level = 0;
1643 nds32->boot_time = 1500;
1644 nds32->reset_halt_as_examine = false;
1645 nds32->keep_target_edm_ctl = false;
1646 nds32->word_access_mem = false;
1647 nds32->virtual_hosting = false;
1648
1649 nds32_reg_init();
1650
1651 if (ERROR_FAIL == nds32_reg_cache_init(target, nds32))
1652 return ERROR_FAIL;
1653
1654 if (ERROR_OK != nds32_init_register_table(nds32))
1655 return ERROR_FAIL;
1656
1657 return ERROR_OK;
1658 }
1659
1660 int nds32_virtual_to_physical(struct target *target, uint32_t address, uint32_t *physical)
1661 {
1662 struct nds32 *nds32 = target_to_nds32(target);
1663
1664 if (nds32->memory.address_translation == false) {
1665 *physical = address;
1666 return ERROR_OK;
1667 }
1668
1669 if (ERROR_OK == nds32_probe_tlb(nds32, address, physical))
1670 return ERROR_OK;
1671
1672 if (ERROR_OK == nds32_walk_page_table(nds32, address, physical))
1673 return ERROR_OK;
1674
1675 return ERROR_FAIL;
1676 }
1677
1678 int nds32_cache_sync(struct target *target, uint32_t address, uint32_t length)
1679 {
1680 struct aice_port_s *aice = target_to_aice(target);
1681 struct nds32 *nds32 = target_to_nds32(target);
1682 struct nds32_cache *dcache = &(nds32->memory.dcache);
1683 struct nds32_cache *icache = &(nds32->memory.icache);
1684 uint32_t dcache_line_size = NDS32_LINE_SIZE_TABLE[dcache->line_size];
1685 uint32_t icache_line_size = NDS32_LINE_SIZE_TABLE[icache->line_size];
1686 uint32_t cur_address;
1687 int result;
1688 uint32_t start_line, end_line;
1689 uint32_t cur_line;
1690
1691 if ((dcache->line_size != 0) && (dcache->enable == true)) {
1692 /* address / dcache_line_size */
1693 start_line = address >> (dcache->line_size + 2);
1694 /* (address + length - 1) / dcache_line_size */
1695 end_line = (address + length - 1) >> (dcache->line_size + 2);
1696
1697 for (cur_address = address, cur_line = start_line ;
1698 cur_line <= end_line ;
1699 cur_address += dcache_line_size, cur_line++) {
1700 /* D$ write back */
1701 result = aice_cache_ctl(aice, AICE_CACHE_CTL_L1D_VA_WB, cur_address);
1702 if (result != ERROR_OK)
1703 return result;
1704
1705 /* D$ invalidate */
1706 result = aice_cache_ctl(aice, AICE_CACHE_CTL_L1D_VA_INVAL, cur_address);
1707 if (result != ERROR_OK)
1708 return result;
1709 }
1710 }
1711
1712 if ((icache->line_size != 0) && (icache->enable == true)) {
1713 /* address / icache_line_size */
1714 start_line = address >> (icache->line_size + 2);
1715 /* (address + length - 1) / icache_line_size */
1716 end_line = (address + length - 1) >> (icache->line_size + 2);
1717
1718 for (cur_address = address, cur_line = start_line ;
1719 cur_line <= end_line ;
1720 cur_address += icache_line_size, cur_line++) {
1721 /* Because PSW.IT is turned off under debug exception, address MUST
1722 * be physical address. L1I_VA_INVALIDATE uses PSW.IT to decide
1723 * address translation or not. */
1724 uint32_t physical_addr;
1725 if (ERROR_FAIL == target->type->virt2phys(target, cur_address,
1726 &physical_addr))
1727 return ERROR_FAIL;
1728
1729 /* I$ invalidate */
1730 result = aice_cache_ctl(aice, AICE_CACHE_CTL_L1I_VA_INVAL, physical_addr);
1731 if (result != ERROR_OK)
1732 return result;
1733 }
1734 }
1735
1736 return ERROR_OK;
1737 }
1738
1739 uint32_t nds32_nextpc(struct nds32 *nds32, int current, uint32_t address)
1740 {
1741 if (!current)
1742 nds32_set_mapped_reg(nds32, PC, address);
1743 else
1744 nds32_get_mapped_reg(nds32, PC, &address);
1745
1746 return address;
1747 }
1748
1749 int nds32_step(struct target *target, int current,
1750 uint32_t address, int handle_breakpoints)
1751 {
1752 LOG_DEBUG("target->state: %s",
1753 target_state_name(target));
1754
1755 if (target->state != TARGET_HALTED) {
1756 LOG_WARNING("target was not halted");
1757 return ERROR_TARGET_NOT_HALTED;
1758 }
1759
1760 struct nds32 *nds32 = target_to_nds32(target);
1761
1762 address = nds32_nextpc(nds32, current, address);
1763
1764 LOG_DEBUG("STEP PC %08" PRIx32 "%s", address, !current ? "!" : "");
1765
1766 /** set DSSIM */
1767 uint32_t ir14_value;
1768 nds32_get_mapped_reg(nds32, IR14, &ir14_value);
1769 if (nds32->step_isr_enable)
1770 ir14_value |= (0x1 << 31);
1771 else
1772 ir14_value &= ~(0x1 << 31);
1773 nds32_set_mapped_reg(nds32, IR14, ir14_value);
1774
1775 /********* TODO: maybe create another function to handle this part */
1776 CHECK_RETVAL(nds32->leave_debug_state(nds32, true));
1777 CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_RESUMED));
1778
1779 struct aice_port_s *aice = target_to_aice(target);
1780 if (ERROR_OK != aice_step(aice))
1781 return ERROR_FAIL;
1782
1783 /* save state */
1784 CHECK_RETVAL(nds32->enter_debug_state(nds32, true));
1785 /********* TODO: maybe create another function to handle this part */
1786
1787 /* restore DSSIM */
1788 if (nds32->step_isr_enable) {
1789 nds32_get_mapped_reg(nds32, IR14, &ir14_value);
1790 ir14_value &= ~(0x1 << 31);
1791 nds32_set_mapped_reg(nds32, IR14, ir14_value);
1792 }
1793
1794 CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
1795
1796 return ERROR_OK;
1797 }
1798
1799 static int nds32_step_without_watchpoint(struct nds32 *nds32)
1800 {
1801 struct target *target = nds32->target;
1802
1803 if (target->state != TARGET_HALTED) {
1804 LOG_WARNING("target was not halted");
1805 return ERROR_TARGET_NOT_HALTED;
1806 }
1807
1808 /** set DSSIM */
1809 uint32_t ir14_value;
1810 nds32_get_mapped_reg(nds32, IR14, &ir14_value);
1811 if (nds32->step_isr_enable)
1812 ir14_value |= (0x1 << 31);
1813 else
1814 ir14_value &= ~(0x1 << 31);
1815 nds32_set_mapped_reg(nds32, IR14, ir14_value);
1816
1817 /********* TODO: maybe create another function to handle this part */
1818 CHECK_RETVAL(nds32->leave_debug_state(nds32, false));
1819
1820 struct aice_port_s *aice = target_to_aice(target);
1821
1822 if (ERROR_OK != aice_step(aice))
1823 return ERROR_FAIL;
1824
1825 /* save state */
1826 CHECK_RETVAL(nds32->enter_debug_state(nds32, false));
1827 /********* TODO: maybe create another function to handle this part */
1828
1829 /* restore DSSIM */
1830 if (nds32->step_isr_enable) {
1831 nds32_get_mapped_reg(nds32, IR14, &ir14_value);
1832 ir14_value &= ~(0x1 << 31);
1833 nds32_set_mapped_reg(nds32, IR14, ir14_value);
1834 }
1835
1836 return ERROR_OK;
1837 }
1838
1839 int nds32_target_state(struct nds32 *nds32, enum target_state *state)
1840 {
1841 struct aice_port_s *aice = target_to_aice(nds32->target);
1842 enum aice_target_state_s nds32_state;
1843
1844 if (aice_state(aice, &nds32_state) != ERROR_OK)
1845 return ERROR_FAIL;
1846
1847 switch (nds32_state) {
1848 case AICE_DISCONNECT:
1849 LOG_INFO("USB is disconnected");
1850 return ERROR_FAIL;
1851 case AICE_TARGET_DETACH:
1852 LOG_INFO("Target is disconnected");
1853 return ERROR_FAIL;
1854 case AICE_TARGET_UNKNOWN:
1855 *state = TARGET_UNKNOWN;
1856 break;
1857 case AICE_TARGET_RUNNING:
1858 *state = TARGET_RUNNING;
1859 break;
1860 case AICE_TARGET_HALTED:
1861 *state = TARGET_HALTED;
1862 break;
1863 case AICE_TARGET_RESET:
1864 *state = TARGET_RESET;
1865 break;
1866 case AICE_TARGET_DEBUG_RUNNING:
1867 *state = TARGET_DEBUG_RUNNING;
1868 break;
1869 default:
1870 return ERROR_FAIL;
1871 }
1872
1873 return ERROR_OK;
1874 }
1875
1876 int nds32_examine_debug_reason(struct nds32 *nds32)
1877 {
1878 uint32_t reason;
1879 struct target *target = nds32->target;
1880
1881 nds32->get_debug_reason(nds32, &reason);
1882
1883 LOG_DEBUG("nds32 examines debug reason: %s", nds32_debug_type_name[reason]);
1884
1885 /* Examine debug reason */
1886 switch (reason) {
1887 case NDS32_DEBUG_BREAK:
1888 case NDS32_DEBUG_BREAK_16:
1889 case NDS32_DEBUG_INST_BREAK:
1890 {
1891 uint32_t value_pc;
1892 uint32_t opcode;
1893 struct nds32_instruction instruction;
1894
1895 nds32_get_mapped_reg(nds32, PC, &value_pc);
1896
1897 if (ERROR_OK != nds32_read_opcode(nds32, value_pc, &opcode))
1898 return ERROR_FAIL;
1899 if (ERROR_OK != nds32_evaluate_opcode(nds32, opcode, value_pc,
1900 &instruction))
1901 return ERROR_FAIL;
1902
1903 target->debug_reason = DBG_REASON_BREAKPOINT;
1904 }
1905 break;
1906 case NDS32_DEBUG_DATA_ADDR_WATCHPOINT_PRECISE:
1907 case NDS32_DEBUG_DATA_VALUE_WATCHPOINT_PRECISE:
1908 case NDS32_DEBUG_LOAD_STORE_GLOBAL_STOP: /* GLOBAL_STOP is precise exception */
1909 {
1910 int result;
1911
1912 result = nds32->get_watched_address(nds32,
1913 &(nds32->watched_address), reason);
1914 /* do single step(without watchpoints) to skip the "watched" instruction */
1915 nds32_step_without_watchpoint(nds32);
1916
1917 /* before single_step, save exception address */
1918 if (ERROR_OK != result)
1919 return ERROR_FAIL;
1920
1921 target->debug_reason = DBG_REASON_WATCHPOINT;
1922 }
1923 break;
1924 case NDS32_DEBUG_DEBUG_INTERRUPT:
1925 target->debug_reason = DBG_REASON_DBGRQ;
1926 break;
1927 case NDS32_DEBUG_HARDWARE_SINGLE_STEP:
1928 target->debug_reason = DBG_REASON_SINGLESTEP;
1929 break;
1930 case NDS32_DEBUG_DATA_VALUE_WATCHPOINT_IMPRECISE:
1931 case NDS32_DEBUG_DATA_ADDR_WATCHPOINT_NEXT_PRECISE:
1932 case NDS32_DEBUG_DATA_VALUE_WATCHPOINT_NEXT_PRECISE:
1933 if (ERROR_OK != nds32->get_watched_address(nds32,
1934 &(nds32->watched_address), reason))
1935 return ERROR_FAIL;
1936
1937 target->debug_reason = DBG_REASON_WATCHPOINT;
1938 break;
1939 default:
1940 target->debug_reason = DBG_REASON_UNDEFINED;
1941 break;
1942 }
1943
1944 return ERROR_OK;
1945 }
1946
1947 int nds32_login(struct nds32 *nds32)
1948 {
1949 struct target *target = nds32->target;
1950 struct aice_port_s *aice = target_to_aice(target);
1951 uint32_t passcode_length;
1952 char command_sequence[129];
1953 char command_str[33];
1954 char code_str[9];
1955 uint32_t copy_length;
1956 uint32_t code;
1957 uint32_t i;
1958
1959 LOG_DEBUG("nds32_login");
1960
1961 if (nds32->edm_passcode != NULL) {
1962 /* convert EDM passcode to command sequences */
1963 passcode_length = strlen(nds32->edm_passcode);
1964 command_sequence[0] = '\0';
1965 for (i = 0; i < passcode_length; i += 8) {
1966 if (passcode_length - i < 8)
1967 copy_length = passcode_length - i;
1968 else
1969 copy_length = 8;
1970
1971 strncpy(code_str, nds32->edm_passcode + i, copy_length);
1972 code_str[copy_length] = '\0';
1973 code = strtoul(code_str, NULL, 16);
1974
1975 sprintf(command_str, "write_misc gen_port0 0x%x;", code);
1976 strcat(command_sequence, command_str);
1977 }
1978
1979 if (ERROR_OK != aice_program_edm(aice, command_sequence))
1980 return ERROR_FAIL;
1981
1982 /* get current privilege level */
1983 uint32_t value_edmsw;
1984 aice_read_debug_reg(aice, NDS_EDM_SR_EDMSW, &value_edmsw);
1985 nds32->privilege_level = (value_edmsw >> 16) & 0x3;
1986 LOG_INFO("Current privilege level: %d", nds32->privilege_level);
1987 }
1988
1989 if (nds32_edm_ops_num > 0) {
1990 const char *reg_name;
1991 for (i = 0 ; i < nds32_edm_ops_num ; i++) {
1992 code = nds32_edm_ops[i].value;
1993 if (nds32_edm_ops[i].reg_no == 6)
1994 reg_name = "gen_port0";
1995 else if (nds32_edm_ops[i].reg_no == 7)
1996 reg_name = "gen_port1";
1997 else
1998 return ERROR_FAIL;
1999
2000 sprintf(command_str, "write_misc %s 0x%x;", reg_name, code);
2001 if (ERROR_OK != aice_program_edm(aice, command_str))
2002 return ERROR_FAIL;
2003 }
2004 }
2005
2006 return ERROR_OK;
2007 }
2008
2009 int nds32_halt(struct target *target)
2010 {
2011 struct nds32 *nds32 = target_to_nds32(target);
2012 struct aice_port_s *aice = target_to_aice(target);
2013 enum target_state state;
2014
2015 LOG_DEBUG("target->state: %s",
2016 target_state_name(target));
2017
2018 if (target->state == TARGET_HALTED) {
2019 LOG_DEBUG("target was already halted");
2020 return ERROR_OK;
2021 }
2022
2023 if (nds32_target_state(nds32, &state) != ERROR_OK)
2024 return ERROR_FAIL;
2025
2026 if (TARGET_HALTED != state)
2027 /* TODO: if state == TARGET_HALTED, check ETYPE is DBGI or not */
2028 if (ERROR_OK != aice_halt(aice))
2029 return ERROR_FAIL;
2030
2031 CHECK_RETVAL(nds32->enter_debug_state(nds32, true));
2032
2033 CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_HALTED));
2034
2035 return ERROR_OK;
2036 }
2037
2038 /* poll current target status */
2039 int nds32_poll(struct target *target)
2040 {
2041 struct nds32 *nds32 = target_to_nds32(target);
2042 enum target_state state;
2043
2044 if (nds32_target_state(nds32, &state) != ERROR_OK)
2045 return ERROR_FAIL;
2046
2047 if (state == TARGET_HALTED) {
2048 if (target->state != TARGET_HALTED) {
2049 /* if false_hit, continue free_run */
2050 if (ERROR_OK != nds32->enter_debug_state(nds32, true)) {
2051 struct aice_port_s *aice = target_to_aice(target);
2052 aice_run(aice);
2053 return ERROR_OK;
2054 }
2055
2056 LOG_DEBUG("Change target state to TARGET_HALTED.");
2057
2058 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
2059 }
2060 } else if (state == TARGET_RESET) {
2061 if (target->state == TARGET_HALTED) {
2062 /* similar to assert srst */
2063 register_cache_invalidate(nds32->core_cache);
2064 target->state = TARGET_RESET;
2065
2066 /* TODO: deassert srst */
2067 } else if (target->state == TARGET_RUNNING) {
2068 /* reset as running */
2069 LOG_WARNING("<-- TARGET WARNING! The debug target has been reset. -->");
2070 }
2071 } else {
2072 if (target->state != TARGET_RUNNING && target->state != TARGET_DEBUG_RUNNING) {
2073 LOG_DEBUG("Change target state to TARGET_RUNNING.");
2074 target->state = TARGET_RUNNING;
2075 target->debug_reason = DBG_REASON_NOTHALTED;
2076 }
2077 }
2078
2079 return ERROR_OK;
2080 }
2081
2082 int nds32_resume(struct target *target, int current,
2083 uint32_t address, int handle_breakpoints, int debug_execution)
2084 {
2085 LOG_DEBUG("current %d address %08x handle_breakpoints %d debug_execution %d",
2086 current, address, handle_breakpoints, debug_execution);
2087
2088 struct nds32 *nds32 = target_to_nds32(target);
2089
2090 if (target->state != TARGET_HALTED) {
2091 LOG_ERROR("Target not halted");
2092 return ERROR_TARGET_NOT_HALTED;
2093 }
2094
2095 address = nds32_nextpc(nds32, current, address);
2096
2097 LOG_DEBUG("RESUME PC %08" PRIx32 "%s", address, !current ? "!" : "");
2098
2099 if (!debug_execution)
2100 target_free_all_working_areas(target);
2101
2102 /* Disable HSS to avoid users misuse HSS */
2103 if (nds32_reach_max_interrupt_level(nds32) == false) {
2104 uint32_t value_ir0;
2105 nds32_get_mapped_reg(nds32, IR0, &value_ir0);
2106 value_ir0 &= ~(0x1 << 11);
2107 nds32_set_mapped_reg(nds32, IR0, value_ir0);
2108 }
2109
2110 CHECK_RETVAL(nds32->leave_debug_state(nds32, true));
2111 CHECK_RETVAL(target_call_event_callbacks(target, TARGET_EVENT_RESUMED));
2112
2113 struct aice_port_s *aice = target_to_aice(target);
2114 aice_run(aice);
2115
2116 target->debug_reason = DBG_REASON_NOTHALTED;
2117 if (!debug_execution)
2118 target->state = TARGET_RUNNING;
2119 else
2120 target->state = TARGET_DEBUG_RUNNING;
2121
2122 LOG_DEBUG("target->state: %s",
2123 target_state_name(target));
2124
2125 return ERROR_OK;
2126 }
2127
2128 int nds32_assert_reset(struct target *target)
2129 {
2130 struct nds32 *nds32 = target_to_nds32(target);
2131 struct aice_port_s *aice = target_to_aice(target);
2132
2133 jtag_poll_set_enabled(true);
2134
2135 if (target->reset_halt) {
2136 if (nds32->soft_reset_halt)
2137 target->type->soft_reset_halt(target);
2138 else
2139 aice_assert_srst(aice, AICE_RESET_HOLD);
2140 } else {
2141 aice_assert_srst(aice, AICE_SRST);
2142 alive_sleep(nds32->boot_time);
2143 }
2144
2145 /* set passcode for secure MCU after core reset */
2146 nds32_login(nds32);
2147
2148 /* registers are now invalid */
2149 register_cache_invalidate(nds32->core_cache);
2150
2151 target->state = TARGET_RESET;
2152
2153 return ERROR_OK;
2154 }
2155
2156 static uint32_t nds32_backup_edm_ctl;
2157 static bool gdb_attached;
2158
2159 static int nds32_gdb_attach(struct nds32 *nds32)
2160 {
2161 LOG_DEBUG("nds32_gdb_attach");
2162
2163 if (gdb_attached == false) {
2164
2165 if (nds32->keep_target_edm_ctl) {
2166 /* backup target EDM_CTL */
2167 struct aice_port_s *aice = target_to_aice(nds32->target);
2168 aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &nds32_backup_edm_ctl);
2169 }
2170
2171 target_halt(nds32->target);
2172 target_poll(nds32->target);
2173
2174 gdb_attached = true;
2175 }
2176
2177 return ERROR_OK;
2178 }
2179
2180 static int nds32_gdb_detach(struct nds32 *nds32)
2181 {
2182 LOG_DEBUG("nds32_gdb_detach");
2183 bool backup_virtual_hosting_setting;
2184
2185 if (gdb_attached) {
2186
2187 backup_virtual_hosting_setting = nds32->virtual_hosting;
2188 /* turn off virtual hosting before resume as gdb-detach */
2189 nds32->virtual_hosting = false;
2190 target_resume(nds32->target, 1, 0, 0, 0);
2191 nds32->virtual_hosting = backup_virtual_hosting_setting;
2192
2193 if (nds32->keep_target_edm_ctl) {
2194 /* restore target EDM_CTL */
2195 struct aice_port_s *aice = target_to_aice(nds32->target);
2196 aice_write_debug_reg(aice, NDS_EDM_SR_EDM_CTL, nds32_backup_edm_ctl);
2197 }
2198
2199 /* turn off polling */
2200 jtag_poll_set_enabled(false);
2201
2202 gdb_attached = false;
2203 }
2204
2205 return ERROR_OK;
2206 }
2207
2208 static int nds32_callback_event_handler(struct target *target,
2209 enum target_event event, void *priv)
2210 {
2211 int retval = ERROR_OK;
2212 struct nds32 *nds32 = priv;
2213
2214 switch (event) {
2215 case TARGET_EVENT_GDB_ATTACH:
2216 retval = nds32_gdb_attach(nds32);
2217 break;
2218 case TARGET_EVENT_GDB_DETACH:
2219 retval = nds32_gdb_detach(nds32);
2220 break;
2221 default:
2222 break;
2223 }
2224
2225 return retval;
2226 }
2227
2228 int nds32_init(struct nds32 *nds32)
2229 {
2230 /* Initialize anything we can set up without talking to the target */
2231 nds32->memory.access_channel = NDS_MEMORY_ACC_CPU;
2232
2233 /* turn off polling by default */
2234 jtag_poll_set_enabled(false);
2235
2236 /* register event callback */
2237 target_register_event_callback(nds32_callback_event_handler, nds32);
2238
2239 return ERROR_OK;
2240 }
2241
2242 int nds32_reset_halt(struct nds32 *nds32)
2243 {
2244 LOG_INFO("reset halt as init");
2245
2246 struct aice_port_s *aice = target_to_aice(nds32->target);
2247 aice_assert_srst(aice, AICE_RESET_HOLD);
2248
2249 return ERROR_OK;
2250 }