Clean up const usage to avoid excessive casting
[openocd.git] / src / target / mips32_pracc.c
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
8 * *
9 * Copyright (C) 2011 by Drasko DRASKOVIC *
10 * drasko.draskovic@gmail.com *
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU General Public License as published by *
14 * the Free Software Foundation; either version 2 of the License, or *
15 * (at your option) any later version. *
16 * *
17 * This program is distributed in the hope that it will be useful, *
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
20 * GNU General Public License for more details. *
21 * *
22 * You should have received a copy of the GNU General Public License *
23 * along with this program; if not, write to the *
24 * Free Software Foundation, Inc., *
25 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
26 ***************************************************************************/
27
28 /*
29 * This version has optimized assembly routines for 32 bit operations:
30 * - read word
31 * - write word
32 * - write array of words
33 *
34 * One thing to be aware of is that the MIPS32 cpu will execute the
35 * instruction after a branch instruction (one delay slot).
36 *
37 * For example:
38 * LW $2, ($5 +10)
39 * B foo
40 * LW $1, ($2 +100)
41 *
42 * The LW $1, ($2 +100) instruction is also executed. If this is
43 * not wanted a NOP can be inserted:
44 *
45 * LW $2, ($5 +10)
46 * B foo
47 * NOP
48 * LW $1, ($2 +100)
49 *
50 * or the code can be changed to:
51 *
52 * B foo
53 * LW $2, ($5 +10)
54 * LW $1, ($2 +100)
55 *
56 * The original code contained NOPs. I have removed these and moved
57 * the branches.
58 *
59 * I also moved the PRACC_STACK to 0xFF204000. This allows
60 * the use of 16 bits offsets to get pointers to the input
61 * and output area relative to the stack. Note that the stack
62 * isn't really a stack (the stack pointer is not 'moving')
63 * but a FIFO simulated in software.
64 *
65 * These changes result in a 35% speed increase when programming an
66 * external flash.
67 *
68 * More improvement could be gained if the registers do no need
69 * to be preserved but in that case the routines should be aware
70 * OpenOCD is used as a flash programmer or as a debug tool.
71 *
72 * Nico Coesel
73 */
74
75 #ifdef HAVE_CONFIG_H
76 #include "config.h"
77 #endif
78
79 #include <helper/time_support.h>
80
81 #include "mips32.h"
82 #include "mips32_pracc.h"
83
84 struct mips32_pracc_context {
85 uint32_t *local_iparam;
86 int num_iparam;
87 uint32_t *local_oparam;
88 int num_oparam;
89 const uint32_t *code;
90 int code_len;
91 uint32_t stack[32];
92 int stack_offset;
93 struct mips_ejtag *ejtag_info;
94 };
95
96 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
97 uint32_t start_addr, uint32_t end_addr);
98 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
99 uint32_t start_addr, uint32_t end_addr);
100
101 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
102 {
103 uint32_t ejtag_ctrl;
104 long long then = timeval_ms();
105 int timeout;
106 int retval;
107
108 /* wait for the PrAcc to become "1" */
109 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
110
111 while (1) {
112 ejtag_ctrl = ejtag_info->ejtag_ctrl;
113 retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
114 if (retval != ERROR_OK)
115 return retval;
116
117 if (ejtag_ctrl & EJTAG_CTRL_PRACC)
118 break;
119
120 timeout = timeval_ms() - then;
121 if (timeout > 1000) {
122 LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
123 return ERROR_JTAG_DEVICE_ERROR;
124 }
125 }
126
127 *ctrl = ejtag_ctrl;
128 return ERROR_OK;
129 }
130
131 static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
132 {
133 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
134 int offset;
135 uint32_t ejtag_ctrl, data;
136
137 if ((address >= MIPS32_PRACC_PARAM_IN)
138 && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
139 offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
140 data = ctx->local_iparam[offset];
141 } else if ((address >= MIPS32_PRACC_PARAM_OUT)
142 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
143 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
144 data = ctx->local_oparam[offset];
145 } else if ((address >= MIPS32_PRACC_TEXT)
146 && (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
147 offset = (address - MIPS32_PRACC_TEXT) / 4;
148 data = ctx->code[offset];
149 } else if (address == MIPS32_PRACC_STACK) {
150 if (ctx->stack_offset <= 0) {
151 LOG_ERROR("Error: Pracc stack out of bounds");
152 return ERROR_JTAG_DEVICE_ERROR;
153 }
154 /* save to our debug stack */
155 data = ctx->stack[--ctx->stack_offset];
156 } else if (address >= 0xFF200000) {
157 /* CPU keeps reading at the end of execution.
158 * If we after 0xF0000000 address range, we can use
159 * one shot jump instruction.
160 * Since this instruction is limited to
161 * 26bit, we need to do some magic to fit it to our needs. */
162 LOG_DEBUG("Reading unexpected address. Jump to 0xFF200200\n");
163 data = MIPS32_J((0x0FFFFFFF & 0xFF200200) >> 2);
164 } else {
165 LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
166 return ERROR_JTAG_DEVICE_ERROR;
167 }
168
169 /* Send the data out */
170 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
171 mips_ejtag_drscan_32_out(ctx->ejtag_info, data);
172
173 /* Clear the access pending bit (let the processor eat!) */
174 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
175 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
176 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
177
178 return jtag_execute_queue();
179 }
180
181 static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
182 {
183 uint32_t ejtag_ctrl, data;
184 int offset;
185 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
186 int retval;
187
188 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
189 retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
190 if (retval != ERROR_OK)
191 return retval;
192
193 /* Clear access pending bit */
194 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
195 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
196 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
197
198 retval = jtag_execute_queue();
199 if (retval != ERROR_OK)
200 return retval;
201
202 if ((address >= MIPS32_PRACC_PARAM_OUT)
203 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
204 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
205 ctx->local_oparam[offset] = data;
206 } else if (address == MIPS32_PRACC_STACK) {
207 if (ctx->stack_offset >= 32) {
208 LOG_ERROR("Error: Pracc stack out of bounds");
209 return ERROR_JTAG_DEVICE_ERROR;
210 }
211 /* save data onto our stack */
212 ctx->stack[ctx->stack_offset++] = data;
213 } else {
214 LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
215 return ERROR_JTAG_DEVICE_ERROR;
216 }
217
218 return ERROR_OK;
219 }
220
221 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
222 int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
223 {
224 uint32_t ejtag_ctrl;
225 uint32_t address;
226 struct mips32_pracc_context ctx;
227 int retval;
228 int pass = 0;
229
230 ctx.local_iparam = param_in;
231 ctx.local_oparam = param_out;
232 ctx.num_iparam = num_param_in;
233 ctx.num_oparam = num_param_out;
234 ctx.code = code;
235 ctx.code_len = code_len;
236 ctx.ejtag_info = ejtag_info;
237 ctx.stack_offset = 0;
238
239 while (1) {
240 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
241 if (retval != ERROR_OK)
242 return retval;
243
244 address = 0;
245 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
246 retval = mips_ejtag_drscan_32(ejtag_info, &address);
247 if (retval != ERROR_OK)
248 return retval;
249
250 /* Check for read or write */
251 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
252 retval = mips32_pracc_exec_write(&ctx, address);
253 if (retval != ERROR_OK)
254 return retval;
255 } else {
256 /* Check to see if its reading at the debug vector. The first pass through
257 * the module is always read at the vector, so the first one we allow. When
258 * the second read from the vector occurs we are done and just exit. */
259 if ((address == MIPS32_PRACC_TEXT) && (pass++))
260 break;
261
262 retval = mips32_pracc_exec_read(&ctx, address);
263 if (retval != ERROR_OK)
264 return retval;
265 }
266
267 if (cycle == 0)
268 break;
269 }
270
271 /* stack sanity check */
272 if (ctx.stack_offset != 0)
273 LOG_DEBUG("Pracc Stack not zero");
274
275 return ERROR_OK;
276 }
277
278 inline void pracc_queue_init(struct pracc_queue_info *ctx)
279 {
280 ctx->retval = ERROR_OK;
281 ctx->code_count = 0;
282 ctx->store_count = 0;
283
284 ctx->pracc_list = malloc(2 * ctx->max_code * sizeof(uint32_t));
285 if (ctx->pracc_list == NULL) {
286 LOG_ERROR("Out of memory");
287 ctx->retval = ERROR_FAIL;
288 }
289 }
290
291 inline void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
292 {
293 ctx->pracc_list[ctx->max_code + ctx->code_count] = addr;
294 ctx->pracc_list[ctx->code_count++] = instr;
295 if (addr)
296 ctx->store_count++;
297 }
298
299 inline void pracc_queue_free(struct pracc_queue_info *ctx)
300 {
301 if (ctx->code_count > ctx->max_code) /* Only for internal check, will be erased */
302 LOG_ERROR("Internal error, code count: %d > max code: %d", ctx->code_count, ctx->max_code);
303 if (ctx->pracc_list != NULL)
304 free(ctx->pracc_list);
305 }
306
307 int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf)
308 {
309 if (ejtag_info->mode == 0)
310 return mips32_pracc_exec(ejtag_info, ctx->code_count, ctx->pracc_list, 0, NULL,
311 ctx->store_count, buf, ctx->code_count - 1);
312
313 union scan_in {
314 uint8_t scan_96[12];
315 struct {
316 uint8_t ctrl[4];
317 uint8_t data[4];
318 uint8_t addr[4];
319 } scan_32;
320
321 } *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
322 if (scan_in == NULL) {
323 LOG_ERROR("Out of memory");
324 return ERROR_FAIL;
325 }
326
327 unsigned num_clocks =
328 ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
329
330 uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
331 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
332
333 int scan_count = 0;
334 for (int i = 0; i != 2 * ctx->code_count; i++) {
335 uint32_t data = 0;
336 if (i & 1u) { /* Check store address from previous instruction, if not the first */
337 if (i < 2 || 0 == ctx->pracc_list[ctx->max_code + (i / 2) - 1])
338 continue;
339 } else
340 data = ctx->pracc_list[i / 2];
341
342 jtag_add_clocks(num_clocks);
343 mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, data, scan_in[scan_count++].scan_96);
344 }
345
346 int retval = jtag_execute_queue(); /* execute queued scans */
347 if (retval != ERROR_OK)
348 goto exit;
349
350 uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */
351 scan_count = 0;
352 for (int i = 0; i != 2 * ctx->code_count; i++) { /* verify every pracc access */
353 uint32_t store_addr = 0;
354 if (i & 1u) { /* Read store addres from previous instruction, if not the first */
355 store_addr = ctx->pracc_list[ctx->max_code + (i / 2) - 1];
356 if (i < 2 || 0 == store_addr)
357 continue;
358 }
359
360 ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
361 if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
362 LOG_ERROR("Error: access not pending count: %d", scan_count);
363 retval = ERROR_FAIL;
364 goto exit;
365 }
366
367 uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
368
369 if (store_addr != 0) {
370 if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
371 LOG_ERROR("Not a store/write access, count: %d", scan_count);
372 retval = ERROR_FAIL;
373 goto exit;
374 }
375 if (addr != store_addr) {
376 LOG_ERROR("Store address mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
377 addr, store_addr, scan_count);
378 retval = ERROR_FAIL;
379 goto exit;
380 }
381 int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
382 buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
383
384 } else {
385 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
386 LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
387 retval = ERROR_FAIL;
388 goto exit;
389 }
390 if (addr != fetch_addr) {
391 LOG_ERROR("Fetch addr mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
392 addr, fetch_addr, scan_count);
393 retval = ERROR_FAIL;
394 goto exit;
395 }
396 fetch_addr += 4;
397 }
398 scan_count++;
399 }
400 exit:
401 free(scan_in);
402 return retval;
403 }
404
405 int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
406 {
407 struct pracc_queue_info ctx = {.max_code = 9};
408 pracc_queue_init(&ctx);
409 if (ctx.retval != ERROR_OK)
410 goto exit;
411
412 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
413 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
414 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper address */
415 pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */
416 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
417 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */
418 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 of $8 */
419 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 of $8 */
420 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
421 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
422
423 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf);
424 exit:
425 pracc_queue_free(&ctx);
426 return ctx.retval;
427 }
428
429 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
430 {
431 if (count == 1 && size == 4)
432 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
433
434 uint32_t *data = NULL;
435 struct pracc_queue_info ctx = {.max_code = 256 * 3 + 9 + 1}; /* alloc memory for the worst case */
436 pracc_queue_init(&ctx);
437 if (ctx.retval != ERROR_OK)
438 goto exit;
439
440 if (size != 4) {
441 data = malloc(256 * sizeof(uint32_t));
442 if (data == NULL) {
443 LOG_ERROR("Out of memory");
444 goto exit;
445 }
446 }
447
448 uint32_t *buf32 = buf;
449 uint16_t *buf16 = buf;
450 uint8_t *buf8 = buf;
451
452 while (count) {
453 ctx.code_count = 0;
454 ctx.store_count = 0;
455 int this_round_count = (count > 256) ? 256 : count;
456 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
457
458 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* save $15 in DeSave */
459 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
460 pracc_add(&ctx, 0, MIPS32_LUI(9, last_upper_base_addr)); /* load the upper memory address in $9 */
461
462 for (int i = 0; i != this_round_count; i++) { /* Main code loop */
463 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
464 if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $9 */
465 pracc_add(&ctx, 0, MIPS32_LUI(9, upper_base_addr));
466 last_upper_base_addr = upper_base_addr;
467 }
468
469 if (size == 4)
470 pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 9)); /* load from memory to $8 */
471 else if (size == 2)
472 pracc_add(&ctx, 0, MIPS32_LHU(8, LOWER16(addr), 9));
473 else
474 pracc_add(&ctx, 0, MIPS32_LBU(8, LOWER16(addr), 9));
475
476 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4,
477 MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15)); /* store $8 at param out */
478 addr += size;
479 }
480 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
481 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
482 pracc_add(&ctx, 0, MIPS32_LUI(9, UPPER16(ejtag_info->reg9))); /* restore upper 16 bits of reg 9 */
483 pracc_add(&ctx, 0, MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg9))); /* restore lower 16 bits of reg 9 */
484
485 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
486 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
487
488 if (size == 4) {
489 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32);
490 if (ctx.retval != ERROR_OK)
491 goto exit;
492 buf32 += this_round_count;
493 } else {
494 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data);
495 if (ctx.retval != ERROR_OK)
496 goto exit;
497
498 uint32_t *data_p = data;
499 for (int i = 0; i != this_round_count; i++) {
500 if (size == 2)
501 *buf16++ = *data_p++;
502 else
503 *buf8++ = *data_p++;
504 }
505 }
506 count -= this_round_count;
507 }
508 exit:
509 pracc_queue_free(&ctx);
510 if (data != NULL)
511 free(data);
512 return ctx.retval;
513 }
514
515 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
516 {
517 struct pracc_queue_info ctx = {.max_code = 8};
518 pracc_queue_init(&ctx);
519 if (ctx.retval != ERROR_OK)
520 goto exit;
521
522 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
523 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
524 pracc_add(&ctx, 0, MIPS32_MFC0(8, 0, 0) | (cp0_reg << 11) | cp0_sel); /* move COP0 [cp0_reg select] to $8 */
525 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
526 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
527 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
528 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
529 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
530 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
531
532 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val);
533 exit:
534 pracc_queue_free(&ctx);
535 return ctx.retval;
536
537 /**
538 * Note that our input parametes cp0_reg and cp0_sel
539 * are numbers (not gprs) which make part of mfc0 instruction opcode.
540 *
541 * These are not fix, but can be different for each mips32_cp0_read() function call,
542 * and that is why we must insert them directly into opcode,
543 * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
544 * and put them into the gprs later from MIPS32_PRACC_STACK
545 * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
546 * but plain (immediate) number.
547 *
548 * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
549 * In order to insert our parameters, we must change rd and funct fields.
550 *
551 * code[2] |= (cp0_reg << 11) | cp0_sel; change rd and funct of MIPS32_R_INST macro
552 **/
553 }
554
555 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
556 {
557 struct pracc_queue_info ctx = {.max_code = 6};
558 pracc_queue_init(&ctx);
559 if (ctx.retval != ERROR_OK)
560 goto exit;
561
562 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */
563 pracc_add(&ctx, 0, MIPS32_LUI(15, UPPER16(val))); /* Load val to $15 */
564 pracc_add(&ctx, 0, MIPS32_ORI(15, 15, LOWER16(val)));
565
566 pracc_add(&ctx, 0, MIPS32_MTC0(15, 0, 0) | (cp0_reg << 11) | cp0_sel); /* write cp0 reg / sel */
567
568 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
569 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
570
571 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
572 exit:
573 pracc_queue_free(&ctx);
574 return ctx.retval;
575
576 /**
577 * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
578 * In order to insert our parameters, we must change rd and funct fields.
579 * code[3] |= (cp0_reg << 11) | cp0_sel; change rd and funct fields of MIPS32_R_INST macro
580 **/
581 }
582
583 /**
584 * \b mips32_pracc_sync_cache
585 *
586 * Synchronize Caches to Make Instruction Writes Effective
587 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
588 * Document Number: MD00086, Revision 2.00, June 9, 2003)
589 *
590 * When the instruction stream is written, the SYNCI instruction should be used
591 * in conjunction with other instructions to make the newly-written instructions effective.
592 *
593 * Explanation :
594 * A program that loads another program into memory is actually writing the D- side cache.
595 * The instructions it has loaded can't be executed until they reach the I-cache.
596 *
597 * After the instructions have been written, the loader should arrange
598 * to write back any containing D-cache line and invalidate any locations
599 * already in the I-cache.
600 *
601 * You can do that with cache instructions, but those instructions are only available in kernel mode,
602 * and a loader writing instructions for the use of its own process need not be privileged software.
603 *
604 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
605 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
606 * That is, it arranges a D-cache write-back and an I-cache invalidate.
607 *
608 * To employ synci at user level, you need to know the size of a cache line,
609 * and that can be obtained with a rdhwr SYNCI_Step
610 * from one of the standard “hardware registers”.
611 */
612 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
613 uint32_t start_addr, uint32_t end_addr)
614 {
615 static const uint32_t code[] = {
616 /* start: */
617 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
618 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
619 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
620 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
621 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
622 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
623 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
624
625 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
626 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
627 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
628 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
629
630 MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */
631 MIPS32_BEQ(11, 0, 6), /* beq $11, $0, end */
632 MIPS32_NOP,
633 /* synci_loop : */
634 MIPS32_SYNCI(0, 9), /* synci 0($9) */
635 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */
636 MIPS32_BNE(8, 0, NEG16(3)), /* bne $8, $0, synci_loop */
637 MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */
638 MIPS32_SYNC,
639 /* end: */
640 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
641 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
642 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
643 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
644 MIPS32_B(NEG16(24)), /* b start */
645 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
646 };
647
648 /* TODO remove array */
649 uint32_t *param_in = malloc(2 * sizeof(uint32_t));
650 int retval;
651 param_in[0] = start_addr;
652 param_in[1] = end_addr;
653
654 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
655
656 free(param_in);
657
658 return retval;
659 }
660
661 /**
662 * \b mips32_pracc_clean_invalidate_cache
663 *
664 * Writeback D$ and Invalidate I$
665 * so that the instructions written can be visible to CPU
666 */
667 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
668 uint32_t start_addr, uint32_t end_addr)
669 {
670 static const uint32_t code[] = {
671 /* start: */
672 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
673 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
674 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
675 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
676 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
677 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
678 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
679
680 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
681 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
682 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
683 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
684 MIPS32_LW(11, 8, 8), /* Load write clsiz to $11 */
685
686 /* cache_loop: */
687 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */
688 MIPS32_BGTZ(8, 6), /* bgtz $8, end */
689 MIPS32_NOP,
690
691 MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9), /* cache Hit_Writeback_D, 0($9) */
692 MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9), /* cache Hit_Invalidate_I, 0($9) */
693
694 MIPS32_ADDU(9, 9, 11), /* $9 += $11 */
695
696 MIPS32_B(NEG16(7)), /* b cache_loop */
697 MIPS32_NOP,
698 /* end: */
699 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
700 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
701 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
702 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
703 MIPS32_B(NEG16(25)), /* b start */
704 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
705 };
706
707 /**
708 * Find cache line size in bytes
709 */
710 uint32_t conf;
711 uint32_t dl, clsiz;
712
713 mips32_cp0_read(ejtag_info, &conf, 16, 1);
714 dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
715
716 /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
717 clsiz = 0x2 << dl;
718
719 /* TODO remove array */
720 uint32_t *param_in = malloc(3 * sizeof(uint32_t));
721 int retval;
722 param_in[0] = start_addr;
723 param_in[1] = end_addr;
724 param_in[2] = clsiz;
725
726 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
727
728 free(param_in);
729
730 return retval;
731 }
732
733 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info,
734 uint32_t addr, int size, int count, const void *buf)
735 {
736 struct pracc_queue_info ctx = {.max_code = 128 * 3 + 6 + 1}; /* alloc memory for the worst case */
737 pracc_queue_init(&ctx);
738 if (ctx.retval != ERROR_OK)
739 goto exit;
740
741 const uint32_t *buf32 = buf;
742 const uint16_t *buf16 = buf;
743 const uint8_t *buf8 = buf;
744
745 while (count) {
746 ctx.code_count = 0;
747 ctx.store_count = 0;
748 int this_round_count = (count > 128) ? 128 : count;
749 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
750
751 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* save $15 in DeSave */
752 pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load $15 with memory base address */
753
754 for (int i = 0; i != this_round_count; i++) {
755 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
756 if (last_upper_base_addr != upper_base_addr) {
757 pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr)); /* if needed, change upper address in $15*/
758 last_upper_base_addr = upper_base_addr;
759 }
760
761 if (size == 4) { /* for word writes check if one half word is 0 and load it accordingly */
762 if (LOWER16(*buf32) == 0)
763 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load only upper value */
764 else if (UPPER16(*buf32) == 0)
765 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, LOWER16(*buf32))); /* load only lower */
766 else {
767 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load upper and lower */
768 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(*buf32)));
769 }
770 pracc_add(&ctx, 0, MIPS32_SW(8, LOWER16(addr), 15)); /* store word to memory */
771 buf32++;
772
773 } else if (size == 2) {
774 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf16)); /* load lower value */
775 pracc_add(&ctx, 0, MIPS32_SH(8, LOWER16(addr), 15)); /* store half word to memory */
776 buf16++;
777
778 } else {
779 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf8)); /* load lower value */
780 pracc_add(&ctx, 0, MIPS32_SB(8, LOWER16(addr), 15)); /* store byte to memory */
781 buf8++;
782 }
783 addr += size;
784 }
785
786 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
787 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
788
789 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
790 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
791
792 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
793 if (ctx.retval != ERROR_OK)
794 goto exit;
795 count -= this_round_count;
796 }
797 exit:
798 pracc_queue_free(&ctx);
799 return ctx.retval;
800 }
801
802 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf)
803 {
804 int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
805 if (retval != ERROR_OK)
806 return retval;
807
808 /**
809 * If we are in the cachable regoion and cache is activated,
810 * we must clean D$ + invalidate I$ after we did the write,
811 * so that changes do not continue to live only in D$, but to be
812 * replicated in I$ also (maybe we wrote the istructions)
813 */
814 uint32_t conf = 0;
815 int cached = 0;
816
817 if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
818 return retval; /*Nothing to do*/
819
820 mips32_cp0_read(ejtag_info, &conf, 16, 0);
821
822 switch (KSEGX(addr)) {
823 case KUSEG:
824 cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
825 break;
826 case KSEG0:
827 cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
828 break;
829 case KSEG2:
830 case KSEG3:
831 cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
832 break;
833 default:
834 /* what ? */
835 break;
836 }
837
838 /**
839 * Check cachablitiy bits coherency algorithm -
840 * is the region cacheable or uncached.
841 * If cacheable we have to synchronize the cache
842 */
843 if (cached == 0x3) {
844 uint32_t start_addr, end_addr;
845 uint32_t rel;
846
847 start_addr = addr;
848 end_addr = addr + count * size;
849
850 /** select cache synchronisation mechanism based on Architecture Release */
851 rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
852 switch (rel) {
853 case MIPS32_ARCH_REL1:
854 /* MIPS32/64 Release 1 - we must use cache instruction */
855 mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
856 break;
857 case MIPS32_ARCH_REL2:
858 /* MIPS32/64 Release 2 - we can use synci instruction */
859 mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
860 break;
861 default:
862 /* what ? */
863 break;
864 }
865 }
866
867 return retval;
868 }
869
870 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
871 {
872 static const uint32_t cp0_write_code[] = {
873 MIPS32_MTC0(1, 12, 0), /* move $1 to status */
874 MIPS32_MTLO(1), /* move $1 to lo */
875 MIPS32_MTHI(1), /* move $1 to hi */
876 MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */
877 MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/
878 MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */
879 };
880
881 struct pracc_queue_info ctx = {.max_code = 37 * 2 + 6 + 1};
882 pracc_queue_init(&ctx);
883 if (ctx.retval != ERROR_OK)
884 goto exit;
885
886 /* load registers 2 to 31 with lui and ori instructions, check if some instructions can be saved */
887 for (int i = 2; i < 32; i++) {
888 if (LOWER16((regs[i])) == 0) /* if lower half word is 0, lui instruction only */
889 pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
890 else if (UPPER16((regs[i])) == 0) /* if upper half word is 0, ori with $0 only*/
891 pracc_add(&ctx, 0, MIPS32_ORI(i, 0, LOWER16((regs[i]))));
892 else { /* default, load with lui and ori instructions */
893 pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
894 pracc_add(&ctx, 0, MIPS32_ORI(i, i, LOWER16((regs[i]))));
895 }
896 }
897
898 for (int i = 0; i != 6; i++) {
899 pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[i + 32])))); /* load CPO value in $1, with lui and ori */
900 pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[i + 32]))));
901 pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */
902 }
903
904 pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[1])))); /* load upper half word in $1 */
905 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
906 pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */
907
908 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
909
910 ejtag_info->reg8 = regs[8];
911 ejtag_info->reg9 = regs[9];
912 exit:
913 pracc_queue_free(&ctx);
914 return ctx.retval;
915 }
916
917 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
918 {
919 static int cp0_read_code[] = {
920 MIPS32_MFC0(8, 12, 0), /* move status to $8 */
921 MIPS32_MFLO(8), /* move lo to $8 */
922 MIPS32_MFHI(8), /* move hi to $8 */
923 MIPS32_MFC0(8, 8, 0), /* move badvaddr to $8 */
924 MIPS32_MFC0(8, 13, 0), /* move cause to $8 */
925 MIPS32_MFC0(8, 24, 0), /* move depc (pc) to $8 */
926 };
927
928 struct pracc_queue_info ctx = {.max_code = 48};
929 pracc_queue_init(&ctx);
930 if (ctx.retval != ERROR_OK)
931 goto exit;
932
933 pracc_add(&ctx, 0, MIPS32_MTC0(1, 31, 0)); /* move $1 to COP0 DeSave */
934 pracc_add(&ctx, 0, MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */
935
936 for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */
937 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
938 MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1));
939
940 for (int i = 0; i != 6; i++) {
941 pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */
942 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */
943 MIPS32_SW(8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
944 }
945 pracc_add(&ctx, 0, MIPS32_MFC0(8, 31, 0)); /* move DeSave to $8, reg1 value */
946 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */
947 MIPS32_SW(8, PRACC_OUT_OFFSET + 4, 1));
948
949 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
950 pracc_add(&ctx, 0, MIPS32_MFC0(1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */
951
952 if (ejtag_info->mode == 0)
953 ctx.store_count++; /* Needed by legacy code, due to offset from reg0 */
954
955 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs);
956
957 ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */
958 ejtag_info->reg9 = regs[9];
959 exit:
960 pracc_queue_free(&ctx);
961 return ctx.retval;
962 }
963
964 /* fastdata upload/download requires an initialized working area
965 * to load the download code; it should not be called otherwise
966 * fetch order from the fastdata area
967 * 1. start addr
968 * 2. end addr
969 * 3. data ...
970 */
971 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
972 int write_t, uint32_t addr, int count, uint32_t *buf)
973 {
974 uint32_t handler_code[] = {
975 /* caution when editing, table is modified below */
976 /* r15 points to the start of this code */
977 MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
978 MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
979 MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
980 MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
981 /* start of fastdata area in t0 */
982 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
983 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
984 MIPS32_LW(9, 0, 8), /* start addr in t1 */
985 MIPS32_LW(10, 0, 8), /* end addr to t2 */
986 /* loop: */
987 /* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */
988 /* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */
989 MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
990 MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
991
992 MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
993 MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
994 MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
995 MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
996
997 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
998 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
999 MIPS32_JR(15), /* jr start */
1000 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
1001 };
1002
1003 uint32_t jmp_code[] = {
1004 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
1005 /* 1 */ MIPS32_LUI(15, 0), /* addr of working area added below */
1006 /* 2 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */
1007 MIPS32_JR(15), /* jump to ram program */
1008 MIPS32_NOP,
1009 };
1010
1011 int retval, i;
1012 uint32_t val, ejtag_ctrl, address;
1013
1014 if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
1015 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1016
1017 if (write_t) {
1018 handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */
1019 handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */
1020 } else {
1021 handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */
1022 handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */
1023 }
1024
1025 /* write program into RAM */
1026 if (write_t != ejtag_info->fast_access_save) {
1027 mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
1028 /* save previous operation to speed to any consecutive read/writes */
1029 ejtag_info->fast_access_save = write_t;
1030 }
1031
1032 LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
1033
1034 jmp_code[1] |= UPPER16(source->address);
1035 jmp_code[2] |= LOWER16(source->address);
1036
1037 for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
1038 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1039 if (retval != ERROR_OK)
1040 return retval;
1041
1042 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
1043 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
1044
1045 /* Clear the access pending bit (let the processor eat!) */
1046 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
1047 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
1048 mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
1049 }
1050
1051 /* wait PrAcc pending bit for FASTDATA write */
1052 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1053 if (retval != ERROR_OK)
1054 return retval;
1055
1056 /* next fetch to dmseg should be in FASTDATA_AREA, check */
1057 address = 0;
1058 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1059 retval = mips_ejtag_drscan_32(ejtag_info, &address);
1060 if (retval != ERROR_OK)
1061 return retval;
1062
1063 if (address != MIPS32_PRACC_FASTDATA_AREA)
1064 return ERROR_FAIL;
1065
1066 /* Send the load start address */
1067 val = addr;
1068 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1069 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1070
1071 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1072 if (retval != ERROR_OK)
1073 return retval;
1074
1075 /* Send the load end address */
1076 val = addr + (count - 1) * 4;
1077 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1078 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1079
1080 unsigned num_clocks = 0; /* like in legacy code */
1081 if (ejtag_info->mode != 0)
1082 num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
1083
1084 for (i = 0; i < count; i++) {
1085 jtag_add_clocks(num_clocks);
1086 retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
1087 if (retval != ERROR_OK)
1088 return retval;
1089 }
1090
1091 retval = jtag_execute_queue();
1092 if (retval != ERROR_OK) {
1093 LOG_ERROR("fastdata load failed");
1094 return retval;
1095 }
1096
1097 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1098 if (retval != ERROR_OK)
1099 return retval;
1100
1101 address = 0;
1102 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1103 retval = mips_ejtag_drscan_32(ejtag_info, &address);
1104 if (retval != ERROR_OK)
1105 return retval;
1106
1107 if (address != MIPS32_PRACC_TEXT)
1108 LOG_ERROR("mini program did not return to start");
1109
1110 return retval;
1111 }