Fix usage of timeval_ms()
[openocd.git] / src / target / mips32_pracc.c
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
8 * *
9 * Copyright (C) 2011 by Drasko DRASKOVIC *
10 * drasko.draskovic@gmail.com *
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU General Public License as published by *
14 * the Free Software Foundation; either version 2 of the License, or *
15 * (at your option) any later version. *
16 * *
17 * This program is distributed in the hope that it will be useful, *
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
20 * GNU General Public License for more details. *
21 * *
22 * You should have received a copy of the GNU General Public License *
23 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
24 ***************************************************************************/
25
26 /*
27 * This version has optimized assembly routines for 32 bit operations:
28 * - read word
29 * - write word
30 * - write array of words
31 *
32 * One thing to be aware of is that the MIPS32 cpu will execute the
33 * instruction after a branch instruction (one delay slot).
34 *
35 * For example:
36 * LW $2, ($5 +10)
37 * B foo
38 * LW $1, ($2 +100)
39 *
40 * The LW $1, ($2 +100) instruction is also executed. If this is
41 * not wanted a NOP can be inserted:
42 *
43 * LW $2, ($5 +10)
44 * B foo
45 * NOP
46 * LW $1, ($2 +100)
47 *
48 * or the code can be changed to:
49 *
50 * B foo
51 * LW $2, ($5 +10)
52 * LW $1, ($2 +100)
53 *
54 * The original code contained NOPs. I have removed these and moved
55 * the branches.
56 *
57 * These changes result in a 35% speed increase when programming an
58 * external flash.
59 *
60 * More improvement could be gained if the registers do no need
61 * to be preserved but in that case the routines should be aware
62 * OpenOCD is used as a flash programmer or as a debug tool.
63 *
64 * Nico Coesel
65 */
66
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
70
71 #include <helper/time_support.h>
72
73 #include "mips32.h"
74 #include "mips32_pracc.h"
75
76 struct mips32_pracc_context {
77 uint32_t *local_oparam;
78 int num_oparam;
79 const uint32_t *code;
80 int code_len;
81 uint32_t stack[32];
82 int stack_offset;
83 struct mips_ejtag *ejtag_info;
84 };
85
86 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
87 {
88 uint32_t ejtag_ctrl;
89 int64_t then = timeval_ms();
90
91 /* wait for the PrAcc to become "1" */
92 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
93
94 while (1) {
95 ejtag_ctrl = ejtag_info->ejtag_ctrl;
96 int retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
97 if (retval != ERROR_OK)
98 return retval;
99
100 if (ejtag_ctrl & EJTAG_CTRL_PRACC)
101 break;
102
103 int64_t timeout = timeval_ms() - then;
104 if (timeout > 1000) {
105 LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
106 return ERROR_JTAG_DEVICE_ERROR;
107 }
108 }
109
110 *ctrl = ejtag_ctrl;
111 return ERROR_OK;
112 }
113
114 /* Shift in control and address for a new processor access, save them in ejtag_info */
115 static int mips32_pracc_read_ctrl_addr(struct mips_ejtag *ejtag_info)
116 {
117 int retval = wait_for_pracc_rw(ejtag_info, &ejtag_info->pa_ctrl);
118 if (retval != ERROR_OK)
119 return retval;
120
121 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
122 ejtag_info->pa_addr = 0;
123 retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_addr);
124
125 return retval;
126 }
127
128 /* Finish processor access */
129 static int mips32_pracc_finish(struct mips_ejtag *ejtag_info)
130 {
131 uint32_t ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
132 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
133 mips_ejtag_drscan_32_out(ejtag_info, ctrl);
134
135 return jtag_execute_queue();
136 }
137
138 int mips32_pracc_clean_text_jump(struct mips_ejtag *ejtag_info)
139 {
140 uint32_t jt_code = MIPS32_J((0x0FFFFFFF & MIPS32_PRACC_TEXT) >> 2);
141 int retval;
142
143 /* do 3 0/nops to clean pipeline before a jump to pracc text, NOP in delay slot */
144 for (int i = 0; i != 5; i++) {
145 /* Wait for pracc */
146 retval = wait_for_pracc_rw(ejtag_info, &ejtag_info->pa_ctrl);
147 if (retval != ERROR_OK)
148 return retval;
149
150 /* Data or instruction out */
151 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
152 uint32_t data = (i == 3) ? jt_code : MIPS32_NOP;
153 mips_ejtag_drscan_32_out(ejtag_info, data);
154
155 /* finish pa */
156 retval = mips32_pracc_finish(ejtag_info);
157 if (retval != ERROR_OK)
158 return retval;
159 }
160
161 if (ejtag_info->mode != 0) /* async mode support only for MIPS ... */
162 return ERROR_OK;
163
164 for (int i = 0; i != 2; i++) {
165 retval = mips32_pracc_read_ctrl_addr(ejtag_info);
166 if (retval != ERROR_OK)
167 return retval;
168
169 if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT) { /* LEXRA/BMIPS ?, shift out another NOP, max 2 */
170 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
171 mips_ejtag_drscan_32_out(ejtag_info, MIPS32_NOP);
172 retval = mips32_pracc_finish(ejtag_info);
173 if (retval != ERROR_OK)
174 return retval;
175 } else
176 break;
177 }
178
179 return ERROR_OK;
180 }
181
182 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *param_out)
183 {
184 int code_count = 0;
185 int store_pending = 0; /* increases with every store instruction at dmseg, decreases with every store pa */
186 uint32_t max_store_addr = 0; /* for store pa address testing */
187 bool restart = 0; /* restarting control */
188 int restart_count = 0;
189 uint32_t instr = 0;
190 bool final_check = 0; /* set to 1 if in final checks after function code shifted out */
191 bool pass = 0; /* to check the pass through pracc text after function code sent */
192 int retval;
193
194 while (1) {
195 if (restart) {
196 if (restart_count < 3) { /* max 3 restarts allowed */
197 retval = mips32_pracc_clean_text_jump(ejtag_info);
198 if (retval != ERROR_OK)
199 return retval;
200 } else
201 return ERROR_JTAG_DEVICE_ERROR;
202 restart_count++;
203 restart = 0;
204 code_count = 0;
205 LOG_DEBUG("restarting code");
206 }
207
208 retval = mips32_pracc_read_ctrl_addr(ejtag_info); /* update current pa info: control and address */
209 if (retval != ERROR_OK)
210 return retval;
211
212 /* Check for read or write access */
213 if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRNW) { /* write/store access */
214 /* Check for pending store from a previous store instruction at dmseg */
215 if (store_pending == 0) {
216 LOG_DEBUG("unexpected write at address %" PRIx32, ejtag_info->pa_addr);
217 if (code_count < 2) { /* allow for restart */
218 restart = 1;
219 continue;
220 } else
221 return ERROR_JTAG_DEVICE_ERROR;
222 } else {
223 /* check address */
224 if (ejtag_info->pa_addr < MIPS32_PRACC_PARAM_OUT || ejtag_info->pa_addr > max_store_addr) {
225
226 LOG_DEBUG("writing at unexpected address %" PRIx32, ejtag_info->pa_addr);
227 return ERROR_JTAG_DEVICE_ERROR;
228 }
229 }
230 /* read data */
231 uint32_t data = 0;
232 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
233 retval = mips_ejtag_drscan_32(ejtag_info, &data);
234 if (retval != ERROR_OK)
235 return retval;
236
237 /* store data at param out, address based offset */
238 param_out[(ejtag_info->pa_addr - MIPS32_PRACC_PARAM_OUT) / 4] = data;
239 store_pending--;
240
241 } else { /* read/fetch access */
242 if (!final_check) { /* executing function code */
243 /* check address */
244 if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
245 LOG_DEBUG("reading at unexpected address %" PRIx32 ", expected %x",
246 ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4);
247
248 /* restart code execution only in some cases */
249 if (code_count == 1 && ejtag_info->pa_addr == MIPS32_PRACC_TEXT && restart_count == 0) {
250 LOG_DEBUG("restarting, without clean jump");
251 restart_count++;
252 code_count = 0;
253 continue;
254 } else if (code_count < 2) {
255 restart = 1;
256 continue;
257 }
258
259 return ERROR_JTAG_DEVICE_ERROR;
260 }
261 /* check for store instruction at dmseg */
262 uint32_t store_addr = ctx->pracc_list[ctx->max_code + code_count];
263 if (store_addr != 0) {
264 if (store_addr > max_store_addr)
265 max_store_addr = store_addr;
266 store_pending++;
267 }
268
269 instr = ctx->pracc_list[code_count++];
270 if (code_count == ctx->code_count) /* last instruction, start final check */
271 final_check = 1;
272
273 } else { /* final check after function code shifted out */
274 /* check address */
275 if (ejtag_info->pa_addr == MIPS32_PRACC_TEXT) {
276 if (!pass) { /* first pass through pracc text */
277 if (store_pending == 0) /* done, normal exit */
278 return ERROR_OK;
279 pass = 1; /* pracc text passed */
280 code_count = 0; /* restart code count */
281 } else {
282 LOG_DEBUG("unexpected second pass through pracc text");
283 return ERROR_JTAG_DEVICE_ERROR;
284 }
285 } else {
286 if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
287 LOG_DEBUG("unexpected read address in final check: %" PRIx32 ", expected: %x",
288 ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4);
289 return ERROR_JTAG_DEVICE_ERROR;
290 }
291 }
292 if (!pass) {
293 if ((code_count - ctx->code_count) > 1) { /* allow max 2 instruction delay slot */
294 LOG_DEBUG("failed to jump back to pracc text");
295 return ERROR_JTAG_DEVICE_ERROR;
296 }
297 } else
298 if (code_count > 10) { /* enough, abandone */
299 LOG_DEBUG("execution abandoned, store pending: %d", store_pending);
300 return ERROR_JTAG_DEVICE_ERROR;
301 }
302 instr = MIPS32_NOP; /* shift out NOPs instructions */
303 code_count++;
304 }
305
306 /* Send instruction out */
307 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
308 mips_ejtag_drscan_32_out(ejtag_info, instr);
309 }
310 /* finish processor access, let the processor eat! */
311 retval = mips32_pracc_finish(ejtag_info);
312 if (retval != ERROR_OK)
313 return retval;
314
315 if (instr == MIPS32_DRET) /* after leaving debug mode nothing to do */
316 return ERROR_OK;
317
318 if (store_pending == 0 && pass) { /* store access done, but after passing pracc text */
319 LOG_DEBUG("warning: store access pass pracc text");
320 return ERROR_OK;
321 }
322 }
323 }
324
325 inline void pracc_queue_init(struct pracc_queue_info *ctx)
326 {
327 ctx->retval = ERROR_OK;
328 ctx->code_count = 0;
329 ctx->store_count = 0;
330
331 ctx->pracc_list = malloc(2 * ctx->max_code * sizeof(uint32_t));
332 if (ctx->pracc_list == NULL) {
333 LOG_ERROR("Out of memory");
334 ctx->retval = ERROR_FAIL;
335 }
336 }
337
338 inline void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
339 {
340 ctx->pracc_list[ctx->max_code + ctx->code_count] = addr;
341 ctx->pracc_list[ctx->code_count++] = instr;
342 if (addr)
343 ctx->store_count++;
344 }
345
346 inline void pracc_queue_free(struct pracc_queue_info *ctx)
347 {
348 if (ctx->code_count > ctx->max_code) /* Only for internal check, will be erased */
349 LOG_ERROR("Internal error, code count: %d > max code: %d", ctx->code_count, ctx->max_code);
350 if (ctx->pracc_list != NULL)
351 free(ctx->pracc_list);
352 }
353
354 int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf)
355 {
356 if (ejtag_info->mode == 0)
357 return mips32_pracc_exec(ejtag_info, ctx, buf);
358
359 union scan_in {
360 uint8_t scan_96[12];
361 struct {
362 uint8_t ctrl[4];
363 uint8_t data[4];
364 uint8_t addr[4];
365 } scan_32;
366
367 } *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
368 if (scan_in == NULL) {
369 LOG_ERROR("Out of memory");
370 return ERROR_FAIL;
371 }
372
373 unsigned num_clocks =
374 ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
375
376 uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
377 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
378
379 int scan_count = 0;
380 for (int i = 0; i != 2 * ctx->code_count; i++) {
381 uint32_t data = 0;
382 if (i & 1u) { /* Check store address from previous instruction, if not the first */
383 if (i < 2 || 0 == ctx->pracc_list[ctx->max_code + (i / 2) - 1])
384 continue;
385 } else
386 data = ctx->pracc_list[i / 2];
387
388 jtag_add_clocks(num_clocks);
389 mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, data, scan_in[scan_count++].scan_96);
390 }
391
392 int retval = jtag_execute_queue(); /* execute queued scans */
393 if (retval != ERROR_OK)
394 goto exit;
395
396 uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */
397 scan_count = 0;
398 for (int i = 0; i != 2 * ctx->code_count; i++) { /* verify every pracc access */
399 uint32_t store_addr = 0;
400 if (i & 1u) { /* Read store addres from previous instruction, if not the first */
401 store_addr = ctx->pracc_list[ctx->max_code + (i / 2) - 1];
402 if (i < 2 || 0 == store_addr)
403 continue;
404 }
405
406 ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
407 if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
408 LOG_ERROR("Error: access not pending count: %d", scan_count);
409 retval = ERROR_FAIL;
410 goto exit;
411 }
412
413 uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
414
415 if (store_addr != 0) {
416 if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
417 LOG_ERROR("Not a store/write access, count: %d", scan_count);
418 retval = ERROR_FAIL;
419 goto exit;
420 }
421 if (addr != store_addr) {
422 LOG_ERROR("Store address mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
423 addr, store_addr, scan_count);
424 retval = ERROR_FAIL;
425 goto exit;
426 }
427 int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
428 buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
429
430 } else {
431 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
432 LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
433 retval = ERROR_FAIL;
434 goto exit;
435 }
436 if (addr != fetch_addr) {
437 LOG_ERROR("Fetch addr mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
438 addr, fetch_addr, scan_count);
439 retval = ERROR_FAIL;
440 goto exit;
441 }
442 fetch_addr += 4;
443 }
444 scan_count++;
445 }
446 exit:
447 free(scan_in);
448 return retval;
449 }
450
451 int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
452 {
453 struct pracc_queue_info ctx = {.max_code = 8};
454 pracc_queue_init(&ctx);
455 if (ctx.retval != ERROR_OK)
456 goto exit;
457
458 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
459 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper address */
460 pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */
461 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
462 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */
463 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 of $8 */
464 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 of $8 */
465 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
466 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
467
468 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf);
469 exit:
470 pracc_queue_free(&ctx);
471 return ctx.retval;
472 }
473
474 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
475 {
476 if (count == 1 && size == 4)
477 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
478
479 uint32_t *data = NULL;
480 struct pracc_queue_info ctx = {.max_code = 256 * 3 + 8 + 1}; /* alloc memory for the worst case */
481 pracc_queue_init(&ctx);
482 if (ctx.retval != ERROR_OK)
483 goto exit;
484
485 if (size != 4) {
486 data = malloc(256 * sizeof(uint32_t));
487 if (data == NULL) {
488 LOG_ERROR("Out of memory");
489 goto exit;
490 }
491 }
492
493 uint32_t *buf32 = buf;
494 uint16_t *buf16 = buf;
495 uint8_t *buf8 = buf;
496
497 while (count) {
498 ctx.code_count = 0;
499 ctx.store_count = 0;
500 int this_round_count = (count > 256) ? 256 : count;
501 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
502
503 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
504 pracc_add(&ctx, 0, MIPS32_LUI(9, last_upper_base_addr)); /* load the upper memory address in $9 */
505
506 for (int i = 0; i != this_round_count; i++) { /* Main code loop */
507 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
508 if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $9 */
509 pracc_add(&ctx, 0, MIPS32_LUI(9, upper_base_addr));
510 last_upper_base_addr = upper_base_addr;
511 }
512
513 if (size == 4)
514 pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 9)); /* load from memory to $8 */
515 else if (size == 2)
516 pracc_add(&ctx, 0, MIPS32_LHU(8, LOWER16(addr), 9));
517 else
518 pracc_add(&ctx, 0, MIPS32_LBU(8, LOWER16(addr), 9));
519
520 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4,
521 MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15)); /* store $8 at param out */
522 addr += size;
523 }
524 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
525 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
526 pracc_add(&ctx, 0, MIPS32_LUI(9, UPPER16(ejtag_info->reg9))); /* restore upper 16 bits of reg 9 */
527 pracc_add(&ctx, 0, MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg9))); /* restore lower 16 bits of reg 9 */
528
529 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
530 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
531
532 if (size == 4) {
533 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32);
534 if (ctx.retval != ERROR_OK)
535 goto exit;
536 buf32 += this_round_count;
537 } else {
538 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data);
539 if (ctx.retval != ERROR_OK)
540 goto exit;
541
542 uint32_t *data_p = data;
543 for (int i = 0; i != this_round_count; i++) {
544 if (size == 2)
545 *buf16++ = *data_p++;
546 else
547 *buf8++ = *data_p++;
548 }
549 }
550 count -= this_round_count;
551 }
552 exit:
553 pracc_queue_free(&ctx);
554 if (data != NULL)
555 free(data);
556 return ctx.retval;
557 }
558
559 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
560 {
561 struct pracc_queue_info ctx = {.max_code = 7};
562 pracc_queue_init(&ctx);
563 if (ctx.retval != ERROR_OK)
564 goto exit;
565
566 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
567 pracc_add(&ctx, 0, MIPS32_MFC0(8, 0, 0) | (cp0_reg << 11) | cp0_sel); /* move COP0 [cp0_reg select] to $8 */
568 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
569 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
570 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
571 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
572 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
573 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
574
575 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val);
576 exit:
577 pracc_queue_free(&ctx);
578 return ctx.retval;
579
580 /**
581 * Note that our input parametes cp0_reg and cp0_sel
582 * are numbers (not gprs) which make part of mfc0 instruction opcode.
583 *
584 * These are not fix, but can be different for each mips32_cp0_read() function call,
585 * and that is why we must insert them directly into opcode,
586 * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
587 * and put them into the gprs later from MIPS32_PRACC_STACK
588 * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
589 * but plain (immediate) number.
590 *
591 * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
592 * In order to insert our parameters, we must change rd and funct fields.
593 *
594 * code[2] |= (cp0_reg << 11) | cp0_sel; change rd and funct of MIPS32_R_INST macro
595 **/
596 }
597
598 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
599 {
600 struct pracc_queue_info ctx = {.max_code = 6};
601 pracc_queue_init(&ctx);
602 if (ctx.retval != ERROR_OK)
603 goto exit;
604
605 pracc_add(&ctx, 0, MIPS32_LUI(15, UPPER16(val))); /* Load val to $15 */
606 pracc_add(&ctx, 0, MIPS32_ORI(15, 15, LOWER16(val)));
607
608 pracc_add(&ctx, 0, MIPS32_MTC0(15, 0, 0) | (cp0_reg << 11) | cp0_sel); /* write cp0 reg / sel */
609
610 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
611 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
612
613 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
614 exit:
615 pracc_queue_free(&ctx);
616 return ctx.retval;
617
618 /**
619 * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
620 * In order to insert our parameters, we must change rd and funct fields.
621 * code[3] |= (cp0_reg << 11) | cp0_sel; change rd and funct fields of MIPS32_R_INST macro
622 **/
623 }
624
625 /**
626 * \b mips32_pracc_sync_cache
627 *
628 * Synchronize Caches to Make Instruction Writes Effective
629 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
630 * Document Number: MD00086, Revision 2.00, June 9, 2003)
631 *
632 * When the instruction stream is written, the SYNCI instruction should be used
633 * in conjunction with other instructions to make the newly-written instructions effective.
634 *
635 * Explanation :
636 * A program that loads another program into memory is actually writing the D- side cache.
637 * The instructions it has loaded can't be executed until they reach the I-cache.
638 *
639 * After the instructions have been written, the loader should arrange
640 * to write back any containing D-cache line and invalidate any locations
641 * already in the I-cache.
642 *
643 * If the cache coherency attribute (CCA) is set to zero, it's a write through cache, there is no need
644 * to write back.
645 *
646 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
647 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
648 * That is, it arranges a D-cache write-back (if CCA = 3) and an I-cache invalidate.
649 *
650 * The line size is obtained with the rdhwr SYNCI_Step in release 2 or from cp0 config 1 register in release 1.
651 */
652 static int mips32_pracc_synchronize_cache(struct mips_ejtag *ejtag_info,
653 uint32_t start_addr, uint32_t end_addr, int cached, int rel)
654 {
655 struct pracc_queue_info ctx = {.max_code = 256 * 2 + 5};
656 pracc_queue_init(&ctx);
657 if (ctx.retval != ERROR_OK)
658 goto exit;
659 /** Find cache line size in bytes */
660 uint32_t clsiz;
661 if (rel) { /* Release 2 (rel = 1) */
662 pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
663
664 pracc_add(&ctx, 0, MIPS32_RDHWR(8, MIPS32_SYNCI_STEP)); /* load synci_step value to $8 */
665
666 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
667 MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
668
669 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
670 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
671 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
672 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
673
674 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, &clsiz);
675 if (ctx.retval != ERROR_OK)
676 goto exit;
677
678 } else { /* Release 1 (rel = 0) */
679 uint32_t conf;
680 ctx.retval = mips32_cp0_read(ejtag_info, &conf, 16, 1);
681 if (ctx.retval != ERROR_OK)
682 goto exit;
683
684 uint32_t dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
685
686 /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... max dl=6 => 128 bytes cache line size */
687 clsiz = 0x2 << dl;
688 if (dl == 0)
689 clsiz = 0;
690 }
691
692 if (clsiz == 0)
693 goto exit; /* Nothing to do */
694
695 /* make sure clsiz is power of 2 */
696 if (clsiz & (clsiz - 1)) {
697 LOG_DEBUG("clsiz must be power of 2");
698 ctx.retval = ERROR_FAIL;
699 goto exit;
700 }
701
702 /* make sure start_addr and end_addr have the same offset inside de cache line */
703 start_addr |= clsiz - 1;
704 end_addr |= clsiz - 1;
705
706 ctx.code_count = 0;
707 int count = 0;
708 uint32_t last_upper_base_addr = UPPER16((start_addr + 0x8000));
709
710 pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load upper memory base address to $15 */
711
712 while (start_addr <= end_addr) { /* main loop */
713 uint32_t upper_base_addr = UPPER16((start_addr + 0x8000));
714 if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $15 */
715 pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr));
716 last_upper_base_addr = upper_base_addr;
717 }
718 if (rel)
719 pracc_add(&ctx, 0, MIPS32_SYNCI(LOWER16(start_addr), 15)); /* synci instruction, offset($15) */
720
721 else {
722 if (cached == 3)
723 pracc_add(&ctx, 0, MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK,
724 LOWER16(start_addr), 15)); /* cache Hit_Writeback_D, offset($15) */
725
726 pracc_add(&ctx, 0, MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE,
727 LOWER16(start_addr), 15)); /* cache Hit_Invalidate_I, offset($15) */
728 }
729 start_addr += clsiz;
730 count++;
731 if (count == 256 && start_addr <= end_addr) { /* more ?, then execute code list */
732 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
733 pracc_add(&ctx, 0, MIPS32_NOP); /* nop in delay slot */
734
735 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
736 if (ctx.retval != ERROR_OK)
737 goto exit;
738
739 ctx.code_count = 0;
740 count = 0;
741 }
742 }
743 pracc_add(&ctx, 0, MIPS32_SYNC);
744 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
745 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave*/
746
747 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
748 exit:
749 pracc_queue_free(&ctx);
750 return ctx.retval;
751 }
752
753 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info,
754 uint32_t addr, int size, int count, const void *buf)
755 {
756 struct pracc_queue_info ctx = {.max_code = 128 * 3 + 5 + 1}; /* alloc memory for the worst case */
757 pracc_queue_init(&ctx);
758 if (ctx.retval != ERROR_OK)
759 goto exit;
760
761 const uint32_t *buf32 = buf;
762 const uint16_t *buf16 = buf;
763 const uint8_t *buf8 = buf;
764
765 while (count) {
766 ctx.code_count = 0;
767 ctx.store_count = 0;
768 int this_round_count = (count > 128) ? 128 : count;
769 uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
770
771 pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load $15 with memory base address */
772
773 for (int i = 0; i != this_round_count; i++) {
774 uint32_t upper_base_addr = UPPER16((addr + 0x8000));
775 if (last_upper_base_addr != upper_base_addr) {
776 pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr)); /* if needed, change upper address in $15*/
777 last_upper_base_addr = upper_base_addr;
778 }
779
780 if (size == 4) { /* for word writes check if one half word is 0 and load it accordingly */
781 if (LOWER16(*buf32) == 0)
782 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load only upper value */
783 else if (UPPER16(*buf32) == 0)
784 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, LOWER16(*buf32))); /* load only lower */
785 else {
786 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load upper and lower */
787 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(*buf32)));
788 }
789 pracc_add(&ctx, 0, MIPS32_SW(8, LOWER16(addr), 15)); /* store word to memory */
790 buf32++;
791
792 } else if (size == 2) {
793 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf16)); /* load lower value */
794 pracc_add(&ctx, 0, MIPS32_SH(8, LOWER16(addr), 15)); /* store half word to memory */
795 buf16++;
796
797 } else {
798 pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf8)); /* load lower value */
799 pracc_add(&ctx, 0, MIPS32_SB(8, LOWER16(addr), 15)); /* store byte to memory */
800 buf8++;
801 }
802 addr += size;
803 }
804
805 pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
806 pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
807
808 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
809 pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
810
811 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
812 if (ctx.retval != ERROR_OK)
813 goto exit;
814 count -= this_round_count;
815 }
816 exit:
817 pracc_queue_free(&ctx);
818 return ctx.retval;
819 }
820
821 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf)
822 {
823 int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
824 if (retval != ERROR_OK)
825 return retval;
826
827 /**
828 * If we are in the cacheable region and cache is activated,
829 * we must clean D$ (if Cache Coherency Attribute is set to 3) + invalidate I$ after we did the write,
830 * so that changes do not continue to live only in D$ (if CCA = 3), but to be
831 * replicated in I$ also (maybe we wrote the istructions)
832 */
833 uint32_t conf = 0;
834 int cached = 0;
835
836 if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
837 return retval; /*Nothing to do*/
838
839 mips32_cp0_read(ejtag_info, &conf, 16, 0);
840
841 switch (KSEGX(addr)) {
842 case KUSEG:
843 cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
844 break;
845 case KSEG0:
846 cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
847 break;
848 case KSEG2:
849 case KSEG3:
850 cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
851 break;
852 default:
853 /* what ? */
854 break;
855 }
856
857 /**
858 * Check cachablitiy bits coherency algorithm
859 * is the region cacheable or uncached.
860 * If cacheable we have to synchronize the cache
861 */
862 if (cached == 3 || cached == 0) { /* Write back cache or write through cache */
863 uint32_t start_addr = addr;
864 uint32_t end_addr = addr + count * size;
865 uint32_t rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
866 if (rel > 1) {
867 LOG_DEBUG("Unknown release in cache code");
868 return ERROR_FAIL;
869 }
870 retval = mips32_pracc_synchronize_cache(ejtag_info, start_addr, end_addr, cached, rel);
871 }
872
873 return retval;
874 }
875
876 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
877 {
878 static const uint32_t cp0_write_code[] = {
879 MIPS32_MTC0(1, 12, 0), /* move $1 to status */
880 MIPS32_MTLO(1), /* move $1 to lo */
881 MIPS32_MTHI(1), /* move $1 to hi */
882 MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */
883 MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/
884 MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */
885 };
886
887 struct pracc_queue_info ctx = {.max_code = 37 * 2 + 7 + 1};
888 pracc_queue_init(&ctx);
889 if (ctx.retval != ERROR_OK)
890 goto exit;
891
892 /* load registers 2 to 31 with lui and ori instructions, check if some instructions can be saved */
893 for (int i = 2; i < 32; i++) {
894 if (LOWER16((regs[i])) == 0) /* if lower half word is 0, lui instruction only */
895 pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
896 else if (UPPER16((regs[i])) == 0) /* if upper half word is 0, ori with $0 only*/
897 pracc_add(&ctx, 0, MIPS32_ORI(i, 0, LOWER16((regs[i]))));
898 else { /* default, load with lui and ori instructions */
899 pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
900 pracc_add(&ctx, 0, MIPS32_ORI(i, i, LOWER16((regs[i]))));
901 }
902 }
903
904 for (int i = 0; i != 6; i++) {
905 pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[i + 32])))); /* load CPO value in $1, with lui and ori */
906 pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[i + 32]))));
907 pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */
908 }
909 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* load $15 in DeSave */
910 pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[1])))); /* load upper half word in $1 */
911 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
912 pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */
913
914 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
915
916 ejtag_info->reg8 = regs[8];
917 ejtag_info->reg9 = regs[9];
918 exit:
919 pracc_queue_free(&ctx);
920 return ctx.retval;
921 }
922
923 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
924 {
925 static int cp0_read_code[] = {
926 MIPS32_MFC0(8, 12, 0), /* move status to $8 */
927 MIPS32_MFLO(8), /* move lo to $8 */
928 MIPS32_MFHI(8), /* move hi to $8 */
929 MIPS32_MFC0(8, 8, 0), /* move badvaddr to $8 */
930 MIPS32_MFC0(8, 13, 0), /* move cause to $8 */
931 MIPS32_MFC0(8, 24, 0), /* move depc (pc) to $8 */
932 };
933
934 struct pracc_queue_info ctx = {.max_code = 49};
935 pracc_queue_init(&ctx);
936 if (ctx.retval != ERROR_OK)
937 goto exit;
938
939 pracc_add(&ctx, 0, MIPS32_MTC0(1, 31, 0)); /* move $1 to COP0 DeSave */
940 pracc_add(&ctx, 0, MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */
941
942 for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */
943 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
944 MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1));
945
946 for (int i = 0; i != 6; i++) {
947 pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */
948 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */
949 MIPS32_SW(8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
950 }
951 pracc_add(&ctx, 0, MIPS32_MFC0(8, 31, 0)); /* move DeSave to $8, reg1 value */
952 pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */
953 MIPS32_SW(8, PRACC_OUT_OFFSET + 4, 1));
954
955 pracc_add(&ctx, 0, MIPS32_MFC0(1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */
956 pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
957 pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* load $15 in DeSave */
958
959 if (ejtag_info->mode == 0)
960 ctx.store_count++; /* Needed by legacy code, due to offset from reg0 */
961
962 ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs);
963
964 ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */
965 ejtag_info->reg9 = regs[9];
966 exit:
967 pracc_queue_free(&ctx);
968 return ctx.retval;
969 }
970
971 /* fastdata upload/download requires an initialized working area
972 * to load the download code; it should not be called otherwise
973 * fetch order from the fastdata area
974 * 1. start addr
975 * 2. end addr
976 * 3. data ...
977 */
978 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
979 int write_t, uint32_t addr, int count, uint32_t *buf)
980 {
981 uint32_t handler_code[] = {
982 /* caution when editing, table is modified below */
983 /* r15 points to the start of this code */
984 MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
985 MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
986 MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
987 MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
988 /* start of fastdata area in t0 */
989 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
990 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
991 MIPS32_LW(9, 0, 8), /* start addr in t1 */
992 MIPS32_LW(10, 0, 8), /* end addr to t2 */
993 /* loop: */
994 /* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */
995 /* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */
996 MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
997 MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
998
999 MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
1000 MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
1001 MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
1002 MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
1003
1004 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
1005 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
1006 MIPS32_JR(15), /* jr start */
1007 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
1008 };
1009
1010 uint32_t jmp_code[] = {
1011 /* 0 */ MIPS32_LUI(15, 0), /* addr of working area added below */
1012 /* 1 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */
1013 MIPS32_JR(15), /* jump to ram program */
1014 MIPS32_NOP,
1015 };
1016
1017 int retval, i;
1018 uint32_t val, ejtag_ctrl, address;
1019
1020 if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
1021 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1022
1023 if (write_t) {
1024 handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */
1025 handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */
1026 } else {
1027 handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */
1028 handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */
1029 }
1030
1031 /* write program into RAM */
1032 if (write_t != ejtag_info->fast_access_save) {
1033 mips32_pracc_write_mem(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
1034 /* save previous operation to speed to any consecutive read/writes */
1035 ejtag_info->fast_access_save = write_t;
1036 }
1037
1038 LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
1039
1040 jmp_code[0] |= UPPER16(source->address);
1041 jmp_code[1] |= LOWER16(source->address);
1042
1043 for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
1044 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1045 if (retval != ERROR_OK)
1046 return retval;
1047
1048 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
1049 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
1050
1051 /* Clear the access pending bit (let the processor eat!) */
1052 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
1053 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
1054 mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
1055 }
1056
1057 /* wait PrAcc pending bit for FASTDATA write */
1058 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1059 if (retval != ERROR_OK)
1060 return retval;
1061
1062 /* next fetch to dmseg should be in FASTDATA_AREA, check */
1063 address = 0;
1064 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1065 retval = mips_ejtag_drscan_32(ejtag_info, &address);
1066 if (retval != ERROR_OK)
1067 return retval;
1068
1069 if (address != MIPS32_PRACC_FASTDATA_AREA)
1070 return ERROR_FAIL;
1071
1072 /* Send the load start address */
1073 val = addr;
1074 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1075 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1076
1077 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1078 if (retval != ERROR_OK)
1079 return retval;
1080
1081 /* Send the load end address */
1082 val = addr + (count - 1) * 4;
1083 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
1084 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
1085
1086 unsigned num_clocks = 0; /* like in legacy code */
1087 if (ejtag_info->mode != 0)
1088 num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
1089
1090 for (i = 0; i < count; i++) {
1091 jtag_add_clocks(num_clocks);
1092 retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
1093 if (retval != ERROR_OK)
1094 return retval;
1095 }
1096
1097 retval = jtag_execute_queue();
1098 if (retval != ERROR_OK) {
1099 LOG_ERROR("fastdata load failed");
1100 return retval;
1101 }
1102
1103 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
1104 if (retval != ERROR_OK)
1105 return retval;
1106
1107 address = 0;
1108 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
1109 retval = mips_ejtag_drscan_32(ejtag_info, &address);
1110 if (retval != ERROR_OK)
1111 return retval;
1112
1113 if (address != MIPS32_PRACC_TEXT)
1114 LOG_ERROR("mini program did not return to start");
1115
1116 return retval;
1117 }