gdb_server: support gdb target description
[openocd.git] / src / target / mips32.c
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2007,2008 √ėyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * Copyright (C) 2011 by Drasko DRASKOVIC *
11 * drasko.draskovic@gmail.com *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
27 ***************************************************************************/
28
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "mips32.h"
34 #include "breakpoints.h"
35 #include "algorithm.h"
36 #include "register.h"
37
38 static char *mips32_core_reg_list[] = {
39 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
40 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
41 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
42 "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra",
43 "status", "lo", "hi", "badvaddr", "cause", "pc"
44 };
45
46 static const char *mips_isa_strings[] = {
47 "MIPS32", "MIPS16e"
48 };
49
50 static struct mips32_core_reg mips32_core_reg_list_arch_info[MIPS32NUMCOREREGS] = {
51 {0, NULL, NULL},
52 {1, NULL, NULL},
53 {2, NULL, NULL},
54 {3, NULL, NULL},
55 {4, NULL, NULL},
56 {5, NULL, NULL},
57 {6, NULL, NULL},
58 {7, NULL, NULL},
59 {8, NULL, NULL},
60 {9, NULL, NULL},
61 {10, NULL, NULL},
62 {11, NULL, NULL},
63 {12, NULL, NULL},
64 {13, NULL, NULL},
65 {14, NULL, NULL},
66 {15, NULL, NULL},
67 {16, NULL, NULL},
68 {17, NULL, NULL},
69 {18, NULL, NULL},
70 {19, NULL, NULL},
71 {20, NULL, NULL},
72 {21, NULL, NULL},
73 {22, NULL, NULL},
74 {23, NULL, NULL},
75 {24, NULL, NULL},
76 {25, NULL, NULL},
77 {26, NULL, NULL},
78 {27, NULL, NULL},
79 {28, NULL, NULL},
80 {29, NULL, NULL},
81 {30, NULL, NULL},
82 {31, NULL, NULL},
83
84 {32, NULL, NULL},
85 {33, NULL, NULL},
86 {34, NULL, NULL},
87 {35, NULL, NULL},
88 {36, NULL, NULL},
89 {37, NULL, NULL},
90 };
91
92 /* number of mips dummy fp regs fp0 - fp31 + fsr and fir
93 * we also add 18 unknown registers to handle gdb requests */
94
95 #define MIPS32NUMFPREGS (34 + 18)
96
97 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
98
99 static struct reg mips32_gdb_dummy_fp_reg = {
100 .name = "GDB dummy floating-point register",
101 .value = mips32_gdb_dummy_fp_value,
102 .dirty = 0,
103 .valid = 1,
104 .size = 32,
105 .arch_info = NULL,
106 };
107
108 static int mips32_get_core_reg(struct reg *reg)
109 {
110 int retval;
111 struct mips32_core_reg *mips32_reg = reg->arch_info;
112 struct target *target = mips32_reg->target;
113 struct mips32_common *mips32_target = target_to_mips32(target);
114
115 if (target->state != TARGET_HALTED)
116 return ERROR_TARGET_NOT_HALTED;
117
118 retval = mips32_target->read_core_reg(target, mips32_reg->num);
119
120 return retval;
121 }
122
123 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
124 {
125 struct mips32_core_reg *mips32_reg = reg->arch_info;
126 struct target *target = mips32_reg->target;
127 uint32_t value = buf_get_u32(buf, 0, 32);
128
129 if (target->state != TARGET_HALTED)
130 return ERROR_TARGET_NOT_HALTED;
131
132 buf_set_u32(reg->value, 0, 32, value);
133 reg->dirty = 1;
134 reg->valid = 1;
135
136 return ERROR_OK;
137 }
138
139 static int mips32_read_core_reg(struct target *target, int num)
140 {
141 uint32_t reg_value;
142
143 /* get pointers to arch-specific information */
144 struct mips32_common *mips32 = target_to_mips32(target);
145
146 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
147 return ERROR_COMMAND_SYNTAX_ERROR;
148
149 reg_value = mips32->core_regs[num];
150 buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
151 mips32->core_cache->reg_list[num].valid = 1;
152 mips32->core_cache->reg_list[num].dirty = 0;
153
154 return ERROR_OK;
155 }
156
157 static int mips32_write_core_reg(struct target *target, int num)
158 {
159 uint32_t reg_value;
160
161 /* get pointers to arch-specific information */
162 struct mips32_common *mips32 = target_to_mips32(target);
163
164 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
165 return ERROR_COMMAND_SYNTAX_ERROR;
166
167 reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
168 mips32->core_regs[num] = reg_value;
169 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
170 mips32->core_cache->reg_list[num].valid = 1;
171 mips32->core_cache->reg_list[num].dirty = 0;
172
173 return ERROR_OK;
174 }
175
176 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
177 int *reg_list_size, enum target_register_class reg_class)
178 {
179 /* get pointers to arch-specific information */
180 struct mips32_common *mips32 = target_to_mips32(target);
181 int i;
182
183 /* include floating point registers */
184 *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
185 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
186
187 for (i = 0; i < MIPS32NUMCOREREGS; i++)
188 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
189
190 /* add dummy floating points regs */
191 for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
192 (*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
193
194 return ERROR_OK;
195 }
196
197 int mips32_save_context(struct target *target)
198 {
199 int i;
200
201 /* get pointers to arch-specific information */
202 struct mips32_common *mips32 = target_to_mips32(target);
203 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
204
205 /* read core registers */
206 mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
207
208 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
209 if (!mips32->core_cache->reg_list[i].valid)
210 mips32->read_core_reg(target, i);
211 }
212
213 return ERROR_OK;
214 }
215
216 int mips32_restore_context(struct target *target)
217 {
218 int i;
219
220 /* get pointers to arch-specific information */
221 struct mips32_common *mips32 = target_to_mips32(target);
222 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
223
224 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
225 if (mips32->core_cache->reg_list[i].dirty)
226 mips32->write_core_reg(target, i);
227 }
228
229 /* write core regs */
230 mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
231
232 return ERROR_OK;
233 }
234
235 int mips32_arch_state(struct target *target)
236 {
237 struct mips32_common *mips32 = target_to_mips32(target);
238
239 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
240 mips_isa_strings[mips32->isa_mode],
241 debug_reason_name(target),
242 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
243
244 return ERROR_OK;
245 }
246
247 static const struct reg_arch_type mips32_reg_type = {
248 .get = mips32_get_core_reg,
249 .set = mips32_set_core_reg,
250 };
251
252 struct reg_cache *mips32_build_reg_cache(struct target *target)
253 {
254 /* get pointers to arch-specific information */
255 struct mips32_common *mips32 = target_to_mips32(target);
256
257 int num_regs = MIPS32NUMCOREREGS;
258 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
259 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
260 struct reg *reg_list = malloc(sizeof(struct reg) * num_regs);
261 struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
262 int i;
263
264 register_init_dummy(&mips32_gdb_dummy_fp_reg);
265
266 /* Build the process context cache */
267 cache->name = "mips32 registers";
268 cache->next = NULL;
269 cache->reg_list = reg_list;
270 cache->num_regs = num_regs;
271 (*cache_p) = cache;
272 mips32->core_cache = cache;
273
274 for (i = 0; i < num_regs; i++) {
275 arch_info[i] = mips32_core_reg_list_arch_info[i];
276 arch_info[i].target = target;
277 arch_info[i].mips32_common = mips32;
278 reg_list[i].name = mips32_core_reg_list[i];
279 reg_list[i].size = 32;
280 reg_list[i].value = calloc(1, 4);
281 reg_list[i].dirty = 0;
282 reg_list[i].valid = 0;
283 reg_list[i].type = &mips32_reg_type;
284 reg_list[i].arch_info = &arch_info[i];
285 }
286
287 return cache;
288 }
289
290 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
291 {
292 target->arch_info = mips32;
293 mips32->common_magic = MIPS32_COMMON_MAGIC;
294 mips32->fast_data_area = NULL;
295
296 /* has breakpoint/watchpint unit been scanned */
297 mips32->bp_scanned = 0;
298 mips32->data_break_list = NULL;
299
300 mips32->ejtag_info.tap = tap;
301 mips32->read_core_reg = mips32_read_core_reg;
302 mips32->write_core_reg = mips32_write_core_reg;
303
304 mips32->ejtag_info.scan_delay = 2000000; /* Initial default value */
305 mips32->ejtag_info.mode = 0; /* Initial default value */
306
307 return ERROR_OK;
308 }
309
310 /* run to exit point. return error if exit point was not reached. */
311 static int mips32_run_and_wait(struct target *target, uint32_t entry_point,
312 int timeout_ms, uint32_t exit_point, struct mips32_common *mips32)
313 {
314 uint32_t pc;
315 int retval;
316 /* This code relies on the target specific resume() and poll()->debug_entry()
317 * sequence to write register values to the processor and the read them back */
318 retval = target_resume(target, 0, entry_point, 0, 1);
319 if (retval != ERROR_OK)
320 return retval;
321
322 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
323 /* If the target fails to halt due to the breakpoint, force a halt */
324 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
325 retval = target_halt(target);
326 if (retval != ERROR_OK)
327 return retval;
328 retval = target_wait_state(target, TARGET_HALTED, 500);
329 if (retval != ERROR_OK)
330 return retval;
331 return ERROR_TARGET_TIMEOUT;
332 }
333
334 pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
335 if (exit_point && (pc != exit_point)) {
336 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
337 return ERROR_TARGET_TIMEOUT;
338 }
339
340 return ERROR_OK;
341 }
342
343 int mips32_run_algorithm(struct target *target, int num_mem_params,
344 struct mem_param *mem_params, int num_reg_params,
345 struct reg_param *reg_params, uint32_t entry_point,
346 uint32_t exit_point, int timeout_ms, void *arch_info)
347 {
348 struct mips32_common *mips32 = target_to_mips32(target);
349 struct mips32_algorithm *mips32_algorithm_info = arch_info;
350 enum mips32_isa_mode isa_mode = mips32->isa_mode;
351
352 uint32_t context[MIPS32NUMCOREREGS];
353 int i;
354 int retval = ERROR_OK;
355
356 LOG_DEBUG("Running algorithm");
357
358 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
359 * at the exit point */
360
361 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
362 LOG_ERROR("current target isn't a MIPS32 target");
363 return ERROR_TARGET_INVALID;
364 }
365
366 if (target->state != TARGET_HALTED) {
367 LOG_WARNING("target not halted");
368 return ERROR_TARGET_NOT_HALTED;
369 }
370
371 /* refresh core register cache */
372 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
373 if (!mips32->core_cache->reg_list[i].valid)
374 mips32->read_core_reg(target, i);
375 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
376 }
377
378 for (i = 0; i < num_mem_params; i++) {
379 retval = target_write_buffer(target, mem_params[i].address,
380 mem_params[i].size, mem_params[i].value);
381 if (retval != ERROR_OK)
382 return retval;
383 }
384
385 for (i = 0; i < num_reg_params; i++) {
386 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
387
388 if (!reg) {
389 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
390 return ERROR_COMMAND_SYNTAX_ERROR;
391 }
392
393 if (reg->size != reg_params[i].size) {
394 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
395 reg_params[i].reg_name);
396 return ERROR_COMMAND_SYNTAX_ERROR;
397 }
398
399 mips32_set_core_reg(reg, reg_params[i].value);
400 }
401
402 mips32->isa_mode = mips32_algorithm_info->isa_mode;
403
404 retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
405
406 if (retval != ERROR_OK)
407 return retval;
408
409 for (i = 0; i < num_mem_params; i++) {
410 if (mem_params[i].direction != PARAM_OUT) {
411 retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
412 mem_params[i].value);
413 if (retval != ERROR_OK)
414 return retval;
415 }
416 }
417
418 for (i = 0; i < num_reg_params; i++) {
419 if (reg_params[i].direction != PARAM_OUT) {
420 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
421 if (!reg) {
422 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
423 return ERROR_COMMAND_SYNTAX_ERROR;
424 }
425
426 if (reg->size != reg_params[i].size) {
427 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
428 reg_params[i].reg_name);
429 return ERROR_COMMAND_SYNTAX_ERROR;
430 }
431
432 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
433 }
434 }
435
436 /* restore everything we saved before */
437 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
438 uint32_t regvalue;
439 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
440 if (regvalue != context[i]) {
441 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
442 mips32->core_cache->reg_list[i].name, context[i]);
443 buf_set_u32(mips32->core_cache->reg_list[i].value,
444 0, 32, context[i]);
445 mips32->core_cache->reg_list[i].valid = 1;
446 mips32->core_cache->reg_list[i].dirty = 1;
447 }
448 }
449
450 mips32->isa_mode = isa_mode;
451
452 return ERROR_OK;
453 }
454
455 int mips32_examine(struct target *target)
456 {
457 struct mips32_common *mips32 = target_to_mips32(target);
458
459 if (!target_was_examined(target)) {
460 target_set_examined(target);
461
462 /* we will configure later */
463 mips32->bp_scanned = 0;
464 mips32->num_inst_bpoints = 0;
465 mips32->num_data_bpoints = 0;
466 mips32->num_inst_bpoints_avail = 0;
467 mips32->num_data_bpoints_avail = 0;
468 }
469
470 return ERROR_OK;
471 }
472
473 static int mips32_configure_ibs(struct target *target)
474 {
475 struct mips32_common *mips32 = target_to_mips32(target);
476 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
477 int retval, i;
478 uint32_t bpinfo;
479
480 /* get number of inst breakpoints */
481 retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
482 if (retval != ERROR_OK)
483 return retval;
484
485 mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
486 mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
487 mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
488 sizeof(struct mips32_comparator));
489
490 for (i = 0; i < mips32->num_inst_bpoints; i++)
491 mips32->inst_break_list[i].reg_address =
492 ejtag_info->ejtag_iba0_addr +
493 (ejtag_info->ejtag_iba_step_size * i);
494
495 /* clear IBIS reg */
496 retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
497 return retval;
498 }
499
500 static int mips32_configure_dbs(struct target *target)
501 {
502 struct mips32_common *mips32 = target_to_mips32(target);
503 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
504 int retval, i;
505 uint32_t bpinfo;
506
507 /* get number of data breakpoints */
508 retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
509 if (retval != ERROR_OK)
510 return retval;
511
512 mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
513 mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
514 mips32->data_break_list = calloc(mips32->num_data_bpoints,
515 sizeof(struct mips32_comparator));
516
517 for (i = 0; i < mips32->num_data_bpoints; i++)
518 mips32->data_break_list[i].reg_address =
519 ejtag_info->ejtag_dba0_addr +
520 (ejtag_info->ejtag_dba_step_size * i);
521
522 /* clear DBIS reg */
523 retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
524 return retval;
525 }
526
527 int mips32_configure_break_unit(struct target *target)
528 {
529 /* get pointers to arch-specific information */
530 struct mips32_common *mips32 = target_to_mips32(target);
531 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
532 int retval;
533 uint32_t dcr;
534
535 if (mips32->bp_scanned)
536 return ERROR_OK;
537
538 /* get info about breakpoint support */
539 retval = target_read_u32(target, EJTAG_DCR, &dcr);
540 if (retval != ERROR_OK)
541 return retval;
542
543 /* EJTAG 2.0 does not specify EJTAG_DCR_IB and EJTAG_DCR_DB bits,
544 * assume IB and DB registers are always present. */
545 if (ejtag_info->ejtag_version == EJTAG_VERSION_20)
546 dcr |= EJTAG_DCR_IB | EJTAG_DCR_DB;
547
548 if (dcr & EJTAG_DCR_IB) {
549 retval = mips32_configure_ibs(target);
550 if (retval != ERROR_OK)
551 return retval;
552 }
553
554 if (dcr & EJTAG_DCR_DB) {
555 retval = mips32_configure_dbs(target);
556 if (retval != ERROR_OK)
557 return retval;
558 }
559
560 /* check if target endianness settings matches debug control register */
561 if (((dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
562 (!(dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_BIG_ENDIAN)))
563 LOG_WARNING("DCR endianness settings does not match target settings");
564
565 LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
566 mips32->num_data_bpoints);
567
568 mips32->bp_scanned = 1;
569
570 return ERROR_OK;
571 }
572
573 int mips32_enable_interrupts(struct target *target, int enable)
574 {
575 int retval;
576 int update = 0;
577 uint32_t dcr;
578
579 /* read debug control register */
580 retval = target_read_u32(target, EJTAG_DCR, &dcr);
581 if (retval != ERROR_OK)
582 return retval;
583
584 if (enable) {
585 if (!(dcr & EJTAG_DCR_INTE)) {
586 /* enable interrupts */
587 dcr |= EJTAG_DCR_INTE;
588 update = 1;
589 }
590 } else {
591 if (dcr & EJTAG_DCR_INTE) {
592 /* disable interrupts */
593 dcr &= ~EJTAG_DCR_INTE;
594 update = 1;
595 }
596 }
597
598 if (update) {
599 retval = target_write_u32(target, EJTAG_DCR, dcr);
600 if (retval != ERROR_OK)
601 return retval;
602 }
603
604 return ERROR_OK;
605 }
606
607 int mips32_checksum_memory(struct target *target, uint32_t address,
608 uint32_t count, uint32_t *checksum)
609 {
610 struct working_area *crc_algorithm;
611 struct reg_param reg_params[2];
612 struct mips32_algorithm mips32_info;
613 int retval;
614 uint32_t i;
615
616 /* see contib/loaders/checksum/mips32.s for src */
617
618 static const uint32_t mips_crc_code[] = {
619 0x248C0000, /* addiu $t4, $a0, 0 */
620 0x24AA0000, /* addiu $t2, $a1, 0 */
621 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */
622 0x10000010, /* beq $zero, $zero, ncomp */
623 0x240B0000, /* addiu $t3, $zero, 0 */
624 /* nbyte: */
625 0x81850000, /* lb $a1, ($t4) */
626 0x218C0001, /* addi $t4, $t4, 1 */
627 0x00052E00, /* sll $a1, $a1, 24 */
628 0x3C0204C1, /* lui $v0, 0x04c1 */
629 0x00852026, /* xor $a0, $a0, $a1 */
630 0x34471DB7, /* ori $a3, $v0, 0x1db7 */
631 0x00003021, /* addu $a2, $zero, $zero */
632 /* loop: */
633 0x00044040, /* sll $t0, $a0, 1 */
634 0x24C60001, /* addiu $a2, $a2, 1 */
635 0x28840000, /* slti $a0, $a0, 0 */
636 0x01074826, /* xor $t1, $t0, $a3 */
637 0x0124400B, /* movn $t0, $t1, $a0 */
638 0x28C30008, /* slti $v1, $a2, 8 */
639 0x1460FFF9, /* bne $v1, $zero, loop */
640 0x01002021, /* addu $a0, $t0, $zero */
641 /* ncomp: */
642 0x154BFFF0, /* bne $t2, $t3, nbyte */
643 0x256B0001, /* addiu $t3, $t3, 1 */
644 0x7000003F, /* sdbbp */
645 };
646
647 /* make sure we have a working area */
648 if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
649 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
650
651 /* convert flash writing code into a buffer in target endianness */
652 for (i = 0; i < ARRAY_SIZE(mips_crc_code); i++)
653 target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), mips_crc_code[i]);
654
655 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
656 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
657
658 init_reg_param(&reg_params[0], "a0", 32, PARAM_IN_OUT);
659 buf_set_u32(reg_params[0].value, 0, 32, address);
660
661 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
662 buf_set_u32(reg_params[1].value, 0, 32, count);
663
664 int timeout = 20000 * (1 + (count / (1024 * 1024)));
665
666 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
667 crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code)-4), timeout,
668 &mips32_info);
669 if (retval != ERROR_OK) {
670 destroy_reg_param(&reg_params[0]);
671 destroy_reg_param(&reg_params[1]);
672 target_free_working_area(target, crc_algorithm);
673 return retval;
674 }
675
676 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
677
678 destroy_reg_param(&reg_params[0]);
679 destroy_reg_param(&reg_params[1]);
680
681 target_free_working_area(target, crc_algorithm);
682
683 return ERROR_OK;
684 }
685
686 /** Checks whether a memory region is zeroed. */
687 int mips32_blank_check_memory(struct target *target,
688 uint32_t address, uint32_t count, uint32_t *blank)
689 {
690 struct working_area *erase_check_algorithm;
691 struct reg_param reg_params[3];
692 struct mips32_algorithm mips32_info;
693 int retval;
694 uint32_t i;
695
696 static const uint32_t erase_check_code[] = {
697 /* nbyte: */
698 0x80880000, /* lb $t0, ($a0) */
699 0x00C83024, /* and $a2, $a2, $t0 */
700 0x24A5FFFF, /* addiu $a1, $a1, -1 */
701 0x14A0FFFC, /* bne $a1, $zero, nbyte */
702 0x24840001, /* addiu $a0, $a0, 1 */
703 0x7000003F /* sdbbp */
704 };
705
706 /* make sure we have a working area */
707 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
708 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
709
710 /* convert flash writing code into a buffer in target endianness */
711 for (i = 0; i < ARRAY_SIZE(erase_check_code); i++) {
712 target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t),
713 erase_check_code[i]);
714 }
715
716 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
717 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
718
719 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
720 buf_set_u32(reg_params[0].value, 0, 32, address);
721
722 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
723 buf_set_u32(reg_params[1].value, 0, 32, count);
724
725 init_reg_param(&reg_params[2], "a2", 32, PARAM_IN_OUT);
726 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
727
728 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
729 erase_check_algorithm->address,
730 erase_check_algorithm->address + (sizeof(erase_check_code)-4),
731 10000, &mips32_info);
732 if (retval != ERROR_OK) {
733 destroy_reg_param(&reg_params[0]);
734 destroy_reg_param(&reg_params[1]);
735 destroy_reg_param(&reg_params[2]);
736 target_free_working_area(target, erase_check_algorithm);
737 return retval;
738 }
739
740 *blank = buf_get_u32(reg_params[2].value, 0, 32);
741
742 destroy_reg_param(&reg_params[0]);
743 destroy_reg_param(&reg_params[1]);
744 destroy_reg_param(&reg_params[2]);
745
746 target_free_working_area(target, erase_check_algorithm);
747
748 return ERROR_OK;
749 }
750
751 static int mips32_verify_pointer(struct command_context *cmd_ctx,
752 struct mips32_common *mips32)
753 {
754 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
755 command_print(cmd_ctx, "target is not an MIPS32");
756 return ERROR_TARGET_INVALID;
757 }
758 return ERROR_OK;
759 }
760
761 /**
762 * MIPS32 targets expose command interface
763 * to manipulate CP0 registers
764 */
765 COMMAND_HANDLER(mips32_handle_cp0_command)
766 {
767 int retval;
768 struct target *target = get_current_target(CMD_CTX);
769 struct mips32_common *mips32 = target_to_mips32(target);
770 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
771
772
773 retval = mips32_verify_pointer(CMD_CTX, mips32);
774 if (retval != ERROR_OK)
775 return retval;
776
777 if (target->state != TARGET_HALTED) {
778 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
779 return ERROR_OK;
780 }
781
782 /* two or more argument, access a single register/select (write if third argument is given) */
783 if (CMD_ARGC < 2)
784 return ERROR_COMMAND_SYNTAX_ERROR;
785 else {
786 uint32_t cp0_reg, cp0_sel;
787 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
788 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
789
790 if (CMD_ARGC == 2) {
791 uint32_t value;
792
793 retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
794 if (retval != ERROR_OK) {
795 command_print(CMD_CTX,
796 "couldn't access reg %" PRIi32,
797 cp0_reg);
798 return ERROR_OK;
799 }
800 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
801 cp0_reg, cp0_sel, value);
802
803 } else if (CMD_ARGC == 3) {
804 uint32_t value;
805 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
806 retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
807 if (retval != ERROR_OK) {
808 command_print(CMD_CTX,
809 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
810 cp0_reg, cp0_sel);
811 return ERROR_OK;
812 }
813 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
814 cp0_reg, cp0_sel, value);
815 }
816 }
817
818 return ERROR_OK;
819 }
820
821 COMMAND_HANDLER(mips32_handle_scan_delay_command)
822 {
823 struct target *target = get_current_target(CMD_CTX);
824 struct mips32_common *mips32 = target_to_mips32(target);
825 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
826
827 if (CMD_ARGC == 1)
828 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], ejtag_info->scan_delay);
829 else if (CMD_ARGC > 1)
830 return ERROR_COMMAND_SYNTAX_ERROR;
831
832 command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
833 if (ejtag_info->scan_delay >= 2000000) {
834 ejtag_info->mode = 0;
835 command_print(CMD_CTX, "running in legacy mode");
836 } else {
837 ejtag_info->mode = 1;
838 command_print(CMD_CTX, "running in fast queued mode");
839 }
840
841 return ERROR_OK;
842 }
843
844 static const struct command_registration mips32_exec_command_handlers[] = {
845 {
846 .name = "cp0",
847 .handler = mips32_handle_cp0_command,
848 .mode = COMMAND_EXEC,
849 .usage = "regnum select [value]",
850 .help = "display/modify cp0 register",
851 },
852 {
853 .name = "scan_delay",
854 .handler = mips32_handle_scan_delay_command,
855 .mode = COMMAND_ANY,
856 .help = "display/set scan delay in nano seconds",
857 .usage = "[value]",
858 },
859 COMMAND_REGISTRATION_DONE
860 };
861
862 const struct command_registration mips32_command_handlers[] = {
863 {
864 .name = "mips32",
865 .mode = COMMAND_ANY,
866 .help = "mips32 command group",
867 .usage = "",
868 .chain = mips32_exec_command_handlers,
869 },
870 COMMAND_REGISTRATION_DONE
871 };