b5dbea312c2c53ec80b57c2461680ad9cc09d904
[openocd.git] / src / target / mips32.c
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2007,2008 √ėyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * Copyright (C) 2011 by Drasko DRASKOVIC *
11 * drasko.draskovic@gmail.com *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "mips32.h"
32 #include "breakpoints.h"
33 #include "algorithm.h"
34 #include "register.h"
35
36 static const char *mips_isa_strings[] = {
37 "MIPS32", "MIPS16", "", "MICRO MIPS32",
38 };
39
40 #define MIPS32_GDB_DUMMY_FP_REG 1
41
42 /*
43 * GDB registers
44 * based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
45 */
46 static const struct {
47 unsigned id;
48 const char *name;
49 enum reg_type type;
50 const char *group;
51 const char *feature;
52 int flag;
53 } mips32_regs[] = {
54 { 0, "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
55 { 1, "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
56 { 2, "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
57 { 3, "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
58 { 4, "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
59 { 5, "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
60 { 6, "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
61 { 7, "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
62 { 8, "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
63 { 9, "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
64 { 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
65 { 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
66 { 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
67 { 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
68 { 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
69 { 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
70 { 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
71 { 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
72 { 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
73 { 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
74 { 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
75 { 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
76 { 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
77 { 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
78 { 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
79 { 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
80 { 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
81 { 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
82 { 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
83 { 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
84 { 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
85 { 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
86 { 32, "status", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
87 { 33, "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
88 { 34, "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
89 { 35, "badvaddr", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
90 { 36, "cause", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
91 { 37, "pc", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
92
93 { 38, "f0", REG_TYPE_IEEE_SINGLE, NULL,
94 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
95 { 39, "f1", REG_TYPE_IEEE_SINGLE, NULL,
96 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
97 { 40, "f2", REG_TYPE_IEEE_SINGLE, NULL,
98 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
99 { 41, "f3", REG_TYPE_IEEE_SINGLE, NULL,
100 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
101 { 42, "f4", REG_TYPE_IEEE_SINGLE, NULL,
102 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
103 { 43, "f5", REG_TYPE_IEEE_SINGLE, NULL,
104 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
105 { 44, "f6", REG_TYPE_IEEE_SINGLE, NULL,
106 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
107 { 45, "f7", REG_TYPE_IEEE_SINGLE, NULL,
108 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
109 { 46, "f8", REG_TYPE_IEEE_SINGLE, NULL,
110 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
111 { 47, "f9", REG_TYPE_IEEE_SINGLE, NULL,
112 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
113 { 48, "f10", REG_TYPE_IEEE_SINGLE, NULL,
114 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
115 { 49, "f11", REG_TYPE_IEEE_SINGLE, NULL,
116 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
117 { 50, "f12", REG_TYPE_IEEE_SINGLE, NULL,
118 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
119 { 51, "f13", REG_TYPE_IEEE_SINGLE, NULL,
120 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
121 { 52, "f14", REG_TYPE_IEEE_SINGLE, NULL,
122 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
123 { 53, "f15", REG_TYPE_IEEE_SINGLE, NULL,
124 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
125 { 54, "f16", REG_TYPE_IEEE_SINGLE, NULL,
126 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
127 { 55, "f17", REG_TYPE_IEEE_SINGLE, NULL,
128 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
129 { 56, "f18", REG_TYPE_IEEE_SINGLE, NULL,
130 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
131 { 57, "f19", REG_TYPE_IEEE_SINGLE, NULL,
132 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
133 { 58, "f20", REG_TYPE_IEEE_SINGLE, NULL,
134 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
135 { 59, "f21", REG_TYPE_IEEE_SINGLE, NULL,
136 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
137 { 60, "f22", REG_TYPE_IEEE_SINGLE, NULL,
138 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
139 { 61, "f23", REG_TYPE_IEEE_SINGLE, NULL,
140 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
141 { 62, "f24", REG_TYPE_IEEE_SINGLE, NULL,
142 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
143 { 63, "f25", REG_TYPE_IEEE_SINGLE, NULL,
144 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
145 { 64, "f26", REG_TYPE_IEEE_SINGLE, NULL,
146 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
147 { 65, "f27", REG_TYPE_IEEE_SINGLE, NULL,
148 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
149 { 66, "f28", REG_TYPE_IEEE_SINGLE, NULL,
150 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
151 { 67, "f29", REG_TYPE_IEEE_SINGLE, NULL,
152 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
153 { 68, "f30", REG_TYPE_IEEE_SINGLE, NULL,
154 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
155 { 69, "f31", REG_TYPE_IEEE_SINGLE, NULL,
156 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
157 { 70, "fcsr", REG_TYPE_INT, "float",
158 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
159 { 71, "fir", REG_TYPE_INT, "float",
160 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
161 };
162
163
164 #define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
165
166 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
167
168 static int mips32_get_core_reg(struct reg *reg)
169 {
170 int retval;
171 struct mips32_core_reg *mips32_reg = reg->arch_info;
172 struct target *target = mips32_reg->target;
173 struct mips32_common *mips32_target = target_to_mips32(target);
174
175 if (target->state != TARGET_HALTED)
176 return ERROR_TARGET_NOT_HALTED;
177
178 retval = mips32_target->read_core_reg(target, mips32_reg->num);
179
180 return retval;
181 }
182
183 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
184 {
185 struct mips32_core_reg *mips32_reg = reg->arch_info;
186 struct target *target = mips32_reg->target;
187 uint32_t value = buf_get_u32(buf, 0, 32);
188
189 if (target->state != TARGET_HALTED)
190 return ERROR_TARGET_NOT_HALTED;
191
192 buf_set_u32(reg->value, 0, 32, value);
193 reg->dirty = 1;
194 reg->valid = 1;
195
196 return ERROR_OK;
197 }
198
199 static int mips32_read_core_reg(struct target *target, unsigned int num)
200 {
201 uint32_t reg_value;
202
203 /* get pointers to arch-specific information */
204 struct mips32_common *mips32 = target_to_mips32(target);
205
206 if (num >= MIPS32_NUM_REGS)
207 return ERROR_COMMAND_SYNTAX_ERROR;
208
209 reg_value = mips32->core_regs[num];
210 buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
211 mips32->core_cache->reg_list[num].valid = 1;
212 mips32->core_cache->reg_list[num].dirty = 0;
213
214 return ERROR_OK;
215 }
216
217 static int mips32_write_core_reg(struct target *target, unsigned int num)
218 {
219 uint32_t reg_value;
220
221 /* get pointers to arch-specific information */
222 struct mips32_common *mips32 = target_to_mips32(target);
223
224 if (num >= MIPS32_NUM_REGS)
225 return ERROR_COMMAND_SYNTAX_ERROR;
226
227 reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
228 mips32->core_regs[num] = reg_value;
229 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
230 mips32->core_cache->reg_list[num].valid = 1;
231 mips32->core_cache->reg_list[num].dirty = 0;
232
233 return ERROR_OK;
234 }
235
236 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
237 int *reg_list_size, enum target_register_class reg_class)
238 {
239 /* get pointers to arch-specific information */
240 struct mips32_common *mips32 = target_to_mips32(target);
241 unsigned int i;
242
243 /* include floating point registers */
244 *reg_list_size = MIPS32_NUM_REGS;
245 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
246
247 for (i = 0; i < MIPS32_NUM_REGS; i++)
248 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
249
250 return ERROR_OK;
251 }
252
253 int mips32_save_context(struct target *target)
254 {
255 unsigned int i;
256
257 /* get pointers to arch-specific information */
258 struct mips32_common *mips32 = target_to_mips32(target);
259 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
260
261 /* read core registers */
262 mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
263
264 for (i = 0; i < MIPS32_NUM_REGS; i++) {
265 if (!mips32->core_cache->reg_list[i].valid)
266 mips32->read_core_reg(target, i);
267 }
268
269 return ERROR_OK;
270 }
271
272 int mips32_restore_context(struct target *target)
273 {
274 unsigned int i;
275
276 /* get pointers to arch-specific information */
277 struct mips32_common *mips32 = target_to_mips32(target);
278 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
279
280 for (i = 0; i < MIPS32_NUM_REGS; i++) {
281 if (mips32->core_cache->reg_list[i].dirty)
282 mips32->write_core_reg(target, i);
283 }
284
285 /* write core regs */
286 mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
287
288 return ERROR_OK;
289 }
290
291 int mips32_arch_state(struct target *target)
292 {
293 struct mips32_common *mips32 = target_to_mips32(target);
294
295 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
296 mips_isa_strings[mips32->isa_mode],
297 debug_reason_name(target),
298 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
299
300 return ERROR_OK;
301 }
302
303 static const struct reg_arch_type mips32_reg_type = {
304 .get = mips32_get_core_reg,
305 .set = mips32_set_core_reg,
306 };
307
308 struct reg_cache *mips32_build_reg_cache(struct target *target)
309 {
310 /* get pointers to arch-specific information */
311 struct mips32_common *mips32 = target_to_mips32(target);
312
313 int num_regs = MIPS32_NUM_REGS;
314 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
315 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
316 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
317 struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
318 struct reg_feature *feature;
319 int i;
320
321 /* Build the process context cache */
322 cache->name = "mips32 registers";
323 cache->next = NULL;
324 cache->reg_list = reg_list;
325 cache->num_regs = num_regs;
326 (*cache_p) = cache;
327 mips32->core_cache = cache;
328
329 for (i = 0; i < num_regs; i++) {
330 arch_info[i].num = mips32_regs[i].id;
331 arch_info[i].target = target;
332 arch_info[i].mips32_common = mips32;
333
334 reg_list[i].name = mips32_regs[i].name;
335 reg_list[i].size = 32;
336
337 if (mips32_regs[i].flag == MIPS32_GDB_DUMMY_FP_REG) {
338 reg_list[i].value = mips32_gdb_dummy_fp_value;
339 reg_list[i].valid = 1;
340 reg_list[i].arch_info = NULL;
341 register_init_dummy(&reg_list[i]);
342 } else {
343 reg_list[i].value = calloc(1, 4);
344 reg_list[i].valid = 0;
345 reg_list[i].type = &mips32_reg_type;
346 reg_list[i].arch_info = &arch_info[i];
347
348 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
349 if (reg_list[i].reg_data_type)
350 reg_list[i].reg_data_type->type = mips32_regs[i].type;
351 else
352 LOG_ERROR("unable to allocate reg type list");
353 }
354
355 reg_list[i].dirty = 0;
356
357 reg_list[i].group = mips32_regs[i].group;
358 reg_list[i].number = i;
359 reg_list[i].exist = true;
360 reg_list[i].caller_save = true; /* gdb defaults to true */
361
362 feature = calloc(1, sizeof(struct reg_feature));
363 if (feature) {
364 feature->name = mips32_regs[i].feature;
365 reg_list[i].feature = feature;
366 } else
367 LOG_ERROR("unable to allocate feature list");
368 }
369
370 return cache;
371 }
372
373 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
374 {
375 target->arch_info = mips32;
376 mips32->common_magic = MIPS32_COMMON_MAGIC;
377 mips32->fast_data_area = NULL;
378 mips32->isa_imp = MIPS32_ONLY; /* default */
379
380 /* has breakpoint/watchpoint unit been scanned */
381 mips32->bp_scanned = 0;
382 mips32->data_break_list = NULL;
383
384 mips32->ejtag_info.tap = tap;
385 mips32->read_core_reg = mips32_read_core_reg;
386 mips32->write_core_reg = mips32_write_core_reg;
387 /* if unknown endianness defaults to little endian, 1 */
388 mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
389 mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
390 mips32->ejtag_info.mode = 0; /* Initial default value */
391 mips32->ejtag_info.isa = 0; /* isa on debug mips32, updated by poll function */
392 mips32->ejtag_info.config_regs = 0; /* no config register read */
393 return ERROR_OK;
394 }
395
396 /* run to exit point. return error if exit point was not reached. */
397 static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
398 int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
399 {
400 uint32_t pc;
401 int retval;
402 /* This code relies on the target specific resume() and poll()->debug_entry()
403 * sequence to write register values to the processor and the read them back */
404 retval = target_resume(target, 0, entry_point, 0, 1);
405 if (retval != ERROR_OK)
406 return retval;
407
408 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
409 /* If the target fails to halt due to the breakpoint, force a halt */
410 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
411 retval = target_halt(target);
412 if (retval != ERROR_OK)
413 return retval;
414 retval = target_wait_state(target, TARGET_HALTED, 500);
415 if (retval != ERROR_OK)
416 return retval;
417 return ERROR_TARGET_TIMEOUT;
418 }
419
420 pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
421 if (exit_point && (pc != exit_point)) {
422 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
423 return ERROR_TARGET_TIMEOUT;
424 }
425
426 return ERROR_OK;
427 }
428
429 int mips32_run_algorithm(struct target *target, int num_mem_params,
430 struct mem_param *mem_params, int num_reg_params,
431 struct reg_param *reg_params, target_addr_t entry_point,
432 target_addr_t exit_point, int timeout_ms, void *arch_info)
433 {
434 struct mips32_common *mips32 = target_to_mips32(target);
435 struct mips32_algorithm *mips32_algorithm_info = arch_info;
436 enum mips32_isa_mode isa_mode = mips32->isa_mode;
437
438 uint32_t context[MIPS32_NUM_REGS];
439 int retval = ERROR_OK;
440
441 LOG_DEBUG("Running algorithm");
442
443 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
444 * at the exit point */
445
446 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
447 LOG_ERROR("current target isn't a MIPS32 target");
448 return ERROR_TARGET_INVALID;
449 }
450
451 if (target->state != TARGET_HALTED) {
452 LOG_WARNING("target not halted");
453 return ERROR_TARGET_NOT_HALTED;
454 }
455
456 /* refresh core register cache */
457 for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
458 if (!mips32->core_cache->reg_list[i].valid)
459 mips32->read_core_reg(target, i);
460 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
461 }
462
463 for (int i = 0; i < num_mem_params; i++) {
464 retval = target_write_buffer(target, mem_params[i].address,
465 mem_params[i].size, mem_params[i].value);
466 if (retval != ERROR_OK)
467 return retval;
468 }
469
470 for (int i = 0; i < num_reg_params; i++) {
471 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
472
473 if (!reg) {
474 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
475 return ERROR_COMMAND_SYNTAX_ERROR;
476 }
477
478 if (reg->size != reg_params[i].size) {
479 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
480 reg_params[i].reg_name);
481 return ERROR_COMMAND_SYNTAX_ERROR;
482 }
483
484 mips32_set_core_reg(reg, reg_params[i].value);
485 }
486
487 mips32->isa_mode = mips32_algorithm_info->isa_mode;
488
489 retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
490
491 if (retval != ERROR_OK)
492 return retval;
493
494 for (int i = 0; i < num_mem_params; i++) {
495 if (mem_params[i].direction != PARAM_OUT) {
496 retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
497 mem_params[i].value);
498 if (retval != ERROR_OK)
499 return retval;
500 }
501 }
502
503 for (int i = 0; i < num_reg_params; i++) {
504 if (reg_params[i].direction != PARAM_OUT) {
505 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
506 if (!reg) {
507 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
508 return ERROR_COMMAND_SYNTAX_ERROR;
509 }
510
511 if (reg->size != reg_params[i].size) {
512 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
513 reg_params[i].reg_name);
514 return ERROR_COMMAND_SYNTAX_ERROR;
515 }
516
517 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
518 }
519 }
520
521 /* restore everything we saved before */
522 for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
523 uint32_t regvalue;
524 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
525 if (regvalue != context[i]) {
526 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
527 mips32->core_cache->reg_list[i].name, context[i]);
528 buf_set_u32(mips32->core_cache->reg_list[i].value,
529 0, 32, context[i]);
530 mips32->core_cache->reg_list[i].valid = 1;
531 mips32->core_cache->reg_list[i].dirty = 1;
532 }
533 }
534
535 mips32->isa_mode = isa_mode;
536
537 return ERROR_OK;
538 }
539
540 int mips32_examine(struct target *target)
541 {
542 struct mips32_common *mips32 = target_to_mips32(target);
543
544 if (!target_was_examined(target)) {
545 target_set_examined(target);
546
547 /* we will configure later */
548 mips32->bp_scanned = 0;
549 mips32->num_inst_bpoints = 0;
550 mips32->num_data_bpoints = 0;
551 mips32->num_inst_bpoints_avail = 0;
552 mips32->num_data_bpoints_avail = 0;
553 }
554
555 return ERROR_OK;
556 }
557
558 static int mips32_configure_ibs(struct target *target)
559 {
560 struct mips32_common *mips32 = target_to_mips32(target);
561 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
562 int retval, i;
563 uint32_t bpinfo;
564
565 /* get number of inst breakpoints */
566 retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
567 if (retval != ERROR_OK)
568 return retval;
569
570 mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
571 mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
572 mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
573 sizeof(struct mips32_comparator));
574
575 for (i = 0; i < mips32->num_inst_bpoints; i++)
576 mips32->inst_break_list[i].reg_address =
577 ejtag_info->ejtag_iba0_addr +
578 (ejtag_info->ejtag_iba_step_size * i);
579
580 /* clear IBIS reg */
581 retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
582 return retval;
583 }
584
585 static int mips32_configure_dbs(struct target *target)
586 {
587 struct mips32_common *mips32 = target_to_mips32(target);
588 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
589 int retval, i;
590 uint32_t bpinfo;
591
592 /* get number of data breakpoints */
593 retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
594 if (retval != ERROR_OK)
595 return retval;
596
597 mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
598 mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
599 mips32->data_break_list = calloc(mips32->num_data_bpoints,
600 sizeof(struct mips32_comparator));
601
602 for (i = 0; i < mips32->num_data_bpoints; i++)
603 mips32->data_break_list[i].reg_address =
604 ejtag_info->ejtag_dba0_addr +
605 (ejtag_info->ejtag_dba_step_size * i);
606
607 /* clear DBIS reg */
608 retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
609 return retval;
610 }
611
612 int mips32_configure_break_unit(struct target *target)
613 {
614 /* get pointers to arch-specific information */
615 struct mips32_common *mips32 = target_to_mips32(target);
616 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
617 int retval;
618 uint32_t dcr;
619
620 if (mips32->bp_scanned)
621 return ERROR_OK;
622
623 /* get info about breakpoint support */
624 retval = target_read_u32(target, EJTAG_DCR, &dcr);
625 if (retval != ERROR_OK)
626 return retval;
627
628 /* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
629 if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
630 ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
631 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
632 ejtag_info->debug_caps |= EJTAG_DCR_IB;
633 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
634 ejtag_info->debug_caps |= EJTAG_DCR_DB;
635 } else
636 /* keep debug caps for later use */
637 ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
638 | EJTAG_DCR_IB | EJTAG_DCR_DB);
639
640
641 if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
642 retval = mips32_configure_ibs(target);
643 if (retval != ERROR_OK)
644 return retval;
645 }
646
647 if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
648 retval = mips32_configure_dbs(target);
649 if (retval != ERROR_OK)
650 return retval;
651 }
652
653 /* check if target endianness settings matches debug control register */
654 if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
655 && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
656 (!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
657 && (target->endianness == TARGET_BIG_ENDIAN)))
658 LOG_WARNING("DCR endianness settings does not match target settings");
659
660 LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
661 mips32->num_data_bpoints);
662
663 mips32->bp_scanned = 1;
664
665 return ERROR_OK;
666 }
667
668 int mips32_enable_interrupts(struct target *target, int enable)
669 {
670 int retval;
671 int update = 0;
672 uint32_t dcr;
673
674 /* read debug control register */
675 retval = target_read_u32(target, EJTAG_DCR, &dcr);
676 if (retval != ERROR_OK)
677 return retval;
678
679 if (enable) {
680 if (!(dcr & EJTAG_DCR_INTE)) {
681 /* enable interrupts */
682 dcr |= EJTAG_DCR_INTE;
683 update = 1;
684 }
685 } else {
686 if (dcr & EJTAG_DCR_INTE) {
687 /* disable interrupts */
688 dcr &= ~EJTAG_DCR_INTE;
689 update = 1;
690 }
691 }
692
693 if (update) {
694 retval = target_write_u32(target, EJTAG_DCR, dcr);
695 if (retval != ERROR_OK)
696 return retval;
697 }
698
699 return ERROR_OK;
700 }
701
702 /* read config to config3 cp0 registers and log isa implementation */
703 int mips32_read_config_regs(struct target *target)
704 {
705 struct mips32_common *mips32 = target_to_mips32(target);
706 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
707
708 if (ejtag_info->config_regs == 0)
709 for (int i = 0; i != 4; i++) {
710 int retval = mips32_cp0_read(ejtag_info, &ejtag_info->config[i], 16, i);
711 if (retval != ERROR_OK) {
712 LOG_ERROR("isa info not available, failed to read cp0 config register: %" PRId32, i);
713 ejtag_info->config_regs = 0;
714 return retval;
715 }
716 ejtag_info->config_regs = i + 1;
717 if ((ejtag_info->config[i] & (1 << 31)) == 0)
718 break; /* no more config registers implemented */
719 }
720 else
721 return ERROR_OK; /* already succesfully read */
722
723 LOG_DEBUG("read %"PRId32" config registers", ejtag_info->config_regs);
724
725 if (ejtag_info->impcode & EJTAG_IMP_MIPS16) {
726 mips32->isa_imp = MIPS32_MIPS16;
727 LOG_USER("MIPS32 with MIPS16 support implemented");
728
729 } else if (ejtag_info->config_regs >= 4) { /* config3 implemented */
730 unsigned isa_imp = (ejtag_info->config[3] & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT;
731 if (isa_imp == 1) {
732 mips32->isa_imp = MMIPS32_ONLY;
733 LOG_USER("MICRO MIPS32 only implemented");
734
735 } else if (isa_imp != 0) {
736 mips32->isa_imp = MIPS32_MMIPS32;
737 LOG_USER("MIPS32 and MICRO MIPS32 implemented");
738 }
739 }
740
741 if (mips32->isa_imp == MIPS32_ONLY) /* initial default value */
742 LOG_USER("MIPS32 only implemented");
743
744 return ERROR_OK;
745 }
746 int mips32_checksum_memory(struct target *target, target_addr_t address,
747 uint32_t count, uint32_t *checksum)
748 {
749 struct working_area *crc_algorithm;
750 struct reg_param reg_params[2];
751 struct mips32_algorithm mips32_info;
752
753 struct mips32_common *mips32 = target_to_mips32(target);
754 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
755
756 /* see contrib/loaders/checksum/mips32.s for src */
757 uint32_t isa = ejtag_info->isa ? 1 : 0;
758
759 uint32_t mips_crc_code[] = {
760 MIPS32_ADDIU(isa, 12, 4, 0), /* addiu $t4, $a0, 0 */
761 MIPS32_ADDIU(isa, 10, 5, 0), /* addiu $t2, $a1, 0 */
762 MIPS32_ADDIU(isa, 4, 0, 0xFFFF), /* addiu $a0, $zero, 0xffff */
763 MIPS32_BEQ(isa, 0, 0, 0x10 << isa), /* beq $zero, $zero, ncomp */
764 MIPS32_ADDIU(isa, 11, 0, 0), /* addiu $t3, $zero, 0 */
765 /* nbyte: */
766 MIPS32_LB(isa, 5, 0, 12), /* lb $a1, ($t4) */
767 MIPS32_ADDI(isa, 12, 12, 1), /* addi $t4, $t4, 1 */
768 MIPS32_SLL(isa, 5, 5, 24), /* sll $a1, $a1, 24 */
769 MIPS32_LUI(isa, 2, 0x04c1), /* lui $v0, 0x04c1 */
770 MIPS32_XOR(isa, 4, 4, 5), /* xor $a0, $a0, $a1 */
771 MIPS32_ORI(isa, 7, 2, 0x1db7), /* ori $a3, $v0, 0x1db7 */
772 MIPS32_ADDU(isa, 6, 0, 0), /* addu $a2, $zero, $zero */
773 /* loop */
774 MIPS32_SLL(isa, 8, 4, 1), /* sll $t0, $a0, 1 */
775 MIPS32_ADDIU(isa, 6, 6, 1), /* addiu $a2, $a2, 1 */
776 MIPS32_SLTI(isa, 4, 4, 0), /* slti $a0, $a0, 0 */
777 MIPS32_XOR(isa, 9, 8, 7), /* xor $t1, $t0, $a3 */
778 MIPS32_MOVN(isa, 8, 9, 4), /* movn $t0, $t1, $a0 */
779 MIPS32_SLTI(isa, 3, 6, 8), /* slti $v1, $a2, 8 */
780 MIPS32_BNE(isa, 3, 0, NEG16(7 << isa)), /* bne $v1, $zero, loop */
781 MIPS32_ADDU(isa, 4, 8, 0), /* addu $a0, $t0, $zero */
782 /* ncomp */
783 MIPS32_BNE(isa, 10, 11, NEG16(16 << isa)), /* bne $t2, $t3, nbyte */
784 MIPS32_ADDIU(isa, 11, 11, 1), /* addiu $t3, $t3, 1 */
785 MIPS32_SDBBP(isa),
786 };
787
788 /* make sure we have a working area */
789 if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
790 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
791
792 pracc_swap16_array(ejtag_info, mips_crc_code, ARRAY_SIZE(mips_crc_code));
793
794 /* convert mips crc code into a buffer in target endianness */
795 uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
796 target_buffer_set_u32_array(target, mips_crc_code_8,
797 ARRAY_SIZE(mips_crc_code), mips_crc_code);
798
799 int retval = target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
800 if (retval != ERROR_OK)
801 return retval;
802
803 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
804 mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32; /* run isa as in debug mode */
805
806 init_reg_param(&reg_params[0], "r4", 32, PARAM_IN_OUT);
807 buf_set_u32(reg_params[0].value, 0, 32, address);
808
809 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
810 buf_set_u32(reg_params[1].value, 0, 32, count);
811
812 int timeout = 20000 * (1 + (count / (1024 * 1024)));
813
814 retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
815 crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout, &mips32_info);
816
817 if (retval == ERROR_OK)
818 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
819
820 destroy_reg_param(&reg_params[0]);
821 destroy_reg_param(&reg_params[1]);
822
823 target_free_working_area(target, crc_algorithm);
824
825 return retval;
826 }
827
828 /** Checks whether a memory region is erased. */
829 int mips32_blank_check_memory(struct target *target,
830 struct target_memory_check_block *blocks, int num_blocks,
831 uint8_t erased_value)
832 {
833 struct working_area *erase_check_algorithm;
834 struct reg_param reg_params[3];
835 struct mips32_algorithm mips32_info;
836
837 struct mips32_common *mips32 = target_to_mips32(target);
838 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
839
840 if (erased_value != 0xff) {
841 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
842 erased_value);
843 return ERROR_FAIL;
844 }
845 uint32_t isa = ejtag_info->isa ? 1 : 0;
846 uint32_t erase_check_code[] = {
847 /* nbyte: */
848 MIPS32_LB(isa, 8, 0, 4), /* lb $t0, ($a0) */
849 MIPS32_AND(isa, 6, 6, 8), /* and $a2, $a2, $t0 */
850 MIPS32_ADDIU(isa, 5, 5, NEG16(1)), /* addiu $a1, $a1, -1 */
851 MIPS32_BNE(isa, 5, 0, NEG16(4 << isa)), /* bne $a1, $zero, nbyte */
852 MIPS32_ADDIU(isa, 4, 4, 1), /* addiu $a0, $a0, 1 */
853 MIPS32_SDBBP(isa) /* sdbbp */
854 };
855
856 /* make sure we have a working area */
857 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
858 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
859
860 pracc_swap16_array(ejtag_info, erase_check_code, ARRAY_SIZE(erase_check_code));
861
862 /* convert erase check code into a buffer in target endianness */
863 uint8_t erase_check_code_8[sizeof(erase_check_code)];
864 target_buffer_set_u32_array(target, erase_check_code_8,
865 ARRAY_SIZE(erase_check_code), erase_check_code);
866
867 int retval = target_write_buffer(target, erase_check_algorithm->address,
868 sizeof(erase_check_code), erase_check_code_8);
869 if (retval != ERROR_OK)
870 goto cleanup;
871
872 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
873 mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;
874
875 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
876 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
877
878 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
879 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
880
881 init_reg_param(&reg_params[2], "r6", 32, PARAM_IN_OUT);
882 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
883
884 retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address,
885 erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &mips32_info);
886
887 if (retval == ERROR_OK)
888 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
889
890 destroy_reg_param(&reg_params[0]);
891 destroy_reg_param(&reg_params[1]);
892 destroy_reg_param(&reg_params[2]);
893
894 cleanup:
895 target_free_working_area(target, erase_check_algorithm);
896
897 if (retval != ERROR_OK)
898 return retval;
899
900 return 1; /* only one block has been checked */
901 }
902
903 static int mips32_verify_pointer(struct command_context *cmd_ctx,
904 struct mips32_common *mips32)
905 {
906 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
907 command_print(cmd_ctx, "target is not an MIPS32");
908 return ERROR_TARGET_INVALID;
909 }
910 return ERROR_OK;
911 }
912
913 /**
914 * MIPS32 targets expose command interface
915 * to manipulate CP0 registers
916 */
917 COMMAND_HANDLER(mips32_handle_cp0_command)
918 {
919 int retval;
920 struct target *target = get_current_target(CMD_CTX);
921 struct mips32_common *mips32 = target_to_mips32(target);
922 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
923
924
925 retval = mips32_verify_pointer(CMD_CTX, mips32);
926 if (retval != ERROR_OK)
927 return retval;
928
929 if (target->state != TARGET_HALTED) {
930 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
931 return ERROR_OK;
932 }
933
934 /* two or more argument, access a single register/select (write if third argument is given) */
935 if (CMD_ARGC < 2)
936 return ERROR_COMMAND_SYNTAX_ERROR;
937 else {
938 uint32_t cp0_reg, cp0_sel;
939 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
940 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
941
942 if (CMD_ARGC == 2) {
943 uint32_t value;
944
945 retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
946 if (retval != ERROR_OK) {
947 command_print(CMD_CTX,
948 "couldn't access reg %" PRIi32,
949 cp0_reg);
950 return ERROR_OK;
951 }
952 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
953 cp0_reg, cp0_sel, value);
954
955 } else if (CMD_ARGC == 3) {
956 uint32_t value;
957 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
958 retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
959 if (retval != ERROR_OK) {
960 command_print(CMD_CTX,
961 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
962 cp0_reg, cp0_sel);
963 return ERROR_OK;
964 }
965 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
966 cp0_reg, cp0_sel, value);
967 }
968 }
969
970 return ERROR_OK;
971 }
972
973 COMMAND_HANDLER(mips32_handle_scan_delay_command)
974 {
975 struct target *target = get_current_target(CMD_CTX);
976 struct mips32_common *mips32 = target_to_mips32(target);
977 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
978
979 if (CMD_ARGC == 1)
980 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
981 else if (CMD_ARGC > 1)
982 return ERROR_COMMAND_SYNTAX_ERROR;
983
984 command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
985 if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
986 ejtag_info->mode = 0;
987 command_print(CMD_CTX, "running in legacy mode");
988 } else {
989 ejtag_info->mode = 1;
990 command_print(CMD_CTX, "running in fast queued mode");
991 }
992
993 return ERROR_OK;
994 }
995
996 static const struct command_registration mips32_exec_command_handlers[] = {
997 {
998 .name = "cp0",
999 .handler = mips32_handle_cp0_command,
1000 .mode = COMMAND_EXEC,
1001 .usage = "regnum select [value]",
1002 .help = "display/modify cp0 register",
1003 },
1004 {
1005 .name = "scan_delay",
1006 .handler = mips32_handle_scan_delay_command,
1007 .mode = COMMAND_ANY,
1008 .help = "display/set scan delay in nano seconds",
1009 .usage = "[value]",
1010 },
1011 COMMAND_REGISTRATION_DONE
1012 };
1013
1014 const struct command_registration mips32_command_handlers[] = {
1015 {
1016 .name = "mips32",
1017 .mode = COMMAND_ANY,
1018 .help = "mips32 command group",
1019 .usage = "",
1020 .chain = mips32_exec_command_handlers,
1021 },
1022 COMMAND_REGISTRATION_DONE
1023 };