Fix "unused variable" warnings (errors) detected with GCC 4.7.0 - trivial fixes
[openocd.git] / src / target / mips32.c
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2007,2008 √ėyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License as published by *
12 * the Free Software Foundation; either version 2 of the License, or *
13 * (at your option) any later version. *
14 * *
15 * This program is distributed in the hope that it will be useful, *
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
18 * GNU General Public License for more details. *
19 * *
20 * You should have received a copy of the GNU General Public License *
21 * along with this program; if not, write to the *
22 * Free Software Foundation, Inc., *
23 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
24 ***************************************************************************/
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "mips32.h"
30 #include "breakpoints.h"
31 #include "algorithm.h"
32 #include "register.h"
33
34 static char* mips32_core_reg_list[] =
35 {
36 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
37 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
38 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
39 "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra",
40 "status", "lo", "hi", "badvaddr", "cause", "pc"
41 };
42
43 static const char *mips_isa_strings[] =
44 {
45 "MIPS32", "MIPS16e"
46 };
47
48 static struct mips32_core_reg mips32_core_reg_list_arch_info[MIPS32NUMCOREREGS] =
49 {
50 {0, NULL, NULL},
51 {1, NULL, NULL},
52 {2, NULL, NULL},
53 {3, NULL, NULL},
54 {4, NULL, NULL},
55 {5, NULL, NULL},
56 {6, NULL, NULL},
57 {7, NULL, NULL},
58 {8, NULL, NULL},
59 {9, NULL, NULL},
60 {10, NULL, NULL},
61 {11, NULL, NULL},
62 {12, NULL, NULL},
63 {13, NULL, NULL},
64 {14, NULL, NULL},
65 {15, NULL, NULL},
66 {16, NULL, NULL},
67 {17, NULL, NULL},
68 {18, NULL, NULL},
69 {19, NULL, NULL},
70 {20, NULL, NULL},
71 {21, NULL, NULL},
72 {22, NULL, NULL},
73 {23, NULL, NULL},
74 {24, NULL, NULL},
75 {25, NULL, NULL},
76 {26, NULL, NULL},
77 {27, NULL, NULL},
78 {28, NULL, NULL},
79 {29, NULL, NULL},
80 {30, NULL, NULL},
81 {31, NULL, NULL},
82
83 {32, NULL, NULL},
84 {33, NULL, NULL},
85 {34, NULL, NULL},
86 {35, NULL, NULL},
87 {36, NULL, NULL},
88 {37, NULL, NULL},
89 };
90
91 /* number of mips dummy fp regs fp0 - fp31 + fsr and fir
92 * we also add 18 unknown registers to handle gdb requests */
93
94 #define MIPS32NUMFPREGS 34 + 18
95
96 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
97
98 static struct reg mips32_gdb_dummy_fp_reg =
99 {
100 .name = "GDB dummy floating-point register",
101 .value = mips32_gdb_dummy_fp_value,
102 .dirty = 0,
103 .valid = 1,
104 .size = 32,
105 .arch_info = NULL,
106 };
107
108 static int mips32_get_core_reg(struct reg *reg)
109 {
110 int retval;
111 struct mips32_core_reg *mips32_reg = reg->arch_info;
112 struct target *target = mips32_reg->target;
113 struct mips32_common *mips32_target = target_to_mips32(target);
114
115 if (target->state != TARGET_HALTED)
116 {
117 return ERROR_TARGET_NOT_HALTED;
118 }
119
120 retval = mips32_target->read_core_reg(target, mips32_reg->num);
121
122 return retval;
123 }
124
125 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
126 {
127 struct mips32_core_reg *mips32_reg = reg->arch_info;
128 struct target *target = mips32_reg->target;
129 uint32_t value = buf_get_u32(buf, 0, 32);
130
131 if (target->state != TARGET_HALTED)
132 {
133 return ERROR_TARGET_NOT_HALTED;
134 }
135
136 buf_set_u32(reg->value, 0, 32, value);
137 reg->dirty = 1;
138 reg->valid = 1;
139
140 return ERROR_OK;
141 }
142
143 static int mips32_read_core_reg(struct target *target, int num)
144 {
145 uint32_t reg_value;
146
147 /* get pointers to arch-specific information */
148 struct mips32_common *mips32 = target_to_mips32(target);
149
150 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
151 return ERROR_INVALID_ARGUMENTS;
152
153 reg_value = mips32->core_regs[num];
154 buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
155 mips32->core_cache->reg_list[num].valid = 1;
156 mips32->core_cache->reg_list[num].dirty = 0;
157
158 return ERROR_OK;
159 }
160
161 static int mips32_write_core_reg(struct target *target, int num)
162 {
163 uint32_t reg_value;
164
165 /* get pointers to arch-specific information */
166 struct mips32_common *mips32 = target_to_mips32(target);
167
168 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
169 return ERROR_INVALID_ARGUMENTS;
170
171 reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
172 mips32->core_regs[num] = reg_value;
173 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
174 mips32->core_cache->reg_list[num].valid = 1;
175 mips32->core_cache->reg_list[num].dirty = 0;
176
177 return ERROR_OK;
178 }
179
180 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
181 {
182 /* get pointers to arch-specific information */
183 struct mips32_common *mips32 = target_to_mips32(target);
184 int i;
185
186 /* include floating point registers */
187 *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
188 *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
189
190 for (i = 0; i < MIPS32NUMCOREREGS; i++)
191 {
192 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
193 }
194
195 /* add dummy floating points regs */
196 for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
197 {
198 (*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
199 }
200
201 return ERROR_OK;
202 }
203
204 int mips32_save_context(struct target *target)
205 {
206 int i;
207
208 /* get pointers to arch-specific information */
209 struct mips32_common *mips32 = target_to_mips32(target);
210 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
211
212 /* read core registers */
213 mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
214
215 for (i = 0; i < MIPS32NUMCOREREGS; i++)
216 {
217 if (!mips32->core_cache->reg_list[i].valid)
218 {
219 mips32->read_core_reg(target, i);
220 }
221 }
222
223 return ERROR_OK;
224 }
225
226 int mips32_restore_context(struct target *target)
227 {
228 int i;
229
230 /* get pointers to arch-specific information */
231 struct mips32_common *mips32 = target_to_mips32(target);
232 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
233
234 for (i = 0; i < MIPS32NUMCOREREGS; i++)
235 {
236 if (mips32->core_cache->reg_list[i].dirty)
237 {
238 mips32->write_core_reg(target, i);
239 }
240 }
241
242 /* write core regs */
243 mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
244
245 return ERROR_OK;
246 }
247
248 int mips32_arch_state(struct target *target)
249 {
250 struct mips32_common *mips32 = target_to_mips32(target);
251
252 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
253 mips_isa_strings[mips32->isa_mode],
254 debug_reason_name(target),
255 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
256
257 return ERROR_OK;
258 }
259
260 static const struct reg_arch_type mips32_reg_type = {
261 .get = mips32_get_core_reg,
262 .set = mips32_set_core_reg,
263 };
264
265 struct reg_cache *mips32_build_reg_cache(struct target *target)
266 {
267 /* get pointers to arch-specific information */
268 struct mips32_common *mips32 = target_to_mips32(target);
269
270 int num_regs = MIPS32NUMCOREREGS;
271 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
272 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
273 struct reg *reg_list = malloc(sizeof(struct reg) * num_regs);
274 struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
275 int i;
276
277 register_init_dummy(&mips32_gdb_dummy_fp_reg);
278
279 /* Build the process context cache */
280 cache->name = "mips32 registers";
281 cache->next = NULL;
282 cache->reg_list = reg_list;
283 cache->num_regs = num_regs;
284 (*cache_p) = cache;
285 mips32->core_cache = cache;
286
287 for (i = 0; i < num_regs; i++)
288 {
289 arch_info[i] = mips32_core_reg_list_arch_info[i];
290 arch_info[i].target = target;
291 arch_info[i].mips32_common = mips32;
292 reg_list[i].name = mips32_core_reg_list[i];
293 reg_list[i].size = 32;
294 reg_list[i].value = calloc(1, 4);
295 reg_list[i].dirty = 0;
296 reg_list[i].valid = 0;
297 reg_list[i].type = &mips32_reg_type;
298 reg_list[i].arch_info = &arch_info[i];
299 }
300
301 return cache;
302 }
303
304 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
305 {
306 target->arch_info = mips32;
307 mips32->common_magic = MIPS32_COMMON_MAGIC;
308 mips32->fast_data_area = NULL;
309
310 /* has breakpoint/watchpint unit been scanned */
311 mips32->bp_scanned = 0;
312 mips32->data_break_list = NULL;
313
314 mips32->ejtag_info.tap = tap;
315 mips32->read_core_reg = mips32_read_core_reg;
316 mips32->write_core_reg = mips32_write_core_reg;
317
318 return ERROR_OK;
319 }
320
321 /* run to exit point. return error if exit point was not reached. */
322 static int mips32_run_and_wait(struct target *target, uint32_t entry_point,
323 int timeout_ms, uint32_t exit_point, struct mips32_common *mips32)
324 {
325 uint32_t pc;
326 int retval;
327 /* This code relies on the target specific resume() and poll()->debug_entry()
328 * sequence to write register values to the processor and the read them back */
329 if ((retval = target_resume(target, 0, entry_point, 0, 1)) != ERROR_OK)
330 {
331 return retval;
332 }
333
334 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
335 /* If the target fails to halt due to the breakpoint, force a halt */
336 if (retval != ERROR_OK || target->state != TARGET_HALTED)
337 {
338 if ((retval = target_halt(target)) != ERROR_OK)
339 return retval;
340 if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
341 {
342 return retval;
343 }
344 return ERROR_TARGET_TIMEOUT;
345 }
346
347 pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
348 if (exit_point && (pc != exit_point))
349 {
350 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
351 return ERROR_TARGET_TIMEOUT;
352 }
353
354 return ERROR_OK;
355 }
356
357 int mips32_run_algorithm(struct target *target, int num_mem_params,
358 struct mem_param *mem_params, int num_reg_params,
359 struct reg_param *reg_params, uint32_t entry_point,
360 uint32_t exit_point, int timeout_ms, void *arch_info)
361 {
362 struct mips32_common *mips32 = target_to_mips32(target);
363 struct mips32_algorithm *mips32_algorithm_info = arch_info;
364 enum mips32_isa_mode isa_mode = mips32->isa_mode;
365
366 uint32_t context[MIPS32NUMCOREREGS];
367 int i;
368 int retval = ERROR_OK;
369
370 LOG_DEBUG("Running algorithm");
371
372 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
373 * at the exit point */
374
375 if (mips32->common_magic != MIPS32_COMMON_MAGIC)
376 {
377 LOG_ERROR("current target isn't a MIPS32 target");
378 return ERROR_TARGET_INVALID;
379 }
380
381 if (target->state != TARGET_HALTED)
382 {
383 LOG_WARNING("target not halted");
384 return ERROR_TARGET_NOT_HALTED;
385 }
386
387 /* refresh core register cache */
388 for (i = 0; i < MIPS32NUMCOREREGS; i++)
389 {
390 if (!mips32->core_cache->reg_list[i].valid)
391 mips32->read_core_reg(target, i);
392 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
393 }
394
395 for (i = 0; i < num_mem_params; i++)
396 {
397 if ((retval = target_write_buffer(target, mem_params[i].address,
398 mem_params[i].size, mem_params[i].value)) != ERROR_OK)
399 {
400 return retval;
401 }
402 }
403
404 for (i = 0; i < num_reg_params; i++)
405 {
406 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
407
408 if (!reg)
409 {
410 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
411 return ERROR_INVALID_ARGUMENTS;
412 }
413
414 if (reg->size != reg_params[i].size)
415 {
416 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
417 reg_params[i].reg_name);
418 return ERROR_INVALID_ARGUMENTS;
419 }
420
421 mips32_set_core_reg(reg, reg_params[i].value);
422 }
423
424 mips32->isa_mode = mips32_algorithm_info->isa_mode;
425
426 retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
427
428 if (retval != ERROR_OK)
429 return retval;
430
431 for (i = 0; i < num_mem_params; i++)
432 {
433 if (mem_params[i].direction != PARAM_OUT)
434 {
435 if ((retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
436 mem_params[i].value)) != ERROR_OK)
437 {
438 return retval;
439 }
440 }
441 }
442
443 for (i = 0; i < num_reg_params; i++)
444 {
445 if (reg_params[i].direction != PARAM_OUT)
446 {
447 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
448 if (!reg)
449 {
450 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
451 return ERROR_INVALID_ARGUMENTS;
452 }
453
454 if (reg->size != reg_params[i].size)
455 {
456 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
457 reg_params[i].reg_name);
458 return ERROR_INVALID_ARGUMENTS;
459 }
460
461 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
462 }
463 }
464
465 /* restore everything we saved before */
466 for (i = 0; i < MIPS32NUMCOREREGS; i++)
467 {
468 uint32_t regvalue;
469 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
470 if (regvalue != context[i])
471 {
472 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
473 mips32->core_cache->reg_list[i].name, context[i]);
474 buf_set_u32(mips32->core_cache->reg_list[i].value,
475 0, 32, context[i]);
476 mips32->core_cache->reg_list[i].valid = 1;
477 mips32->core_cache->reg_list[i].dirty = 1;
478 }
479 }
480
481 mips32->isa_mode = isa_mode;
482
483 return ERROR_OK;
484 }
485
486 int mips32_examine(struct target *target)
487 {
488 struct mips32_common *mips32 = target_to_mips32(target);
489
490 if (!target_was_examined(target))
491 {
492 target_set_examined(target);
493
494 /* we will configure later */
495 mips32->bp_scanned = 0;
496 mips32->num_inst_bpoints = 0;
497 mips32->num_data_bpoints = 0;
498 mips32->num_inst_bpoints_avail = 0;
499 mips32->num_data_bpoints_avail = 0;
500 }
501
502 return ERROR_OK;
503 }
504
505 int mips32_configure_break_unit(struct target *target)
506 {
507 /* get pointers to arch-specific information */
508 struct mips32_common *mips32 = target_to_mips32(target);
509 int retval;
510 uint32_t dcr, bpinfo;
511 int i;
512
513 if (mips32->bp_scanned)
514 return ERROR_OK;
515
516 /* get info about breakpoint support */
517 if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK)
518 return retval;
519
520 if (dcr & EJTAG_DCR_IB)
521 {
522 /* get number of inst breakpoints */
523 if ((retval = target_read_u32(target, EJTAG_IBS, &bpinfo)) != ERROR_OK)
524 return retval;
525
526 mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
527 mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
528 mips32->inst_break_list = calloc(mips32->num_inst_bpoints, sizeof(struct mips32_comparator));
529 for (i = 0; i < mips32->num_inst_bpoints; i++)
530 {
531 mips32->inst_break_list[i].reg_address = EJTAG_IBA1 + (0x100 * i);
532 }
533
534 /* clear IBIS reg */
535 if ((retval = target_write_u32(target, EJTAG_IBS, 0)) != ERROR_OK)
536 return retval;
537 }
538
539 if (dcr & EJTAG_DCR_DB)
540 {
541 /* get number of data breakpoints */
542 if ((retval = target_read_u32(target, EJTAG_DBS, &bpinfo)) != ERROR_OK)
543 return retval;
544
545 mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
546 mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
547 mips32->data_break_list = calloc(mips32->num_data_bpoints, sizeof(struct mips32_comparator));
548 for (i = 0; i < mips32->num_data_bpoints; i++)
549 {
550 mips32->data_break_list[i].reg_address = EJTAG_DBA1 + (0x100 * i);
551 }
552
553 /* clear DBIS reg */
554 if ((retval = target_write_u32(target, EJTAG_DBS, 0)) != ERROR_OK)
555 return retval;
556 }
557
558 /* check if target endianness settings matches debug control register */
559 if ( ( (dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_LITTLE_ENDIAN) ) ||
560 ( !(dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_BIG_ENDIAN) ) )
561 {
562 LOG_WARNING("DCR endianness settings does not match target settings");
563 }
564
565 LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
566 mips32->num_data_bpoints);
567
568 mips32->bp_scanned = 1;
569
570 return ERROR_OK;
571 }
572
573 int mips32_enable_interrupts(struct target *target, int enable)
574 {
575 int retval;
576 int update = 0;
577 uint32_t dcr;
578
579 /* read debug control register */
580 if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK)
581 return retval;
582
583 if (enable)
584 {
585 if (!(dcr & EJTAG_DCR_INTE))
586 {
587 /* enable interrupts */
588 dcr |= EJTAG_DCR_INTE;
589 update = 1;
590 }
591 }
592 else
593 {
594 if (dcr & EJTAG_DCR_INTE)
595 {
596 /* disable interrupts */
597 dcr &= ~EJTAG_DCR_INTE;
598 update = 1;
599 }
600 }
601
602 if (update)
603 {
604 if ((retval = target_write_u32(target, EJTAG_DCR, dcr)) != ERROR_OK)
605 return retval;
606 }
607
608 return ERROR_OK;
609 }
610
611 int mips32_checksum_memory(struct target *target, uint32_t address,
612 uint32_t count, uint32_t* checksum)
613 {
614 struct working_area *crc_algorithm;
615 struct reg_param reg_params[2];
616 struct mips32_algorithm mips32_info;
617 int retval;
618 uint32_t i;
619
620 /* see contib/loaders/checksum/mips32.s for src */
621
622 static const uint32_t mips_crc_code[] =
623 {
624 0x248C0000, /* addiu $t4, $a0, 0 */
625 0x24AA0000, /* addiu $t2, $a1, 0 */
626 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */
627 0x10000010, /* beq $zero, $zero, ncomp */
628 0x240B0000, /* addiu $t3, $zero, 0 */
629 /* nbyte: */
630 0x81850000, /* lb $a1, ($t4) */
631 0x218C0001, /* addi $t4, $t4, 1 */
632 0x00052E00, /* sll $a1, $a1, 24 */
633 0x3C0204C1, /* lui $v0, 0x04c1 */
634 0x00852026, /* xor $a0, $a0, $a1 */
635 0x34471DB7, /* ori $a3, $v0, 0x1db7 */
636 0x00003021, /* addu $a2, $zero, $zero */
637 /* loop: */
638 0x00044040, /* sll $t0, $a0, 1 */
639 0x24C60001, /* addiu $a2, $a2, 1 */
640 0x28840000, /* slti $a0, $a0, 0 */
641 0x01074826, /* xor $t1, $t0, $a3 */
642 0x0124400B, /* movn $t0, $t1, $a0 */
643 0x28C30008, /* slti $v1, $a2, 8 */
644 0x1460FFF9, /* bne $v1, $zero, loop */
645 0x01002021, /* addu $a0, $t0, $zero */
646 /* ncomp: */
647 0x154BFFF0, /* bne $t2, $t3, nbyte */
648 0x256B0001, /* addiu $t3, $t3, 1 */
649 0x7000003F, /* sdbbp */
650 };
651
652 /* make sure we have a working area */
653 if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
654 {
655 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
656 }
657
658 /* convert flash writing code into a buffer in target endianness */
659 for (i = 0; i < ARRAY_SIZE(mips_crc_code); i++)
660 target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), mips_crc_code[i]);
661
662 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
663 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
664
665 init_reg_param(&reg_params[0], "a0", 32, PARAM_IN_OUT);
666 buf_set_u32(reg_params[0].value, 0, 32, address);
667
668 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
669 buf_set_u32(reg_params[1].value, 0, 32, count);
670
671 int timeout = 20000 * (1 + (count / (1024 * 1024)));
672
673 if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
674 crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code)-4), timeout,
675 &mips32_info)) != ERROR_OK)
676 {
677 destroy_reg_param(&reg_params[0]);
678 destroy_reg_param(&reg_params[1]);
679 target_free_working_area(target, crc_algorithm);
680 return 0;
681 }
682
683 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
684
685 destroy_reg_param(&reg_params[0]);
686 destroy_reg_param(&reg_params[1]);
687
688 target_free_working_area(target, crc_algorithm);
689
690 return ERROR_OK;
691 }
692
693 /** Checks whether a memory region is zeroed. */
694 int mips32_blank_check_memory(struct target *target,
695 uint32_t address, uint32_t count, uint32_t* blank)
696 {
697 struct working_area *erase_check_algorithm;
698 struct reg_param reg_params[3];
699 struct mips32_algorithm mips32_info;
700 int retval;
701 uint32_t i;
702
703 static const uint32_t erase_check_code[] =
704 {
705 /* nbyte: */
706 0x80880000, /* lb $t0, ($a0) */
707 0x00C83024, /* and $a2, $a2, $t0 */
708 0x24A5FFFF, /* addiu $a1, $a1, -1 */
709 0x14A0FFFC, /* bne $a1, $zero, nbyte */
710 0x24840001, /* addiu $a0, $a0, 1 */
711 0x7000003F /* sdbbp */
712 };
713
714 /* make sure we have a working area */
715 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
716 {
717 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
718 }
719
720 /* convert flash writing code into a buffer in target endianness */
721 for (i = 0; i < ARRAY_SIZE(erase_check_code); i++)
722 {
723 target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t),
724 erase_check_code[i]);
725 }
726
727 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
728 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
729
730 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
731 buf_set_u32(reg_params[0].value, 0, 32, address);
732
733 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
734 buf_set_u32(reg_params[1].value, 0, 32, count);
735
736 init_reg_param(&reg_params[2], "a2", 32, PARAM_IN_OUT);
737 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
738
739 if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
740 erase_check_algorithm->address,
741 erase_check_algorithm->address + (sizeof(erase_check_code)-2),
742 10000, &mips32_info)) != ERROR_OK)
743 {
744 destroy_reg_param(&reg_params[0]);
745 destroy_reg_param(&reg_params[1]);
746 destroy_reg_param(&reg_params[2]);
747 target_free_working_area(target, erase_check_algorithm);
748 return 0;
749 }
750
751 *blank = buf_get_u32(reg_params[2].value, 0, 32);
752
753 destroy_reg_param(&reg_params[0]);
754 destroy_reg_param(&reg_params[1]);
755 destroy_reg_param(&reg_params[2]);
756
757 target_free_working_area(target, erase_check_algorithm);
758
759 return ERROR_OK;
760 }