24cd7d954a973d2743da415c4e2f7b6ea09fb721
[openocd.git] / src / target / mips32.c
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2007,2008 √ėyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License as published by *
12 * the Free Software Foundation; either version 2 of the License, or *
13 * (at your option) any later version. *
14 * *
15 * This program is distributed in the hope that it will be useful, *
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
18 * GNU General Public License for more details. *
19 * *
20 * You should have received a copy of the GNU General Public License *
21 * along with this program; if not, write to the *
22 * Free Software Foundation, Inc., *
23 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
24 ***************************************************************************/
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "mips32.h"
30 #include "breakpoints.h"
31 #include "algorithm.h"
32 #include "register.h"
33
34 static char* mips32_core_reg_list[] =
35 {
36 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
37 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
38 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
39 "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra",
40 "status", "lo", "hi", "badvaddr", "cause", "pc"
41 };
42
43 static const char *mips_isa_strings[] =
44 {
45 "MIPS32", "MIPS16e"
46 };
47
48 static struct mips32_core_reg mips32_core_reg_list_arch_info[MIPS32NUMCOREREGS] =
49 {
50 {0, NULL, NULL},
51 {1, NULL, NULL},
52 {2, NULL, NULL},
53 {3, NULL, NULL},
54 {4, NULL, NULL},
55 {5, NULL, NULL},
56 {6, NULL, NULL},
57 {7, NULL, NULL},
58 {8, NULL, NULL},
59 {9, NULL, NULL},
60 {10, NULL, NULL},
61 {11, NULL, NULL},
62 {12, NULL, NULL},
63 {13, NULL, NULL},
64 {14, NULL, NULL},
65 {15, NULL, NULL},
66 {16, NULL, NULL},
67 {17, NULL, NULL},
68 {18, NULL, NULL},
69 {19, NULL, NULL},
70 {20, NULL, NULL},
71 {21, NULL, NULL},
72 {22, NULL, NULL},
73 {23, NULL, NULL},
74 {24, NULL, NULL},
75 {25, NULL, NULL},
76 {26, NULL, NULL},
77 {27, NULL, NULL},
78 {28, NULL, NULL},
79 {29, NULL, NULL},
80 {30, NULL, NULL},
81 {31, NULL, NULL},
82
83 {32, NULL, NULL},
84 {33, NULL, NULL},
85 {34, NULL, NULL},
86 {35, NULL, NULL},
87 {36, NULL, NULL},
88 {37, NULL, NULL},
89 };
90
91 /* number of mips dummy fp regs fp0 - fp31 + fsr and fir
92 * we also add 18 unknown registers to handle gdb requests */
93
94 #define MIPS32NUMFPREGS 34 + 18
95
96 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
97
98 static struct reg mips32_gdb_dummy_fp_reg =
99 {
100 .name = "GDB dummy floating-point register",
101 .value = mips32_gdb_dummy_fp_value,
102 .dirty = 0,
103 .valid = 1,
104 .size = 32,
105 .arch_info = NULL,
106 };
107
108 static int mips32_get_core_reg(struct reg *reg)
109 {
110 int retval;
111 struct mips32_core_reg *mips32_reg = reg->arch_info;
112 struct target *target = mips32_reg->target;
113 struct mips32_common *mips32_target = target_to_mips32(target);
114
115 if (target->state != TARGET_HALTED)
116 {
117 return ERROR_TARGET_NOT_HALTED;
118 }
119
120 retval = mips32_target->read_core_reg(target, mips32_reg->num);
121
122 return retval;
123 }
124
125 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
126 {
127 struct mips32_core_reg *mips32_reg = reg->arch_info;
128 struct target *target = mips32_reg->target;
129 uint32_t value = buf_get_u32(buf, 0, 32);
130
131 if (target->state != TARGET_HALTED)
132 {
133 return ERROR_TARGET_NOT_HALTED;
134 }
135
136 buf_set_u32(reg->value, 0, 32, value);
137 reg->dirty = 1;
138 reg->valid = 1;
139
140 return ERROR_OK;
141 }
142
143 static int mips32_read_core_reg(struct target *target, int num)
144 {
145 uint32_t reg_value;
146 struct mips32_core_reg *mips_core_reg;
147
148 /* get pointers to arch-specific information */
149 struct mips32_common *mips32 = target_to_mips32(target);
150
151 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
152 return ERROR_INVALID_ARGUMENTS;
153
154 mips_core_reg = mips32->core_cache->reg_list[num].arch_info;
155 reg_value = mips32->core_regs[num];
156 buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
157 mips32->core_cache->reg_list[num].valid = 1;
158 mips32->core_cache->reg_list[num].dirty = 0;
159
160 return ERROR_OK;
161 }
162
163 static int mips32_write_core_reg(struct target *target, int num)
164 {
165 uint32_t reg_value;
166 struct mips32_core_reg *mips_core_reg;
167
168 /* get pointers to arch-specific information */
169 struct mips32_common *mips32 = target_to_mips32(target);
170
171 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
172 return ERROR_INVALID_ARGUMENTS;
173
174 reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
175 mips_core_reg = mips32->core_cache->reg_list[num].arch_info;
176 mips32->core_regs[num] = reg_value;
177 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
178 mips32->core_cache->reg_list[num].valid = 1;
179 mips32->core_cache->reg_list[num].dirty = 0;
180
181 return ERROR_OK;
182 }
183
184 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
185 {
186 /* get pointers to arch-specific information */
187 struct mips32_common *mips32 = target_to_mips32(target);
188 int i;
189
190 /* include floating point registers */
191 *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
192 *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
193
194 for (i = 0; i < MIPS32NUMCOREREGS; i++)
195 {
196 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
197 }
198
199 /* add dummy floating points regs */
200 for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
201 {
202 (*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
203 }
204
205 return ERROR_OK;
206 }
207
208 int mips32_save_context(struct target *target)
209 {
210 int i;
211
212 /* get pointers to arch-specific information */
213 struct mips32_common *mips32 = target_to_mips32(target);
214 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
215
216 /* read core registers */
217 mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
218
219 for (i = 0; i < MIPS32NUMCOREREGS; i++)
220 {
221 if (!mips32->core_cache->reg_list[i].valid)
222 {
223 mips32->read_core_reg(target, i);
224 }
225 }
226
227 return ERROR_OK;
228 }
229
230 int mips32_restore_context(struct target *target)
231 {
232 int i;
233
234 /* get pointers to arch-specific information */
235 struct mips32_common *mips32 = target_to_mips32(target);
236 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
237
238 for (i = 0; i < MIPS32NUMCOREREGS; i++)
239 {
240 if (mips32->core_cache->reg_list[i].dirty)
241 {
242 mips32->write_core_reg(target, i);
243 }
244 }
245
246 /* write core regs */
247 mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
248
249 return ERROR_OK;
250 }
251
252 int mips32_arch_state(struct target *target)
253 {
254 struct mips32_common *mips32 = target_to_mips32(target);
255
256 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
257 mips_isa_strings[mips32->isa_mode],
258 debug_reason_name(target),
259 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
260
261 return ERROR_OK;
262 }
263
264 static const struct reg_arch_type mips32_reg_type = {
265 .get = mips32_get_core_reg,
266 .set = mips32_set_core_reg,
267 };
268
269 struct reg_cache *mips32_build_reg_cache(struct target *target)
270 {
271 /* get pointers to arch-specific information */
272 struct mips32_common *mips32 = target_to_mips32(target);
273
274 int num_regs = MIPS32NUMCOREREGS;
275 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
276 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
277 struct reg *reg_list = malloc(sizeof(struct reg) * num_regs);
278 struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
279 int i;
280
281 register_init_dummy(&mips32_gdb_dummy_fp_reg);
282
283 /* Build the process context cache */
284 cache->name = "mips32 registers";
285 cache->next = NULL;
286 cache->reg_list = reg_list;
287 cache->num_regs = num_regs;
288 (*cache_p) = cache;
289 mips32->core_cache = cache;
290
291 for (i = 0; i < num_regs; i++)
292 {
293 arch_info[i] = mips32_core_reg_list_arch_info[i];
294 arch_info[i].target = target;
295 arch_info[i].mips32_common = mips32;
296 reg_list[i].name = mips32_core_reg_list[i];
297 reg_list[i].size = 32;
298 reg_list[i].value = calloc(1, 4);
299 reg_list[i].dirty = 0;
300 reg_list[i].valid = 0;
301 reg_list[i].type = &mips32_reg_type;
302 reg_list[i].arch_info = &arch_info[i];
303 }
304
305 return cache;
306 }
307
308 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
309 {
310 target->arch_info = mips32;
311 mips32->common_magic = MIPS32_COMMON_MAGIC;
312
313 /* has breakpoint/watchpint unit been scanned */
314 mips32->bp_scanned = 0;
315 mips32->data_break_list = NULL;
316
317 mips32->ejtag_info.tap = tap;
318 mips32->read_core_reg = mips32_read_core_reg;
319 mips32->write_core_reg = mips32_write_core_reg;
320
321 return ERROR_OK;
322 }
323
324 /* run to exit point. return error if exit point was not reached. */
325 static int mips32_run_and_wait(struct target *target, uint32_t entry_point,
326 int timeout_ms, uint32_t exit_point, struct mips32_common *mips32)
327 {
328 uint32_t pc;
329 int retval;
330 /* This code relies on the target specific resume() and poll()->debug_entry()
331 * sequence to write register values to the processor and the read them back */
332 if ((retval = target_resume(target, 0, entry_point, 0, 1)) != ERROR_OK)
333 {
334 return retval;
335 }
336
337 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
338 /* If the target fails to halt due to the breakpoint, force a halt */
339 if (retval != ERROR_OK || target->state != TARGET_HALTED)
340 {
341 if ((retval = target_halt(target)) != ERROR_OK)
342 return retval;
343 if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
344 {
345 return retval;
346 }
347 return ERROR_TARGET_TIMEOUT;
348 }
349
350 pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
351 if (exit_point && (pc != exit_point))
352 {
353 LOG_DEBUG("failed algoritm halted at 0x%" PRIx32 " ", pc);
354 return ERROR_TARGET_TIMEOUT;
355 }
356
357 return ERROR_OK;
358 }
359
360 int mips32_run_algorithm(struct target *target, int num_mem_params,
361 struct mem_param *mem_params, int num_reg_params,
362 struct reg_param *reg_params, uint32_t entry_point,
363 uint32_t exit_point, int timeout_ms, void *arch_info)
364 {
365 struct mips32_common *mips32 = target_to_mips32(target);
366 struct mips32_algorithm *mips32_algorithm_info = arch_info;
367 enum mips32_isa_mode isa_mode = mips32->isa_mode;
368
369 uint32_t context[MIPS32NUMCOREREGS];
370 int i;
371 int retval = ERROR_OK;
372
373 LOG_DEBUG("Running algorithm");
374
375 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
376 * at the exit point */
377
378 if (mips32->common_magic != MIPS32_COMMON_MAGIC)
379 {
380 LOG_ERROR("current target isn't a MIPS32 target");
381 return ERROR_TARGET_INVALID;
382 }
383
384 if (target->state != TARGET_HALTED)
385 {
386 LOG_WARNING("target not halted");
387 return ERROR_TARGET_NOT_HALTED;
388 }
389
390 /* refresh core register cache */
391 for (i = 0; i < MIPS32NUMCOREREGS; i++)
392 {
393 if (!mips32->core_cache->reg_list[i].valid)
394 mips32->read_core_reg(target, i);
395 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
396 }
397
398 for (i = 0; i < num_mem_params; i++)
399 {
400 if ((retval = target_write_buffer(target, mem_params[i].address,
401 mem_params[i].size, mem_params[i].value)) != ERROR_OK)
402 {
403 return retval;
404 }
405 }
406
407 for (i = 0; i < num_reg_params; i++)
408 {
409 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
410
411 if (!reg)
412 {
413 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
414 return ERROR_INVALID_ARGUMENTS;
415 }
416
417 if (reg->size != reg_params[i].size)
418 {
419 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
420 reg_params[i].reg_name);
421 return ERROR_INVALID_ARGUMENTS;
422 }
423
424 mips32_set_core_reg(reg, reg_params[i].value);
425 }
426
427 mips32->isa_mode = mips32_algorithm_info->isa_mode;
428
429 retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
430
431 if (retval != ERROR_OK)
432 return retval;
433
434 for (i = 0; i < num_mem_params; i++)
435 {
436 if (mem_params[i].direction != PARAM_OUT)
437 {
438 if ((retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
439 mem_params[i].value)) != ERROR_OK)
440 {
441 return retval;
442 }
443 }
444 }
445
446 for (i = 0; i < num_reg_params; i++)
447 {
448 if (reg_params[i].direction != PARAM_OUT)
449 {
450 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
451 if (!reg)
452 {
453 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
454 return ERROR_INVALID_ARGUMENTS;
455 }
456
457 if (reg->size != reg_params[i].size)
458 {
459 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
460 reg_params[i].reg_name);
461 return ERROR_INVALID_ARGUMENTS;
462 }
463
464 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
465 }
466 }
467
468 /* restore everything we saved before */
469 for (i = 0; i < MIPS32NUMCOREREGS; i++)
470 {
471 uint32_t regvalue;
472 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
473 if (regvalue != context[i])
474 {
475 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
476 mips32->core_cache->reg_list[i].name, context[i]);
477 buf_set_u32(mips32->core_cache->reg_list[i].value,
478 0, 32, context[i]);
479 mips32->core_cache->reg_list[i].valid = 1;
480 mips32->core_cache->reg_list[i].dirty = 1;
481 }
482 }
483
484 mips32->isa_mode = isa_mode;
485
486 return ERROR_OK;
487 }
488
489 int mips32_examine(struct target *target)
490 {
491 struct mips32_common *mips32 = target_to_mips32(target);
492
493 if (!target_was_examined(target))
494 {
495 target_set_examined(target);
496
497 /* we will configure later */
498 mips32->bp_scanned = 0;
499 mips32->num_inst_bpoints = 0;
500 mips32->num_data_bpoints = 0;
501 mips32->num_inst_bpoints_avail = 0;
502 mips32->num_data_bpoints_avail = 0;
503 }
504
505 return ERROR_OK;
506 }
507
508 int mips32_configure_break_unit(struct target *target)
509 {
510 /* get pointers to arch-specific information */
511 struct mips32_common *mips32 = target_to_mips32(target);
512 int retval;
513 uint32_t dcr, bpinfo;
514 int i;
515
516 if (mips32->bp_scanned)
517 return ERROR_OK;
518
519 /* get info about breakpoint support */
520 if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK)
521 return retval;
522
523 if (dcr & EJTAG_DCR_IB)
524 {
525 /* get number of inst breakpoints */
526 if ((retval = target_read_u32(target, EJTAG_IBS, &bpinfo)) != ERROR_OK)
527 return retval;
528
529 mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
530 mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
531 mips32->inst_break_list = calloc(mips32->num_inst_bpoints, sizeof(struct mips32_comparator));
532 for (i = 0; i < mips32->num_inst_bpoints; i++)
533 {
534 mips32->inst_break_list[i].reg_address = EJTAG_IBA1 + (0x100 * i);
535 }
536
537 /* clear IBIS reg */
538 if ((retval = target_write_u32(target, EJTAG_IBS, 0)) != ERROR_OK)
539 return retval;
540 }
541
542 if (dcr & EJTAG_DCR_DB)
543 {
544 /* get number of data breakpoints */
545 if ((retval = target_read_u32(target, EJTAG_DBS, &bpinfo)) != ERROR_OK)
546 return retval;
547
548 mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
549 mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
550 mips32->data_break_list = calloc(mips32->num_data_bpoints, sizeof(struct mips32_comparator));
551 for (i = 0; i < mips32->num_data_bpoints; i++)
552 {
553 mips32->data_break_list[i].reg_address = EJTAG_DBA1 + (0x100 * i);
554 }
555
556 /* clear DBIS reg */
557 if ((retval = target_write_u32(target, EJTAG_DBS, 0)) != ERROR_OK)
558 return retval;
559 }
560
561 LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
562 mips32->num_data_bpoints);
563
564 mips32->bp_scanned = 1;
565
566 return ERROR_OK;
567 }
568
569 int mips32_enable_interrupts(struct target *target, int enable)
570 {
571 int retval;
572 int update = 0;
573 uint32_t dcr;
574
575 /* read debug control register */
576 if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK)
577 return retval;
578
579 if (enable)
580 {
581 if (!(dcr & EJTAG_DCR_INTE))
582 {
583 /* enable interrupts */
584 dcr |= EJTAG_DCR_INTE;
585 update = 1;
586 }
587 }
588 else
589 {
590 if (dcr & EJTAG_DCR_INTE)
591 {
592 /* disable interrupts */
593 dcr &= ~EJTAG_DCR_INTE;
594 update = 1;
595 }
596 }
597
598 if (update)
599 {
600 if ((retval = target_write_u32(target, EJTAG_DCR, dcr)) != ERROR_OK)
601 return retval;
602 }
603
604 return ERROR_OK;
605 }
606
607 int mips32_checksum_memory(struct target *target, uint32_t address,
608 uint32_t count, uint32_t* checksum)
609 {
610 struct working_area *crc_algorithm;
611 struct reg_param reg_params[2];
612 struct mips32_algorithm mips32_info;
613 int retval;
614 uint32_t i;
615
616 static const uint32_t mips_crc_code[] =
617 {
618 0x248C0000, /* addiu $t4, $a0, 0 */
619 0x24AA0000, /* addiu $t2, $a1, 0 */
620 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */
621 0x10000010, /* beq $zero, $zero, ncomp */
622 0x240B0000, /* addiu $t3, $zero, 0 */
623 /* nbyte: */
624 0x81850000, /* lb $a1, ($t4) */
625 0x218C0001, /* addi $t4, $t4, 1 */
626 0x00052E00, /* sll $a1, $a1, 24 */
627 0x3C0204C1, /* lui $v0, 0x04c1 */
628 0x00852026, /* xor $a0, $a0, $a1 */
629 0x34471DB7, /* ori $a3, $v0, 0x1db7 */
630 0x00003021, /* addu $a2, $zero, $zero */
631 /* loop: */
632 0x00044040, /* sll $t0, $a0, 1 */
633 0x24C60001, /* addiu $a2, $a2, 1 */
634 0x28840000, /* slti $a0, $a0, 0 */
635 0x01074826, /* xor $t1, $t0, $a3 */
636 0x0124400B, /* movn $t0, $t1, $a0 */
637 0x28C30008, /* slti $v1, $a2, 8 */
638 0x1460FFF9, /* bne $v1, $zero, loop */
639 0x01002021, /* addu $a0, $t0, $zero */
640 /* ncomp: */
641 0x154BFFF0, /* bne $t2, $t3, nbyte */
642 0x256B0001, /* addiu $t3, $t3, 1 */
643 0x7000003F, /* sdbbp */
644 };
645
646 /* make sure we have a working area */
647 if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
648 {
649 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
650 }
651
652 /* convert flash writing code into a buffer in target endianness */
653 for (i = 0; i < ARRAY_SIZE(mips_crc_code); i++)
654 target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), mips_crc_code[i]);
655
656 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
657 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
658
659 init_reg_param(&reg_params[0], "a0", 32, PARAM_IN_OUT);
660 buf_set_u32(reg_params[0].value, 0, 32, address);
661
662 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
663 buf_set_u32(reg_params[1].value, 0, 32, count);
664
665 int timeout = 20000 * (1 + (count / (1024 * 1024)));
666
667 if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
668 crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code)-4), timeout,
669 &mips32_info)) != ERROR_OK)
670 {
671 destroy_reg_param(&reg_params[0]);
672 destroy_reg_param(&reg_params[1]);
673 target_free_working_area(target, crc_algorithm);
674 return 0;
675 }
676
677 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
678
679 destroy_reg_param(&reg_params[0]);
680 destroy_reg_param(&reg_params[1]);
681
682 target_free_working_area(target, crc_algorithm);
683
684 return ERROR_OK;
685 }
686
687 /** Checks whether a memory region is zeroed. */
688 int mips32_blank_check_memory(struct target *target,
689 uint32_t address, uint32_t count, uint32_t* blank)
690 {
691 struct working_area *erase_check_algorithm;
692 struct reg_param reg_params[3];
693 struct mips32_algorithm mips32_info;
694 int retval;
695 uint32_t i;
696
697 static const uint32_t erase_check_code[] =
698 {
699 /* nbyte: */
700 0x80880000, /* lb $t0, ($a0) */
701 0x00C83024, /* and $a2, $a2, $t0 */
702 0x24A5FFFF, /* addiu $a1, $a1, -1 */
703 0x14A0FFFC, /* bne $a1, $zero, nbyte */
704 0x24840001, /* addiu $a0, $a0, 1 */
705 0x7000003F /* sdbbp */
706 };
707
708 /* make sure we have a working area */
709 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
710 {
711 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
712 }
713
714 /* convert flash writing code into a buffer in target endianness */
715 for (i = 0; i < ARRAY_SIZE(erase_check_code); i++)
716 {
717 target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t),
718 erase_check_code[i]);
719 }
720
721 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
722 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
723
724 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
725 buf_set_u32(reg_params[0].value, 0, 32, address);
726
727 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
728 buf_set_u32(reg_params[1].value, 0, 32, count);
729
730 init_reg_param(&reg_params[2], "a2", 32, PARAM_IN_OUT);
731 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
732
733 if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
734 erase_check_algorithm->address,
735 erase_check_algorithm->address + (sizeof(erase_check_code)-2),
736 10000, &mips32_info)) != ERROR_OK)
737 {
738 destroy_reg_param(&reg_params[0]);
739 destroy_reg_param(&reg_params[1]);
740 destroy_reg_param(&reg_params[2]);
741 target_free_working_area(target, erase_check_algorithm);
742 return 0;
743 }
744
745 *blank = buf_get_u32(reg_params[2].value, 0, 32);
746
747 destroy_reg_param(&reg_params[0]);
748 destroy_reg_param(&reg_params[1]);
749 destroy_reg_param(&reg_params[2]);
750
751 target_free_working_area(target, erase_check_algorithm);
752
753 return ERROR_OK;
754 }