EMBEDDEDICE: review scope of functions
[openocd.git] / src / target / embeddedice.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "embeddedice.h"
31 #include "register.h"
32
33 /**
34 * @file
35 *
36 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37 * module found on scan chain 2 in ARM7, ARM9, and some other families
38 * of ARM cores. The module is called "EmbeddedICE-RT" if it has
39 * monitor mode support.
40 *
41 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
42 * Communications Channel (DCC) used to read or write 32-bit words to
43 * OpenOCD-aware code running on the target CPU.
44 * Newer modules also include vector catch hardware. Some versions
45 * support hardware single-stepping, "monitor mode" debug (which is not
46 * currently supported by OpenOCD), or extended reporting on why the
47 * core entered debug mode.
48 */
49
50 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf);
51
52 /*
53 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
54 */
55 static const struct {
56 char *name;
57 unsigned short addr;
58 unsigned short width;
59 } eice_regs[] = {
60 [EICE_DBG_CTRL] = {
61 .name = "debug_ctrl",
62 .addr = 0,
63 /* width is assigned based on EICE version */
64 },
65 [EICE_DBG_STAT] = {
66 .name = "debug_status",
67 .addr = 1,
68 /* width is assigned based on EICE version */
69 },
70 [EICE_COMMS_CTRL] = {
71 .name = "comms_ctrl",
72 .addr = 4,
73 .width = 6,
74 },
75 [EICE_COMMS_DATA] = {
76 .name = "comms_data",
77 .addr = 5,
78 .width = 32,
79 },
80 [EICE_W0_ADDR_VALUE] = {
81 .name = "watch_0_addr_value",
82 .addr = 8,
83 .width = 32,
84 },
85 [EICE_W0_ADDR_MASK] = {
86 .name = "watch_0_addr_mask",
87 .addr = 9,
88 .width = 32,
89 },
90 [EICE_W0_DATA_VALUE ] = {
91 .name = "watch_0_data_value",
92 .addr = 10,
93 .width = 32,
94 },
95 [EICE_W0_DATA_MASK] = {
96 .name = "watch_0_data_mask",
97 .addr = 11,
98 .width = 32,
99 },
100 [EICE_W0_CONTROL_VALUE] = {
101 .name = "watch_0_control_value",
102 .addr = 12,
103 .width = 9,
104 },
105 [EICE_W0_CONTROL_MASK] = {
106 .name = "watch_0_control_mask",
107 .addr = 13,
108 .width = 8,
109 },
110 [EICE_W1_ADDR_VALUE] = {
111 .name = "watch_1_addr_value",
112 .addr = 16,
113 .width = 32,
114 },
115 [EICE_W1_ADDR_MASK] = {
116 .name = "watch_1_addr_mask",
117 .addr = 17,
118 .width = 32,
119 },
120 [EICE_W1_DATA_VALUE] = {
121 .name = "watch_1_data_value",
122 .addr = 18,
123 .width = 32,
124 },
125 [EICE_W1_DATA_MASK] = {
126 .name = "watch_1_data_mask",
127 .addr = 19,
128 .width = 32,
129 },
130 [EICE_W1_CONTROL_VALUE] = {
131 .name = "watch_1_control_value",
132 .addr = 20,
133 .width = 9,
134 },
135 [EICE_W1_CONTROL_MASK] = {
136 .name = "watch_1_control_mask",
137 .addr = 21,
138 .width = 8,
139 },
140 /* vector_catch isn't always present */
141 [EICE_VEC_CATCH] = {
142 .name = "vector_catch",
143 .addr = 2,
144 .width = 8,
145 },
146 };
147
148
149 static int embeddedice_get_reg(struct reg *reg)
150 {
151 int retval;
152
153 if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
154 LOG_ERROR("error queueing EmbeddedICE register read");
155 else if ((retval = jtag_execute_queue()) != ERROR_OK)
156 LOG_ERROR("EmbeddedICE register read failed");
157
158 return retval;
159 }
160
161 static const struct reg_arch_type eice_reg_type = {
162 .get = embeddedice_get_reg,
163 .set = embeddedice_set_reg_w_exec,
164 };
165
166 /**
167 * Probe EmbeddedICE module and set up local records of its registers.
168 * Different versions of the modules have different capabilities, such as
169 * hardware support for vector_catch, single stepping, and monitor mode.
170 */
171 struct reg_cache *
172 embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
173 {
174 int retval;
175 struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
176 struct reg *reg_list = NULL;
177 struct embeddedice_reg *arch_info = NULL;
178 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
179 int num_regs = ARRAY_SIZE(eice_regs);
180 int i;
181 int eice_version = 0;
182
183 /* vector_catch isn't always present */
184 if (!arm7_9->has_vector_catch)
185 num_regs--;
186
187 /* the actual registers are kept in two arrays */
188 reg_list = calloc(num_regs, sizeof(struct reg));
189 arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
190
191 /* fill in values for the reg cache */
192 reg_cache->name = "EmbeddedICE registers";
193 reg_cache->next = NULL;
194 reg_cache->reg_list = reg_list;
195 reg_cache->num_regs = num_regs;
196
197 /* FIXME the second watchpoint unit on Feroceon and Dragonite
198 * seems not to work ... we should have a way to not set up
199 * its four registers here!
200 */
201
202 /* set up registers */
203 for (i = 0; i < num_regs; i++)
204 {
205 reg_list[i].name = eice_regs[i].name;
206 reg_list[i].size = eice_regs[i].width;
207 reg_list[i].dirty = 0;
208 reg_list[i].valid = 0;
209 reg_list[i].value = calloc(1, 4);
210 reg_list[i].arch_info = &arch_info[i];
211 reg_list[i].type = &eice_reg_type;
212 arch_info[i].addr = eice_regs[i].addr;
213 arch_info[i].jtag_info = jtag_info;
214 }
215
216 /* identify EmbeddedICE version by reading DCC control register */
217 embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
218 if ((retval = jtag_execute_queue()) != ERROR_OK)
219 {
220 for (i = 0; i < num_regs; i++)
221 {
222 free(reg_list[i].value);
223 }
224 free(reg_list);
225 free(reg_cache);
226 free(arch_info);
227 return NULL;
228 }
229
230 eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
231 LOG_INFO("Embedded ICE version %d", eice_version);
232
233 switch (eice_version)
234 {
235 case 1:
236 /* ARM7TDMI r3, ARM7TDMI-S r3
237 *
238 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
239 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
240 * ARM7TDMI r4 docs say EICE v4.
241 */
242 reg_list[EICE_DBG_CTRL].size = 3;
243 reg_list[EICE_DBG_STAT].size = 5;
244 break;
245 case 2:
246 /* ARM9TDMI */
247 reg_list[EICE_DBG_CTRL].size = 4;
248 reg_list[EICE_DBG_STAT].size = 5;
249 arm7_9->has_single_step = 1;
250 break;
251 case 3:
252 LOG_ERROR("EmbeddedICE v%d handling might be broken",
253 eice_version);
254 reg_list[EICE_DBG_CTRL].size = 6;
255 reg_list[EICE_DBG_STAT].size = 5;
256 arm7_9->has_single_step = 1;
257 arm7_9->has_monitor_mode = 1;
258 break;
259 case 4:
260 /* ARM7TDMI r4 */
261 reg_list[EICE_DBG_CTRL].size = 6;
262 reg_list[EICE_DBG_STAT].size = 5;
263 arm7_9->has_monitor_mode = 1;
264 break;
265 case 5:
266 /* ARM9E-S rev 1 */
267 reg_list[EICE_DBG_CTRL].size = 6;
268 reg_list[EICE_DBG_STAT].size = 5;
269 arm7_9->has_single_step = 1;
270 arm7_9->has_monitor_mode = 1;
271 break;
272 case 6:
273 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
274 reg_list[EICE_DBG_CTRL].size = 6;
275 reg_list[EICE_DBG_STAT].size = 10;
276 /* DBG_STAT has MOE bits */
277 arm7_9->has_monitor_mode = 1;
278 break;
279 case 7:
280 LOG_ERROR("EmbeddedICE v%d handling might be broken",
281 eice_version);
282 reg_list[EICE_DBG_CTRL].size = 6;
283 reg_list[EICE_DBG_STAT].size = 5;
284 arm7_9->has_monitor_mode = 1;
285 break;
286 default:
287 /*
288 * The Feroceon implementation has the version number
289 * in some unusual bits. Let feroceon.c validate it
290 * and do the appropriate setup itself.
291 */
292 if (strcmp(target_type_name(target), "feroceon") == 0 ||
293 strcmp(target_type_name(target), "dragonite") == 0)
294 break;
295 LOG_ERROR("unknown EmbeddedICE version "
296 "(comms ctrl: 0x%8.8" PRIx32 ")",
297 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
298 }
299
300 /* On Feroceon and Dragonite the second unit is seemingly missing. */
301 LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
302 target_name(target), arm7_9->wp_available_max,
303 (arm7_9->wp_available_max != 1) ? "s" : "");
304
305 return reg_cache;
306 }
307
308 /**
309 * Initialize EmbeddedICE module, if needed.
310 */
311 int embeddedice_setup(struct target *target)
312 {
313 int retval;
314 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
315
316 /* Explicitly disable monitor mode. For now we only support halting
317 * debug ... we don't know how to talk with a resident debug monitor
318 * that manages break requests. ARM's "Angel Debug Monitor" is one
319 * common example of such code.
320 */
321 if (arm7_9->has_monitor_mode)
322 {
323 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
324
325 embeddedice_read_reg(dbg_ctrl);
326 if ((retval = jtag_execute_queue()) != ERROR_OK)
327 return retval;
328 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
329 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
330 }
331 return jtag_execute_queue();
332 }
333
334 /**
335 * Queue a read for an EmbeddedICE register into the register cache,
336 * optionally checking the value read.
337 * Note that at this level, all registers are 32 bits wide.
338 */
339 int embeddedice_read_reg_w_check(struct reg *reg,
340 uint8_t *check_value, uint8_t *check_mask)
341 {
342 struct embeddedice_reg *ice_reg = reg->arch_info;
343 uint8_t reg_addr = ice_reg->addr & 0x1f;
344 struct scan_field fields[3];
345 uint8_t field1_out[1];
346 uint8_t field2_out[1];
347
348 arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
349
350 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
351
352 /* bits 31:0 -- data (ignored here) */
353 fields[0].num_bits = 32;
354 fields[0].out_value = reg->value;
355 fields[0].in_value = NULL;
356 fields[0].check_value = NULL;
357 fields[0].check_mask = NULL;
358
359 /* bits 36:32 -- register */
360 fields[1].num_bits = 5;
361 fields[1].out_value = field1_out;
362 field1_out[0] = reg_addr;
363 fields[1].in_value = NULL;
364 fields[1].check_value = NULL;
365 fields[1].check_mask = NULL;
366
367 /* bit 37 -- 0/read */
368 fields[2].num_bits = 1;
369 fields[2].out_value = field2_out;
370 field2_out[0] = 0;
371 fields[2].in_value = NULL;
372 fields[2].check_value = NULL;
373 fields[2].check_mask = NULL;
374
375 /* traverse Update-DR, setting address for the next read */
376 jtag_add_dr_scan(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
377
378 /* bits 31:0 -- the data we're reading (and maybe checking) */
379 fields[0].in_value = reg->value;
380 fields[0].check_value = check_value;
381 fields[0].check_mask = check_mask;
382
383 /* when reading the DCC data register, leaving the address field set to
384 * EICE_COMMS_DATA would read the register twice
385 * reading the control register is safe
386 */
387 field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
388
389 /* traverse Update-DR, reading but with no other side effects */
390 jtag_add_dr_scan_check(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
391
392 return ERROR_OK;
393 }
394
395 /**
396 * Receive a block of size 32-bit words from the DCC.
397 * We assume the target is always going to be fast enough (relative to
398 * the JTAG clock) that the debugger won't need to poll the handshake
399 * bit. The JTAG clock is usually at least six times slower than the
400 * functional clock, so the 50+ JTAG clocks needed to receive the word
401 * allow hundreds of instruction cycles (per word) in the target.
402 */
403 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
404 {
405 struct scan_field fields[3];
406 uint8_t field1_out[1];
407 uint8_t field2_out[1];
408
409 arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
410 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
411
412 fields[0].num_bits = 32;
413 fields[0].out_value = NULL;
414 fields[0].in_value = NULL;
415
416 fields[1].num_bits = 5;
417 fields[1].out_value = field1_out;
418 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
419 fields[1].in_value = NULL;
420
421 fields[2].num_bits = 1;
422 fields[2].out_value = field2_out;
423 field2_out[0] = 0;
424 fields[2].in_value = NULL;
425
426 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
427
428 while (size > 0)
429 {
430 /* when reading the last item, set the register address to the DCC control reg,
431 * to avoid reading additional data from the DCC data reg
432 */
433 if (size == 1)
434 field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
435
436 fields[0].in_value = (uint8_t *)data;
437 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
438 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
439
440 data++;
441 size--;
442 }
443
444 return jtag_execute_queue();
445 }
446
447 /**
448 * Queue a read for an EmbeddedICE register into the register cache,
449 * not checking the value read.
450 */
451 int embeddedice_read_reg(struct reg *reg)
452 {
453 return embeddedice_read_reg_w_check(reg, NULL, NULL);
454 }
455
456 /**
457 * Queue a write for an EmbeddedICE register, updating the register cache.
458 * Uses embeddedice_write_reg().
459 */
460 void embeddedice_set_reg(struct reg *reg, uint32_t value)
461 {
462 embeddedice_write_reg(reg, value);
463
464 buf_set_u32(reg->value, 0, reg->size, value);
465 reg->valid = 1;
466 reg->dirty = 0;
467
468 }
469
470 /**
471 * Write an EmbeddedICE register, updating the register cache.
472 * Uses embeddedice_set_reg(); not queued.
473 */
474 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
475 {
476 int retval;
477
478 embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
479 if ((retval = jtag_execute_queue()) != ERROR_OK)
480 LOG_ERROR("register write failed");
481 return retval;
482 }
483
484 /**
485 * Queue a write for an EmbeddedICE register, bypassing the register cache.
486 */
487 void embeddedice_write_reg(struct reg *reg, uint32_t value)
488 {
489 struct embeddedice_reg *ice_reg = reg->arch_info;
490
491 LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
492
493 arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
494
495 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
496
497 uint8_t reg_addr = ice_reg->addr & 0x1f;
498 embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
499 }
500
501 /**
502 * Queue a write for an EmbeddedICE register, using cached value.
503 * Uses embeddedice_write_reg().
504 */
505 void embeddedice_store_reg(struct reg *reg)
506 {
507 embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
508 }
509
510 /**
511 * Send a block of size 32-bit words to the DCC.
512 * We assume the target is always going to be fast enough (relative to
513 * the JTAG clock) that the debugger won't need to poll the handshake
514 * bit. The JTAG clock is usually at least six times slower than the
515 * functional clock, so the 50+ JTAG clocks needed to receive the word
516 * allow hundreds of instruction cycles (per word) in the target.
517 */
518 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
519 {
520 struct scan_field fields[3];
521 uint8_t field0_out[4];
522 uint8_t field1_out[1];
523 uint8_t field2_out[1];
524
525 arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
526 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
527
528 fields[0].num_bits = 32;
529 fields[0].out_value = field0_out;
530 fields[0].in_value = NULL;
531
532 fields[1].num_bits = 5;
533 fields[1].out_value = field1_out;
534 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
535 fields[1].in_value = NULL;
536
537 fields[2].num_bits = 1;
538 fields[2].out_value = field2_out;
539 field2_out[0] = 1;
540
541 fields[2].in_value = NULL;
542
543 while (size > 0)
544 {
545 buf_set_u32(field0_out, 0, 32, *data);
546 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
547
548 data++;
549 size--;
550 }
551
552 /* call to jtag_execute_queue() intentionally omitted */
553 return ERROR_OK;
554 }
555
556 /**
557 * Poll DCC control register until read or write handshake completes.
558 */
559 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
560 {
561 struct scan_field fields[3];
562 uint8_t field0_in[4];
563 uint8_t field1_out[1];
564 uint8_t field2_out[1];
565 int retval;
566 uint32_t hsact;
567 struct timeval lap;
568 struct timeval now;
569
570 if (hsbit == EICE_COMM_CTRL_WBIT)
571 hsact = 1;
572 else if (hsbit == EICE_COMM_CTRL_RBIT)
573 hsact = 0;
574 else
575 return ERROR_INVALID_ARGUMENTS;
576
577 arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
578 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
579
580 fields[0].num_bits = 32;
581 fields[0].out_value = NULL;
582 fields[0].in_value = field0_in;
583
584 fields[1].num_bits = 5;
585 fields[1].out_value = field1_out;
586 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
587 fields[1].in_value = NULL;
588
589 fields[2].num_bits = 1;
590 fields[2].out_value = field2_out;
591 field2_out[0] = 0;
592 fields[2].in_value = NULL;
593
594 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
595 gettimeofday(&lap, NULL);
596 do {
597 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
598 if ((retval = jtag_execute_queue()) != ERROR_OK)
599 return retval;
600
601 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
602 return ERROR_OK;
603
604 gettimeofday(&now, NULL);
605 } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
606 + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
607
608 return ERROR_TARGET_TIMEOUT;
609 }
610
611 #ifndef HAVE_JTAG_MINIDRIVER_H
612 /**
613 * This is an inner loop of the open loop DCC write of data to target
614 */
615 void embeddedice_write_dcc(struct jtag_tap *tap,
616 int reg_addr, uint8_t *buffer, int little, int count)
617 {
618 int i;
619
620 for (i = 0; i < count; i++)
621 {
622 embeddedice_write_reg_inner(tap, reg_addr,
623 fast_target_buffer_get_u32(buffer, little));
624 buffer += 4;
625 }
626 }
627 #else
628 /* provided by minidriver */
629 #endif

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)