ADIv5: remove ATOMIC/COMPOSITE interface mode
[openocd.git] / src / target / cortex_m3.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 * *
26 * *
27 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
28 * *
29 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41
42
43 /* NOTE: most of this should work fine for the Cortex-M1 and
44 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45 * Some differences: M0/M1 doesn't have FBP remapping or the
46 * DWT tracing/profiling support. (So the cycle counter will
47 * not be usable; the other stuff isn't currently used here.)
48 *
49 * Although there are some workarounds for errata seen only in r0p0
50 * silicon, such old parts are hard to find and thus not much tested
51 * any longer.
52 */
53
54
55 /* forward declarations */
56 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
57 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
58 static void cortex_m3_enable_watchpoints(struct target *target);
59 static int cortex_m3_store_core_reg_u32(struct target *target,
60 enum armv7m_regtype type, uint32_t num, uint32_t value);
61
62 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
63 uint32_t *value, int regnum)
64 {
65 int retval;
66 uint32_t dcrdr;
67
68 /* because the DCB_DCRDR is used for the emulated dcc channel
69 * we have to save/restore the DCB_DCRDR when used */
70
71 mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
72
73 /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
74 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
75 dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
76
77 /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
78 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
79 dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
80
81 retval = jtagdp_transaction_endcheck(swjdp);
82
83 /* restore DCB_DCRDR - this needs to be in a seperate
84 * transaction otherwise the emulated DCC channel breaks */
85 if (retval == ERROR_OK)
86 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
87
88 return retval;
89 }
90
91 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
92 uint32_t value, int regnum)
93 {
94 int retval;
95 uint32_t dcrdr;
96
97 /* because the DCB_DCRDR is used for the emulated dcc channel
98 * we have to save/restore the DCB_DCRDR when used */
99
100 mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
101
102 /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
103 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
104 dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
105
106 /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
107 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
108 dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
109
110 retval = jtagdp_transaction_endcheck(swjdp);
111
112 /* restore DCB_DCRDR - this needs to be in a seperate
113 * transaction otherwise the emulated DCC channel breaks */
114 if (retval == ERROR_OK)
115 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
116
117 return retval;
118 }
119
120 static int cortex_m3_write_debug_halt_mask(struct target *target,
121 uint32_t mask_on, uint32_t mask_off)
122 {
123 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
124 struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
125
126 /* mask off status bits */
127 cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
128 /* create new register mask */
129 cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
130
131 return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
132 }
133
134 static int cortex_m3_clear_halt(struct target *target)
135 {
136 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
137 struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
138
139 /* clear step if any */
140 cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
141
142 /* Read Debug Fault Status Register */
143 mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
144
145 /* Clear Debug Fault Status */
146 mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
147 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
148
149 return ERROR_OK;
150 }
151
152 static int cortex_m3_single_step_core(struct target *target)
153 {
154 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
155 struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
156 uint32_t dhcsr_save;
157
158 /* backup dhcsr reg */
159 dhcsr_save = cortex_m3->dcb_dhcsr;
160
161 /* Mask interrupts before clearing halt, if done already. This avoids
162 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
163 * HALT can put the core into an unknown state.
164 */
165 if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
166 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
167 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
168 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
169 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
170 LOG_DEBUG(" ");
171
172 /* restore dhcsr reg */
173 cortex_m3->dcb_dhcsr = dhcsr_save;
174 cortex_m3_clear_halt(target);
175
176 return ERROR_OK;
177 }
178
179 static int cortex_m3_endreset_event(struct target *target)
180 {
181 int i;
182 uint32_t dcb_demcr;
183 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
184 struct armv7m_common *armv7m = &cortex_m3->armv7m;
185 struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
186 struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
187 struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
188
189 /* REVISIT The four debug monitor bits are currently ignored... */
190 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
191 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
192
193 /* this register is used for emulated dcc channel */
194 mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
195
196 /* Enable debug requests */
197 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
198 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
199 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
200
201 /* clear any interrupt masking */
202 cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
203
204 /* Enable features controlled by ITM and DWT blocks, and catch only
205 * the vectors we were told to pay attention to.
206 *
207 * Target firmware is responsible for all fault handling policy
208 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
209 * or manual updates to the NVIC SHCSR and CCR registers.
210 */
211 mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
212
213 /* Paranoia: evidently some (early?) chips don't preserve all the
214 * debug state (including FBP, DWT, etc) across reset...
215 */
216
217 /* Enable FPB */
218 target_write_u32(target, FP_CTRL, 3);
219 cortex_m3->fpb_enabled = 1;
220
221 /* Restore FPB registers */
222 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
223 {
224 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
225 }
226
227 /* Restore DWT registers */
228 for (i = 0; i < cortex_m3->dwt_num_comp; i++)
229 {
230 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
231 dwt_list[i].comp);
232 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
233 dwt_list[i].mask);
234 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
235 dwt_list[i].function);
236 }
237 jtagdp_transaction_endcheck(swjdp);
238
239 register_cache_invalidate(cortex_m3->armv7m.core_cache);
240
241 /* make sure we have latest dhcsr flags */
242 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
243
244 return ERROR_OK;
245 }
246
247 static int cortex_m3_examine_debug_reason(struct target *target)
248 {
249 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
250
251 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
252 /* only check the debug reason if we don't know it already */
253
254 if ((target->debug_reason != DBG_REASON_DBGRQ)
255 && (target->debug_reason != DBG_REASON_SINGLESTEP))
256 {
257 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
258 {
259 target->debug_reason = DBG_REASON_BREAKPOINT;
260 if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
261 target->debug_reason = DBG_REASON_WPTANDBKPT;
262 }
263 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
264 target->debug_reason = DBG_REASON_WATCHPOINT;
265 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
266 target->debug_reason = DBG_REASON_BREAKPOINT;
267 else /* EXTERNAL, HALTED */
268 target->debug_reason = DBG_REASON_UNDEFINED;
269 }
270
271 return ERROR_OK;
272 }
273
274 static int cortex_m3_examine_exception_reason(struct target *target)
275 {
276 uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
277 struct armv7m_common *armv7m = target_to_armv7m(target);
278 struct swjdp_common *swjdp = &armv7m->swjdp_info;
279
280 mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
281 switch (armv7m->exception_number)
282 {
283 case 2: /* NMI */
284 break;
285 case 3: /* Hard Fault */
286 mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
287 if (except_sr & 0x40000000)
288 {
289 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
290 }
291 break;
292 case 4: /* Memory Management */
293 mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
294 mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
295 break;
296 case 5: /* Bus Fault */
297 mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
298 mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
299 break;
300 case 6: /* Usage Fault */
301 mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
302 break;
303 case 11: /* SVCall */
304 break;
305 case 12: /* Debug Monitor */
306 mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
307 break;
308 case 14: /* PendSV */
309 break;
310 case 15: /* SysTick */
311 break;
312 default:
313 except_sr = 0;
314 break;
315 }
316 jtagdp_transaction_endcheck(swjdp);
317 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
318 shcsr, except_sr, cfsr, except_ar);
319 return ERROR_OK;
320 }
321
322 /* PSP is used in some thread modes */
323 static const int armv7m_psp_reg_map[17] = {
324 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
325 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
326 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
327 ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
328 ARMV7M_xPSR,
329 };
330
331 /* MSP is used in handler and some thread modes */
332 static const int armv7m_msp_reg_map[17] = {
333 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
334 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
335 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
336 ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
337 ARMV7M_xPSR,
338 };
339
340 static int cortex_m3_debug_entry(struct target *target)
341 {
342 int i;
343 uint32_t xPSR;
344 int retval;
345 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
346 struct armv7m_common *armv7m = &cortex_m3->armv7m;
347 struct arm *arm = &armv7m->arm;
348 struct swjdp_common *swjdp = &armv7m->swjdp_info;
349 struct reg *r;
350
351 LOG_DEBUG(" ");
352
353 cortex_m3_clear_halt(target);
354 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
355
356 if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
357 return retval;
358
359 /* Examine target state and mode */
360 /* First load register acessible through core debug port*/
361 int num_regs = armv7m->core_cache->num_regs;
362
363 for (i = 0; i < num_regs; i++)
364 {
365 if (!armv7m->core_cache->reg_list[i].valid)
366 armv7m->read_core_reg(target, i);
367 }
368
369 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
370 xPSR = buf_get_u32(r->value, 0, 32);
371
372 #ifdef ARMV7_GDB_HACKS
373 /* FIXME this breaks on scan chains with more than one Cortex-M3.
374 * Instead, each CM3 should have its own dummy value...
375 */
376 /* copy real xpsr reg for gdb, setting thumb bit */
377 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
378 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
379 armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
380 armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
381 #endif
382
383 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
384 if (xPSR & 0xf00)
385 {
386 r->dirty = r->valid;
387 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
388 }
389
390 /* Are we in an exception handler */
391 if (xPSR & 0x1FF)
392 {
393 armv7m->core_mode = ARMV7M_MODE_HANDLER;
394 armv7m->exception_number = (xPSR & 0x1FF);
395
396 arm->core_mode = ARM_MODE_HANDLER;
397 arm->map = armv7m_msp_reg_map;
398 }
399 else
400 {
401 unsigned control = buf_get_u32(armv7m->core_cache
402 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
403
404 /* is this thread privileged? */
405 armv7m->core_mode = control & 1;
406 arm->core_mode = armv7m->core_mode
407 ? ARM_MODE_USER_THREAD
408 : ARM_MODE_THREAD;
409
410 /* which stack is it using? */
411 if (control & 2)
412 arm->map = armv7m_psp_reg_map;
413 else
414 arm->map = armv7m_msp_reg_map;
415
416 armv7m->exception_number = 0;
417 }
418
419 if (armv7m->exception_number)
420 {
421 cortex_m3_examine_exception_reason(target);
422 }
423
424 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
425 armv7m_mode_strings[armv7m->core_mode],
426 *(uint32_t*)(arm->pc->value),
427 target_state_name(target));
428
429 if (armv7m->post_debug_entry)
430 armv7m->post_debug_entry(target);
431
432 return ERROR_OK;
433 }
434
435 static int cortex_m3_poll(struct target *target)
436 {
437 int retval;
438 enum target_state prev_target_state = target->state;
439 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
440 struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
441
442 /* Read from Debug Halting Control and Status Register */
443 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
444 if (retval != ERROR_OK)
445 {
446 target->state = TARGET_UNKNOWN;
447 return retval;
448 }
449
450 /* Recover from lockup. See ARMv7-M architecture spec,
451 * section B1.5.15 "Unrecoverable exception cases".
452 *
453 * REVISIT Is there a better way to report and handle this?
454 */
455 if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
456 LOG_WARNING("%s -- clearing lockup after double fault",
457 target_name(target));
458 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
459 target->debug_reason = DBG_REASON_DBGRQ;
460
461 /* refresh status bits */
462 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
463 }
464
465 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
466 {
467 /* check if still in reset */
468 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
469
470 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
471 {
472 target->state = TARGET_RESET;
473 return ERROR_OK;
474 }
475 }
476
477 if (target->state == TARGET_RESET)
478 {
479 /* Cannot switch context while running so endreset is
480 * called with target->state == TARGET_RESET
481 */
482 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
483 cortex_m3->dcb_dhcsr);
484 cortex_m3_endreset_event(target);
485 target->state = TARGET_RUNNING;
486 prev_target_state = TARGET_RUNNING;
487 }
488
489 if (cortex_m3->dcb_dhcsr & S_HALT)
490 {
491 target->state = TARGET_HALTED;
492
493 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
494 {
495 if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
496 return retval;
497
498 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
499 }
500 if (prev_target_state == TARGET_DEBUG_RUNNING)
501 {
502 LOG_DEBUG(" ");
503 if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
504 return retval;
505
506 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
507 }
508 }
509
510 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
511 * How best to model low power modes?
512 */
513
514 if (target->state == TARGET_UNKNOWN)
515 {
516 /* check if processor is retiring instructions */
517 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
518 {
519 target->state = TARGET_RUNNING;
520 return ERROR_OK;
521 }
522 }
523
524 return ERROR_OK;
525 }
526
527 static int cortex_m3_halt(struct target *target)
528 {
529 LOG_DEBUG("target->state: %s",
530 target_state_name(target));
531
532 if (target->state == TARGET_HALTED)
533 {
534 LOG_DEBUG("target was already halted");
535 return ERROR_OK;
536 }
537
538 if (target->state == TARGET_UNKNOWN)
539 {
540 LOG_WARNING("target was in unknown state when halt was requested");
541 }
542
543 if (target->state == TARGET_RESET)
544 {
545 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
546 {
547 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
548 return ERROR_TARGET_FAILURE;
549 }
550 else
551 {
552 /* we came here in a reset_halt or reset_init sequence
553 * debug entry was already prepared in cortex_m3_prepare_reset_halt()
554 */
555 target->debug_reason = DBG_REASON_DBGRQ;
556
557 return ERROR_OK;
558 }
559 }
560
561 /* Write to Debug Halting Control and Status Register */
562 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
563
564 target->debug_reason = DBG_REASON_DBGRQ;
565
566 return ERROR_OK;
567 }
568
569 static int cortex_m3_soft_reset_halt(struct target *target)
570 {
571 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
572 struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
573 uint32_t dcb_dhcsr = 0;
574 int retval, timeout = 0;
575
576 /* Enter debug state on reset; restore DEMCR in endreset_event() */
577 mem_ap_write_u32(swjdp, DCB_DEMCR,
578 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
579
580 /* Request a core-only reset */
581 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
582 AIRCR_VECTKEY | AIRCR_VECTRESET);
583 target->state = TARGET_RESET;
584
585 /* registers are now invalid */
586 register_cache_invalidate(cortex_m3->armv7m.core_cache);
587
588 while (timeout < 100)
589 {
590 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
591 if (retval == ERROR_OK)
592 {
593 mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
594 &cortex_m3->nvic_dfsr);
595 if ((dcb_dhcsr & S_HALT)
596 && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
597 {
598 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
599 "DFSR 0x%08x",
600 (unsigned) dcb_dhcsr,
601 (unsigned) cortex_m3->nvic_dfsr);
602 cortex_m3_poll(target);
603 /* FIXME restore user's vector catch config */
604 return ERROR_OK;
605 }
606 else
607 LOG_DEBUG("waiting for system reset-halt, "
608 "DHCSR 0x%08x, %d ms",
609 (unsigned) dcb_dhcsr, timeout);
610 }
611 timeout++;
612 alive_sleep(1);
613 }
614
615 return ERROR_OK;
616 }
617
618 static void cortex_m3_enable_breakpoints(struct target *target)
619 {
620 struct breakpoint *breakpoint = target->breakpoints;
621
622 /* set any pending breakpoints */
623 while (breakpoint)
624 {
625 if (!breakpoint->set)
626 cortex_m3_set_breakpoint(target, breakpoint);
627 breakpoint = breakpoint->next;
628 }
629 }
630
631 static int cortex_m3_resume(struct target *target, int current,
632 uint32_t address, int handle_breakpoints, int debug_execution)
633 {
634 struct armv7m_common *armv7m = target_to_armv7m(target);
635 struct breakpoint *breakpoint = NULL;
636 uint32_t resume_pc;
637 struct reg *r;
638
639 if (target->state != TARGET_HALTED)
640 {
641 LOG_WARNING("target not halted");
642 return ERROR_TARGET_NOT_HALTED;
643 }
644
645 if (!debug_execution)
646 {
647 target_free_all_working_areas(target);
648 cortex_m3_enable_breakpoints(target);
649 cortex_m3_enable_watchpoints(target);
650 }
651
652 if (debug_execution)
653 {
654 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
655
656 /* Disable interrupts */
657 /* We disable interrupts in the PRIMASK register instead of
658 * masking with C_MASKINTS. This is probably the same issue
659 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
660 * in parallel with disabled interrupts can cause local faults
661 * to not be taken.
662 *
663 * REVISIT this clearly breaks non-debug execution, since the
664 * PRIMASK register state isn't saved/restored... workaround
665 * by never resuming app code after debug execution.
666 */
667 buf_set_u32(r->value, 0, 1, 1);
668 r->dirty = true;
669 r->valid = true;
670
671 /* Make sure we are in Thumb mode */
672 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
673 buf_set_u32(r->value, 24, 1, 1);
674 r->dirty = true;
675 r->valid = true;
676 }
677
678 /* current = 1: continue on current pc, otherwise continue at <address> */
679 r = armv7m->arm.pc;
680 if (!current)
681 {
682 buf_set_u32(r->value, 0, 32, address);
683 r->dirty = true;
684 r->valid = true;
685 }
686
687 /* if we halted last time due to a bkpt instruction
688 * then we have to manually step over it, otherwise
689 * the core will break again */
690
691 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
692 && !debug_execution)
693 {
694 armv7m_maybe_skip_bkpt_inst(target, NULL);
695 }
696
697 resume_pc = buf_get_u32(r->value, 0, 32);
698
699 armv7m_restore_context(target);
700
701 /* the front-end may request us not to handle breakpoints */
702 if (handle_breakpoints)
703 {
704 /* Single step past breakpoint at current address */
705 if ((breakpoint = breakpoint_find(target, resume_pc)))
706 {
707 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
708 breakpoint->address,
709 breakpoint->unique_id);
710 cortex_m3_unset_breakpoint(target, breakpoint);
711 cortex_m3_single_step_core(target);
712 cortex_m3_set_breakpoint(target, breakpoint);
713 }
714 }
715
716 /* Restart core */
717 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
718
719 target->debug_reason = DBG_REASON_NOTHALTED;
720
721 /* registers are now invalid */
722 register_cache_invalidate(armv7m->core_cache);
723
724 if (!debug_execution)
725 {
726 target->state = TARGET_RUNNING;
727 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
728 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
729 }
730 else
731 {
732 target->state = TARGET_DEBUG_RUNNING;
733 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
734 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
735 }
736
737 return ERROR_OK;
738 }
739
740 /* int irqstepcount = 0; */
741 static int cortex_m3_step(struct target *target, int current,
742 uint32_t address, int handle_breakpoints)
743 {
744 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
745 struct armv7m_common *armv7m = &cortex_m3->armv7m;
746 struct swjdp_common *swjdp = &armv7m->swjdp_info;
747 struct breakpoint *breakpoint = NULL;
748 struct reg *pc = armv7m->arm.pc;
749 bool bkpt_inst_found = false;
750
751 if (target->state != TARGET_HALTED)
752 {
753 LOG_WARNING("target not halted");
754 return ERROR_TARGET_NOT_HALTED;
755 }
756
757 /* current = 1: continue on current pc, otherwise continue at <address> */
758 if (!current)
759 buf_set_u32(pc->value, 0, 32, address);
760
761 /* the front-end may request us not to handle breakpoints */
762 if (handle_breakpoints) {
763 breakpoint = breakpoint_find(target,
764 buf_get_u32(pc->value, 0, 32));
765 if (breakpoint)
766 cortex_m3_unset_breakpoint(target, breakpoint);
767 }
768
769 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
770
771 target->debug_reason = DBG_REASON_SINGLESTEP;
772
773 armv7m_restore_context(target);
774
775 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
776
777 /* if no bkpt instruction is found at pc then we can perform
778 * a normal step, otherwise we have to manually step over the bkpt
779 * instruction - as such simulate a step */
780 if (bkpt_inst_found == false)
781 {
782 /* set step and clear halt */
783 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
784 }
785
786 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
787
788 /* registers are now invalid */
789 register_cache_invalidate(cortex_m3->armv7m.core_cache);
790
791 if (breakpoint)
792 cortex_m3_set_breakpoint(target, breakpoint);
793
794 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
795 " nvic_icsr = 0x%" PRIx32,
796 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
797
798 cortex_m3_debug_entry(target);
799 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
800
801 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
802 " nvic_icsr = 0x%" PRIx32,
803 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
804
805 return ERROR_OK;
806 }
807
808 static int cortex_m3_assert_reset(struct target *target)
809 {
810 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
811 struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
812 int assert_srst = 1;
813
814 LOG_DEBUG("target->state: %s",
815 target_state_name(target));
816
817 enum reset_types jtag_reset_config = jtag_get_reset_config();
818
819 /*
820 * We can reset Cortex-M3 targets using just the NVIC without
821 * requiring SRST, getting a SoC reset (or a core-only reset)
822 * instead of a system reset.
823 */
824 if (!(jtag_reset_config & RESET_HAS_SRST))
825 assert_srst = 0;
826
827 /* Enable debug requests */
828 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
829 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
830 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
831
832 mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
833
834 if (!target->reset_halt)
835 {
836 /* Set/Clear C_MASKINTS in a separate operation */
837 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
838 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
839 DBGKEY | C_DEBUGEN | C_HALT);
840
841 /* clear any debug flags before resuming */
842 cortex_m3_clear_halt(target);
843
844 /* clear C_HALT in dhcsr reg */
845 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
846 }
847 else
848 {
849 /* Halt in debug on reset; endreset_event() restores DEMCR.
850 *
851 * REVISIT catching BUSERR presumably helps to defend against
852 * bad vector table entries. Should this include MMERR or
853 * other flags too?
854 */
855 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
856 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
857 }
858
859 /*
860 * When nRST is asserted on most Stellaris devices, it clears some of
861 * the debug state. The ARMv7M and Cortex-M3 TRMs say that's wrong;
862 * and OpenOCD depends on those TRMs. So we won't use SRST on those
863 * chips. (Only power-on reset should affect debug state, beyond a
864 * few specified bits; not the chip's nRST input, wired to SRST.)
865 *
866 * REVISIT current errata specs don't seem to cover this issue.
867 * Do we have more details than this email?
868 * https://lists.berlios.de/pipermail
869 * /openocd-development/2008-August/003065.html
870 */
871 if (strcmp(target->variant, "lm3s") == 0)
872 {
873 /* Check for silicon revisions with the issue. */
874 uint32_t did0;
875
876 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
877 {
878 switch ((did0 >> 16) & 0xff)
879 {
880 case 0:
881 /* all Sandstorm suffer issue */
882 assert_srst = 0;
883 break;
884
885 case 1:
886 case 3:
887 /* Fury and DustDevil rev A have
888 * this nRST problem. It should
889 * be fixed in rev B silicon.
890 */
891 if (((did0 >> 8) & 0xff) == 0)
892 assert_srst = 0;
893 break;
894 case 4:
895 /* Tempest should be fine. */
896 break;
897 }
898 }
899 }
900
901 if (assert_srst)
902 {
903 /* default to asserting srst */
904 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
905 {
906 jtag_add_reset(1, 1);
907 }
908 else
909 {
910 jtag_add_reset(0, 1);
911 }
912 }
913 else
914 {
915 /* Use a standard Cortex-M3 software reset mechanism.
916 * SYSRESETREQ will reset SoC peripherals outside the
917 * core, like watchdog timers, if the SoC wires it up
918 * correctly. Else VECRESET can reset just the core.
919 */
920 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
921 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
922 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
923
924 {
925 /* I do not know why this is necessary, but it
926 * fixes strange effects (step/resume cause NMI
927 * after reset) on LM3S6918 -- Michael Schwingen
928 */
929 uint32_t tmp;
930 mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
931 }
932 }
933
934 target->state = TARGET_RESET;
935 jtag_add_sleep(50000);
936
937 register_cache_invalidate(cortex_m3->armv7m.core_cache);
938
939 if (target->reset_halt)
940 {
941 int retval;
942 if ((retval = target_halt(target)) != ERROR_OK)
943 return retval;
944 }
945
946 return ERROR_OK;
947 }
948
949 static int cortex_m3_deassert_reset(struct target *target)
950 {
951 LOG_DEBUG("target->state: %s",
952 target_state_name(target));
953
954 /* deassert reset lines */
955 jtag_add_reset(0, 0);
956
957 return ERROR_OK;
958 }
959
960 static int
961 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
962 {
963 int retval;
964 int fp_num = 0;
965 uint32_t hilo;
966 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
967 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
968
969 if (breakpoint->set)
970 {
971 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
972 return ERROR_OK;
973 }
974
975 if (cortex_m3->auto_bp_type)
976 {
977 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
978 }
979
980 if (breakpoint->type == BKPT_HARD)
981 {
982 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
983 fp_num++;
984 if (fp_num >= cortex_m3->fp_num_code)
985 {
986 LOG_ERROR("Can not find free FPB Comparator!");
987 return ERROR_FAIL;
988 }
989 breakpoint->set = fp_num + 1;
990 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
991 comparator_list[fp_num].used = 1;
992 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
993 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
994 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
995 if (!cortex_m3->fpb_enabled)
996 {
997 LOG_DEBUG("FPB wasn't enabled, do it now");
998 target_write_u32(target, FP_CTRL, 3);
999 }
1000 }
1001 else if (breakpoint->type == BKPT_SOFT)
1002 {
1003 uint8_t code[4];
1004
1005 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1006 * semihosting; don't use that. Otherwise the BKPT
1007 * parameter is arbitrary.
1008 */
1009 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1010 retval = target_read_memory(target,
1011 breakpoint->address & 0xFFFFFFFE,
1012 breakpoint->length, 1,
1013 breakpoint->orig_instr);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 retval = target_write_memory(target,
1017 breakpoint->address & 0xFFFFFFFE,
1018 breakpoint->length, 1,
1019 code);
1020 if (retval != ERROR_OK)
1021 return retval;
1022 breakpoint->set = true;
1023 }
1024
1025 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1026 breakpoint->unique_id,
1027 (int)(breakpoint->type),
1028 breakpoint->address,
1029 breakpoint->length,
1030 breakpoint->set);
1031
1032 return ERROR_OK;
1033 }
1034
1035 static int
1036 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1037 {
1038 int retval;
1039 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1040 struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1041
1042 if (!breakpoint->set)
1043 {
1044 LOG_WARNING("breakpoint not set");
1045 return ERROR_OK;
1046 }
1047
1048 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1049 breakpoint->unique_id,
1050 (int)(breakpoint->type),
1051 breakpoint->address,
1052 breakpoint->length,
1053 breakpoint->set);
1054
1055 if (breakpoint->type == BKPT_HARD)
1056 {
1057 int fp_num = breakpoint->set - 1;
1058 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1059 {
1060 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1061 return ERROR_OK;
1062 }
1063 comparator_list[fp_num].used = 0;
1064 comparator_list[fp_num].fpcr_value = 0;
1065 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1066 }
1067 else
1068 {
1069 /* restore original instruction (kept in target endianness) */
1070 if (breakpoint->length == 4)
1071 {
1072 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1073 {
1074 return retval;
1075 }
1076 }
1077 else
1078 {
1079 if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1080 {
1081 return retval;
1082 }
1083 }
1084 }
1085 breakpoint->set = false;
1086
1087 return ERROR_OK;
1088 }
1089
1090 static int
1091 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1092 {
1093 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1094
1095 if (cortex_m3->auto_bp_type)
1096 {
1097 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1098 #ifdef ARMV7_GDB_HACKS
1099 if (breakpoint->length != 2) {
1100 /* XXX Hack: Replace all breakpoints with length != 2 with
1101 * a hardware breakpoint. */
1102 breakpoint->type = BKPT_HARD;
1103 breakpoint->length = 2;
1104 }
1105 #endif
1106 }
1107
1108 if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
1109 {
1110 LOG_INFO("flash patch comparator requested outside code memory region");
1111 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1112 }
1113
1114 if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
1115 {
1116 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1117 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1118 }
1119
1120 if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1121 {
1122 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1123 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1124 }
1125
1126 if ((breakpoint->length != 2))
1127 {
1128 LOG_INFO("only breakpoints of two bytes length supported");
1129 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1130 }
1131
1132 if (breakpoint->type == BKPT_HARD)
1133 cortex_m3->fp_code_available--;
1134 cortex_m3_set_breakpoint(target, breakpoint);
1135
1136 return ERROR_OK;
1137 }
1138
1139 static int
1140 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1141 {
1142 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1143
1144 /* REVISIT why check? FBP can be updated with core running ... */
1145 if (target->state != TARGET_HALTED)
1146 {
1147 LOG_WARNING("target not halted");
1148 return ERROR_TARGET_NOT_HALTED;
1149 }
1150
1151 if (cortex_m3->auto_bp_type)
1152 {
1153 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1154 }
1155
1156 if (breakpoint->set)
1157 {
1158 cortex_m3_unset_breakpoint(target, breakpoint);
1159 }
1160
1161 if (breakpoint->type == BKPT_HARD)
1162 cortex_m3->fp_code_available++;
1163
1164 return ERROR_OK;
1165 }
1166
1167 static int
1168 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1169 {
1170 int dwt_num = 0;
1171 uint32_t mask, temp;
1172 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1173
1174 /* watchpoint params were validated earlier */
1175 mask = 0;
1176 temp = watchpoint->length;
1177 while (temp) {
1178 temp >>= 1;
1179 mask++;
1180 }
1181 mask--;
1182
1183 /* REVISIT Don't fully trust these "not used" records ... users
1184 * may set up breakpoints by hand, e.g. dual-address data value
1185 * watchpoint using comparator #1; comparator #0 matching cycle
1186 * count; send data trace info through ITM and TPIU; etc
1187 */
1188 struct cortex_m3_dwt_comparator *comparator;
1189
1190 for (comparator = cortex_m3->dwt_comparator_list;
1191 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1192 comparator++, dwt_num++)
1193 continue;
1194 if (dwt_num >= cortex_m3->dwt_num_comp)
1195 {
1196 LOG_ERROR("Can not find free DWT Comparator");
1197 return ERROR_FAIL;
1198 }
1199 comparator->used = 1;
1200 watchpoint->set = dwt_num + 1;
1201
1202 comparator->comp = watchpoint->address;
1203 target_write_u32(target, comparator->dwt_comparator_address + 0,
1204 comparator->comp);
1205
1206 comparator->mask = mask;
1207 target_write_u32(target, comparator->dwt_comparator_address + 4,
1208 comparator->mask);
1209
1210 switch (watchpoint->rw) {
1211 case WPT_READ:
1212 comparator->function = 5;
1213 break;
1214 case WPT_WRITE:
1215 comparator->function = 6;
1216 break;
1217 case WPT_ACCESS:
1218 comparator->function = 7;
1219 break;
1220 }
1221 target_write_u32(target, comparator->dwt_comparator_address + 8,
1222 comparator->function);
1223
1224 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1225 watchpoint->unique_id, dwt_num,
1226 (unsigned) comparator->comp,
1227 (unsigned) comparator->mask,
1228 (unsigned) comparator->function);
1229 return ERROR_OK;
1230 }
1231
1232 static int
1233 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1234 {
1235 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1236 struct cortex_m3_dwt_comparator *comparator;
1237 int dwt_num;
1238
1239 if (!watchpoint->set)
1240 {
1241 LOG_WARNING("watchpoint (wpid: %d) not set",
1242 watchpoint->unique_id);
1243 return ERROR_OK;
1244 }
1245
1246 dwt_num = watchpoint->set - 1;
1247
1248 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1249 watchpoint->unique_id, dwt_num,
1250 (unsigned) watchpoint->address);
1251
1252 if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1253 {
1254 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1255 return ERROR_OK;
1256 }
1257
1258 comparator = cortex_m3->dwt_comparator_list + dwt_num;
1259 comparator->used = 0;
1260 comparator->function = 0;
1261 target_write_u32(target, comparator->dwt_comparator_address + 8,
1262 comparator->function);
1263
1264 watchpoint->set = false;
1265
1266 return ERROR_OK;
1267 }
1268
1269 static int
1270 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1271 {
1272 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1273
1274 if (cortex_m3->dwt_comp_available < 1)
1275 {
1276 LOG_DEBUG("no comparators?");
1277 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1278 }
1279
1280 /* hardware doesn't support data value masking */
1281 if (watchpoint->mask != ~(uint32_t)0) {
1282 LOG_DEBUG("watchpoint value masks not supported");
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284 }
1285
1286 /* hardware allows address masks of up to 32K */
1287 unsigned mask;
1288
1289 for (mask = 0; mask < 16; mask++) {
1290 if ((1u << mask) == watchpoint->length)
1291 break;
1292 }
1293 if (mask == 16) {
1294 LOG_DEBUG("unsupported watchpoint length");
1295 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1296 }
1297 if (watchpoint->address & ((1 << mask) - 1)) {
1298 LOG_DEBUG("watchpoint address is unaligned");
1299 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300 }
1301
1302 /* Caller doesn't seem to be able to describe watching for data
1303 * values of zero; that flags "no value".
1304 *
1305 * REVISIT This DWT may well be able to watch for specific data
1306 * values. Requires comparator #1 to set DATAVMATCH and match
1307 * the data, and another comparator (DATAVADDR0) matching addr.
1308 */
1309 if (watchpoint->value) {
1310 LOG_DEBUG("data value watchpoint not YET supported");
1311 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1312 }
1313
1314 cortex_m3->dwt_comp_available--;
1315 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1316
1317 return ERROR_OK;
1318 }
1319
1320 static int
1321 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1322 {
1323 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1324
1325 /* REVISIT why check? DWT can be updated with core running ... */
1326 if (target->state != TARGET_HALTED)
1327 {
1328 LOG_WARNING("target not halted");
1329 return ERROR_TARGET_NOT_HALTED;
1330 }
1331
1332 if (watchpoint->set)
1333 {
1334 cortex_m3_unset_watchpoint(target, watchpoint);
1335 }
1336
1337 cortex_m3->dwt_comp_available++;
1338 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1339
1340 return ERROR_OK;
1341 }
1342
1343 static void cortex_m3_enable_watchpoints(struct target *target)
1344 {
1345 struct watchpoint *watchpoint = target->watchpoints;
1346
1347 /* set any pending watchpoints */
1348 while (watchpoint)
1349 {
1350 if (!watchpoint->set)
1351 cortex_m3_set_watchpoint(target, watchpoint);
1352 watchpoint = watchpoint->next;
1353 }
1354 }
1355
1356 static int cortex_m3_load_core_reg_u32(struct target *target,
1357 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1358 {
1359 int retval;
1360 struct armv7m_common *armv7m = target_to_armv7m(target);
1361 struct swjdp_common *swjdp = &armv7m->swjdp_info;
1362
1363 /* NOTE: we "know" here that the register identifiers used
1364 * in the v7m header match the Cortex-M3 Debug Core Register
1365 * Selector values for R0..R15, xPSR, MSP, and PSP.
1366 */
1367 switch (num) {
1368 case 0 ... 18:
1369 /* read a normal core register */
1370 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1371
1372 if (retval != ERROR_OK)
1373 {
1374 LOG_ERROR("JTAG failure %i",retval);
1375 return ERROR_JTAG_DEVICE_ERROR;
1376 }
1377 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "",(int)num,*value);
1378 break;
1379
1380 case ARMV7M_PRIMASK:
1381 case ARMV7M_BASEPRI:
1382 case ARMV7M_FAULTMASK:
1383 case ARMV7M_CONTROL:
1384 /* Cortex-M3 packages these four registers as bitfields
1385 * in one Debug Core register. So say r0 and r2 docs;
1386 * it was removed from r1 docs, but still works.
1387 */
1388 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1389
1390 switch (num)
1391 {
1392 case ARMV7M_PRIMASK:
1393 *value = buf_get_u32((uint8_t*)value, 0, 1);
1394 break;
1395
1396 case ARMV7M_BASEPRI:
1397 *value = buf_get_u32((uint8_t*)value, 8, 8);
1398 break;
1399
1400 case ARMV7M_FAULTMASK:
1401 *value = buf_get_u32((uint8_t*)value, 16, 1);
1402 break;
1403
1404 case ARMV7M_CONTROL:
1405 *value = buf_get_u32((uint8_t*)value, 24, 2);
1406 break;
1407 }
1408
1409 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1410 break;
1411
1412 default:
1413 return ERROR_INVALID_ARGUMENTS;
1414 }
1415
1416 return ERROR_OK;
1417 }
1418
1419 static int cortex_m3_store_core_reg_u32(struct target *target,
1420 enum armv7m_regtype type, uint32_t num, uint32_t value)
1421 {
1422 int retval;
1423 uint32_t reg;
1424 struct armv7m_common *armv7m = target_to_armv7m(target);
1425 struct swjdp_common *swjdp = &armv7m->swjdp_info;
1426
1427 #ifdef ARMV7_GDB_HACKS
1428 /* If the LR register is being modified, make sure it will put us
1429 * in "thumb" mode, or an INVSTATE exception will occur. This is a
1430 * hack to deal with the fact that gdb will sometimes "forge"
1431 * return addresses, and doesn't set the LSB correctly (i.e., when
1432 * printing expressions containing function calls, it sets LR = 0.)
1433 * Valid exception return codes have bit 0 set too.
1434 */
1435 if (num == ARMV7M_R14)
1436 value |= 0x01;
1437 #endif
1438
1439 /* NOTE: we "know" here that the register identifiers used
1440 * in the v7m header match the Cortex-M3 Debug Core Register
1441 * Selector values for R0..R15, xPSR, MSP, and PSP.
1442 */
1443 switch (num) {
1444 case 0 ... 18:
1445 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1446 if (retval != ERROR_OK)
1447 {
1448 struct reg *r;
1449
1450 LOG_ERROR("JTAG failure %i", retval);
1451 r = armv7m->core_cache->reg_list + num;
1452 r->dirty = r->valid;
1453 return ERROR_JTAG_DEVICE_ERROR;
1454 }
1455 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1456 break;
1457
1458 case ARMV7M_PRIMASK:
1459 case ARMV7M_BASEPRI:
1460 case ARMV7M_FAULTMASK:
1461 case ARMV7M_CONTROL:
1462 /* Cortex-M3 packages these four registers as bitfields
1463 * in one Debug Core register. So say r0 and r2 docs;
1464 * it was removed from r1 docs, but still works.
1465 */
1466 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1467
1468 switch (num)
1469 {
1470 case ARMV7M_PRIMASK:
1471 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1472 break;
1473
1474 case ARMV7M_BASEPRI:
1475 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1476 break;
1477
1478 case ARMV7M_FAULTMASK:
1479 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1480 break;
1481
1482 case ARMV7M_CONTROL:
1483 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1484 break;
1485 }
1486
1487 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1488
1489 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1490 break;
1491
1492 default:
1493 return ERROR_INVALID_ARGUMENTS;
1494 }
1495
1496 return ERROR_OK;
1497 }
1498
1499 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1500 uint32_t size, uint32_t count, uint8_t *buffer)
1501 {
1502 struct armv7m_common *armv7m = target_to_armv7m(target);
1503 struct swjdp_common *swjdp = &armv7m->swjdp_info;
1504 int retval = ERROR_INVALID_ARGUMENTS;
1505
1506 /* cortex_m3 handles unaligned memory access */
1507 if (count && buffer) {
1508 switch (size) {
1509 case 4:
1510 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1511 break;
1512 case 2:
1513 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1514 break;
1515 case 1:
1516 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1517 break;
1518 }
1519 }
1520
1521 return retval;
1522 }
1523
1524 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1525 uint32_t size, uint32_t count, uint8_t *buffer)
1526 {
1527 struct armv7m_common *armv7m = target_to_armv7m(target);
1528 struct swjdp_common *swjdp = &armv7m->swjdp_info;
1529 int retval = ERROR_INVALID_ARGUMENTS;
1530
1531 if (count && buffer) {
1532 switch (size) {
1533 case 4:
1534 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1535 break;
1536 case 2:
1537 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1538 break;
1539 case 1:
1540 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1541 break;
1542 }
1543 }
1544
1545 return retval;
1546 }
1547
1548 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1549 uint32_t count, uint8_t *buffer)
1550 {
1551 return cortex_m3_write_memory(target, address, 4, count, buffer);
1552 }
1553
1554 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1555 struct target *target)
1556 {
1557 armv7m_build_reg_cache(target);
1558 return ERROR_OK;
1559 }
1560
1561 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1562 * on r/w if the core is not running, and clear on resume or reset ... or
1563 * at least, in a post_restore_context() method.
1564 */
1565
1566 struct dwt_reg_state {
1567 struct target *target;
1568 uint32_t addr;
1569 uint32_t value; /* scratch/cache */
1570 };
1571
1572 static int cortex_m3_dwt_get_reg(struct reg *reg)
1573 {
1574 struct dwt_reg_state *state = reg->arch_info;
1575
1576 return target_read_u32(state->target, state->addr, &state->value);
1577 }
1578
1579 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1580 {
1581 struct dwt_reg_state *state = reg->arch_info;
1582
1583 return target_write_u32(state->target, state->addr,
1584 buf_get_u32(buf, 0, reg->size));
1585 }
1586
1587 struct dwt_reg {
1588 uint32_t addr;
1589 char *name;
1590 unsigned size;
1591 };
1592
1593 static struct dwt_reg dwt_base_regs[] = {
1594 { DWT_CTRL, "dwt_ctrl", 32, },
1595 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1596 * increments while the core is asleep.
1597 */
1598 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1599 /* plus some 8 bit counters, useful for profiling with TPIU */
1600 };
1601
1602 static struct dwt_reg dwt_comp[] = {
1603 #define DWT_COMPARATOR(i) \
1604 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1605 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1606 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1607 DWT_COMPARATOR(0),
1608 DWT_COMPARATOR(1),
1609 DWT_COMPARATOR(2),
1610 DWT_COMPARATOR(3),
1611 #undef DWT_COMPARATOR
1612 };
1613
1614 static const struct reg_arch_type dwt_reg_type = {
1615 .get = cortex_m3_dwt_get_reg,
1616 .set = cortex_m3_dwt_set_reg,
1617 };
1618
1619 static void
1620 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1621 {
1622 struct dwt_reg_state *state;
1623
1624 state = calloc(1, sizeof *state);
1625 if (!state)
1626 return;
1627 state->addr = d->addr;
1628 state->target = t;
1629
1630 r->name = d->name;
1631 r->size = d->size;
1632 r->value = &state->value;
1633 r->arch_info = state;
1634 r->type = &dwt_reg_type;
1635 }
1636
1637 static void
1638 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1639 {
1640 uint32_t dwtcr;
1641 struct reg_cache *cache;
1642 struct cortex_m3_dwt_comparator *comparator;
1643 int reg, i;
1644
1645 target_read_u32(target, DWT_CTRL, &dwtcr);
1646 if (!dwtcr) {
1647 LOG_DEBUG("no DWT");
1648 return;
1649 }
1650
1651 cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1652 cm3->dwt_comp_available = cm3->dwt_num_comp;
1653 cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1654 sizeof(struct cortex_m3_dwt_comparator));
1655 if (!cm3->dwt_comparator_list) {
1656 fail0:
1657 cm3->dwt_num_comp = 0;
1658 LOG_ERROR("out of mem");
1659 return;
1660 }
1661
1662 cache = calloc(1, sizeof *cache);
1663 if (!cache) {
1664 fail1:
1665 free(cm3->dwt_comparator_list);
1666 goto fail0;
1667 }
1668 cache->name = "cortex-m3 dwt registers";
1669 cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1670 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1671 if (!cache->reg_list) {
1672 free(cache);
1673 goto fail1;
1674 }
1675
1676 for (reg = 0; reg < 2; reg++)
1677 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1678 dwt_base_regs + reg);
1679
1680 comparator = cm3->dwt_comparator_list;
1681 for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1682 int j;
1683
1684 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1685 for (j = 0; j < 3; j++, reg++)
1686 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1687 dwt_comp + 3 * i + j);
1688 }
1689
1690 *register_get_last_cache_p(&target->reg_cache) = cache;
1691 cm3->dwt_cache = cache;
1692
1693 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1694 dwtcr, cm3->dwt_num_comp,
1695 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1696
1697 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1698 * implement single-address data value watchpoints ... so we
1699 * won't need to check it later, when asked to set one up.
1700 */
1701 }
1702
1703 static int cortex_m3_examine(struct target *target)
1704 {
1705 int retval;
1706 uint32_t cpuid, fpcr;
1707 int i;
1708 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1709 struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1710
1711 if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1712 return retval;
1713
1714 if (!target_was_examined(target))
1715 {
1716 target_set_examined(target);
1717
1718 /* Read from Device Identification Registers */
1719 retval = target_read_u32(target, CPUID, &cpuid);
1720 if (retval != ERROR_OK)
1721 return retval;
1722
1723 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1724 LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1725 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1726 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1727
1728 /* NOTE: FPB and DWT are both optional. */
1729
1730 /* Setup FPB */
1731 target_read_u32(target, FP_CTRL, &fpcr);
1732 cortex_m3->auto_bp_type = 1;
1733 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1734 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1735 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1736 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1737 cortex_m3->fpb_enabled = fpcr & 1;
1738 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1739 {
1740 cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1741 cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1742 }
1743 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1744
1745 /* Setup DWT */
1746 cortex_m3_dwt_setup(cortex_m3, target);
1747
1748 /* These hardware breakpoints only work for code in flash! */
1749 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1750 target_name(target),
1751 cortex_m3->fp_num_code,
1752 cortex_m3->dwt_num_comp);
1753 }
1754
1755 return ERROR_OK;
1756 }
1757
1758 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1759 {
1760 uint16_t dcrdr;
1761
1762 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1763 *ctrl = (uint8_t)dcrdr;
1764 *value = (uint8_t)(dcrdr >> 8);
1765
1766 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1767
1768 /* write ack back to software dcc register
1769 * signify we have read data */
1770 if (dcrdr & (1 << 0))
1771 {
1772 dcrdr = 0;
1773 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1774 }
1775
1776 return ERROR_OK;
1777 }
1778
1779 static int cortex_m3_target_request_data(struct target *target,
1780 uint32_t size, uint8_t *buffer)
1781 {
1782 struct armv7m_common *armv7m = target_to_armv7m(target);
1783 struct swjdp_common *swjdp = &armv7m->swjdp_info;
1784 uint8_t data;
1785 uint8_t ctrl;
1786 uint32_t i;
1787
1788 for (i = 0; i < (size * 4); i++)
1789 {
1790 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1791 buffer[i] = data;
1792 }
1793
1794 return ERROR_OK;
1795 }
1796
1797 static int cortex_m3_handle_target_request(void *priv)
1798 {
1799 struct target *target = priv;
1800 if (!target_was_examined(target))
1801 return ERROR_OK;
1802 struct armv7m_common *armv7m = target_to_armv7m(target);
1803 struct swjdp_common *swjdp = &armv7m->swjdp_info;
1804
1805 if (!target->dbg_msg_enabled)
1806 return ERROR_OK;
1807
1808 if (target->state == TARGET_RUNNING)
1809 {
1810 uint8_t data;
1811 uint8_t ctrl;
1812
1813 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1814
1815 /* check if we have data */
1816 if (ctrl & (1 << 0))
1817 {
1818 uint32_t request;
1819
1820 /* we assume target is quick enough */
1821 request = data;
1822 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1823 request |= (data << 8);
1824 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1825 request |= (data << 16);
1826 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1827 request |= (data << 24);
1828 target_request(target, request);
1829 }
1830 }
1831
1832 return ERROR_OK;
1833 }
1834
1835 static int cortex_m3_init_arch_info(struct target *target,
1836 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1837 {
1838 int retval;
1839 struct armv7m_common *armv7m = &cortex_m3->armv7m;
1840
1841 armv7m_init_arch_info(target, armv7m);
1842
1843 /* prepare JTAG information for the new target */
1844 cortex_m3->jtag_info.tap = tap;
1845 cortex_m3->jtag_info.scann_size = 4;
1846
1847 /* Leave (only) generic DAP stuff for debugport_init(); */
1848 armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1849 armv7m->swjdp_info.memaccess_tck = 8;
1850 /* Cortex-M3 has 4096 bytes autoincrement range */
1851 armv7m->swjdp_info.tar_autoincr_block = (1 << 12);
1852
1853 /* register arch-specific functions */
1854 armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1855
1856 armv7m->post_debug_entry = NULL;
1857
1858 armv7m->pre_restore_context = NULL;
1859 armv7m->post_restore_context = NULL;
1860
1861 armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1862 armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1863
1864 target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1865
1866 if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1867 {
1868 return retval;
1869 }
1870
1871 return ERROR_OK;
1872 }
1873
1874 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1875 {
1876 struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1877
1878 cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1879 cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1880
1881 return ERROR_OK;
1882 }
1883
1884 /*--------------------------------------------------------------------------*/
1885
1886 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1887 struct cortex_m3_common *cm3)
1888 {
1889 if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1890 command_print(cmd_ctx, "target is not a Cortex-M3");
1891 return ERROR_TARGET_INVALID;
1892 }
1893 return ERROR_OK;
1894 }
1895
1896 /*
1897 * Only stuff below this line should need to verify that its target
1898 * is a Cortex-M3. Everything else should have indirected through the
1899 * cortexm3_target structure, which is only used with CM3 targets.
1900 */
1901
1902 /*
1903 * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1904 * as at least ARM-1156T2. The interesting thing about Cortex-M is
1905 * that *only* Thumb2 disassembly matters. There are also some small
1906 * additions to Thumb2 that are specific to ARMv7-M.
1907 */
1908 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1909 {
1910 int retval;
1911 struct target *target = get_current_target(CMD_CTX);
1912 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1913 uint32_t address;
1914 unsigned long count = 1;
1915 struct arm_instruction cur_instruction;
1916
1917 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1918 if (retval != ERROR_OK)
1919 return retval;
1920
1921 errno = 0;
1922 switch (CMD_ARGC) {
1923 case 2:
1924 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], count);
1925 /* FALL THROUGH */
1926 case 1:
1927 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1928 break;
1929 default:
1930 command_print(CMD_CTX,
1931 "usage: cortex_m3 disassemble <address> [<count>]");
1932 return ERROR_OK;
1933 }
1934
1935 while (count--) {
1936 retval = thumb2_opcode(target, address, &cur_instruction);
1937 if (retval != ERROR_OK)
1938 return retval;
1939 command_print(CMD_CTX, "%s", cur_instruction.text);
1940 address += cur_instruction.instruction_size;
1941 }
1942
1943 return ERROR_OK;
1944 }
1945
1946 static const struct {
1947 char name[10];
1948 unsigned mask;
1949 } vec_ids[] = {
1950 { "hard_err", VC_HARDERR, },
1951 { "int_err", VC_INTERR, },
1952 { "bus_err", VC_BUSERR, },
1953 { "state_err", VC_STATERR, },
1954 { "chk_err", VC_CHKERR, },
1955 { "nocp_err", VC_NOCPERR, },
1956 { "mm_err", VC_MMERR, },
1957 { "reset", VC_CORERESET, },
1958 };
1959
1960 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1961 {
1962 struct target *target = get_current_target(CMD_CTX);
1963 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1964 struct armv7m_common *armv7m = &cortex_m3->armv7m;
1965 struct swjdp_common *swjdp = &armv7m->swjdp_info;
1966 uint32_t demcr = 0;
1967 int retval;
1968
1969 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1970 if (retval != ERROR_OK)
1971 return retval;
1972
1973 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1974
1975 if (CMD_ARGC > 0) {
1976 unsigned catch = 0;
1977
1978 if (CMD_ARGC == 1) {
1979 if (strcmp(CMD_ARGV[0], "all") == 0) {
1980 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1981 | VC_STATERR | VC_CHKERR | VC_NOCPERR
1982 | VC_MMERR | VC_CORERESET;
1983 goto write;
1984 } else if (strcmp(CMD_ARGV[0], "none") == 0) {
1985 goto write;
1986 }
1987 }
1988 while (CMD_ARGC-- > 0) {
1989 unsigned i;
1990 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1991 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
1992 continue;
1993 catch |= vec_ids[i].mask;
1994 break;
1995 }
1996 if (i == ARRAY_SIZE(vec_ids)) {
1997 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
1998 return ERROR_INVALID_ARGUMENTS;
1999 }
2000 }
2001 write:
2002 /* For now, armv7m->demcr only stores vector catch flags. */
2003 armv7m->demcr = catch;
2004
2005 demcr &= ~0xffff;
2006 demcr |= catch;
2007
2008 /* write, but don't assume it stuck (why not??) */
2009 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2010 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2011
2012 /* FIXME be sure to clear DEMCR on clean server shutdown.
2013 * Otherwise the vector catch hardware could fire when there's
2014 * no debugger hooked up, causing much confusion...
2015 */
2016 }
2017
2018 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
2019 {
2020 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2021 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2022 }
2023
2024 return ERROR_OK;
2025 }
2026
2027 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2028 {
2029 struct target *target = get_current_target(CMD_CTX);
2030 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2031 int retval;
2032
2033 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2034 if (retval != ERROR_OK)
2035 return retval;
2036
2037 if (target->state != TARGET_HALTED)
2038 {
2039 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2040 return ERROR_OK;
2041 }
2042
2043 if (CMD_ARGC > 0)
2044 {
2045 bool enable;
2046 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2047 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
2048 uint32_t mask_off = enable ? 0 : C_MASKINTS;
2049 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
2050 }
2051
2052 command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
2053 (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
2054
2055 return ERROR_OK;
2056 }
2057
2058 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2059 {
2060 .name = "disassemble",
2061 .handler = handle_cortex_m3_disassemble_command,
2062 .mode = COMMAND_EXEC,
2063 .help = "disassemble Thumb2 instructions",
2064 .usage = "address [count]",
2065 },
2066 {
2067 .name = "maskisr",
2068 .handler = handle_cortex_m3_mask_interrupts_command,
2069 .mode = COMMAND_EXEC,
2070 .help = "mask cortex_m3 interrupts",
2071 .usage = "['on'|'off']",
2072 },
2073 {
2074 .name = "vector_catch",
2075 .handler = handle_cortex_m3_vector_catch_command,
2076 .mode = COMMAND_EXEC,
2077 .help = "configure hardware vectors to trigger debug entry",
2078 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2079 },
2080 COMMAND_REGISTRATION_DONE
2081 };
2082 static const struct command_registration cortex_m3_command_handlers[] = {
2083 {
2084 .chain = armv7m_command_handlers,
2085 },
2086 {
2087 .name = "cortex_m3",
2088 .mode = COMMAND_EXEC,
2089 .help = "Cortex-M3 command group",
2090 .chain = cortex_m3_exec_command_handlers,
2091 },
2092 COMMAND_REGISTRATION_DONE
2093 };
2094
2095 struct target_type cortexm3_target =
2096 {
2097 .name = "cortex_m3",
2098
2099 .poll = cortex_m3_poll,
2100 .arch_state = armv7m_arch_state,
2101
2102 .target_request_data = cortex_m3_target_request_data,
2103
2104 .halt = cortex_m3_halt,
2105 .resume = cortex_m3_resume,
2106 .step = cortex_m3_step,
2107
2108 .assert_reset = cortex_m3_assert_reset,
2109 .deassert_reset = cortex_m3_deassert_reset,
2110 .soft_reset_halt = cortex_m3_soft_reset_halt,
2111
2112 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2113
2114 .read_memory = cortex_m3_read_memory,
2115 .write_memory = cortex_m3_write_memory,
2116 .bulk_write_memory = cortex_m3_bulk_write_memory,
2117 .checksum_memory = armv7m_checksum_memory,
2118 .blank_check_memory = armv7m_blank_check_memory,
2119
2120 .run_algorithm = armv7m_run_algorithm,
2121
2122 .add_breakpoint = cortex_m3_add_breakpoint,
2123 .remove_breakpoint = cortex_m3_remove_breakpoint,
2124 .add_watchpoint = cortex_m3_add_watchpoint,
2125 .remove_watchpoint = cortex_m3_remove_watchpoint,
2126
2127 .commands = cortex_m3_command_handlers,
2128 .target_create = cortex_m3_target_create,
2129 .init_target = cortex_m3_init_target,
2130 .examine = cortex_m3_examine,
2131 };