target: restructure dap support
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 * *
24 * *
25 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
26 * *
27 ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE: most of this should work fine for the Cortex-M1 and
44 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45 * Some differences: M0/M1 doesn't have FBP remapping or the
46 * DWT tracing/profiling support. (So the cycle counter will
47 * not be usable; the other stuff isn't currently used here.)
48 *
49 * Although there are some workarounds for errata seen only in r0p0
50 * silicon, such old parts are hard to find and thus not much tested
51 * any longer.
52 */
53
54 /**
55 * Returns the type of a break point required by address location
56 */
57 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
58
59 /* forward declarations */
60 static int cortex_m_store_core_reg_u32(struct target *target,
61 uint32_t num, uint32_t value);
62 static void cortex_m_dwt_free(struct target *target);
63
64 static int cortexm_dap_read_coreregister_u32(struct target *target,
65 uint32_t *value, int regnum)
66 {
67 struct armv7m_common *armv7m = target_to_armv7m(target);
68 int retval;
69 uint32_t dcrdr;
70
71 /* because the DCB_DCRDR is used for the emulated dcc channel
72 * we have to save/restore the DCB_DCRDR when used */
73 if (target->dbg_msg_enabled) {
74 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
75 if (retval != ERROR_OK)
76 return retval;
77 }
78
79 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
80 if (retval != ERROR_OK)
81 return retval;
82
83 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
84 if (retval != ERROR_OK)
85 return retval;
86
87 if (target->dbg_msg_enabled) {
88 /* restore DCB_DCRDR - this needs to be in a separate
89 * transaction otherwise the emulated DCC channel breaks */
90 if (retval == ERROR_OK)
91 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
92 }
93
94 return retval;
95 }
96
97 static int cortexm_dap_write_coreregister_u32(struct target *target,
98 uint32_t value, int regnum)
99 {
100 struct armv7m_common *armv7m = target_to_armv7m(target);
101 int retval;
102 uint32_t dcrdr;
103
104 /* because the DCB_DCRDR is used for the emulated dcc channel
105 * we have to save/restore the DCB_DCRDR when used */
106 if (target->dbg_msg_enabled) {
107 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
108 if (retval != ERROR_OK)
109 return retval;
110 }
111
112 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
113 if (retval != ERROR_OK)
114 return retval;
115
116 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
117 if (retval != ERROR_OK)
118 return retval;
119
120 if (target->dbg_msg_enabled) {
121 /* restore DCB_DCRDR - this needs to be in a seperate
122 * transaction otherwise the emulated DCC channel breaks */
123 if (retval == ERROR_OK)
124 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
125 }
126
127 return retval;
128 }
129
130 static int cortex_m_write_debug_halt_mask(struct target *target,
131 uint32_t mask_on, uint32_t mask_off)
132 {
133 struct cortex_m_common *cortex_m = target_to_cm(target);
134 struct armv7m_common *armv7m = &cortex_m->armv7m;
135
136 /* mask off status bits */
137 cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
138 /* create new register mask */
139 cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
140
141 return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
142 }
143
144 static int cortex_m_clear_halt(struct target *target)
145 {
146 struct cortex_m_common *cortex_m = target_to_cm(target);
147 struct armv7m_common *armv7m = &cortex_m->armv7m;
148 int retval;
149
150 /* clear step if any */
151 cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
152
153 /* Read Debug Fault Status Register */
154 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
155 if (retval != ERROR_OK)
156 return retval;
157
158 /* Clear Debug Fault Status */
159 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
160 if (retval != ERROR_OK)
161 return retval;
162 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
163
164 return ERROR_OK;
165 }
166
167 static int cortex_m_single_step_core(struct target *target)
168 {
169 struct cortex_m_common *cortex_m = target_to_cm(target);
170 struct armv7m_common *armv7m = &cortex_m->armv7m;
171 int retval;
172
173 /* Mask interrupts before clearing halt, if done already. This avoids
174 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
175 * HALT can put the core into an unknown state.
176 */
177 if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
178 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
179 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
180 if (retval != ERROR_OK)
181 return retval;
182 }
183 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
184 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
185 if (retval != ERROR_OK)
186 return retval;
187 LOG_DEBUG(" ");
188
189 /* restore dhcsr reg */
190 cortex_m_clear_halt(target);
191
192 return ERROR_OK;
193 }
194
195 static int cortex_m_enable_fpb(struct target *target)
196 {
197 int retval = target_write_u32(target, FP_CTRL, 3);
198 if (retval != ERROR_OK)
199 return retval;
200
201 /* check the fpb is actually enabled */
202 uint32_t fpctrl;
203 retval = target_read_u32(target, FP_CTRL, &fpctrl);
204 if (retval != ERROR_OK)
205 return retval;
206
207 if (fpctrl & 1)
208 return ERROR_OK;
209
210 return ERROR_FAIL;
211 }
212
213 static int cortex_m_endreset_event(struct target *target)
214 {
215 int i;
216 int retval;
217 uint32_t dcb_demcr;
218 struct cortex_m_common *cortex_m = target_to_cm(target);
219 struct armv7m_common *armv7m = &cortex_m->armv7m;
220 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
221 struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
222 struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
223
224 /* REVISIT The four debug monitor bits are currently ignored... */
225 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
226 if (retval != ERROR_OK)
227 return retval;
228 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
229
230 /* this register is used for emulated dcc channel */
231 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
232 if (retval != ERROR_OK)
233 return retval;
234
235 /* Enable debug requests */
236 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
237 if (retval != ERROR_OK)
238 return retval;
239 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
240 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
241 if (retval != ERROR_OK)
242 return retval;
243 }
244
245 /* clear any interrupt masking */
246 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
247
248 /* Enable features controlled by ITM and DWT blocks, and catch only
249 * the vectors we were told to pay attention to.
250 *
251 * Target firmware is responsible for all fault handling policy
252 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
253 * or manual updates to the NVIC SHCSR and CCR registers.
254 */
255 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
256 if (retval != ERROR_OK)
257 return retval;
258
259 /* Paranoia: evidently some (early?) chips don't preserve all the
260 * debug state (including FBP, DWT, etc) across reset...
261 */
262
263 /* Enable FPB */
264 retval = cortex_m_enable_fpb(target);
265 if (retval != ERROR_OK) {
266 LOG_ERROR("Failed to enable the FPB");
267 return retval;
268 }
269
270 cortex_m->fpb_enabled = 1;
271
272 /* Restore FPB registers */
273 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
274 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
275 if (retval != ERROR_OK)
276 return retval;
277 }
278
279 /* Restore DWT registers */
280 for (i = 0; i < cortex_m->dwt_num_comp; i++) {
281 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
282 dwt_list[i].comp);
283 if (retval != ERROR_OK)
284 return retval;
285 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
286 dwt_list[i].mask);
287 if (retval != ERROR_OK)
288 return retval;
289 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
290 dwt_list[i].function);
291 if (retval != ERROR_OK)
292 return retval;
293 }
294 retval = dap_run(swjdp);
295 if (retval != ERROR_OK)
296 return retval;
297
298 register_cache_invalidate(armv7m->arm.core_cache);
299
300 /* make sure we have latest dhcsr flags */
301 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
302
303 return retval;
304 }
305
306 static int cortex_m_examine_debug_reason(struct target *target)
307 {
308 struct cortex_m_common *cortex_m = target_to_cm(target);
309
310 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
311 * only check the debug reason if we don't know it already */
312
313 if ((target->debug_reason != DBG_REASON_DBGRQ)
314 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
315 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
316 target->debug_reason = DBG_REASON_BREAKPOINT;
317 if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
318 target->debug_reason = DBG_REASON_WPTANDBKPT;
319 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
320 target->debug_reason = DBG_REASON_WATCHPOINT;
321 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
322 target->debug_reason = DBG_REASON_BREAKPOINT;
323 else /* EXTERNAL, HALTED */
324 target->debug_reason = DBG_REASON_UNDEFINED;
325 }
326
327 return ERROR_OK;
328 }
329
330 static int cortex_m_examine_exception_reason(struct target *target)
331 {
332 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
333 struct armv7m_common *armv7m = target_to_armv7m(target);
334 struct adiv5_dap *swjdp = armv7m->arm.dap;
335 int retval;
336
337 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
338 if (retval != ERROR_OK)
339 return retval;
340 switch (armv7m->exception_number) {
341 case 2: /* NMI */
342 break;
343 case 3: /* Hard Fault */
344 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
345 if (retval != ERROR_OK)
346 return retval;
347 if (except_sr & 0x40000000) {
348 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
349 if (retval != ERROR_OK)
350 return retval;
351 }
352 break;
353 case 4: /* Memory Management */
354 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
355 if (retval != ERROR_OK)
356 return retval;
357 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
358 if (retval != ERROR_OK)
359 return retval;
360 break;
361 case 5: /* Bus Fault */
362 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
363 if (retval != ERROR_OK)
364 return retval;
365 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
366 if (retval != ERROR_OK)
367 return retval;
368 break;
369 case 6: /* Usage Fault */
370 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
371 if (retval != ERROR_OK)
372 return retval;
373 break;
374 case 11: /* SVCall */
375 break;
376 case 12: /* Debug Monitor */
377 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
378 if (retval != ERROR_OK)
379 return retval;
380 break;
381 case 14: /* PendSV */
382 break;
383 case 15: /* SysTick */
384 break;
385 default:
386 except_sr = 0;
387 break;
388 }
389 retval = dap_run(swjdp);
390 if (retval == ERROR_OK)
391 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
392 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
393 armv7m_exception_string(armv7m->exception_number),
394 shcsr, except_sr, cfsr, except_ar);
395 return retval;
396 }
397
398 static int cortex_m_debug_entry(struct target *target)
399 {
400 int i;
401 uint32_t xPSR;
402 int retval;
403 struct cortex_m_common *cortex_m = target_to_cm(target);
404 struct armv7m_common *armv7m = &cortex_m->armv7m;
405 struct arm *arm = &armv7m->arm;
406 struct reg *r;
407
408 LOG_DEBUG(" ");
409
410 cortex_m_clear_halt(target);
411 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
412 if (retval != ERROR_OK)
413 return retval;
414
415 retval = armv7m->examine_debug_reason(target);
416 if (retval != ERROR_OK)
417 return retval;
418
419 /* Examine target state and mode
420 * First load register accessible through core debug port */
421 int num_regs = arm->core_cache->num_regs;
422
423 for (i = 0; i < num_regs; i++) {
424 r = &armv7m->arm.core_cache->reg_list[i];
425 if (!r->valid)
426 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
427 }
428
429 r = arm->cpsr;
430 xPSR = buf_get_u32(r->value, 0, 32);
431
432 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
433 if (xPSR & 0xf00) {
434 r->dirty = r->valid;
435 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
436 }
437
438 /* Are we in an exception handler */
439 if (xPSR & 0x1FF) {
440 armv7m->exception_number = (xPSR & 0x1FF);
441
442 arm->core_mode = ARM_MODE_HANDLER;
443 arm->map = armv7m_msp_reg_map;
444 } else {
445 unsigned control = buf_get_u32(arm->core_cache
446 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
447
448 /* is this thread privileged? */
449 arm->core_mode = control & 1
450 ? ARM_MODE_USER_THREAD
451 : ARM_MODE_THREAD;
452
453 /* which stack is it using? */
454 if (control & 2)
455 arm->map = armv7m_psp_reg_map;
456 else
457 arm->map = armv7m_msp_reg_map;
458
459 armv7m->exception_number = 0;
460 }
461
462 if (armv7m->exception_number)
463 cortex_m_examine_exception_reason(target);
464
465 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
466 arm_mode_name(arm->core_mode),
467 buf_get_u32(arm->pc->value, 0, 32),
468 target_state_name(target));
469
470 if (armv7m->post_debug_entry) {
471 retval = armv7m->post_debug_entry(target);
472 if (retval != ERROR_OK)
473 return retval;
474 }
475
476 return ERROR_OK;
477 }
478
479 static int cortex_m_poll(struct target *target)
480 {
481 int detected_failure = ERROR_OK;
482 int retval = ERROR_OK;
483 enum target_state prev_target_state = target->state;
484 struct cortex_m_common *cortex_m = target_to_cm(target);
485 struct armv7m_common *armv7m = &cortex_m->armv7m;
486
487 /* Read from Debug Halting Control and Status Register */
488 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
489 if (retval != ERROR_OK) {
490 target->state = TARGET_UNKNOWN;
491 return retval;
492 }
493
494 /* Recover from lockup. See ARMv7-M architecture spec,
495 * section B1.5.15 "Unrecoverable exception cases".
496 */
497 if (cortex_m->dcb_dhcsr & S_LOCKUP) {
498 LOG_ERROR("%s -- clearing lockup after double fault",
499 target_name(target));
500 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
501 target->debug_reason = DBG_REASON_DBGRQ;
502
503 /* We have to execute the rest (the "finally" equivalent, but
504 * still throw this exception again).
505 */
506 detected_failure = ERROR_FAIL;
507
508 /* refresh status bits */
509 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
510 if (retval != ERROR_OK)
511 return retval;
512 }
513
514 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
515 target->state = TARGET_RESET;
516 return ERROR_OK;
517 }
518
519 if (target->state == TARGET_RESET) {
520 /* Cannot switch context while running so endreset is
521 * called with target->state == TARGET_RESET
522 */
523 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
524 cortex_m->dcb_dhcsr);
525 retval = cortex_m_endreset_event(target);
526 if (retval != ERROR_OK) {
527 target->state = TARGET_UNKNOWN;
528 return retval;
529 }
530 target->state = TARGET_RUNNING;
531 prev_target_state = TARGET_RUNNING;
532 }
533
534 if (cortex_m->dcb_dhcsr & S_HALT) {
535 target->state = TARGET_HALTED;
536
537 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
538 retval = cortex_m_debug_entry(target);
539 if (retval != ERROR_OK)
540 return retval;
541
542 if (arm_semihosting(target, &retval) != 0)
543 return retval;
544
545 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
546 }
547 if (prev_target_state == TARGET_DEBUG_RUNNING) {
548 LOG_DEBUG(" ");
549 retval = cortex_m_debug_entry(target);
550 if (retval != ERROR_OK)
551 return retval;
552
553 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
554 }
555 }
556
557 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
558 * How best to model low power modes?
559 */
560
561 if (target->state == TARGET_UNKNOWN) {
562 /* check if processor is retiring instructions */
563 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
564 target->state = TARGET_RUNNING;
565 retval = ERROR_OK;
566 }
567 }
568
569 /* Did we detect a failure condition that we cleared? */
570 if (detected_failure != ERROR_OK)
571 retval = detected_failure;
572 return retval;
573 }
574
575 static int cortex_m_halt(struct target *target)
576 {
577 LOG_DEBUG("target->state: %s",
578 target_state_name(target));
579
580 if (target->state == TARGET_HALTED) {
581 LOG_DEBUG("target was already halted");
582 return ERROR_OK;
583 }
584
585 if (target->state == TARGET_UNKNOWN)
586 LOG_WARNING("target was in unknown state when halt was requested");
587
588 if (target->state == TARGET_RESET) {
589 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
590 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
591 return ERROR_TARGET_FAILURE;
592 } else {
593 /* we came here in a reset_halt or reset_init sequence
594 * debug entry was already prepared in cortex_m3_assert_reset()
595 */
596 target->debug_reason = DBG_REASON_DBGRQ;
597
598 return ERROR_OK;
599 }
600 }
601
602 /* Write to Debug Halting Control and Status Register */
603 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
604
605 target->debug_reason = DBG_REASON_DBGRQ;
606
607 return ERROR_OK;
608 }
609
610 static int cortex_m_soft_reset_halt(struct target *target)
611 {
612 struct cortex_m_common *cortex_m = target_to_cm(target);
613 struct armv7m_common *armv7m = &cortex_m->armv7m;
614 uint32_t dcb_dhcsr = 0;
615 int retval, timeout = 0;
616
617 /* soft_reset_halt is deprecated on cortex_m as the same functionality
618 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
619 * As this reset only used VC_CORERESET it would only ever reset the cortex_m
620 * core, not the peripherals */
621 LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
622
623 /* Enter debug state on reset; restore DEMCR in endreset_event() */
624 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
625 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
626 if (retval != ERROR_OK)
627 return retval;
628
629 /* Request a core-only reset */
630 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
631 AIRCR_VECTKEY | AIRCR_VECTRESET);
632 if (retval != ERROR_OK)
633 return retval;
634 target->state = TARGET_RESET;
635
636 /* registers are now invalid */
637 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
638
639 while (timeout < 100) {
640 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
641 if (retval == ERROR_OK) {
642 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
643 &cortex_m->nvic_dfsr);
644 if (retval != ERROR_OK)
645 return retval;
646 if ((dcb_dhcsr & S_HALT)
647 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
648 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
649 "DFSR 0x%08x",
650 (unsigned) dcb_dhcsr,
651 (unsigned) cortex_m->nvic_dfsr);
652 cortex_m_poll(target);
653 /* FIXME restore user's vector catch config */
654 return ERROR_OK;
655 } else
656 LOG_DEBUG("waiting for system reset-halt, "
657 "DHCSR 0x%08x, %d ms",
658 (unsigned) dcb_dhcsr, timeout);
659 }
660 timeout++;
661 alive_sleep(1);
662 }
663
664 return ERROR_OK;
665 }
666
667 void cortex_m_enable_breakpoints(struct target *target)
668 {
669 struct breakpoint *breakpoint = target->breakpoints;
670
671 /* set any pending breakpoints */
672 while (breakpoint) {
673 if (!breakpoint->set)
674 cortex_m_set_breakpoint(target, breakpoint);
675 breakpoint = breakpoint->next;
676 }
677 }
678
679 static int cortex_m_resume(struct target *target, int current,
680 target_addr_t address, int handle_breakpoints, int debug_execution)
681 {
682 struct armv7m_common *armv7m = target_to_armv7m(target);
683 struct breakpoint *breakpoint = NULL;
684 uint32_t resume_pc;
685 struct reg *r;
686
687 if (target->state != TARGET_HALTED) {
688 LOG_WARNING("target not halted");
689 return ERROR_TARGET_NOT_HALTED;
690 }
691
692 if (!debug_execution) {
693 target_free_all_working_areas(target);
694 cortex_m_enable_breakpoints(target);
695 cortex_m_enable_watchpoints(target);
696 }
697
698 if (debug_execution) {
699 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
700
701 /* Disable interrupts */
702 /* We disable interrupts in the PRIMASK register instead of
703 * masking with C_MASKINTS. This is probably the same issue
704 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
705 * in parallel with disabled interrupts can cause local faults
706 * to not be taken.
707 *
708 * REVISIT this clearly breaks non-debug execution, since the
709 * PRIMASK register state isn't saved/restored... workaround
710 * by never resuming app code after debug execution.
711 */
712 buf_set_u32(r->value, 0, 1, 1);
713 r->dirty = true;
714 r->valid = true;
715
716 /* Make sure we are in Thumb mode */
717 r = armv7m->arm.cpsr;
718 buf_set_u32(r->value, 24, 1, 1);
719 r->dirty = true;
720 r->valid = true;
721 }
722
723 /* current = 1: continue on current pc, otherwise continue at <address> */
724 r = armv7m->arm.pc;
725 if (!current) {
726 buf_set_u32(r->value, 0, 32, address);
727 r->dirty = true;
728 r->valid = true;
729 }
730
731 /* if we halted last time due to a bkpt instruction
732 * then we have to manually step over it, otherwise
733 * the core will break again */
734
735 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
736 && !debug_execution)
737 armv7m_maybe_skip_bkpt_inst(target, NULL);
738
739 resume_pc = buf_get_u32(r->value, 0, 32);
740
741 armv7m_restore_context(target);
742
743 /* the front-end may request us not to handle breakpoints */
744 if (handle_breakpoints) {
745 /* Single step past breakpoint at current address */
746 breakpoint = breakpoint_find(target, resume_pc);
747 if (breakpoint) {
748 LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
749 breakpoint->address,
750 breakpoint->unique_id);
751 cortex_m_unset_breakpoint(target, breakpoint);
752 cortex_m_single_step_core(target);
753 cortex_m_set_breakpoint(target, breakpoint);
754 }
755 }
756
757 /* Restart core */
758 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
759
760 target->debug_reason = DBG_REASON_NOTHALTED;
761
762 /* registers are now invalid */
763 register_cache_invalidate(armv7m->arm.core_cache);
764
765 if (!debug_execution) {
766 target->state = TARGET_RUNNING;
767 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
768 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
769 } else {
770 target->state = TARGET_DEBUG_RUNNING;
771 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
772 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
773 }
774
775 return ERROR_OK;
776 }
777
778 /* int irqstepcount = 0; */
779 static int cortex_m_step(struct target *target, int current,
780 target_addr_t address, int handle_breakpoints)
781 {
782 struct cortex_m_common *cortex_m = target_to_cm(target);
783 struct armv7m_common *armv7m = &cortex_m->armv7m;
784 struct breakpoint *breakpoint = NULL;
785 struct reg *pc = armv7m->arm.pc;
786 bool bkpt_inst_found = false;
787 int retval;
788 bool isr_timed_out = false;
789
790 if (target->state != TARGET_HALTED) {
791 LOG_WARNING("target not halted");
792 return ERROR_TARGET_NOT_HALTED;
793 }
794
795 /* current = 1: continue on current pc, otherwise continue at <address> */
796 if (!current)
797 buf_set_u32(pc->value, 0, 32, address);
798
799 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
800
801 /* the front-end may request us not to handle breakpoints */
802 if (handle_breakpoints) {
803 breakpoint = breakpoint_find(target, pc_value);
804 if (breakpoint)
805 cortex_m_unset_breakpoint(target, breakpoint);
806 }
807
808 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
809
810 target->debug_reason = DBG_REASON_SINGLESTEP;
811
812 armv7m_restore_context(target);
813
814 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
815
816 /* if no bkpt instruction is found at pc then we can perform
817 * a normal step, otherwise we have to manually step over the bkpt
818 * instruction - as such simulate a step */
819 if (bkpt_inst_found == false) {
820 /* Automatic ISR masking mode off: Just step over the next instruction */
821 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
822 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
823 else {
824 /* Process interrupts during stepping in a way they don't interfere
825 * debugging.
826 *
827 * Principle:
828 *
829 * Set a temporary break point at the current pc and let the core run
830 * with interrupts enabled. Pending interrupts get served and we run
831 * into the breakpoint again afterwards. Then we step over the next
832 * instruction with interrupts disabled.
833 *
834 * If the pending interrupts don't complete within time, we leave the
835 * core running. This may happen if the interrupts trigger faster
836 * than the core can process them or the handler doesn't return.
837 *
838 * If no more breakpoints are available we simply do a step with
839 * interrupts enabled.
840 *
841 */
842
843 /* 2012-09-29 ph
844 *
845 * If a break point is already set on the lower half word then a break point on
846 * the upper half word will not break again when the core is restarted. So we
847 * just step over the instruction with interrupts disabled.
848 *
849 * The documentation has no information about this, it was found by observation
850 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
851 * suffer from this problem.
852 *
853 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
854 * address has it always cleared. The former is done to indicate thumb mode
855 * to gdb.
856 *
857 */
858 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
859 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
860 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
861 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
862 /* Re-enable interrupts */
863 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
864 }
865 else {
866
867 /* Set a temporary break point */
868 if (breakpoint)
869 retval = cortex_m_set_breakpoint(target, breakpoint);
870 else
871 retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
872 bool tmp_bp_set = (retval == ERROR_OK);
873
874 /* No more breakpoints left, just do a step */
875 if (!tmp_bp_set)
876 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
877 else {
878 /* Start the core */
879 LOG_DEBUG("Starting core to serve pending interrupts");
880 int64_t t_start = timeval_ms();
881 cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
882
883 /* Wait for pending handlers to complete or timeout */
884 do {
885 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
886 DCB_DHCSR,
887 &cortex_m->dcb_dhcsr);
888 if (retval != ERROR_OK) {
889 target->state = TARGET_UNKNOWN;
890 return retval;
891 }
892 isr_timed_out = ((timeval_ms() - t_start) > 500);
893 } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
894
895 /* only remove breakpoint if we created it */
896 if (breakpoint)
897 cortex_m_unset_breakpoint(target, breakpoint);
898 else {
899 /* Remove the temporary breakpoint */
900 breakpoint_remove(target, pc_value);
901 }
902
903 if (isr_timed_out) {
904 LOG_DEBUG("Interrupt handlers didn't complete within time, "
905 "leaving target running");
906 } else {
907 /* Step over next instruction with interrupts disabled */
908 cortex_m_write_debug_halt_mask(target,
909 C_HALT | C_MASKINTS,
910 0);
911 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
912 /* Re-enable interrupts */
913 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
914 }
915 }
916 }
917 }
918 }
919
920 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
921 if (retval != ERROR_OK)
922 return retval;
923
924 /* registers are now invalid */
925 register_cache_invalidate(armv7m->arm.core_cache);
926
927 if (breakpoint)
928 cortex_m_set_breakpoint(target, breakpoint);
929
930 if (isr_timed_out) {
931 /* Leave the core running. The user has to stop execution manually. */
932 target->debug_reason = DBG_REASON_NOTHALTED;
933 target->state = TARGET_RUNNING;
934 return ERROR_OK;
935 }
936
937 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
938 " nvic_icsr = 0x%" PRIx32,
939 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
940
941 retval = cortex_m_debug_entry(target);
942 if (retval != ERROR_OK)
943 return retval;
944 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
945
946 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
947 " nvic_icsr = 0x%" PRIx32,
948 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
949
950 return ERROR_OK;
951 }
952
953 static int cortex_m_assert_reset(struct target *target)
954 {
955 struct cortex_m_common *cortex_m = target_to_cm(target);
956 struct armv7m_common *armv7m = &cortex_m->armv7m;
957 enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
958
959 LOG_DEBUG("target->state: %s",
960 target_state_name(target));
961
962 enum reset_types jtag_reset_config = jtag_get_reset_config();
963
964 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
965 /* allow scripts to override the reset event */
966
967 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
968 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
969 target->state = TARGET_RESET;
970
971 return ERROR_OK;
972 }
973
974 /* some cores support connecting while srst is asserted
975 * use that mode is it has been configured */
976
977 bool srst_asserted = false;
978
979 if (!target_was_examined(target)) {
980 if (jtag_reset_config & RESET_HAS_SRST) {
981 adapter_assert_reset();
982 if (target->reset_halt)
983 LOG_ERROR("Target not examined, will not halt after reset!");
984 return ERROR_OK;
985 } else {
986 LOG_ERROR("Target not examined, reset NOT asserted!");
987 return ERROR_FAIL;
988 }
989 }
990
991 if ((jtag_reset_config & RESET_HAS_SRST) &&
992 (jtag_reset_config & RESET_SRST_NO_GATING)) {
993 adapter_assert_reset();
994 srst_asserted = true;
995 }
996
997 /* Enable debug requests */
998 int retval;
999 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1000 /* Store important errors instead of failing and proceed to reset assert */
1001
1002 if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1003 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1004
1005 /* If the processor is sleeping in a WFI or WFE instruction, the
1006 * C_HALT bit must be asserted to regain control */
1007 if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1008 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1009
1010 mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1011 /* Ignore less important errors */
1012
1013 if (!target->reset_halt) {
1014 /* Set/Clear C_MASKINTS in a separate operation */
1015 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1016 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
1017
1018 /* clear any debug flags before resuming */
1019 cortex_m_clear_halt(target);
1020
1021 /* clear C_HALT in dhcsr reg */
1022 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1023 } else {
1024 /* Halt in debug on reset; endreset_event() restores DEMCR.
1025 *
1026 * REVISIT catching BUSERR presumably helps to defend against
1027 * bad vector table entries. Should this include MMERR or
1028 * other flags too?
1029 */
1030 int retval2;
1031 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1032 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1033 if (retval != ERROR_OK || retval2 != ERROR_OK)
1034 LOG_INFO("AP write error, reset will not halt");
1035 }
1036
1037 if (jtag_reset_config & RESET_HAS_SRST) {
1038 /* default to asserting srst */
1039 if (!srst_asserted)
1040 adapter_assert_reset();
1041
1042 /* srst is asserted, ignore AP access errors */
1043 retval = ERROR_OK;
1044 } else {
1045 /* Use a standard Cortex-M3 software reset mechanism.
1046 * We default to using VECRESET as it is supported on all current cores.
1047 * This has the disadvantage of not resetting the peripherals, so a
1048 * reset-init event handler is needed to perform any peripheral resets.
1049 */
1050 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1051 ? "SYSRESETREQ" : "VECTRESET");
1052
1053 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1054 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1055 "handler to reset any peripherals or configure hardware srst support.");
1056 }
1057
1058 int retval3;
1059 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1060 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1061 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1062 if (retval3 != ERROR_OK)
1063 LOG_DEBUG("Ignoring AP write error right after reset");
1064
1065 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1066 if (retval3 != ERROR_OK)
1067 LOG_ERROR("DP initialisation failed");
1068
1069 else {
1070 /* I do not know why this is necessary, but it
1071 * fixes strange effects (step/resume cause NMI
1072 * after reset) on LM3S6918 -- Michael Schwingen
1073 */
1074 uint32_t tmp;
1075 mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1076 }
1077 }
1078
1079 target->state = TARGET_RESET;
1080 jtag_add_sleep(50000);
1081
1082 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1083
1084 /* now return stored error code if any */
1085 if (retval != ERROR_OK)
1086 return retval;
1087
1088 if (target->reset_halt) {
1089 retval = target_halt(target);
1090 if (retval != ERROR_OK)
1091 return retval;
1092 }
1093
1094 return ERROR_OK;
1095 }
1096
1097 static int cortex_m_deassert_reset(struct target *target)
1098 {
1099 struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1100
1101 LOG_DEBUG("target->state: %s",
1102 target_state_name(target));
1103
1104 /* deassert reset lines */
1105 adapter_deassert_reset();
1106
1107 enum reset_types jtag_reset_config = jtag_get_reset_config();
1108
1109 if ((jtag_reset_config & RESET_HAS_SRST) &&
1110 !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1111 target_was_examined(target)) {
1112 int retval = dap_dp_init(armv7m->debug_ap->dap);
1113 if (retval != ERROR_OK) {
1114 LOG_ERROR("DP initialisation failed");
1115 return retval;
1116 }
1117 }
1118
1119 return ERROR_OK;
1120 }
1121
1122 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1123 {
1124 int retval;
1125 int fp_num = 0;
1126 struct cortex_m_common *cortex_m = target_to_cm(target);
1127 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1128
1129 if (breakpoint->set) {
1130 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1131 return ERROR_OK;
1132 }
1133
1134 if (cortex_m->auto_bp_type)
1135 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1136
1137 if (breakpoint->type == BKPT_HARD) {
1138 uint32_t fpcr_value;
1139 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1140 fp_num++;
1141 if (fp_num >= cortex_m->fp_num_code) {
1142 LOG_ERROR("Can not find free FPB Comparator!");
1143 return ERROR_FAIL;
1144 }
1145 breakpoint->set = fp_num + 1;
1146 fpcr_value = breakpoint->address | 1;
1147 if (cortex_m->fp_rev == 0) {
1148 uint32_t hilo;
1149 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1150 fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1151 } else if (cortex_m->fp_rev > 1) {
1152 LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1153 return ERROR_FAIL;
1154 }
1155 comparator_list[fp_num].used = 1;
1156 comparator_list[fp_num].fpcr_value = fpcr_value;
1157 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1158 comparator_list[fp_num].fpcr_value);
1159 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1160 fp_num,
1161 comparator_list[fp_num].fpcr_value);
1162 if (!cortex_m->fpb_enabled) {
1163 LOG_DEBUG("FPB wasn't enabled, do it now");
1164 retval = cortex_m_enable_fpb(target);
1165 if (retval != ERROR_OK) {
1166 LOG_ERROR("Failed to enable the FPB");
1167 return retval;
1168 }
1169
1170 cortex_m->fpb_enabled = 1;
1171 }
1172 } else if (breakpoint->type == BKPT_SOFT) {
1173 uint8_t code[4];
1174
1175 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1176 * semihosting; don't use that. Otherwise the BKPT
1177 * parameter is arbitrary.
1178 */
1179 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1180 retval = target_read_memory(target,
1181 breakpoint->address & 0xFFFFFFFE,
1182 breakpoint->length, 1,
1183 breakpoint->orig_instr);
1184 if (retval != ERROR_OK)
1185 return retval;
1186 retval = target_write_memory(target,
1187 breakpoint->address & 0xFFFFFFFE,
1188 breakpoint->length, 1,
1189 code);
1190 if (retval != ERROR_OK)
1191 return retval;
1192 breakpoint->set = true;
1193 }
1194
1195 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1196 breakpoint->unique_id,
1197 (int)(breakpoint->type),
1198 breakpoint->address,
1199 breakpoint->length,
1200 breakpoint->set);
1201
1202 return ERROR_OK;
1203 }
1204
1205 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1206 {
1207 int retval;
1208 struct cortex_m_common *cortex_m = target_to_cm(target);
1209 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1210
1211 if (!breakpoint->set) {
1212 LOG_WARNING("breakpoint not set");
1213 return ERROR_OK;
1214 }
1215
1216 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1217 breakpoint->unique_id,
1218 (int)(breakpoint->type),
1219 breakpoint->address,
1220 breakpoint->length,
1221 breakpoint->set);
1222
1223 if (breakpoint->type == BKPT_HARD) {
1224 int fp_num = breakpoint->set - 1;
1225 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1226 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1227 return ERROR_OK;
1228 }
1229 comparator_list[fp_num].used = 0;
1230 comparator_list[fp_num].fpcr_value = 0;
1231 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1232 comparator_list[fp_num].fpcr_value);
1233 } else {
1234 /* restore original instruction (kept in target endianness) */
1235 if (breakpoint->length == 4) {
1236 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1237 breakpoint->orig_instr);
1238 if (retval != ERROR_OK)
1239 return retval;
1240 } else {
1241 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1242 breakpoint->orig_instr);
1243 if (retval != ERROR_OK)
1244 return retval;
1245 }
1246 }
1247 breakpoint->set = false;
1248
1249 return ERROR_OK;
1250 }
1251
1252 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1253 {
1254 struct cortex_m_common *cortex_m = target_to_cm(target);
1255
1256 if (cortex_m->auto_bp_type)
1257 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1258
1259 if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1260 if (breakpoint->type == BKPT_HARD) {
1261 LOG_INFO("flash patch comparator requested outside code memory region");
1262 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1263 }
1264
1265 if (breakpoint->type == BKPT_SOFT) {
1266 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1267 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1268 }
1269 }
1270
1271 if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1272 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1273 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1274 }
1275
1276 if (breakpoint->length == 3) {
1277 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1278 breakpoint->length = 2;
1279 }
1280
1281 if ((breakpoint->length != 2)) {
1282 LOG_INFO("only breakpoints of two bytes length supported");
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284 }
1285
1286 if (breakpoint->type == BKPT_HARD)
1287 cortex_m->fp_code_available--;
1288
1289 return cortex_m_set_breakpoint(target, breakpoint);
1290 }
1291
1292 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1293 {
1294 struct cortex_m_common *cortex_m = target_to_cm(target);
1295
1296 /* REVISIT why check? FBP can be updated with core running ... */
1297 if (target->state != TARGET_HALTED) {
1298 LOG_WARNING("target not halted");
1299 return ERROR_TARGET_NOT_HALTED;
1300 }
1301
1302 if (cortex_m->auto_bp_type)
1303 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1304
1305 if (breakpoint->set)
1306 cortex_m_unset_breakpoint(target, breakpoint);
1307
1308 if (breakpoint->type == BKPT_HARD)
1309 cortex_m->fp_code_available++;
1310
1311 return ERROR_OK;
1312 }
1313
1314 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1315 {
1316 int dwt_num = 0;
1317 uint32_t mask, temp;
1318 struct cortex_m_common *cortex_m = target_to_cm(target);
1319
1320 /* watchpoint params were validated earlier */
1321 mask = 0;
1322 temp = watchpoint->length;
1323 while (temp) {
1324 temp >>= 1;
1325 mask++;
1326 }
1327 mask--;
1328
1329 /* REVISIT Don't fully trust these "not used" records ... users
1330 * may set up breakpoints by hand, e.g. dual-address data value
1331 * watchpoint using comparator #1; comparator #0 matching cycle
1332 * count; send data trace info through ITM and TPIU; etc
1333 */
1334 struct cortex_m_dwt_comparator *comparator;
1335
1336 for (comparator = cortex_m->dwt_comparator_list;
1337 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1338 comparator++, dwt_num++)
1339 continue;
1340 if (dwt_num >= cortex_m->dwt_num_comp) {
1341 LOG_ERROR("Can not find free DWT Comparator");
1342 return ERROR_FAIL;
1343 }
1344 comparator->used = 1;
1345 watchpoint->set = dwt_num + 1;
1346
1347 comparator->comp = watchpoint->address;
1348 target_write_u32(target, comparator->dwt_comparator_address + 0,
1349 comparator->comp);
1350
1351 comparator->mask = mask;
1352 target_write_u32(target, comparator->dwt_comparator_address + 4,
1353 comparator->mask);
1354
1355 switch (watchpoint->rw) {
1356 case WPT_READ:
1357 comparator->function = 5;
1358 break;
1359 case WPT_WRITE:
1360 comparator->function = 6;
1361 break;
1362 case WPT_ACCESS:
1363 comparator->function = 7;
1364 break;
1365 }
1366 target_write_u32(target, comparator->dwt_comparator_address + 8,
1367 comparator->function);
1368
1369 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1370 watchpoint->unique_id, dwt_num,
1371 (unsigned) comparator->comp,
1372 (unsigned) comparator->mask,
1373 (unsigned) comparator->function);
1374 return ERROR_OK;
1375 }
1376
1377 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1378 {
1379 struct cortex_m_common *cortex_m = target_to_cm(target);
1380 struct cortex_m_dwt_comparator *comparator;
1381 int dwt_num;
1382
1383 if (!watchpoint->set) {
1384 LOG_WARNING("watchpoint (wpid: %d) not set",
1385 watchpoint->unique_id);
1386 return ERROR_OK;
1387 }
1388
1389 dwt_num = watchpoint->set - 1;
1390
1391 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1392 watchpoint->unique_id, dwt_num,
1393 (unsigned) watchpoint->address);
1394
1395 if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1396 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1397 return ERROR_OK;
1398 }
1399
1400 comparator = cortex_m->dwt_comparator_list + dwt_num;
1401 comparator->used = 0;
1402 comparator->function = 0;
1403 target_write_u32(target, comparator->dwt_comparator_address + 8,
1404 comparator->function);
1405
1406 watchpoint->set = false;
1407
1408 return ERROR_OK;
1409 }
1410
1411 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1412 {
1413 struct cortex_m_common *cortex_m = target_to_cm(target);
1414
1415 if (cortex_m->dwt_comp_available < 1) {
1416 LOG_DEBUG("no comparators?");
1417 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1418 }
1419
1420 /* hardware doesn't support data value masking */
1421 if (watchpoint->mask != ~(uint32_t)0) {
1422 LOG_DEBUG("watchpoint value masks not supported");
1423 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1424 }
1425
1426 /* hardware allows address masks of up to 32K */
1427 unsigned mask;
1428
1429 for (mask = 0; mask < 16; mask++) {
1430 if ((1u << mask) == watchpoint->length)
1431 break;
1432 }
1433 if (mask == 16) {
1434 LOG_DEBUG("unsupported watchpoint length");
1435 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1436 }
1437 if (watchpoint->address & ((1 << mask) - 1)) {
1438 LOG_DEBUG("watchpoint address is unaligned");
1439 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1440 }
1441
1442 /* Caller doesn't seem to be able to describe watching for data
1443 * values of zero; that flags "no value".
1444 *
1445 * REVISIT This DWT may well be able to watch for specific data
1446 * values. Requires comparator #1 to set DATAVMATCH and match
1447 * the data, and another comparator (DATAVADDR0) matching addr.
1448 */
1449 if (watchpoint->value) {
1450 LOG_DEBUG("data value watchpoint not YET supported");
1451 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1452 }
1453
1454 cortex_m->dwt_comp_available--;
1455 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1456
1457 return ERROR_OK;
1458 }
1459
1460 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1461 {
1462 struct cortex_m_common *cortex_m = target_to_cm(target);
1463
1464 /* REVISIT why check? DWT can be updated with core running ... */
1465 if (target->state != TARGET_HALTED) {
1466 LOG_WARNING("target not halted");
1467 return ERROR_TARGET_NOT_HALTED;
1468 }
1469
1470 if (watchpoint->set)
1471 cortex_m_unset_watchpoint(target, watchpoint);
1472
1473 cortex_m->dwt_comp_available++;
1474 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1475
1476 return ERROR_OK;
1477 }
1478
1479 void cortex_m_enable_watchpoints(struct target *target)
1480 {
1481 struct watchpoint *watchpoint = target->watchpoints;
1482
1483 /* set any pending watchpoints */
1484 while (watchpoint) {
1485 if (!watchpoint->set)
1486 cortex_m_set_watchpoint(target, watchpoint);
1487 watchpoint = watchpoint->next;
1488 }
1489 }
1490
1491 static int cortex_m_load_core_reg_u32(struct target *target,
1492 uint32_t num, uint32_t *value)
1493 {
1494 int retval;
1495
1496 /* NOTE: we "know" here that the register identifiers used
1497 * in the v7m header match the Cortex-M3 Debug Core Register
1498 * Selector values for R0..R15, xPSR, MSP, and PSP.
1499 */
1500 switch (num) {
1501 case 0 ... 18:
1502 /* read a normal core register */
1503 retval = cortexm_dap_read_coreregister_u32(target, value, num);
1504
1505 if (retval != ERROR_OK) {
1506 LOG_ERROR("JTAG failure %i", retval);
1507 return ERROR_JTAG_DEVICE_ERROR;
1508 }
1509 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1510 break;
1511
1512 case ARMV7M_FPSCR:
1513 /* Floating-point Status and Registers */
1514 retval = target_write_u32(target, DCB_DCRSR, 0x21);
1515 if (retval != ERROR_OK)
1516 return retval;
1517 retval = target_read_u32(target, DCB_DCRDR, value);
1518 if (retval != ERROR_OK)
1519 return retval;
1520 LOG_DEBUG("load from FPSCR value 0x%" PRIx32, *value);
1521 break;
1522
1523 case ARMV7M_S0 ... ARMV7M_S31:
1524 /* Floating-point Status and Registers */
1525 retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1526 if (retval != ERROR_OK)
1527 return retval;
1528 retval = target_read_u32(target, DCB_DCRDR, value);
1529 if (retval != ERROR_OK)
1530 return retval;
1531 LOG_DEBUG("load from FPU reg S%d value 0x%" PRIx32,
1532 (int)(num - ARMV7M_S0), *value);
1533 break;
1534
1535 case ARMV7M_PRIMASK:
1536 case ARMV7M_BASEPRI:
1537 case ARMV7M_FAULTMASK:
1538 case ARMV7M_CONTROL:
1539 /* Cortex-M3 packages these four registers as bitfields
1540 * in one Debug Core register. So say r0 and r2 docs;
1541 * it was removed from r1 docs, but still works.
1542 */
1543 cortexm_dap_read_coreregister_u32(target, value, 20);
1544
1545 switch (num) {
1546 case ARMV7M_PRIMASK:
1547 *value = buf_get_u32((uint8_t *)value, 0, 1);
1548 break;
1549
1550 case ARMV7M_BASEPRI:
1551 *value = buf_get_u32((uint8_t *)value, 8, 8);
1552 break;
1553
1554 case ARMV7M_FAULTMASK:
1555 *value = buf_get_u32((uint8_t *)value, 16, 1);
1556 break;
1557
1558 case ARMV7M_CONTROL:
1559 *value = buf_get_u32((uint8_t *)value, 24, 2);
1560 break;
1561 }
1562
1563 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1564 break;
1565
1566 default:
1567 return ERROR_COMMAND_SYNTAX_ERROR;
1568 }
1569
1570 return ERROR_OK;
1571 }
1572
1573 static int cortex_m_store_core_reg_u32(struct target *target,
1574 uint32_t num, uint32_t value)
1575 {
1576 int retval;
1577 uint32_t reg;
1578 struct armv7m_common *armv7m = target_to_armv7m(target);
1579
1580 /* NOTE: we "know" here that the register identifiers used
1581 * in the v7m header match the Cortex-M3 Debug Core Register
1582 * Selector values for R0..R15, xPSR, MSP, and PSP.
1583 */
1584 switch (num) {
1585 case 0 ... 18:
1586 retval = cortexm_dap_write_coreregister_u32(target, value, num);
1587 if (retval != ERROR_OK) {
1588 struct reg *r;
1589
1590 LOG_ERROR("JTAG failure");
1591 r = armv7m->arm.core_cache->reg_list + num;
1592 r->dirty = r->valid;
1593 return ERROR_JTAG_DEVICE_ERROR;
1594 }
1595 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1596 break;
1597
1598 case ARMV7M_FPSCR:
1599 /* Floating-point Status and Registers */
1600 retval = target_write_u32(target, DCB_DCRDR, value);
1601 if (retval != ERROR_OK)
1602 return retval;
1603 retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1604 if (retval != ERROR_OK)
1605 return retval;
1606 LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1607 break;
1608
1609 case ARMV7M_S0 ... ARMV7M_S31:
1610 /* Floating-point Status and Registers */
1611 retval = target_write_u32(target, DCB_DCRDR, value);
1612 if (retval != ERROR_OK)
1613 return retval;
1614 retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1615 if (retval != ERROR_OK)
1616 return retval;
1617 LOG_DEBUG("write FPU reg S%d value 0x%" PRIx32,
1618 (int)(num - ARMV7M_S0), value);
1619 break;
1620
1621 case ARMV7M_PRIMASK:
1622 case ARMV7M_BASEPRI:
1623 case ARMV7M_FAULTMASK:
1624 case ARMV7M_CONTROL:
1625 /* Cortex-M3 packages these four registers as bitfields
1626 * in one Debug Core register. So say r0 and r2 docs;
1627 * it was removed from r1 docs, but still works.
1628 */
1629 cortexm_dap_read_coreregister_u32(target, &reg, 20);
1630
1631 switch (num) {
1632 case ARMV7M_PRIMASK:
1633 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1634 break;
1635
1636 case ARMV7M_BASEPRI:
1637 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1638 break;
1639
1640 case ARMV7M_FAULTMASK:
1641 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1642 break;
1643
1644 case ARMV7M_CONTROL:
1645 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1646 break;
1647 }
1648
1649 cortexm_dap_write_coreregister_u32(target, reg, 20);
1650
1651 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1652 break;
1653
1654 default:
1655 return ERROR_COMMAND_SYNTAX_ERROR;
1656 }
1657
1658 return ERROR_OK;
1659 }
1660
1661 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1662 uint32_t size, uint32_t count, uint8_t *buffer)
1663 {
1664 struct armv7m_common *armv7m = target_to_armv7m(target);
1665
1666 if (armv7m->arm.is_armv6m) {
1667 /* armv6m does not handle unaligned memory access */
1668 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1669 return ERROR_TARGET_UNALIGNED_ACCESS;
1670 }
1671
1672 return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1673 }
1674
1675 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1676 uint32_t size, uint32_t count, const uint8_t *buffer)
1677 {
1678 struct armv7m_common *armv7m = target_to_armv7m(target);
1679
1680 if (armv7m->arm.is_armv6m) {
1681 /* armv6m does not handle unaligned memory access */
1682 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1683 return ERROR_TARGET_UNALIGNED_ACCESS;
1684 }
1685
1686 return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1687 }
1688
1689 static int cortex_m_init_target(struct command_context *cmd_ctx,
1690 struct target *target)
1691 {
1692 armv7m_build_reg_cache(target);
1693 arm_semihosting_init(target);
1694 return ERROR_OK;
1695 }
1696
1697 void cortex_m_deinit_target(struct target *target)
1698 {
1699 struct cortex_m_common *cortex_m = target_to_cm(target);
1700
1701 free(cortex_m->fp_comparator_list);
1702
1703 cortex_m_dwt_free(target);
1704 armv7m_free_reg_cache(target);
1705
1706 free(target->private_config);
1707 free(cortex_m);
1708 }
1709
1710 int cortex_m_profiling(struct target *target, uint32_t *samples,
1711 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1712 {
1713 struct timeval timeout, now;
1714 struct armv7m_common *armv7m = target_to_armv7m(target);
1715 uint32_t reg_value;
1716 bool use_pcsr = false;
1717 int retval = ERROR_OK;
1718 struct reg *reg;
1719
1720 gettimeofday(&timeout, NULL);
1721 timeval_add_time(&timeout, seconds, 0);
1722
1723 retval = target_read_u32(target, DWT_PCSR, &reg_value);
1724 if (retval != ERROR_OK) {
1725 LOG_ERROR("Error while reading PCSR");
1726 return retval;
1727 }
1728
1729 if (reg_value != 0) {
1730 use_pcsr = true;
1731 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1732 } else {
1733 LOG_INFO("Starting profiling. Halting and resuming the"
1734 " target as often as we can...");
1735 reg = register_get_by_name(target->reg_cache, "pc", 1);
1736 }
1737
1738 /* Make sure the target is running */
1739 target_poll(target);
1740 if (target->state == TARGET_HALTED)
1741 retval = target_resume(target, 1, 0, 0, 0);
1742
1743 if (retval != ERROR_OK) {
1744 LOG_ERROR("Error while resuming target");
1745 return retval;
1746 }
1747
1748 uint32_t sample_count = 0;
1749
1750 for (;;) {
1751 if (use_pcsr) {
1752 if (armv7m && armv7m->debug_ap) {
1753 uint32_t read_count = max_num_samples - sample_count;
1754 if (read_count > 1024)
1755 read_count = 1024;
1756
1757 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1758 (void *)&samples[sample_count],
1759 4, read_count, DWT_PCSR);
1760 sample_count += read_count;
1761 } else {
1762 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1763 }
1764 } else {
1765 target_poll(target);
1766 if (target->state == TARGET_HALTED) {
1767 reg_value = buf_get_u32(reg->value, 0, 32);
1768 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1769 retval = target_resume(target, 1, 0, 0, 0);
1770 samples[sample_count++] = reg_value;
1771 target_poll(target);
1772 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1773 } else if (target->state == TARGET_RUNNING) {
1774 /* We want to quickly sample the PC. */
1775 retval = target_halt(target);
1776 } else {
1777 LOG_INFO("Target not halted or running");
1778 retval = ERROR_OK;
1779 break;
1780 }
1781 }
1782
1783 if (retval != ERROR_OK) {
1784 LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1785 return retval;
1786 }
1787
1788
1789 gettimeofday(&now, NULL);
1790 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1791 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1792 break;
1793 }
1794 }
1795
1796 *num_samples = sample_count;
1797 return retval;
1798 }
1799
1800
1801 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1802 * on r/w if the core is not running, and clear on resume or reset ... or
1803 * at least, in a post_restore_context() method.
1804 */
1805
1806 struct dwt_reg_state {
1807 struct target *target;
1808 uint32_t addr;
1809 uint8_t value[4]; /* scratch/cache */
1810 };
1811
1812 static int cortex_m_dwt_get_reg(struct reg *reg)
1813 {
1814 struct dwt_reg_state *state = reg->arch_info;
1815
1816 uint32_t tmp;
1817 int retval = target_read_u32(state->target, state->addr, &tmp);
1818 if (retval != ERROR_OK)
1819 return retval;
1820
1821 buf_set_u32(state->value, 0, 32, tmp);
1822 return ERROR_OK;
1823 }
1824
1825 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1826 {
1827 struct dwt_reg_state *state = reg->arch_info;
1828
1829 return target_write_u32(state->target, state->addr,
1830 buf_get_u32(buf, 0, reg->size));
1831 }
1832
1833 struct dwt_reg {
1834 uint32_t addr;
1835 char *name;
1836 unsigned size;
1837 };
1838
1839 static struct dwt_reg dwt_base_regs[] = {
1840 { DWT_CTRL, "dwt_ctrl", 32, },
1841 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1842 * increments while the core is asleep.
1843 */
1844 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1845 /* plus some 8 bit counters, useful for profiling with TPIU */
1846 };
1847
1848 static struct dwt_reg dwt_comp[] = {
1849 #define DWT_COMPARATOR(i) \
1850 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1851 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1852 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1853 DWT_COMPARATOR(0),
1854 DWT_COMPARATOR(1),
1855 DWT_COMPARATOR(2),
1856 DWT_COMPARATOR(3),
1857 #undef DWT_COMPARATOR
1858 };
1859
1860 static const struct reg_arch_type dwt_reg_type = {
1861 .get = cortex_m_dwt_get_reg,
1862 .set = cortex_m_dwt_set_reg,
1863 };
1864
1865 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1866 {
1867 struct dwt_reg_state *state;
1868
1869 state = calloc(1, sizeof *state);
1870 if (!state)
1871 return;
1872 state->addr = d->addr;
1873 state->target = t;
1874
1875 r->name = d->name;
1876 r->size = d->size;
1877 r->value = state->value;
1878 r->arch_info = state;
1879 r->type = &dwt_reg_type;
1880 }
1881
1882 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1883 {
1884 uint32_t dwtcr;
1885 struct reg_cache *cache;
1886 struct cortex_m_dwt_comparator *comparator;
1887 int reg, i;
1888
1889 target_read_u32(target, DWT_CTRL, &dwtcr);
1890 if (!dwtcr) {
1891 LOG_DEBUG("no DWT");
1892 return;
1893 }
1894
1895 cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1896 cm->dwt_comp_available = cm->dwt_num_comp;
1897 cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1898 sizeof(struct cortex_m_dwt_comparator));
1899 if (!cm->dwt_comparator_list) {
1900 fail0:
1901 cm->dwt_num_comp = 0;
1902 LOG_ERROR("out of mem");
1903 return;
1904 }
1905
1906 cache = calloc(1, sizeof *cache);
1907 if (!cache) {
1908 fail1:
1909 free(cm->dwt_comparator_list);
1910 goto fail0;
1911 }
1912 cache->name = "Cortex-M DWT registers";
1913 cache->num_regs = 2 + cm->dwt_num_comp * 3;
1914 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1915 if (!cache->reg_list) {
1916 free(cache);
1917 goto fail1;
1918 }
1919
1920 for (reg = 0; reg < 2; reg++)
1921 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1922 dwt_base_regs + reg);
1923
1924 comparator = cm->dwt_comparator_list;
1925 for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1926 int j;
1927
1928 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1929 for (j = 0; j < 3; j++, reg++)
1930 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1931 dwt_comp + 3 * i + j);
1932
1933 /* make sure we clear any watchpoints enabled on the target */
1934 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1935 }
1936
1937 *register_get_last_cache_p(&target->reg_cache) = cache;
1938 cm->dwt_cache = cache;
1939
1940 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1941 dwtcr, cm->dwt_num_comp,
1942 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1943
1944 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1945 * implement single-address data value watchpoints ... so we
1946 * won't need to check it later, when asked to set one up.
1947 */
1948 }
1949
1950 static void cortex_m_dwt_free(struct target *target)
1951 {
1952 struct cortex_m_common *cm = target_to_cm(target);
1953 struct reg_cache *cache = cm->dwt_cache;
1954
1955 free(cm->dwt_comparator_list);
1956 cm->dwt_comparator_list = NULL;
1957 cm->dwt_num_comp = 0;
1958
1959 if (cache) {
1960 register_unlink_cache(&target->reg_cache, cache);
1961
1962 if (cache->reg_list) {
1963 for (size_t i = 0; i < cache->num_regs; i++)
1964 free(cache->reg_list[i].arch_info);
1965 free(cache->reg_list);
1966 }
1967 free(cache);
1968 }
1969 cm->dwt_cache = NULL;
1970 }
1971
1972 #define MVFR0 0xe000ef40
1973 #define MVFR1 0xe000ef44
1974
1975 #define MVFR0_DEFAULT_M4 0x10110021
1976 #define MVFR1_DEFAULT_M4 0x11000011
1977
1978 #define MVFR0_DEFAULT_M7_SP 0x10110021
1979 #define MVFR0_DEFAULT_M7_DP 0x10110221
1980 #define MVFR1_DEFAULT_M7_SP 0x11000011
1981 #define MVFR1_DEFAULT_M7_DP 0x12000011
1982
1983 int cortex_m_examine(struct target *target)
1984 {
1985 int retval;
1986 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1987 int i;
1988 struct cortex_m_common *cortex_m = target_to_cm(target);
1989 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1990 struct armv7m_common *armv7m = target_to_armv7m(target);
1991
1992 /* stlink shares the examine handler but does not support
1993 * all its calls */
1994 if (!armv7m->stlink) {
1995 if (cortex_m->apsel < 0) {
1996 /* Search for the MEM-AP */
1997 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
1998 if (retval != ERROR_OK) {
1999 LOG_ERROR("Could not find MEM-AP to control the core");
2000 return retval;
2001 }
2002 } else {
2003 armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
2004 }
2005
2006 /* Leave (only) generic DAP stuff for debugport_init(); */
2007 armv7m->debug_ap->memaccess_tck = 8;
2008
2009 retval = mem_ap_init(armv7m->debug_ap);
2010 if (retval != ERROR_OK)
2011 return retval;
2012 }
2013
2014 if (!target_was_examined(target)) {
2015 target_set_examined(target);
2016
2017 /* Read from Device Identification Registers */
2018 retval = target_read_u32(target, CPUID, &cpuid);
2019 if (retval != ERROR_OK)
2020 return retval;
2021
2022 /* Get CPU Type */
2023 i = (cpuid >> 4) & 0xf;
2024
2025 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2026 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2027 if (i == 7) {
2028 uint8_t rev, patch;
2029 rev = (cpuid >> 20) & 0xf;
2030 patch = (cpuid >> 0) & 0xf;
2031 if ((rev == 0) && (patch < 2))
2032 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
2033 }
2034 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2035
2036 if (i == 4) {
2037 target_read_u32(target, MVFR0, &mvfr0);
2038 target_read_u32(target, MVFR1, &mvfr1);
2039
2040 /* test for floating point feature on Cortex-M4 */
2041 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2042 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2043 armv7m->fp_feature = FPv4_SP;
2044 }
2045 } else if (i == 7) {
2046 target_read_u32(target, MVFR0, &mvfr0);
2047 target_read_u32(target, MVFR1, &mvfr1);
2048
2049 /* test for floating point features on Cortex-M7 */
2050 if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2051 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2052 armv7m->fp_feature = FPv5_SP;
2053 } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2054 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2055 armv7m->fp_feature = FPv5_DP;
2056 }
2057 } else if (i == 0) {
2058 /* Cortex-M0 does not support unaligned memory access */
2059 armv7m->arm.is_armv6m = true;
2060 }
2061
2062 if (armv7m->fp_feature == FP_NONE &&
2063 armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2064 /* free unavailable FPU registers */
2065 size_t idx;
2066
2067 for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2068 idx < armv7m->arm.core_cache->num_regs;
2069 idx++) {
2070 free(armv7m->arm.core_cache->reg_list[idx].value);
2071 free(armv7m->arm.core_cache->reg_list[idx].feature);
2072 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2073 }
2074 armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2075 }
2076
2077 if (!armv7m->stlink) {
2078 if (i == 3 || i == 4)
2079 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2080 * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2081 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2082 else if (i == 7)
2083 /* Cortex-M7 has only 1024 bytes autoincrement range */
2084 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2085 }
2086
2087 /* Configure trace modules */
2088 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2089 if (retval != ERROR_OK)
2090 return retval;
2091
2092 if (armv7m->trace_config.config_type != DISABLED) {
2093 armv7m_trace_tpiu_config(target);
2094 armv7m_trace_itm_config(target);
2095 }
2096
2097 /* NOTE: FPB and DWT are both optional. */
2098
2099 /* Setup FPB */
2100 target_read_u32(target, FP_CTRL, &fpcr);
2101 cortex_m->auto_bp_type = 1;
2102 /* bits [14:12] and [7:4] */
2103 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2104 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2105 cortex_m->fp_code_available = cortex_m->fp_num_code;
2106 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2107 Revision is zero base, fp_rev == 1 means Rev.2 ! */
2108 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2109 free(cortex_m->fp_comparator_list);
2110 cortex_m->fp_comparator_list = calloc(
2111 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2112 sizeof(struct cortex_m_fp_comparator));
2113 cortex_m->fpb_enabled = fpcr & 1;
2114 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2115 cortex_m->fp_comparator_list[i].type =
2116 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2117 cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2118
2119 /* make sure we clear any breakpoints enabled on the target */
2120 target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2121 }
2122 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2123 fpcr,
2124 cortex_m->fp_num_code,
2125 cortex_m->fp_num_lit);
2126
2127 /* Setup DWT */
2128 cortex_m_dwt_free(target);
2129 cortex_m_dwt_setup(cortex_m, target);
2130
2131 /* These hardware breakpoints only work for code in flash! */
2132 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2133 target_name(target),
2134 cortex_m->fp_num_code,
2135 cortex_m->dwt_num_comp);
2136 }
2137
2138 return ERROR_OK;
2139 }
2140
2141 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2142 {
2143 struct armv7m_common *armv7m = target_to_armv7m(target);
2144 uint16_t dcrdr;
2145 uint8_t buf[2];
2146 int retval;
2147
2148 retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2149 if (retval != ERROR_OK)
2150 return retval;
2151
2152 dcrdr = target_buffer_get_u16(target, buf);
2153 *ctrl = (uint8_t)dcrdr;
2154 *value = (uint8_t)(dcrdr >> 8);
2155
2156 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2157
2158 /* write ack back to software dcc register
2159 * signify we have read data */
2160 if (dcrdr & (1 << 0)) {
2161 target_buffer_set_u16(target, buf, 0);
2162 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2163 if (retval != ERROR_OK)
2164 return retval;
2165 }
2166
2167 return ERROR_OK;
2168 }
2169
2170 static int cortex_m_target_request_data(struct target *target,
2171 uint32_t size, uint8_t *buffer)
2172 {
2173 uint8_t data;
2174 uint8_t ctrl;
2175 uint32_t i;
2176
2177 for (i = 0; i < (size * 4); i++) {
2178 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2179 if (retval != ERROR_OK)
2180 return retval;
2181 buffer[i] = data;
2182 }
2183
2184 return ERROR_OK;
2185 }
2186
2187 static int cortex_m_handle_target_request(void *priv)
2188 {
2189 struct target *target = priv;
2190 if (!target_was_examined(target))
2191 return ERROR_OK;
2192
2193 if (!target->dbg_msg_enabled)
2194 return ERROR_OK;
2195
2196 if (target->state == TARGET_RUNNING) {
2197 uint8_t data;
2198 uint8_t ctrl;
2199 int retval;
2200
2201 retval = cortex_m_dcc_read(target, &data, &ctrl);
2202 if (retval != ERROR_OK)
2203 return retval;
2204
2205 /* check if we have data */
2206 if (ctrl & (1 << 0)) {
2207 uint32_t request;
2208
2209 /* we assume target is quick enough */
2210 request = data;
2211 for (int i = 1; i <= 3; i++) {
2212 retval = cortex_m_dcc_read(target, &data, &ctrl);
2213 if (retval != ERROR_OK)
2214 return retval;
2215 request |= ((uint32_t)data << (i * 8));
2216 }
2217 target_request(target, request);
2218 }
2219 }
2220
2221 return ERROR_OK;
2222 }
2223
2224 static int cortex_m_init_arch_info(struct target *target,
2225 struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2226 {
2227 struct armv7m_common *armv7m = &cortex_m->armv7m;
2228
2229 armv7m_init_arch_info(target, armv7m);
2230
2231 /* default reset mode is to use srst if fitted
2232 * if not it will use CORTEX_M3_RESET_VECTRESET */
2233 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2234
2235 armv7m->arm.dap = dap;
2236
2237 /* register arch-specific functions */
2238 armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2239
2240 armv7m->post_debug_entry = NULL;
2241
2242 armv7m->pre_restore_context = NULL;
2243
2244 armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2245 armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2246
2247 target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2248
2249 return ERROR_OK;
2250 }
2251
2252 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2253 {
2254 struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2255 cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2256 struct adiv5_private_config *pc;
2257
2258 pc = (struct adiv5_private_config *)target->private_config;
2259 if (adiv5_verify_config(pc) != ERROR_OK)
2260 return ERROR_FAIL;
2261
2262 cortex_m->apsel = pc->ap_num;
2263
2264 cortex_m_init_arch_info(target, cortex_m, pc->dap);
2265
2266 return ERROR_OK;
2267 }
2268
2269 /*--------------------------------------------------------------------------*/
2270
2271 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2272 struct cortex_m_common *cm)
2273 {
2274 if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2275 command_print(cmd_ctx, "target is not a Cortex-M");
2276 return ERROR_TARGET_INVALID;
2277 }
2278 return ERROR_OK;
2279 }
2280
2281 /*
2282 * Only stuff below this line should need to verify that its target
2283 * is a Cortex-M3. Everything else should have indirected through the
2284 * cortexm3_target structure, which is only used with CM3 targets.
2285 */
2286
2287 static const struct {
2288 char name[10];
2289 unsigned mask;
2290 } vec_ids[] = {
2291 { "hard_err", VC_HARDERR, },
2292 { "int_err", VC_INTERR, },
2293 { "bus_err", VC_BUSERR, },
2294 { "state_err", VC_STATERR, },
2295 { "chk_err", VC_CHKERR, },
2296 { "nocp_err", VC_NOCPERR, },
2297 { "mm_err", VC_MMERR, },
2298 { "reset", VC_CORERESET, },
2299 };
2300
2301 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2302 {
2303 struct target *target = get_current_target(CMD_CTX);
2304 struct cortex_m_common *cortex_m = target_to_cm(target);
2305 struct armv7m_common *armv7m = &cortex_m->armv7m;
2306 uint32_t demcr = 0;
2307 int retval;
2308
2309 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2310 if (retval != ERROR_OK)
2311 return retval;
2312
2313 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2314 if (retval != ERROR_OK)
2315 return retval;
2316
2317 if (CMD_ARGC > 0) {
2318 unsigned catch = 0;
2319
2320 if (CMD_ARGC == 1) {
2321 if (strcmp(CMD_ARGV[0], "all") == 0) {
2322 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2323 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2324 | VC_MMERR | VC_CORERESET;
2325 goto write;
2326 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2327 goto write;
2328 }
2329 while (CMD_ARGC-- > 0) {
2330 unsigned i;
2331 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2332 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2333 continue;
2334 catch |= vec_ids[i].mask;
2335 break;
2336 }
2337 if (i == ARRAY_SIZE(vec_ids)) {
2338 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2339 return ERROR_COMMAND_SYNTAX_ERROR;
2340 }
2341 }
2342 write:
2343 /* For now, armv7m->demcr only stores vector catch flags. */
2344 armv7m->demcr = catch;
2345
2346 demcr &= ~0xffff;
2347 demcr |= catch;
2348
2349 /* write, but don't assume it stuck (why not??) */
2350 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2351 if (retval != ERROR_OK)
2352 return retval;
2353 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2354 if (retval != ERROR_OK)
2355 return retval;
2356
2357 /* FIXME be sure to clear DEMCR on clean server shutdown.
2358 * Otherwise the vector catch hardware could fire when there's
2359 * no debugger hooked up, causing much confusion...
2360 */
2361 }
2362
2363 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2364 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2365 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2366 }
2367
2368 return ERROR_OK;
2369 }
2370
2371 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2372 {
2373 struct target *target = get_current_target(CMD_CTX);
2374 struct cortex_m_common *cortex_m = target_to_cm(target);
2375 int retval;
2376
2377 static const Jim_Nvp nvp_maskisr_modes[] = {
2378 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2379 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2380 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2381 { .name = NULL, .value = -1 },
2382 };
2383 const Jim_Nvp *n;
2384
2385
2386 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2387 if (retval != ERROR_OK)
2388 return retval;
2389
2390 if (target->state != TARGET_HALTED) {
2391 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2392 return ERROR_OK;
2393 }
2394
2395 if (CMD_ARGC > 0) {
2396 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2397 if (n->name == NULL)
2398 return ERROR_COMMAND_SYNTAX_ERROR;
2399 cortex_m->isrmasking_mode = n->value;
2400
2401
2402 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2403 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2404 else
2405 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2406 }
2407
2408 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2409 command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2410
2411 return ERROR_OK;
2412 }
2413
2414 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2415 {
2416 struct target *target = get_current_target(CMD_CTX);
2417 struct cortex_m_common *cortex_m = target_to_cm(target);
2418 int retval;
2419 char *reset_config;
2420
2421 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2422 if (retval != ERROR_OK)
2423 return retval;
2424
2425 if (CMD_ARGC > 0) {
2426 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2427 cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2428 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2429 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2430 }
2431
2432 switch (cortex_m->soft_reset_config) {
2433 case CORTEX_M_RESET_SYSRESETREQ:
2434 reset_config = "sysresetreq";
2435 break;
2436
2437 case CORTEX_M_RESET_VECTRESET:
2438 reset_config = "vectreset";
2439 break;
2440
2441 default:
2442 reset_config = "unknown";
2443 break;
2444 }
2445
2446 command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2447
2448 return ERROR_OK;
2449 }
2450
2451 static const struct command_registration cortex_m_exec_command_handlers[] = {
2452 {
2453 .name = "maskisr",
2454 .handler = handle_cortex_m_mask_interrupts_command,
2455 .mode = COMMAND_EXEC,
2456 .help = "mask cortex_m interrupts",
2457 .usage = "['auto'|'on'|'off']",
2458 },
2459 {
2460 .name = "vector_catch",
2461 .handler = handle_cortex_m_vector_catch_command,
2462 .mode = COMMAND_EXEC,
2463 .help = "configure hardware vectors to trigger debug entry",
2464 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2465 },
2466 {
2467 .name = "reset_config",
2468 .handler = handle_cortex_m_reset_config_command,
2469 .mode = COMMAND_ANY,
2470 .help = "configure software reset handling",
2471 .usage = "['srst'|'sysresetreq'|'vectreset']",
2472 },
2473 COMMAND_REGISTRATION_DONE
2474 };
2475 static const struct command_registration cortex_m_command_handlers[] = {
2476 {
2477 .chain = armv7m_command_handlers,
2478 },
2479 {
2480 .chain = armv7m_trace_command_handlers,
2481 },
2482 {
2483 .name = "cortex_m",
2484 .mode = COMMAND_EXEC,
2485 .help = "Cortex-M command group",
2486 .usage = "",
2487 .chain = cortex_m_exec_command_handlers,
2488 },
2489 COMMAND_REGISTRATION_DONE
2490 };
2491
2492 struct target_type cortexm_target = {
2493 .name = "cortex_m",
2494 .deprecated_name = "cortex_m3",
2495
2496 .poll = cortex_m_poll,
2497 .arch_state = armv7m_arch_state,
2498
2499 .target_request_data = cortex_m_target_request_data,
2500
2501 .halt = cortex_m_halt,
2502 .resume = cortex_m_resume,
2503 .step = cortex_m_step,
2504
2505 .assert_reset = cortex_m_assert_reset,
2506 .deassert_reset = cortex_m_deassert_reset,
2507 .soft_reset_halt = cortex_m_soft_reset_halt,
2508
2509 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2510
2511 .read_memory = cortex_m_read_memory,
2512 .write_memory = cortex_m_write_memory,
2513 .checksum_memory = armv7m_checksum_memory,
2514 .blank_check_memory = armv7m_blank_check_memory,
2515
2516 .run_algorithm = armv7m_run_algorithm,
2517 .start_algorithm = armv7m_start_algorithm,
2518 .wait_algorithm = armv7m_wait_algorithm,
2519
2520 .add_breakpoint = cortex_m_add_breakpoint,
2521 .remove_breakpoint = cortex_m_remove_breakpoint,
2522 .add_watchpoint = cortex_m_add_watchpoint,
2523 .remove_watchpoint = cortex_m_remove_watchpoint,
2524
2525 .commands = cortex_m_command_handlers,
2526 .target_create = cortex_m_target_create,
2527 .target_jim_configure = adiv5_jim_configure,
2528 .init_target = cortex_m_init_target,
2529 .examine = cortex_m_examine,
2530 .deinit_target = cortex_m_deinit_target,
2531
2532 .profiling = cortex_m_profiling,
2533 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)