armv7m: use generic register core_cache
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 * *
26 * *
27 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
28 * *
29 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
44
45 /* NOTE: most of this should work fine for the Cortex-M1 and
46 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47 * Some differences: M0/M1 doesn't have FBP remapping or the
48 * DWT tracing/profiling support. (So the cycle counter will
49 * not be usable; the other stuff isn't currently used here.)
50 *
51 * Although there are some workarounds for errata seen only in r0p0
52 * silicon, such old parts are hard to find and thus not much tested
53 * any longer.
54 */
55
56 /**
57 * Returns the type of a break point required by address location
58 */
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
60
61
62 /* forward declarations */
63 static int cortex_m3_store_core_reg_u32(struct target *target,
64 uint32_t num, uint32_t value);
65
66 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
67 uint32_t *value, int regnum)
68 {
69 int retval;
70 uint32_t dcrdr;
71
72 /* because the DCB_DCRDR is used for the emulated dcc channel
73 * we have to save/restore the DCB_DCRDR when used */
74
75 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
76 if (retval != ERROR_OK)
77 return retval;
78
79 /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
80 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
81 if (retval != ERROR_OK)
82 return retval;
83 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
84 if (retval != ERROR_OK)
85 return retval;
86
87 /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
88 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
89 if (retval != ERROR_OK)
90 return retval;
91 retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
92 if (retval != ERROR_OK)
93 return retval;
94
95 retval = dap_run(swjdp);
96 if (retval != ERROR_OK)
97 return retval;
98
99 /* restore DCB_DCRDR - this needs to be in a seperate
100 * transaction otherwise the emulated DCC channel breaks */
101 if (retval == ERROR_OK)
102 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
103
104 return retval;
105 }
106
107 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
108 uint32_t value, int regnum)
109 {
110 int retval;
111 uint32_t dcrdr;
112
113 /* because the DCB_DCRDR is used for the emulated dcc channel
114 * we have to save/restore the DCB_DCRDR when used */
115
116 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
117 if (retval != ERROR_OK)
118 return retval;
119
120 /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
121 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
122 if (retval != ERROR_OK)
123 return retval;
124 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
125 if (retval != ERROR_OK)
126 return retval;
127
128 /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
129 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
130 if (retval != ERROR_OK)
131 return retval;
132 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
133 if (retval != ERROR_OK)
134 return retval;
135
136 retval = dap_run(swjdp);
137 if (retval != ERROR_OK)
138 return retval;
139
140 /* restore DCB_DCRDR - this needs to be in a seperate
141 * transaction otherwise the emulated DCC channel breaks */
142 if (retval == ERROR_OK)
143 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
144
145 return retval;
146 }
147
148 static int cortex_m3_write_debug_halt_mask(struct target *target,
149 uint32_t mask_on, uint32_t mask_off)
150 {
151 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
152 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
153
154 /* mask off status bits */
155 cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
156 /* create new register mask */
157 cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
158
159 return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
160 }
161
162 static int cortex_m3_clear_halt(struct target *target)
163 {
164 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
165 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
166 int retval;
167
168 /* clear step if any */
169 cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
170
171 /* Read Debug Fault Status Register */
172 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
173 if (retval != ERROR_OK)
174 return retval;
175
176 /* Clear Debug Fault Status */
177 retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
178 if (retval != ERROR_OK)
179 return retval;
180 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
181
182 return ERROR_OK;
183 }
184
185 static int cortex_m3_single_step_core(struct target *target)
186 {
187 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
189 uint32_t dhcsr_save;
190 int retval;
191
192 /* backup dhcsr reg */
193 dhcsr_save = cortex_m3->dcb_dhcsr;
194
195 /* Mask interrupts before clearing halt, if done already. This avoids
196 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
197 * HALT can put the core into an unknown state.
198 */
199 if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
200 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202 if (retval != ERROR_OK)
203 return retval;
204 }
205 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207 if (retval != ERROR_OK)
208 return retval;
209 LOG_DEBUG(" ");
210
211 /* restore dhcsr reg */
212 cortex_m3->dcb_dhcsr = dhcsr_save;
213 cortex_m3_clear_halt(target);
214
215 return ERROR_OK;
216 }
217
218 static int cortex_m3_endreset_event(struct target *target)
219 {
220 int i;
221 int retval;
222 uint32_t dcb_demcr;
223 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224 struct armv7m_common *armv7m = &cortex_m3->armv7m;
225 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
226 struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227 struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
228
229 /* REVISIT The four debug monitor bits are currently ignored... */
230 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231 if (retval != ERROR_OK)
232 return retval;
233 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
234
235 /* this register is used for emulated dcc channel */
236 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 /* Enable debug requests */
241 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242 if (retval != ERROR_OK)
243 return retval;
244 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
245 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246 if (retval != ERROR_OK)
247 return retval;
248 }
249
250 /* clear any interrupt masking */
251 cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
252
253 /* Enable features controlled by ITM and DWT blocks, and catch only
254 * the vectors we were told to pay attention to.
255 *
256 * Target firmware is responsible for all fault handling policy
257 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258 * or manual updates to the NVIC SHCSR and CCR registers.
259 */
260 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261 if (retval != ERROR_OK)
262 return retval;
263
264 /* Paranoia: evidently some (early?) chips don't preserve all the
265 * debug state (including FBP, DWT, etc) across reset...
266 */
267
268 /* Enable FPB */
269 retval = target_write_u32(target, FP_CTRL, 3);
270 if (retval != ERROR_OK)
271 return retval;
272
273 cortex_m3->fpb_enabled = 1;
274
275 /* Restore FPB registers */
276 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
277 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
278 if (retval != ERROR_OK)
279 return retval;
280 }
281
282 /* Restore DWT registers */
283 for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
284 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
285 dwt_list[i].comp);
286 if (retval != ERROR_OK)
287 return retval;
288 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
289 dwt_list[i].mask);
290 if (retval != ERROR_OK)
291 return retval;
292 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
293 dwt_list[i].function);
294 if (retval != ERROR_OK)
295 return retval;
296 }
297 retval = dap_run(swjdp);
298 if (retval != ERROR_OK)
299 return retval;
300
301 register_cache_invalidate(armv7m->arm.core_cache);
302
303 /* make sure we have latest dhcsr flags */
304 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
305
306 return retval;
307 }
308
309 static int cortex_m3_examine_debug_reason(struct target *target)
310 {
311 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
312
313 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
314 * only check the debug reason if we don't know it already */
315
316 if ((target->debug_reason != DBG_REASON_DBGRQ)
317 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
318 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
319 target->debug_reason = DBG_REASON_BREAKPOINT;
320 if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
321 target->debug_reason = DBG_REASON_WPTANDBKPT;
322 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
323 target->debug_reason = DBG_REASON_WATCHPOINT;
324 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
325 target->debug_reason = DBG_REASON_BREAKPOINT;
326 else /* EXTERNAL, HALTED */
327 target->debug_reason = DBG_REASON_UNDEFINED;
328 }
329
330 return ERROR_OK;
331 }
332
333 static int cortex_m3_examine_exception_reason(struct target *target)
334 {
335 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
336 struct armv7m_common *armv7m = target_to_armv7m(target);
337 struct adiv5_dap *swjdp = armv7m->arm.dap;
338 int retval;
339
340 retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
341 if (retval != ERROR_OK)
342 return retval;
343 switch (armv7m->exception_number) {
344 case 2: /* NMI */
345 break;
346 case 3: /* Hard Fault */
347 retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348 if (retval != ERROR_OK)
349 return retval;
350 if (except_sr & 0x40000000) {
351 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
352 if (retval != ERROR_OK)
353 return retval;
354 }
355 break;
356 case 4: /* Memory Management */
357 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
358 if (retval != ERROR_OK)
359 return retval;
360 retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
361 if (retval != ERROR_OK)
362 return retval;
363 break;
364 case 5: /* Bus Fault */
365 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366 if (retval != ERROR_OK)
367 return retval;
368 retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
369 if (retval != ERROR_OK)
370 return retval;
371 break;
372 case 6: /* Usage Fault */
373 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374 if (retval != ERROR_OK)
375 return retval;
376 break;
377 case 11: /* SVCall */
378 break;
379 case 12: /* Debug Monitor */
380 retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
381 if (retval != ERROR_OK)
382 return retval;
383 break;
384 case 14: /* PendSV */
385 break;
386 case 15: /* SysTick */
387 break;
388 default:
389 except_sr = 0;
390 break;
391 }
392 retval = dap_run(swjdp);
393 if (retval == ERROR_OK)
394 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
395 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
396 armv7m_exception_string(armv7m->exception_number),
397 shcsr, except_sr, cfsr, except_ar);
398 return retval;
399 }
400
401 static int cortex_m3_debug_entry(struct target *target)
402 {
403 int i;
404 uint32_t xPSR;
405 int retval;
406 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
407 struct armv7m_common *armv7m = &cortex_m3->armv7m;
408 struct arm *arm = &armv7m->arm;
409 struct adiv5_dap *swjdp = armv7m->arm.dap;
410 struct reg *r;
411
412 LOG_DEBUG(" ");
413
414 cortex_m3_clear_halt(target);
415 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
416 if (retval != ERROR_OK)
417 return retval;
418
419 retval = armv7m->examine_debug_reason(target);
420 if (retval != ERROR_OK)
421 return retval;
422
423 /* Examine target state and mode
424 * First load register accessible through core debug port */
425 int num_regs = arm->core_cache->num_regs;
426
427 for (i = 0; i < num_regs; i++) {
428 if (!armv7m->arm.core_cache->reg_list[i].valid)
429 armv7m->read_core_reg(target, i);
430 }
431
432 r = arm->core_cache->reg_list + ARMV7M_xPSR;
433 xPSR = buf_get_u32(r->value, 0, 32);
434
435 #ifdef ARMV7_GDB_HACKS
436 /* FIXME this breaks on scan chains with more than one Cortex-M3.
437 * Instead, each CM3 should have its own dummy value...
438 */
439 /* copy real xpsr reg for gdb, setting thumb bit */
440 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
441 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
442 armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
443 armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
444 #endif
445
446 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
447 if (xPSR & 0xf00) {
448 r->dirty = r->valid;
449 cortex_m3_store_core_reg_u32(target, 16, xPSR & ~0xff);
450 }
451
452 /* Are we in an exception handler */
453 if (xPSR & 0x1FF) {
454 armv7m->exception_number = (xPSR & 0x1FF);
455
456 arm->core_mode = ARM_MODE_HANDLER;
457 arm->map = armv7m_msp_reg_map;
458 } else {
459 unsigned control = buf_get_u32(arm->core_cache
460 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
461
462 /* is this thread privileged? */
463 arm->core_mode = control & 1
464 ? ARM_MODE_USER_THREAD
465 : ARM_MODE_THREAD;
466
467 /* which stack is it using? */
468 if (control & 2)
469 arm->map = armv7m_psp_reg_map;
470 else
471 arm->map = armv7m_msp_reg_map;
472
473 armv7m->exception_number = 0;
474 }
475
476 if (armv7m->exception_number)
477 cortex_m3_examine_exception_reason(target);
478
479 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
480 arm_mode_name(arm->core_mode),
481 *(uint32_t *)(arm->pc->value),
482 target_state_name(target));
483
484 if (armv7m->post_debug_entry) {
485 retval = armv7m->post_debug_entry(target);
486 if (retval != ERROR_OK)
487 return retval;
488 }
489
490 return ERROR_OK;
491 }
492
493 static int cortex_m3_poll(struct target *target)
494 {
495 int detected_failure = ERROR_OK;
496 int retval = ERROR_OK;
497 enum target_state prev_target_state = target->state;
498 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
499 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
500
501 /* Read from Debug Halting Control and Status Register */
502 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
503 if (retval != ERROR_OK) {
504 target->state = TARGET_UNKNOWN;
505 return retval;
506 }
507
508 /* Recover from lockup. See ARMv7-M architecture spec,
509 * section B1.5.15 "Unrecoverable exception cases".
510 */
511 if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
512 LOG_ERROR("%s -- clearing lockup after double fault",
513 target_name(target));
514 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
515 target->debug_reason = DBG_REASON_DBGRQ;
516
517 /* We have to execute the rest (the "finally" equivalent, but
518 * still throw this exception again).
519 */
520 detected_failure = ERROR_FAIL;
521
522 /* refresh status bits */
523 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
524 if (retval != ERROR_OK)
525 return retval;
526 }
527
528 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
529 /* check if still in reset */
530 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
531 if (retval != ERROR_OK)
532 return retval;
533
534 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
535 target->state = TARGET_RESET;
536 return ERROR_OK;
537 }
538 }
539
540 if (target->state == TARGET_RESET) {
541 /* Cannot switch context while running so endreset is
542 * called with target->state == TARGET_RESET
543 */
544 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
545 cortex_m3->dcb_dhcsr);
546 cortex_m3_endreset_event(target);
547 target->state = TARGET_RUNNING;
548 prev_target_state = TARGET_RUNNING;
549 }
550
551 if (cortex_m3->dcb_dhcsr & S_HALT) {
552 target->state = TARGET_HALTED;
553
554 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
555 retval = cortex_m3_debug_entry(target);
556 if (retval != ERROR_OK)
557 return retval;
558
559 if (arm_semihosting(target, &retval) != 0)
560 return retval;
561
562 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
563 }
564 if (prev_target_state == TARGET_DEBUG_RUNNING) {
565 LOG_DEBUG(" ");
566 retval = cortex_m3_debug_entry(target);
567 if (retval != ERROR_OK)
568 return retval;
569
570 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
571 }
572 }
573
574 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
575 * How best to model low power modes?
576 */
577
578 if (target->state == TARGET_UNKNOWN) {
579 /* check if processor is retiring instructions */
580 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
581 target->state = TARGET_RUNNING;
582 retval = ERROR_OK;
583 }
584 }
585
586 /* Did we detect a failure condition that we cleared? */
587 if (detected_failure != ERROR_OK)
588 retval = detected_failure;
589 return retval;
590 }
591
592 static int cortex_m3_halt(struct target *target)
593 {
594 LOG_DEBUG("target->state: %s",
595 target_state_name(target));
596
597 if (target->state == TARGET_HALTED) {
598 LOG_DEBUG("target was already halted");
599 return ERROR_OK;
600 }
601
602 if (target->state == TARGET_UNKNOWN)
603 LOG_WARNING("target was in unknown state when halt was requested");
604
605 if (target->state == TARGET_RESET) {
606 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
607 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
608 return ERROR_TARGET_FAILURE;
609 } else {
610 /* we came here in a reset_halt or reset_init sequence
611 * debug entry was already prepared in cortex_m3_assert_reset()
612 */
613 target->debug_reason = DBG_REASON_DBGRQ;
614
615 return ERROR_OK;
616 }
617 }
618
619 /* Write to Debug Halting Control and Status Register */
620 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
621
622 target->debug_reason = DBG_REASON_DBGRQ;
623
624 return ERROR_OK;
625 }
626
627 static int cortex_m3_soft_reset_halt(struct target *target)
628 {
629 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
630 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
631 uint32_t dcb_dhcsr = 0;
632 int retval, timeout = 0;
633
634 /* Enter debug state on reset; restore DEMCR in endreset_event() */
635 retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
636 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
637 if (retval != ERROR_OK)
638 return retval;
639
640 /* Request a core-only reset */
641 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
642 AIRCR_VECTKEY | AIRCR_VECTRESET);
643 if (retval != ERROR_OK)
644 return retval;
645 target->state = TARGET_RESET;
646
647 /* registers are now invalid */
648 register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
649
650 while (timeout < 100) {
651 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
652 if (retval == ERROR_OK) {
653 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
654 &cortex_m3->nvic_dfsr);
655 if (retval != ERROR_OK)
656 return retval;
657 if ((dcb_dhcsr & S_HALT)
658 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
659 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
660 "DFSR 0x%08x",
661 (unsigned) dcb_dhcsr,
662 (unsigned) cortex_m3->nvic_dfsr);
663 cortex_m3_poll(target);
664 /* FIXME restore user's vector catch config */
665 return ERROR_OK;
666 } else
667 LOG_DEBUG("waiting for system reset-halt, "
668 "DHCSR 0x%08x, %d ms",
669 (unsigned) dcb_dhcsr, timeout);
670 }
671 timeout++;
672 alive_sleep(1);
673 }
674
675 return ERROR_OK;
676 }
677
678 void cortex_m3_enable_breakpoints(struct target *target)
679 {
680 struct breakpoint *breakpoint = target->breakpoints;
681
682 /* set any pending breakpoints */
683 while (breakpoint) {
684 if (!breakpoint->set)
685 cortex_m3_set_breakpoint(target, breakpoint);
686 breakpoint = breakpoint->next;
687 }
688 }
689
690 static int cortex_m3_resume(struct target *target, int current,
691 uint32_t address, int handle_breakpoints, int debug_execution)
692 {
693 struct armv7m_common *armv7m = target_to_armv7m(target);
694 struct breakpoint *breakpoint = NULL;
695 uint32_t resume_pc;
696 struct reg *r;
697
698 if (target->state != TARGET_HALTED) {
699 LOG_WARNING("target not halted");
700 return ERROR_TARGET_NOT_HALTED;
701 }
702
703 if (!debug_execution) {
704 target_free_all_working_areas(target);
705 cortex_m3_enable_breakpoints(target);
706 cortex_m3_enable_watchpoints(target);
707 }
708
709 if (debug_execution) {
710 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
711
712 /* Disable interrupts */
713 /* We disable interrupts in the PRIMASK register instead of
714 * masking with C_MASKINTS. This is probably the same issue
715 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
716 * in parallel with disabled interrupts can cause local faults
717 * to not be taken.
718 *
719 * REVISIT this clearly breaks non-debug execution, since the
720 * PRIMASK register state isn't saved/restored... workaround
721 * by never resuming app code after debug execution.
722 */
723 buf_set_u32(r->value, 0, 1, 1);
724 r->dirty = true;
725 r->valid = true;
726
727 /* Make sure we are in Thumb mode */
728 r = armv7m->arm.core_cache->reg_list + ARMV7M_xPSR;
729 buf_set_u32(r->value, 24, 1, 1);
730 r->dirty = true;
731 r->valid = true;
732 }
733
734 /* current = 1: continue on current pc, otherwise continue at <address> */
735 r = armv7m->arm.pc;
736 if (!current) {
737 buf_set_u32(r->value, 0, 32, address);
738 r->dirty = true;
739 r->valid = true;
740 }
741
742 /* if we halted last time due to a bkpt instruction
743 * then we have to manually step over it, otherwise
744 * the core will break again */
745
746 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
747 && !debug_execution)
748 armv7m_maybe_skip_bkpt_inst(target, NULL);
749
750 resume_pc = buf_get_u32(r->value, 0, 32);
751
752 armv7m_restore_context(target);
753
754 /* the front-end may request us not to handle breakpoints */
755 if (handle_breakpoints) {
756 /* Single step past breakpoint at current address */
757 breakpoint = breakpoint_find(target, resume_pc);
758 if (breakpoint) {
759 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
760 breakpoint->address,
761 breakpoint->unique_id);
762 cortex_m3_unset_breakpoint(target, breakpoint);
763 cortex_m3_single_step_core(target);
764 cortex_m3_set_breakpoint(target, breakpoint);
765 }
766 }
767
768 /* Restart core */
769 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
770
771 target->debug_reason = DBG_REASON_NOTHALTED;
772
773 /* registers are now invalid */
774 register_cache_invalidate(armv7m->arm.core_cache);
775
776 if (!debug_execution) {
777 target->state = TARGET_RUNNING;
778 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
779 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
780 } else {
781 target->state = TARGET_DEBUG_RUNNING;
782 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
783 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
784 }
785
786 return ERROR_OK;
787 }
788
789 /* int irqstepcount = 0; */
790 static int cortex_m3_step(struct target *target, int current,
791 uint32_t address, int handle_breakpoints)
792 {
793 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
794 struct armv7m_common *armv7m = &cortex_m3->armv7m;
795 struct adiv5_dap *swjdp = armv7m->arm.dap;
796 struct breakpoint *breakpoint = NULL;
797 struct reg *pc = armv7m->arm.pc;
798 bool bkpt_inst_found = false;
799 int retval;
800 bool isr_timed_out = false;
801
802 if (target->state != TARGET_HALTED) {
803 LOG_WARNING("target not halted");
804 return ERROR_TARGET_NOT_HALTED;
805 }
806
807 /* current = 1: continue on current pc, otherwise continue at <address> */
808 if (!current)
809 buf_set_u32(pc->value, 0, 32, address);
810
811 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
812
813 /* the front-end may request us not to handle breakpoints */
814 if (handle_breakpoints) {
815 breakpoint = breakpoint_find(target, pc_value);
816 if (breakpoint)
817 cortex_m3_unset_breakpoint(target, breakpoint);
818 }
819
820 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
821
822 target->debug_reason = DBG_REASON_SINGLESTEP;
823
824 armv7m_restore_context(target);
825
826 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
827
828 /* if no bkpt instruction is found at pc then we can perform
829 * a normal step, otherwise we have to manually step over the bkpt
830 * instruction - as such simulate a step */
831 if (bkpt_inst_found == false) {
832 /* Automatic ISR masking mode off: Just step over the next instruction */
833 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
834 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
835 else {
836 /* Process interrupts during stepping in a way they don't interfere
837 * debugging.
838 *
839 * Principle:
840 *
841 * Set a temporary break point at the current pc and let the core run
842 * with interrupts enabled. Pending interrupts get served and we run
843 * into the breakpoint again afterwards. Then we step over the next
844 * instruction with interrupts disabled.
845 *
846 * If the pending interrupts don't complete within time, we leave the
847 * core running. This may happen if the interrupts trigger faster
848 * than the core can process them or the handler doesn't return.
849 *
850 * If no more breakpoints are available we simply do a step with
851 * interrupts enabled.
852 *
853 */
854
855 /* 2012-09-29 ph
856 *
857 * If a break point is already set on the lower half word then a break point on
858 * the upper half word will not break again when the core is restarted. So we
859 * just step over the instruction with interrupts disabled.
860 *
861 * The documentation has no information about this, it was found by observation
862 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
863 * suffer from this problem.
864 *
865 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
866 * address has it always cleared. The former is done to indicate thumb mode
867 * to gdb.
868 *
869 */
870 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
871 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
872 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
873 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
874 /* Re-enable interrupts */
875 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
876 }
877 else {
878
879 /* Set a temporary break point */
880 if (breakpoint)
881 retval = cortex_m3_set_breakpoint(target, breakpoint);
882 else
883 retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
884 bool tmp_bp_set = (retval == ERROR_OK);
885
886 /* No more breakpoints left, just do a step */
887 if (!tmp_bp_set)
888 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
889 else {
890 /* Start the core */
891 LOG_DEBUG("Starting core to serve pending interrupts");
892 int64_t t_start = timeval_ms();
893 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
894
895 /* Wait for pending handlers to complete or timeout */
896 do {
897 retval = mem_ap_read_atomic_u32(swjdp,
898 DCB_DHCSR,
899 &cortex_m3->dcb_dhcsr);
900 if (retval != ERROR_OK) {
901 target->state = TARGET_UNKNOWN;
902 return retval;
903 }
904 isr_timed_out = ((timeval_ms() - t_start) > 500);
905 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
906
907 /* only remove breakpoint if we created it */
908 if (breakpoint)
909 cortex_m3_unset_breakpoint(target, breakpoint);
910 else {
911 /* Remove the temporary breakpoint */
912 breakpoint_remove(target, pc_value);
913 }
914
915 if (isr_timed_out) {
916 LOG_DEBUG("Interrupt handlers didn't complete within time, "
917 "leaving target running");
918 } else {
919 /* Step over next instruction with interrupts disabled */
920 cortex_m3_write_debug_halt_mask(target,
921 C_HALT | C_MASKINTS,
922 0);
923 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
924 /* Re-enable interrupts */
925 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
926 }
927 }
928 }
929 }
930 }
931
932 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
933 if (retval != ERROR_OK)
934 return retval;
935
936 /* registers are now invalid */
937 register_cache_invalidate(armv7m->arm.core_cache);
938
939 if (breakpoint)
940 cortex_m3_set_breakpoint(target, breakpoint);
941
942 if (isr_timed_out) {
943 /* Leave the core running. The user has to stop execution manually. */
944 target->debug_reason = DBG_REASON_NOTHALTED;
945 target->state = TARGET_RUNNING;
946 return ERROR_OK;
947 }
948
949 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
950 " nvic_icsr = 0x%" PRIx32,
951 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
952
953 retval = cortex_m3_debug_entry(target);
954 if (retval != ERROR_OK)
955 return retval;
956 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
957
958 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
959 " nvic_icsr = 0x%" PRIx32,
960 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
961
962 return ERROR_OK;
963 }
964
965 static int cortex_m3_assert_reset(struct target *target)
966 {
967 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
968 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
969 enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
970
971 LOG_DEBUG("target->state: %s",
972 target_state_name(target));
973
974 enum reset_types jtag_reset_config = jtag_get_reset_config();
975
976 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
977 /* allow scripts to override the reset event */
978
979 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
980 register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
981 target->state = TARGET_RESET;
982
983 return ERROR_OK;
984 }
985
986 /* some cores support connecting while srst is asserted
987 * use that mode is it has been configured */
988
989 bool srst_asserted = false;
990
991 if (jtag_reset_config & RESET_SRST_NO_GATING) {
992 adapter_assert_reset();
993 srst_asserted = true;
994 }
995
996 /* Enable debug requests */
997 int retval;
998 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
999 if (retval != ERROR_OK)
1000 return retval;
1001 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
1002 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1003 if (retval != ERROR_OK)
1004 return retval;
1005 }
1006
1007 /* If the processor is sleeping in a WFI or WFE instruction, the
1008 * C_HALT bit must be asserted to regain control */
1009 if (cortex_m3->dcb_dhcsr & S_SLEEP) {
1010 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1011 if (retval != ERROR_OK)
1012 return retval;
1013 }
1014
1015 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1016 if (retval != ERROR_OK)
1017 return retval;
1018
1019 if (!target->reset_halt) {
1020 /* Set/Clear C_MASKINTS in a separate operation */
1021 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
1022 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1023 DBGKEY | C_DEBUGEN | C_HALT);
1024 if (retval != ERROR_OK)
1025 return retval;
1026 }
1027
1028 /* clear any debug flags before resuming */
1029 cortex_m3_clear_halt(target);
1030
1031 /* clear C_HALT in dhcsr reg */
1032 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1033 } else {
1034 /* Halt in debug on reset; endreset_event() restores DEMCR.
1035 *
1036 * REVISIT catching BUSERR presumably helps to defend against
1037 * bad vector table entries. Should this include MMERR or
1038 * other flags too?
1039 */
1040 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1041 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1042 if (retval != ERROR_OK)
1043 return retval;
1044 }
1045
1046 if (jtag_reset_config & RESET_HAS_SRST) {
1047 /* default to asserting srst */
1048 if (!srst_asserted)
1049 adapter_assert_reset();
1050 } else {
1051 /* Use a standard Cortex-M3 software reset mechanism.
1052 * We default to using VECRESET as it is supported on all current cores.
1053 * This has the disadvantage of not resetting the peripherals, so a
1054 * reset-init event handler is needed to perform any peripheral resets.
1055 */
1056 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1057 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1058 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1059 if (retval != ERROR_OK)
1060 return retval;
1061
1062 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1063 ? "SYSRESETREQ" : "VECTRESET");
1064
1065 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1066 LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1067 "handler to reset any peripherals or configure hardware srst support.");
1068 }
1069
1070 {
1071 /* I do not know why this is necessary, but it
1072 * fixes strange effects (step/resume cause NMI
1073 * after reset) on LM3S6918 -- Michael Schwingen
1074 */
1075 uint32_t tmp;
1076 retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1077 if (retval != ERROR_OK)
1078 return retval;
1079 }
1080 }
1081
1082 target->state = TARGET_RESET;
1083 jtag_add_sleep(50000);
1084
1085 register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
1086
1087 if (target->reset_halt) {
1088 retval = target_halt(target);
1089 if (retval != ERROR_OK)
1090 return retval;
1091 }
1092
1093 return ERROR_OK;
1094 }
1095
1096 static int cortex_m3_deassert_reset(struct target *target)
1097 {
1098 LOG_DEBUG("target->state: %s",
1099 target_state_name(target));
1100
1101 /* deassert reset lines */
1102 adapter_deassert_reset();
1103
1104 return ERROR_OK;
1105 }
1106
1107 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1108 {
1109 int retval;
1110 int fp_num = 0;
1111 uint32_t hilo;
1112 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1113 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1114
1115 if (breakpoint->set) {
1116 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1117 return ERROR_OK;
1118 }
1119
1120 if (cortex_m3->auto_bp_type)
1121 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1122
1123 if (breakpoint->type == BKPT_HARD) {
1124 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1125 fp_num++;
1126 if (fp_num >= cortex_m3->fp_num_code) {
1127 LOG_ERROR("Can not find free FPB Comparator!");
1128 return ERROR_FAIL;
1129 }
1130 breakpoint->set = fp_num + 1;
1131 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1132 comparator_list[fp_num].used = 1;
1133 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1134 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1135 comparator_list[fp_num].fpcr_value);
1136 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1137 fp_num,
1138 comparator_list[fp_num].fpcr_value);
1139 if (!cortex_m3->fpb_enabled) {
1140 LOG_DEBUG("FPB wasn't enabled, do it now");
1141 target_write_u32(target, FP_CTRL, 3);
1142 }
1143 } else if (breakpoint->type == BKPT_SOFT) {
1144 uint8_t code[4];
1145
1146 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1147 * semihosting; don't use that. Otherwise the BKPT
1148 * parameter is arbitrary.
1149 */
1150 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1151 retval = target_read_memory(target,
1152 breakpoint->address & 0xFFFFFFFE,
1153 breakpoint->length, 1,
1154 breakpoint->orig_instr);
1155 if (retval != ERROR_OK)
1156 return retval;
1157 retval = target_write_memory(target,
1158 breakpoint->address & 0xFFFFFFFE,
1159 breakpoint->length, 1,
1160 code);
1161 if (retval != ERROR_OK)
1162 return retval;
1163 breakpoint->set = true;
1164 }
1165
1166 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1167 breakpoint->unique_id,
1168 (int)(breakpoint->type),
1169 breakpoint->address,
1170 breakpoint->length,
1171 breakpoint->set);
1172
1173 return ERROR_OK;
1174 }
1175
1176 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1177 {
1178 int retval;
1179 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1180 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1181
1182 if (!breakpoint->set) {
1183 LOG_WARNING("breakpoint not set");
1184 return ERROR_OK;
1185 }
1186
1187 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1188 breakpoint->unique_id,
1189 (int)(breakpoint->type),
1190 breakpoint->address,
1191 breakpoint->length,
1192 breakpoint->set);
1193
1194 if (breakpoint->type == BKPT_HARD) {
1195 int fp_num = breakpoint->set - 1;
1196 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1197 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1198 return ERROR_OK;
1199 }
1200 comparator_list[fp_num].used = 0;
1201 comparator_list[fp_num].fpcr_value = 0;
1202 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1203 comparator_list[fp_num].fpcr_value);
1204 } else {
1205 /* restore original instruction (kept in target endianness) */
1206 if (breakpoint->length == 4) {
1207 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1208 breakpoint->orig_instr);
1209 if (retval != ERROR_OK)
1210 return retval;
1211 } else {
1212 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1213 breakpoint->orig_instr);
1214 if (retval != ERROR_OK)
1215 return retval;
1216 }
1217 }
1218 breakpoint->set = false;
1219
1220 return ERROR_OK;
1221 }
1222
1223 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1224 {
1225 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1226
1227 if (cortex_m3->auto_bp_type) {
1228 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1229 #ifdef ARMV7_GDB_HACKS
1230 if (breakpoint->length != 2) {
1231 /* XXX Hack: Replace all breakpoints with length != 2 with
1232 * a hardware breakpoint. */
1233 breakpoint->type = BKPT_HARD;
1234 breakpoint->length = 2;
1235 }
1236 #endif
1237 }
1238
1239 if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1240 if (breakpoint->type == BKPT_HARD) {
1241 LOG_INFO("flash patch comparator requested outside code memory region");
1242 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1243 }
1244
1245 if (breakpoint->type == BKPT_SOFT) {
1246 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1247 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1248 }
1249 }
1250
1251 if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1252 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1253 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1254 }
1255
1256 if ((breakpoint->length != 2)) {
1257 LOG_INFO("only breakpoints of two bytes length supported");
1258 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1259 }
1260
1261 if (breakpoint->type == BKPT_HARD)
1262 cortex_m3->fp_code_available--;
1263
1264 return cortex_m3_set_breakpoint(target, breakpoint);
1265 }
1266
1267 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1268 {
1269 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1270
1271 /* REVISIT why check? FBP can be updated with core running ... */
1272 if (target->state != TARGET_HALTED) {
1273 LOG_WARNING("target not halted");
1274 return ERROR_TARGET_NOT_HALTED;
1275 }
1276
1277 if (cortex_m3->auto_bp_type)
1278 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1279
1280 if (breakpoint->set)
1281 cortex_m3_unset_breakpoint(target, breakpoint);
1282
1283 if (breakpoint->type == BKPT_HARD)
1284 cortex_m3->fp_code_available++;
1285
1286 return ERROR_OK;
1287 }
1288
1289 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1290 {
1291 int dwt_num = 0;
1292 uint32_t mask, temp;
1293 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1294
1295 /* watchpoint params were validated earlier */
1296 mask = 0;
1297 temp = watchpoint->length;
1298 while (temp) {
1299 temp >>= 1;
1300 mask++;
1301 }
1302 mask--;
1303
1304 /* REVISIT Don't fully trust these "not used" records ... users
1305 * may set up breakpoints by hand, e.g. dual-address data value
1306 * watchpoint using comparator #1; comparator #0 matching cycle
1307 * count; send data trace info through ITM and TPIU; etc
1308 */
1309 struct cortex_m3_dwt_comparator *comparator;
1310
1311 for (comparator = cortex_m3->dwt_comparator_list;
1312 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1313 comparator++, dwt_num++)
1314 continue;
1315 if (dwt_num >= cortex_m3->dwt_num_comp) {
1316 LOG_ERROR("Can not find free DWT Comparator");
1317 return ERROR_FAIL;
1318 }
1319 comparator->used = 1;
1320 watchpoint->set = dwt_num + 1;
1321
1322 comparator->comp = watchpoint->address;
1323 target_write_u32(target, comparator->dwt_comparator_address + 0,
1324 comparator->comp);
1325
1326 comparator->mask = mask;
1327 target_write_u32(target, comparator->dwt_comparator_address + 4,
1328 comparator->mask);
1329
1330 switch (watchpoint->rw) {
1331 case WPT_READ:
1332 comparator->function = 5;
1333 break;
1334 case WPT_WRITE:
1335 comparator->function = 6;
1336 break;
1337 case WPT_ACCESS:
1338 comparator->function = 7;
1339 break;
1340 }
1341 target_write_u32(target, comparator->dwt_comparator_address + 8,
1342 comparator->function);
1343
1344 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1345 watchpoint->unique_id, dwt_num,
1346 (unsigned) comparator->comp,
1347 (unsigned) comparator->mask,
1348 (unsigned) comparator->function);
1349 return ERROR_OK;
1350 }
1351
1352 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1353 {
1354 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1355 struct cortex_m3_dwt_comparator *comparator;
1356 int dwt_num;
1357
1358 if (!watchpoint->set) {
1359 LOG_WARNING("watchpoint (wpid: %d) not set",
1360 watchpoint->unique_id);
1361 return ERROR_OK;
1362 }
1363
1364 dwt_num = watchpoint->set - 1;
1365
1366 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1367 watchpoint->unique_id, dwt_num,
1368 (unsigned) watchpoint->address);
1369
1370 if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1371 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1372 return ERROR_OK;
1373 }
1374
1375 comparator = cortex_m3->dwt_comparator_list + dwt_num;
1376 comparator->used = 0;
1377 comparator->function = 0;
1378 target_write_u32(target, comparator->dwt_comparator_address + 8,
1379 comparator->function);
1380
1381 watchpoint->set = false;
1382
1383 return ERROR_OK;
1384 }
1385
1386 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1387 {
1388 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1389
1390 if (cortex_m3->dwt_comp_available < 1) {
1391 LOG_DEBUG("no comparators?");
1392 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1393 }
1394
1395 /* hardware doesn't support data value masking */
1396 if (watchpoint->mask != ~(uint32_t)0) {
1397 LOG_DEBUG("watchpoint value masks not supported");
1398 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1399 }
1400
1401 /* hardware allows address masks of up to 32K */
1402 unsigned mask;
1403
1404 for (mask = 0; mask < 16; mask++) {
1405 if ((1u << mask) == watchpoint->length)
1406 break;
1407 }
1408 if (mask == 16) {
1409 LOG_DEBUG("unsupported watchpoint length");
1410 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1411 }
1412 if (watchpoint->address & ((1 << mask) - 1)) {
1413 LOG_DEBUG("watchpoint address is unaligned");
1414 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1415 }
1416
1417 /* Caller doesn't seem to be able to describe watching for data
1418 * values of zero; that flags "no value".
1419 *
1420 * REVISIT This DWT may well be able to watch for specific data
1421 * values. Requires comparator #1 to set DATAVMATCH and match
1422 * the data, and another comparator (DATAVADDR0) matching addr.
1423 */
1424 if (watchpoint->value) {
1425 LOG_DEBUG("data value watchpoint not YET supported");
1426 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1427 }
1428
1429 cortex_m3->dwt_comp_available--;
1430 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1431
1432 return ERROR_OK;
1433 }
1434
1435 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1436 {
1437 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1438
1439 /* REVISIT why check? DWT can be updated with core running ... */
1440 if (target->state != TARGET_HALTED) {
1441 LOG_WARNING("target not halted");
1442 return ERROR_TARGET_NOT_HALTED;
1443 }
1444
1445 if (watchpoint->set)
1446 cortex_m3_unset_watchpoint(target, watchpoint);
1447
1448 cortex_m3->dwt_comp_available++;
1449 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1450
1451 return ERROR_OK;
1452 }
1453
1454 void cortex_m3_enable_watchpoints(struct target *target)
1455 {
1456 struct watchpoint *watchpoint = target->watchpoints;
1457
1458 /* set any pending watchpoints */
1459 while (watchpoint) {
1460 if (!watchpoint->set)
1461 cortex_m3_set_watchpoint(target, watchpoint);
1462 watchpoint = watchpoint->next;
1463 }
1464 }
1465
1466 static int cortex_m3_load_core_reg_u32(struct target *target,
1467 uint32_t num, uint32_t *value)
1468 {
1469 int retval;
1470 struct armv7m_common *armv7m = target_to_armv7m(target);
1471 struct adiv5_dap *swjdp = armv7m->arm.dap;
1472
1473 /* NOTE: we "know" here that the register identifiers used
1474 * in the v7m header match the Cortex-M3 Debug Core Register
1475 * Selector values for R0..R15, xPSR, MSP, and PSP.
1476 */
1477 switch (num) {
1478 case 0 ... 18:
1479 /* read a normal core register */
1480 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1481
1482 if (retval != ERROR_OK) {
1483 LOG_ERROR("JTAG failure %i", retval);
1484 return ERROR_JTAG_DEVICE_ERROR;
1485 }
1486 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1487 break;
1488
1489 case ARMV7M_PRIMASK:
1490 case ARMV7M_BASEPRI:
1491 case ARMV7M_FAULTMASK:
1492 case ARMV7M_CONTROL:
1493 /* Cortex-M3 packages these four registers as bitfields
1494 * in one Debug Core register. So say r0 and r2 docs;
1495 * it was removed from r1 docs, but still works.
1496 */
1497 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1498
1499 switch (num) {
1500 case ARMV7M_PRIMASK:
1501 *value = buf_get_u32((uint8_t *)value, 0, 1);
1502 break;
1503
1504 case ARMV7M_BASEPRI:
1505 *value = buf_get_u32((uint8_t *)value, 8, 8);
1506 break;
1507
1508 case ARMV7M_FAULTMASK:
1509 *value = buf_get_u32((uint8_t *)value, 16, 1);
1510 break;
1511
1512 case ARMV7M_CONTROL:
1513 *value = buf_get_u32((uint8_t *)value, 24, 2);
1514 break;
1515 }
1516
1517 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1518 break;
1519
1520 default:
1521 return ERROR_COMMAND_SYNTAX_ERROR;
1522 }
1523
1524 return ERROR_OK;
1525 }
1526
1527 static int cortex_m3_store_core_reg_u32(struct target *target,
1528 uint32_t num, uint32_t value)
1529 {
1530 int retval;
1531 uint32_t reg;
1532 struct armv7m_common *armv7m = target_to_armv7m(target);
1533 struct adiv5_dap *swjdp = armv7m->arm.dap;
1534
1535 #ifdef ARMV7_GDB_HACKS
1536 /* If the LR register is being modified, make sure it will put us
1537 * in "thumb" mode, or an INVSTATE exception will occur. This is a
1538 * hack to deal with the fact that gdb will sometimes "forge"
1539 * return addresses, and doesn't set the LSB correctly (i.e., when
1540 * printing expressions containing function calls, it sets LR = 0.)
1541 * Valid exception return codes have bit 0 set too.
1542 */
1543 if (num == ARMV7M_R14)
1544 value |= 0x01;
1545 #endif
1546
1547 /* NOTE: we "know" here that the register identifiers used
1548 * in the v7m header match the Cortex-M3 Debug Core Register
1549 * Selector values for R0..R15, xPSR, MSP, and PSP.
1550 */
1551 switch (num) {
1552 case 0 ... 18:
1553 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1554 if (retval != ERROR_OK) {
1555 struct reg *r;
1556
1557 LOG_ERROR("JTAG failure");
1558 r = armv7m->arm.core_cache->reg_list + num;
1559 r->dirty = r->valid;
1560 return ERROR_JTAG_DEVICE_ERROR;
1561 }
1562 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1563 break;
1564
1565 case ARMV7M_PRIMASK:
1566 case ARMV7M_BASEPRI:
1567 case ARMV7M_FAULTMASK:
1568 case ARMV7M_CONTROL:
1569 /* Cortex-M3 packages these four registers as bitfields
1570 * in one Debug Core register. So say r0 and r2 docs;
1571 * it was removed from r1 docs, but still works.
1572 */
1573 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1574
1575 switch (num) {
1576 case ARMV7M_PRIMASK:
1577 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1578 break;
1579
1580 case ARMV7M_BASEPRI:
1581 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1582 break;
1583
1584 case ARMV7M_FAULTMASK:
1585 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1586 break;
1587
1588 case ARMV7M_CONTROL:
1589 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1590 break;
1591 }
1592
1593 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1594
1595 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1596 break;
1597
1598 default:
1599 return ERROR_COMMAND_SYNTAX_ERROR;
1600 }
1601
1602 return ERROR_OK;
1603 }
1604
1605 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1606 uint32_t size, uint32_t count, uint8_t *buffer)
1607 {
1608 struct armv7m_common *armv7m = target_to_armv7m(target);
1609 struct adiv5_dap *swjdp = armv7m->arm.dap;
1610 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1611
1612 if (armv7m->arm.is_armv6m) {
1613 /* armv6m does not handle unaligned memory access */
1614 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1615 return ERROR_TARGET_UNALIGNED_ACCESS;
1616 }
1617
1618 /* cortex_m3 handles unaligned memory access */
1619 if (count && buffer) {
1620 switch (size) {
1621 case 4:
1622 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1623 break;
1624 case 2:
1625 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1626 break;
1627 case 1:
1628 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1629 break;
1630 }
1631 }
1632
1633 return retval;
1634 }
1635
1636 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1637 uint32_t size, uint32_t count, const uint8_t *buffer)
1638 {
1639 struct armv7m_common *armv7m = target_to_armv7m(target);
1640 struct adiv5_dap *swjdp = armv7m->arm.dap;
1641 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1642
1643 if (armv7m->arm.is_armv6m) {
1644 /* armv6m does not handle unaligned memory access */
1645 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1646 return ERROR_TARGET_UNALIGNED_ACCESS;
1647 }
1648
1649 if (count && buffer) {
1650 switch (size) {
1651 case 4:
1652 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1653 break;
1654 case 2:
1655 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1656 break;
1657 case 1:
1658 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1659 break;
1660 }
1661 }
1662
1663 return retval;
1664 }
1665
1666 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1667 uint32_t count, const uint8_t *buffer)
1668 {
1669 return cortex_m3_write_memory(target, address, 4, count, buffer);
1670 }
1671
1672 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1673 struct target *target)
1674 {
1675 armv7m_build_reg_cache(target);
1676 return ERROR_OK;
1677 }
1678
1679 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1680 * on r/w if the core is not running, and clear on resume or reset ... or
1681 * at least, in a post_restore_context() method.
1682 */
1683
1684 struct dwt_reg_state {
1685 struct target *target;
1686 uint32_t addr;
1687 uint32_t value; /* scratch/cache */
1688 };
1689
1690 static int cortex_m3_dwt_get_reg(struct reg *reg)
1691 {
1692 struct dwt_reg_state *state = reg->arch_info;
1693
1694 return target_read_u32(state->target, state->addr, &state->value);
1695 }
1696
1697 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1698 {
1699 struct dwt_reg_state *state = reg->arch_info;
1700
1701 return target_write_u32(state->target, state->addr,
1702 buf_get_u32(buf, 0, reg->size));
1703 }
1704
1705 struct dwt_reg {
1706 uint32_t addr;
1707 char *name;
1708 unsigned size;
1709 };
1710
1711 static struct dwt_reg dwt_base_regs[] = {
1712 { DWT_CTRL, "dwt_ctrl", 32, },
1713 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1714 * increments while the core is asleep.
1715 */
1716 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1717 /* plus some 8 bit counters, useful for profiling with TPIU */
1718 };
1719
1720 static struct dwt_reg dwt_comp[] = {
1721 #define DWT_COMPARATOR(i) \
1722 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1723 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1724 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1725 DWT_COMPARATOR(0),
1726 DWT_COMPARATOR(1),
1727 DWT_COMPARATOR(2),
1728 DWT_COMPARATOR(3),
1729 #undef DWT_COMPARATOR
1730 };
1731
1732 static const struct reg_arch_type dwt_reg_type = {
1733 .get = cortex_m3_dwt_get_reg,
1734 .set = cortex_m3_dwt_set_reg,
1735 };
1736
1737 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1738 {
1739 struct dwt_reg_state *state;
1740
1741 state = calloc(1, sizeof *state);
1742 if (!state)
1743 return;
1744 state->addr = d->addr;
1745 state->target = t;
1746
1747 r->name = d->name;
1748 r->size = d->size;
1749 r->value = &state->value;
1750 r->arch_info = state;
1751 r->type = &dwt_reg_type;
1752 }
1753
1754 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1755 {
1756 uint32_t dwtcr;
1757 struct reg_cache *cache;
1758 struct cortex_m3_dwt_comparator *comparator;
1759 int reg, i;
1760
1761 target_read_u32(target, DWT_CTRL, &dwtcr);
1762 if (!dwtcr) {
1763 LOG_DEBUG("no DWT");
1764 return;
1765 }
1766
1767 cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1768 cm3->dwt_comp_available = cm3->dwt_num_comp;
1769 cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1770 sizeof(struct cortex_m3_dwt_comparator));
1771 if (!cm3->dwt_comparator_list) {
1772 fail0:
1773 cm3->dwt_num_comp = 0;
1774 LOG_ERROR("out of mem");
1775 return;
1776 }
1777
1778 cache = calloc(1, sizeof *cache);
1779 if (!cache) {
1780 fail1:
1781 free(cm3->dwt_comparator_list);
1782 goto fail0;
1783 }
1784 cache->name = "cortex-m3 dwt registers";
1785 cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1786 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1787 if (!cache->reg_list) {
1788 free(cache);
1789 goto fail1;
1790 }
1791
1792 for (reg = 0; reg < 2; reg++)
1793 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1794 dwt_base_regs + reg);
1795
1796 comparator = cm3->dwt_comparator_list;
1797 for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1798 int j;
1799
1800 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1801 for (j = 0; j < 3; j++, reg++)
1802 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1803 dwt_comp + 3 * i + j);
1804 }
1805
1806 *register_get_last_cache_p(&target->reg_cache) = cache;
1807 cm3->dwt_cache = cache;
1808
1809 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1810 dwtcr, cm3->dwt_num_comp,
1811 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1812
1813 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1814 * implement single-address data value watchpoints ... so we
1815 * won't need to check it later, when asked to set one up.
1816 */
1817 }
1818
1819 #define MVFR0 0xe000ef40
1820 #define MVFR1 0xe000ef44
1821
1822 #define MVFR0_DEFAULT_M4 0x10110021
1823 #define MVFR1_DEFAULT_M4 0x11000011
1824
1825 int cortex_m3_examine(struct target *target)
1826 {
1827 int retval;
1828 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1829 int i;
1830 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1831 struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
1832 struct armv7m_common *armv7m = target_to_armv7m(target);
1833
1834 /* stlink shares the examine handler but does not support
1835 * all its calls */
1836 if (!armv7m->stlink) {
1837 retval = ahbap_debugport_init(swjdp);
1838 if (retval != ERROR_OK)
1839 return retval;
1840 }
1841
1842 if (!target_was_examined(target)) {
1843 target_set_examined(target);
1844
1845 /* Read from Device Identification Registers */
1846 retval = target_read_u32(target, CPUID, &cpuid);
1847 if (retval != ERROR_OK)
1848 return retval;
1849
1850 /* Get CPU Type */
1851 i = (cpuid >> 4) & 0xf;
1852
1853 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1854 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1855 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1856
1857 /* test for floating point feature on cortex-m4 */
1858 if (i == 4) {
1859 target_read_u32(target, MVFR0, &mvfr0);
1860 target_read_u32(target, MVFR1, &mvfr1);
1861
1862 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1863 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1864 armv7m->fp_feature = FPv4_SP;
1865 }
1866 } else if (i == 0) {
1867 /* Cortex-M0 does not support unaligned memory access */
1868 armv7m->arm.is_armv6m = true;
1869 }
1870
1871 if (i == 4 || i == 3) {
1872 /* Cortex-M3/M4 has 4096 bytes autoincrement range */
1873 armv7m->dap.tar_autoincr_block = (1 << 12);
1874 }
1875
1876 /* NOTE: FPB and DWT are both optional. */
1877
1878 /* Setup FPB */
1879 target_read_u32(target, FP_CTRL, &fpcr);
1880 cortex_m3->auto_bp_type = 1;
1881 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits
1882 *[14:12]
1883 *and [7:4]
1884 **/
1885 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1886 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1887 cortex_m3->fp_comparator_list = calloc(
1888 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1889 sizeof(struct cortex_m3_fp_comparator));
1890 cortex_m3->fpb_enabled = fpcr & 1;
1891 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1892 cortex_m3->fp_comparator_list[i].type =
1893 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1894 cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1895 }
1896 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1897 fpcr,
1898 cortex_m3->fp_num_code,
1899 cortex_m3->fp_num_lit);
1900
1901 /* Setup DWT */
1902 cortex_m3_dwt_setup(cortex_m3, target);
1903
1904 /* These hardware breakpoints only work for code in flash! */
1905 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1906 target_name(target),
1907 cortex_m3->fp_num_code,
1908 cortex_m3->dwt_num_comp);
1909 }
1910
1911 return ERROR_OK;
1912 }
1913
1914 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1915 {
1916 uint16_t dcrdr;
1917 int retval;
1918
1919 mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1920 *ctrl = (uint8_t)dcrdr;
1921 *value = (uint8_t)(dcrdr >> 8);
1922
1923 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1924
1925 /* write ack back to software dcc register
1926 * signify we have read data */
1927 if (dcrdr & (1 << 0)) {
1928 dcrdr = 0;
1929 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1930 if (retval != ERROR_OK)
1931 return retval;
1932 }
1933
1934 return ERROR_OK;
1935 }
1936
1937 static int cortex_m3_target_request_data(struct target *target,
1938 uint32_t size, uint8_t *buffer)
1939 {
1940 struct armv7m_common *armv7m = target_to_armv7m(target);
1941 struct adiv5_dap *swjdp = armv7m->arm.dap;
1942 uint8_t data;
1943 uint8_t ctrl;
1944 uint32_t i;
1945
1946 for (i = 0; i < (size * 4); i++) {
1947 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1948 buffer[i] = data;
1949 }
1950
1951 return ERROR_OK;
1952 }
1953
1954 static int cortex_m3_handle_target_request(void *priv)
1955 {
1956 struct target *target = priv;
1957 if (!target_was_examined(target))
1958 return ERROR_OK;
1959 struct armv7m_common *armv7m = target_to_armv7m(target);
1960 struct adiv5_dap *swjdp = armv7m->arm.dap;
1961
1962 if (!target->dbg_msg_enabled)
1963 return ERROR_OK;
1964
1965 if (target->state == TARGET_RUNNING) {
1966 uint8_t data;
1967 uint8_t ctrl;
1968
1969 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1970
1971 /* check if we have data */
1972 if (ctrl & (1 << 0)) {
1973 uint32_t request;
1974
1975 /* we assume target is quick enough */
1976 request = data;
1977 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1978 request |= (data << 8);
1979 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1980 request |= (data << 16);
1981 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1982 request |= (data << 24);
1983 target_request(target, request);
1984 }
1985 }
1986
1987 return ERROR_OK;
1988 }
1989
1990 static int cortex_m3_init_arch_info(struct target *target,
1991 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1992 {
1993 int retval;
1994 struct armv7m_common *armv7m = &cortex_m3->armv7m;
1995
1996 armv7m_init_arch_info(target, armv7m);
1997
1998 /* prepare JTAG information for the new target */
1999 cortex_m3->jtag_info.tap = tap;
2000 cortex_m3->jtag_info.scann_size = 4;
2001
2002 /* default reset mode is to use srst if fitted
2003 * if not it will use CORTEX_M3_RESET_VECTRESET */
2004 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2005
2006 armv7m->arm.dap = &armv7m->dap;
2007
2008 /* Leave (only) generic DAP stuff for debugport_init(); */
2009 armv7m->dap.jtag_info = &cortex_m3->jtag_info;
2010 armv7m->dap.memaccess_tck = 8;
2011
2012 /* Cortex-M3/M4 has 4096 bytes autoincrement range
2013 * but set a safe default to 1024 to support Cortex-M0
2014 * this will be changed in cortex_m3_examine if a M3/M4 is detected */
2015 armv7m->dap.tar_autoincr_block = (1 << 10);
2016
2017 /* register arch-specific functions */
2018 armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
2019
2020 armv7m->post_debug_entry = NULL;
2021
2022 armv7m->pre_restore_context = NULL;
2023
2024 armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2025 armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2026
2027 target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2028
2029 retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
2030 if (retval != ERROR_OK)
2031 return retval;
2032
2033 return ERROR_OK;
2034 }
2035
2036 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2037 {
2038 struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
2039
2040 cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2041 cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2042
2043 return ERROR_OK;
2044 }
2045
2046 /*--------------------------------------------------------------------------*/
2047
2048 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2049 struct cortex_m3_common *cm3)
2050 {
2051 if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2052 command_print(cmd_ctx, "target is not a Cortex-M3");
2053 return ERROR_TARGET_INVALID;
2054 }
2055 return ERROR_OK;
2056 }
2057
2058 /*
2059 * Only stuff below this line should need to verify that its target
2060 * is a Cortex-M3. Everything else should have indirected through the
2061 * cortexm3_target structure, which is only used with CM3 targets.
2062 */
2063
2064 static const struct {
2065 char name[10];
2066 unsigned mask;
2067 } vec_ids[] = {
2068 { "hard_err", VC_HARDERR, },
2069 { "int_err", VC_INTERR, },
2070 { "bus_err", VC_BUSERR, },
2071 { "state_err", VC_STATERR, },
2072 { "chk_err", VC_CHKERR, },
2073 { "nocp_err", VC_NOCPERR, },
2074 { "mm_err", VC_MMERR, },
2075 { "reset", VC_CORERESET, },
2076 };
2077
2078 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2079 {
2080 struct target *target = get_current_target(CMD_CTX);
2081 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2082 struct armv7m_common *armv7m = &cortex_m3->armv7m;
2083 struct adiv5_dap *swjdp = armv7m->arm.dap;
2084 uint32_t demcr = 0;
2085 int retval;
2086
2087 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2088 if (retval != ERROR_OK)
2089 return retval;
2090
2091 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2092 if (retval != ERROR_OK)
2093 return retval;
2094
2095 if (CMD_ARGC > 0) {
2096 unsigned catch = 0;
2097
2098 if (CMD_ARGC == 1) {
2099 if (strcmp(CMD_ARGV[0], "all") == 0) {
2100 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2101 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2102 | VC_MMERR | VC_CORERESET;
2103 goto write;
2104 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2105 goto write;
2106 }
2107 while (CMD_ARGC-- > 0) {
2108 unsigned i;
2109 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2110 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2111 continue;
2112 catch |= vec_ids[i].mask;
2113 break;
2114 }
2115 if (i == ARRAY_SIZE(vec_ids)) {
2116 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2117 return ERROR_COMMAND_SYNTAX_ERROR;
2118 }
2119 }
2120 write:
2121 /* For now, armv7m->demcr only stores vector catch flags. */
2122 armv7m->demcr = catch;
2123
2124 demcr &= ~0xffff;
2125 demcr |= catch;
2126
2127 /* write, but don't assume it stuck (why not??) */
2128 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2129 if (retval != ERROR_OK)
2130 return retval;
2131 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2132 if (retval != ERROR_OK)
2133 return retval;
2134
2135 /* FIXME be sure to clear DEMCR on clean server shutdown.
2136 * Otherwise the vector catch hardware could fire when there's
2137 * no debugger hooked up, causing much confusion...
2138 */
2139 }
2140
2141 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2142 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2143 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2144 }
2145
2146 return ERROR_OK;
2147 }
2148
2149 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2150 {
2151 struct target *target = get_current_target(CMD_CTX);
2152 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2153 int retval;
2154
2155 static const Jim_Nvp nvp_maskisr_modes[] = {
2156 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2157 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2158 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2159 { .name = NULL, .value = -1 },
2160 };
2161 const Jim_Nvp *n;
2162
2163
2164 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2165 if (retval != ERROR_OK)
2166 return retval;
2167
2168 if (target->state != TARGET_HALTED) {
2169 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2170 return ERROR_OK;
2171 }
2172
2173 if (CMD_ARGC > 0) {
2174 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2175 if (n->name == NULL)
2176 return ERROR_COMMAND_SYNTAX_ERROR;
2177 cortex_m3->isrmasking_mode = n->value;
2178
2179
2180 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2181 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2182 else
2183 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2184 }
2185
2186 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2187 command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2188
2189 return ERROR_OK;
2190 }
2191
2192 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2193 {
2194 struct target *target = get_current_target(CMD_CTX);
2195 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2196 int retval;
2197 char *reset_config;
2198
2199 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2200 if (retval != ERROR_OK)
2201 return retval;
2202
2203 if (CMD_ARGC > 0) {
2204 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2205 cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2206 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2207 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2208 }
2209
2210 switch (cortex_m3->soft_reset_config) {
2211 case CORTEX_M3_RESET_SYSRESETREQ:
2212 reset_config = "sysresetreq";
2213 break;
2214
2215 case CORTEX_M3_RESET_VECTRESET:
2216 reset_config = "vectreset";
2217 break;
2218
2219 default:
2220 reset_config = "unknown";
2221 break;
2222 }
2223
2224 command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2225
2226 return ERROR_OK;
2227 }
2228
2229 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2230 {
2231 .name = "maskisr",
2232 .handler = handle_cortex_m3_mask_interrupts_command,
2233 .mode = COMMAND_EXEC,
2234 .help = "mask cortex_m3 interrupts",
2235 .usage = "['auto'|'on'|'off']",
2236 },
2237 {
2238 .name = "vector_catch",
2239 .handler = handle_cortex_m3_vector_catch_command,
2240 .mode = COMMAND_EXEC,
2241 .help = "configure hardware vectors to trigger debug entry",
2242 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2243 },
2244 {
2245 .name = "reset_config",
2246 .handler = handle_cortex_m3_reset_config_command,
2247 .mode = COMMAND_ANY,
2248 .help = "configure software reset handling",
2249 .usage = "['srst'|'sysresetreq'|'vectreset']",
2250 },
2251 COMMAND_REGISTRATION_DONE
2252 };
2253 static const struct command_registration cortex_m3_command_handlers[] = {
2254 {
2255 .chain = armv7m_command_handlers,
2256 },
2257 {
2258 .name = "cortex_m3",
2259 .mode = COMMAND_EXEC,
2260 .help = "Cortex-M3 command group",
2261 .usage = "",
2262 .chain = cortex_m3_exec_command_handlers,
2263 },
2264 COMMAND_REGISTRATION_DONE
2265 };
2266
2267 struct target_type cortexm3_target = {
2268 .name = "cortex_m3",
2269
2270 .poll = cortex_m3_poll,
2271 .arch_state = armv7m_arch_state,
2272
2273 .target_request_data = cortex_m3_target_request_data,
2274
2275 .halt = cortex_m3_halt,
2276 .resume = cortex_m3_resume,
2277 .step = cortex_m3_step,
2278
2279 .assert_reset = cortex_m3_assert_reset,
2280 .deassert_reset = cortex_m3_deassert_reset,
2281 .soft_reset_halt = cortex_m3_soft_reset_halt,
2282
2283 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2284
2285 .read_memory = cortex_m3_read_memory,
2286 .write_memory = cortex_m3_write_memory,
2287 .bulk_write_memory = cortex_m3_bulk_write_memory,
2288 .checksum_memory = armv7m_checksum_memory,
2289 .blank_check_memory = armv7m_blank_check_memory,
2290
2291 .run_algorithm = armv7m_run_algorithm,
2292 .start_algorithm = armv7m_start_algorithm,
2293 .wait_algorithm = armv7m_wait_algorithm,
2294
2295 .add_breakpoint = cortex_m3_add_breakpoint,
2296 .remove_breakpoint = cortex_m3_remove_breakpoint,
2297 .add_watchpoint = cortex_m3_add_watchpoint,
2298 .remove_watchpoint = cortex_m3_remove_watchpoint,
2299
2300 .commands = cortex_m3_command_handlers,
2301 .target_create = cortex_m3_target_create,
2302 .init_target = cortex_m3_init_target,
2303 .examine = cortex_m3_examine,
2304 };