76e197c116d904fe8c2fb046138b818363986f12
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 * *
26 * *
27 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
28 * *
29 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42 #include <helper/time_support.h>
43
44 /* NOTE: most of this should work fine for the Cortex-M1 and
45 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
46 * Some differences: M0/M1 doesn't have FBP remapping or the
47 * DWT tracing/profiling support. (So the cycle counter will
48 * not be usable; the other stuff isn't currently used here.)
49 *
50 * Although there are some workarounds for errata seen only in r0p0
51 * silicon, such old parts are hard to find and thus not much tested
52 * any longer.
53 */
54
55 /**
56 * Returns the type of a break point required by address location
57 */
58 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
59
60
61 /* forward declarations */
62 static int cortex_m3_store_core_reg_u32(struct target *target,
63 enum armv7m_regtype type, uint32_t num, uint32_t value);
64
65 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
66 uint32_t *value, int regnum)
67 {
68 int retval;
69 uint32_t dcrdr;
70
71 /* because the DCB_DCRDR is used for the emulated dcc channel
72 * we have to save/restore the DCB_DCRDR when used */
73
74 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
75 if (retval != ERROR_OK)
76 return retval;
77
78 /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
79 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
80 if (retval != ERROR_OK)
81 return retval;
82 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
83 if (retval != ERROR_OK)
84 return retval;
85
86 /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
87 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
88 if (retval != ERROR_OK)
89 return retval;
90 retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
91 if (retval != ERROR_OK)
92 return retval;
93
94 retval = dap_run(swjdp);
95 if (retval != ERROR_OK)
96 return retval;
97
98 /* restore DCB_DCRDR - this needs to be in a seperate
99 * transaction otherwise the emulated DCC channel breaks */
100 if (retval == ERROR_OK)
101 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
102
103 return retval;
104 }
105
106 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
107 uint32_t value, int regnum)
108 {
109 int retval;
110 uint32_t dcrdr;
111
112 /* because the DCB_DCRDR is used for the emulated dcc channel
113 * we have to save/restore the DCB_DCRDR when used */
114
115 retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
116 if (retval != ERROR_OK)
117 return retval;
118
119 /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
120 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
121 if (retval != ERROR_OK)
122 return retval;
123 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
124 if (retval != ERROR_OK)
125 return retval;
126
127 /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
128 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
129 if (retval != ERROR_OK)
130 return retval;
131 retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
132 if (retval != ERROR_OK)
133 return retval;
134
135 retval = dap_run(swjdp);
136 if (retval != ERROR_OK)
137 return retval;
138
139 /* restore DCB_DCRDR - this needs to be in a seperate
140 * transaction otherwise the emulated DCC channel breaks */
141 if (retval == ERROR_OK)
142 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
143
144 return retval;
145 }
146
147 static int cortex_m3_write_debug_halt_mask(struct target *target,
148 uint32_t mask_on, uint32_t mask_off)
149 {
150 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
151 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
152
153 /* mask off status bits */
154 cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
155 /* create new register mask */
156 cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
157
158 return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
159 }
160
161 static int cortex_m3_clear_halt(struct target *target)
162 {
163 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
164 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
165 int retval;
166
167 /* clear step if any */
168 cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
169
170 /* Read Debug Fault Status Register */
171 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
172 if (retval != ERROR_OK)
173 return retval;
174
175 /* Clear Debug Fault Status */
176 retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
177 if (retval != ERROR_OK)
178 return retval;
179 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
180
181 return ERROR_OK;
182 }
183
184 static int cortex_m3_single_step_core(struct target *target)
185 {
186 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
187 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
188 uint32_t dhcsr_save;
189 int retval;
190
191 /* backup dhcsr reg */
192 dhcsr_save = cortex_m3->dcb_dhcsr;
193
194 /* Mask interrupts before clearing halt, if done already. This avoids
195 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
196 * HALT can put the core into an unknown state.
197 */
198 if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
199 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
200 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
201 if (retval != ERROR_OK)
202 return retval;
203 }
204 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
205 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
206 if (retval != ERROR_OK)
207 return retval;
208 LOG_DEBUG(" ");
209
210 /* restore dhcsr reg */
211 cortex_m3->dcb_dhcsr = dhcsr_save;
212 cortex_m3_clear_halt(target);
213
214 return ERROR_OK;
215 }
216
217 static int cortex_m3_endreset_event(struct target *target)
218 {
219 int i;
220 int retval;
221 uint32_t dcb_demcr;
222 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
223 struct armv7m_common *armv7m = &cortex_m3->armv7m;
224 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
225 struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
226 struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
227
228 /* REVISIT The four debug monitor bits are currently ignored... */
229 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
230 if (retval != ERROR_OK)
231 return retval;
232 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
233
234 /* this register is used for emulated dcc channel */
235 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
236 if (retval != ERROR_OK)
237 return retval;
238
239 /* Enable debug requests */
240 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
241 if (retval != ERROR_OK)
242 return retval;
243 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
244 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
245 if (retval != ERROR_OK)
246 return retval;
247 }
248
249 /* clear any interrupt masking */
250 cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
251
252 /* Enable features controlled by ITM and DWT blocks, and catch only
253 * the vectors we were told to pay attention to.
254 *
255 * Target firmware is responsible for all fault handling policy
256 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
257 * or manual updates to the NVIC SHCSR and CCR registers.
258 */
259 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
260 if (retval != ERROR_OK)
261 return retval;
262
263 /* Paranoia: evidently some (early?) chips don't preserve all the
264 * debug state (including FBP, DWT, etc) across reset...
265 */
266
267 /* Enable FPB */
268 retval = target_write_u32(target, FP_CTRL, 3);
269 if (retval != ERROR_OK)
270 return retval;
271
272 cortex_m3->fpb_enabled = 1;
273
274 /* Restore FPB registers */
275 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
276 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
277 if (retval != ERROR_OK)
278 return retval;
279 }
280
281 /* Restore DWT registers */
282 for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
283 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
284 dwt_list[i].comp);
285 if (retval != ERROR_OK)
286 return retval;
287 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
288 dwt_list[i].mask);
289 if (retval != ERROR_OK)
290 return retval;
291 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
292 dwt_list[i].function);
293 if (retval != ERROR_OK)
294 return retval;
295 }
296 retval = dap_run(swjdp);
297 if (retval != ERROR_OK)
298 return retval;
299
300 register_cache_invalidate(cortex_m3->armv7m.core_cache);
301
302 /* make sure we have latest dhcsr flags */
303 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
304
305 return retval;
306 }
307
308 static int cortex_m3_examine_debug_reason(struct target *target)
309 {
310 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
311
312 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
313 * only check the debug reason if we don't know it already */
314
315 if ((target->debug_reason != DBG_REASON_DBGRQ)
316 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
317 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
318 target->debug_reason = DBG_REASON_BREAKPOINT;
319 if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
320 target->debug_reason = DBG_REASON_WPTANDBKPT;
321 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
322 target->debug_reason = DBG_REASON_WATCHPOINT;
323 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
324 target->debug_reason = DBG_REASON_BREAKPOINT;
325 else /* EXTERNAL, HALTED */
326 target->debug_reason = DBG_REASON_UNDEFINED;
327 }
328
329 return ERROR_OK;
330 }
331
332 static int cortex_m3_examine_exception_reason(struct target *target)
333 {
334 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
335 struct armv7m_common *armv7m = target_to_armv7m(target);
336 struct adiv5_dap *swjdp = &armv7m->dap;
337 int retval;
338
339 retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
340 if (retval != ERROR_OK)
341 return retval;
342 switch (armv7m->exception_number) {
343 case 2: /* NMI */
344 break;
345 case 3: /* Hard Fault */
346 retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
347 if (retval != ERROR_OK)
348 return retval;
349 if (except_sr & 0x40000000) {
350 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
351 if (retval != ERROR_OK)
352 return retval;
353 }
354 break;
355 case 4: /* Memory Management */
356 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
357 if (retval != ERROR_OK)
358 return retval;
359 retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
360 if (retval != ERROR_OK)
361 return retval;
362 break;
363 case 5: /* Bus Fault */
364 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
365 if (retval != ERROR_OK)
366 return retval;
367 retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
368 if (retval != ERROR_OK)
369 return retval;
370 break;
371 case 6: /* Usage Fault */
372 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
373 if (retval != ERROR_OK)
374 return retval;
375 break;
376 case 11: /* SVCall */
377 break;
378 case 12: /* Debug Monitor */
379 retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
380 if (retval != ERROR_OK)
381 return retval;
382 break;
383 case 14: /* PendSV */
384 break;
385 case 15: /* SysTick */
386 break;
387 default:
388 except_sr = 0;
389 break;
390 }
391 retval = dap_run(swjdp);
392 if (retval == ERROR_OK)
393 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
394 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
395 armv7m_exception_string(armv7m->exception_number),
396 shcsr, except_sr, cfsr, except_ar);
397 return retval;
398 }
399
400 static int cortex_m3_debug_entry(struct target *target)
401 {
402 int i;
403 uint32_t xPSR;
404 int retval;
405 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
406 struct armv7m_common *armv7m = &cortex_m3->armv7m;
407 struct arm *arm = &armv7m->arm;
408 struct adiv5_dap *swjdp = &armv7m->dap;
409 struct reg *r;
410
411 LOG_DEBUG(" ");
412
413 cortex_m3_clear_halt(target);
414 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
415 if (retval != ERROR_OK)
416 return retval;
417
418 retval = armv7m->examine_debug_reason(target);
419 if (retval != ERROR_OK)
420 return retval;
421
422 /* Examine target state and mode
423 * First load register acessible through core debug port*/
424 int num_regs = armv7m->core_cache->num_regs;
425
426 for (i = 0; i < num_regs; i++) {
427 if (!armv7m->core_cache->reg_list[i].valid)
428 armv7m->read_core_reg(target, i);
429 }
430
431 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
432 xPSR = buf_get_u32(r->value, 0, 32);
433
434 #ifdef ARMV7_GDB_HACKS
435 /* FIXME this breaks on scan chains with more than one Cortex-M3.
436 * Instead, each CM3 should have its own dummy value...
437 */
438 /* copy real xpsr reg for gdb, setting thumb bit */
439 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
440 buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
441 armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
442 armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
443 #endif
444
445 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
446 if (xPSR & 0xf00) {
447 r->dirty = r->valid;
448 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR & ~0xff);
449 }
450
451 /* Are we in an exception handler */
452 if (xPSR & 0x1FF) {
453 armv7m->core_mode = ARMV7M_MODE_HANDLER;
454 armv7m->exception_number = (xPSR & 0x1FF);
455
456 arm->core_mode = ARM_MODE_HANDLER;
457 arm->map = armv7m_msp_reg_map;
458 } else {
459 unsigned control = buf_get_u32(armv7m->core_cache
460 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
461
462 /* is this thread privileged? */
463 armv7m->core_mode = control & 1;
464 arm->core_mode = armv7m->core_mode
465 ? ARM_MODE_USER_THREAD
466 : ARM_MODE_THREAD;
467
468 /* which stack is it using? */
469 if (control & 2)
470 arm->map = armv7m_psp_reg_map;
471 else
472 arm->map = armv7m_msp_reg_map;
473
474 armv7m->exception_number = 0;
475 }
476
477 if (armv7m->exception_number)
478 cortex_m3_examine_exception_reason(target);
479
480 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
481 armv7m_mode_strings[armv7m->core_mode],
482 *(uint32_t *)(arm->pc->value),
483 target_state_name(target));
484
485 if (armv7m->post_debug_entry) {
486 retval = armv7m->post_debug_entry(target);
487 if (retval != ERROR_OK)
488 return retval;
489 }
490
491 return ERROR_OK;
492 }
493
494 static int cortex_m3_poll(struct target *target)
495 {
496 int detected_failure = ERROR_OK;
497 int retval = ERROR_OK;
498 enum target_state prev_target_state = target->state;
499 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
500 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
501
502 /* Read from Debug Halting Control and Status Register */
503 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
504 if (retval != ERROR_OK) {
505 target->state = TARGET_UNKNOWN;
506 return retval;
507 }
508
509 /* Recover from lockup. See ARMv7-M architecture spec,
510 * section B1.5.15 "Unrecoverable exception cases".
511 */
512 if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
513 LOG_ERROR("%s -- clearing lockup after double fault",
514 target_name(target));
515 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
516 target->debug_reason = DBG_REASON_DBGRQ;
517
518 /* We have to execute the rest (the "finally" equivalent, but
519 * still throw this exception again).
520 */
521 detected_failure = ERROR_FAIL;
522
523 /* refresh status bits */
524 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
525 if (retval != ERROR_OK)
526 return retval;
527 }
528
529 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
530 /* check if still in reset */
531 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
532 if (retval != ERROR_OK)
533 return retval;
534
535 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
536 target->state = TARGET_RESET;
537 return ERROR_OK;
538 }
539 }
540
541 if (target->state == TARGET_RESET) {
542 /* Cannot switch context while running so endreset is
543 * called with target->state == TARGET_RESET
544 */
545 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
546 cortex_m3->dcb_dhcsr);
547 cortex_m3_endreset_event(target);
548 target->state = TARGET_RUNNING;
549 prev_target_state = TARGET_RUNNING;
550 }
551
552 if (cortex_m3->dcb_dhcsr & S_HALT) {
553 target->state = TARGET_HALTED;
554
555 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
556 retval = cortex_m3_debug_entry(target);
557 if (retval != ERROR_OK)
558 return retval;
559
560 if (arm_semihosting(target, &retval) != 0)
561 return retval;
562
563 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
564 }
565 if (prev_target_state == TARGET_DEBUG_RUNNING) {
566 LOG_DEBUG(" ");
567 retval = cortex_m3_debug_entry(target);
568 if (retval != ERROR_OK)
569 return retval;
570
571 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
572 }
573 }
574
575 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
576 * How best to model low power modes?
577 */
578
579 if (target->state == TARGET_UNKNOWN) {
580 /* check if processor is retiring instructions */
581 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
582 target->state = TARGET_RUNNING;
583 retval = ERROR_OK;
584 }
585 }
586
587 /* Did we detect a failure condition that we cleared? */
588 if (detected_failure != ERROR_OK)
589 retval = detected_failure;
590 return retval;
591 }
592
593 static int cortex_m3_halt(struct target *target)
594 {
595 LOG_DEBUG("target->state: %s",
596 target_state_name(target));
597
598 if (target->state == TARGET_HALTED) {
599 LOG_DEBUG("target was already halted");
600 return ERROR_OK;
601 }
602
603 if (target->state == TARGET_UNKNOWN)
604 LOG_WARNING("target was in unknown state when halt was requested");
605
606 if (target->state == TARGET_RESET) {
607 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
608 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
609 return ERROR_TARGET_FAILURE;
610 } else {
611 /* we came here in a reset_halt or reset_init sequence
612 * debug entry was already prepared in cortex_m3_assert_reset()
613 */
614 target->debug_reason = DBG_REASON_DBGRQ;
615
616 return ERROR_OK;
617 }
618 }
619
620 /* Write to Debug Halting Control and Status Register */
621 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
622
623 target->debug_reason = DBG_REASON_DBGRQ;
624
625 return ERROR_OK;
626 }
627
628 static int cortex_m3_soft_reset_halt(struct target *target)
629 {
630 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
631 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
632 uint32_t dcb_dhcsr = 0;
633 int retval, timeout = 0;
634
635 /* Enter debug state on reset; restore DEMCR in endreset_event() */
636 retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
637 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
638 if (retval != ERROR_OK)
639 return retval;
640
641 /* Request a core-only reset */
642 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
643 AIRCR_VECTKEY | AIRCR_VECTRESET);
644 if (retval != ERROR_OK)
645 return retval;
646 target->state = TARGET_RESET;
647
648 /* registers are now invalid */
649 register_cache_invalidate(cortex_m3->armv7m.core_cache);
650
651 while (timeout < 100) {
652 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
653 if (retval == ERROR_OK) {
654 retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
655 &cortex_m3->nvic_dfsr);
656 if (retval != ERROR_OK)
657 return retval;
658 if ((dcb_dhcsr & S_HALT)
659 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
660 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
661 "DFSR 0x%08x",
662 (unsigned) dcb_dhcsr,
663 (unsigned) cortex_m3->nvic_dfsr);
664 cortex_m3_poll(target);
665 /* FIXME restore user's vector catch config */
666 return ERROR_OK;
667 } else
668 LOG_DEBUG("waiting for system reset-halt, "
669 "DHCSR 0x%08x, %d ms",
670 (unsigned) dcb_dhcsr, timeout);
671 }
672 timeout++;
673 alive_sleep(1);
674 }
675
676 return ERROR_OK;
677 }
678
679 static void cortex_m3_enable_breakpoints(struct target *target)
680 {
681 struct breakpoint *breakpoint = target->breakpoints;
682
683 /* set any pending breakpoints */
684 while (breakpoint) {
685 if (!breakpoint->set)
686 cortex_m3_set_breakpoint(target, breakpoint);
687 breakpoint = breakpoint->next;
688 }
689 }
690
691 static int cortex_m3_resume(struct target *target, int current,
692 uint32_t address, int handle_breakpoints, int debug_execution)
693 {
694 struct armv7m_common *armv7m = target_to_armv7m(target);
695 struct breakpoint *breakpoint = NULL;
696 uint32_t resume_pc;
697 struct reg *r;
698
699 if (target->state != TARGET_HALTED) {
700 LOG_WARNING("target not halted");
701 return ERROR_TARGET_NOT_HALTED;
702 }
703
704 if (!debug_execution) {
705 target_free_all_working_areas(target);
706 cortex_m3_enable_breakpoints(target);
707 cortex_m3_enable_watchpoints(target);
708 }
709
710 if (debug_execution) {
711 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
712
713 /* Disable interrupts */
714 /* We disable interrupts in the PRIMASK register instead of
715 * masking with C_MASKINTS. This is probably the same issue
716 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
717 * in parallel with disabled interrupts can cause local faults
718 * to not be taken.
719 *
720 * REVISIT this clearly breaks non-debug execution, since the
721 * PRIMASK register state isn't saved/restored... workaround
722 * by never resuming app code after debug execution.
723 */
724 buf_set_u32(r->value, 0, 1, 1);
725 r->dirty = true;
726 r->valid = true;
727
728 /* Make sure we are in Thumb mode */
729 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
730 buf_set_u32(r->value, 24, 1, 1);
731 r->dirty = true;
732 r->valid = true;
733 }
734
735 /* current = 1: continue on current pc, otherwise continue at <address> */
736 r = armv7m->arm.pc;
737 if (!current) {
738 buf_set_u32(r->value, 0, 32, address);
739 r->dirty = true;
740 r->valid = true;
741 }
742
743 /* if we halted last time due to a bkpt instruction
744 * then we have to manually step over it, otherwise
745 * the core will break again */
746
747 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
748 && !debug_execution)
749 armv7m_maybe_skip_bkpt_inst(target, NULL);
750
751 resume_pc = buf_get_u32(r->value, 0, 32);
752
753 armv7m_restore_context(target);
754
755 /* the front-end may request us not to handle breakpoints */
756 if (handle_breakpoints) {
757 /* Single step past breakpoint at current address */
758 breakpoint = breakpoint_find(target, resume_pc);
759 if (breakpoint) {
760 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
761 breakpoint->address,
762 breakpoint->unique_id);
763 cortex_m3_unset_breakpoint(target, breakpoint);
764 cortex_m3_single_step_core(target);
765 cortex_m3_set_breakpoint(target, breakpoint);
766 }
767 }
768
769 /* Restart core */
770 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
771
772 target->debug_reason = DBG_REASON_NOTHALTED;
773
774 /* registers are now invalid */
775 register_cache_invalidate(armv7m->core_cache);
776
777 if (!debug_execution) {
778 target->state = TARGET_RUNNING;
779 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
780 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
781 } else {
782 target->state = TARGET_DEBUG_RUNNING;
783 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
784 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
785 }
786
787 return ERROR_OK;
788 }
789
790 /* int irqstepcount = 0; */
791 static int cortex_m3_step(struct target *target, int current,
792 uint32_t address, int handle_breakpoints)
793 {
794 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
795 struct armv7m_common *armv7m = &cortex_m3->armv7m;
796 struct adiv5_dap *swjdp = &armv7m->dap;
797 struct breakpoint *breakpoint = NULL;
798 struct reg *pc = armv7m->arm.pc;
799 bool bkpt_inst_found = false;
800 int retval;
801 bool isr_timed_out = false;
802
803 if (target->state != TARGET_HALTED) {
804 LOG_WARNING("target not halted");
805 return ERROR_TARGET_NOT_HALTED;
806 }
807
808 /* current = 1: continue on current pc, otherwise continue at <address> */
809 if (!current)
810 buf_set_u32(pc->value, 0, 32, address);
811
812 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
813
814 /* the front-end may request us not to handle breakpoints */
815 if (handle_breakpoints) {
816 breakpoint = breakpoint_find(target, pc_value);
817 if (breakpoint)
818 cortex_m3_unset_breakpoint(target, breakpoint);
819 }
820
821 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
822
823 target->debug_reason = DBG_REASON_SINGLESTEP;
824
825 armv7m_restore_context(target);
826
827 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
828
829 /* if no bkpt instruction is found at pc then we can perform
830 * a normal step, otherwise we have to manually step over the bkpt
831 * instruction - as such simulate a step */
832 if (bkpt_inst_found == false) {
833 /* Automatic ISR masking mode off: Just step over the next instruction */
834 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
835 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
836 else {
837 /* Process interrupts during stepping in a way they don't interfere
838 * debugging.
839 *
840 * Principle:
841 *
842 * Set a temporary break point at the current pc and let the core run
843 * with interrupts enabled. Pending interrupts get served and we run
844 * into the breakpoint again afterwards. Then we step over the next
845 * instruction with interrupts disabled.
846 *
847 * If the pending interrupts don't complete within time, we leave the
848 * core running. This may happen if the interrupts trigger faster
849 * than the core can process them or the handler doesn't return.
850 *
851 * If no more breakpoints are available we simply do a step with
852 * interrupts enabled.
853 *
854 */
855
856 /* Set a temporary break point */
857 retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
858 bool tmp_bp_set = (retval == ERROR_OK);
859
860 /* No more breakpoints left, just do a step */
861 if (!tmp_bp_set)
862 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
863 else {
864 /* Start the core */
865 LOG_DEBUG("Starting core to serve pending interrupts");
866 int64_t t_start = timeval_ms();
867 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
868
869 /* Wait for pending handlers to complete or timeout */
870 do {
871 retval = mem_ap_read_atomic_u32(swjdp,
872 DCB_DHCSR,
873 &cortex_m3->dcb_dhcsr);
874 if (retval != ERROR_OK) {
875 target->state = TARGET_UNKNOWN;
876 return retval;
877 }
878 isr_timed_out = ((timeval_ms() - t_start) > 500);
879 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
880
881 /* Remove the temporary breakpoint */
882 breakpoint_remove(target, pc_value);
883
884 if (isr_timed_out) {
885 LOG_DEBUG("Interrupt handlers didn't complete within time, "
886 "leaving target running");
887 } else {
888 /* Step over next instruction with interrupts disabled */
889 cortex_m3_write_debug_halt_mask(target,
890 C_HALT | C_MASKINTS,
891 0);
892 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
893 /* Re-enable interrupts */
894 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
895 }
896 }
897 }
898 }
899
900 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
901 if (retval != ERROR_OK)
902 return retval;
903
904 /* registers are now invalid */
905 register_cache_invalidate(cortex_m3->armv7m.core_cache);
906
907 if (breakpoint)
908 cortex_m3_set_breakpoint(target, breakpoint);
909
910 if (isr_timed_out) {
911 /* Leave the core running. The user has to stop execution manually. */
912 target->debug_reason = DBG_REASON_NOTHALTED;
913 target->state = TARGET_RUNNING;
914 return ERROR_OK;
915 }
916
917 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
918 " nvic_icsr = 0x%" PRIx32,
919 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
920
921 retval = cortex_m3_debug_entry(target);
922 if (retval != ERROR_OK)
923 return retval;
924 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
925
926 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
927 " nvic_icsr = 0x%" PRIx32,
928 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
929
930 return ERROR_OK;
931 }
932
933 static int cortex_m3_assert_reset(struct target *target)
934 {
935 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
936 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
937 enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
938
939 LOG_DEBUG("target->state: %s",
940 target_state_name(target));
941
942 enum reset_types jtag_reset_config = jtag_get_reset_config();
943
944 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
945 /* allow scripts to override the reset event */
946
947 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
948 register_cache_invalidate(cortex_m3->armv7m.core_cache);
949 target->state = TARGET_RESET;
950
951 return ERROR_OK;
952 }
953
954 /* Enable debug requests */
955 int retval;
956 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
957 if (retval != ERROR_OK)
958 return retval;
959 if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
960 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
961 if (retval != ERROR_OK)
962 return retval;
963 }
964
965 retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
966 if (retval != ERROR_OK)
967 return retval;
968
969 if (!target->reset_halt) {
970 /* Set/Clear C_MASKINTS in a separate operation */
971 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
972 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
973 DBGKEY | C_DEBUGEN | C_HALT);
974 if (retval != ERROR_OK)
975 return retval;
976 }
977
978 /* clear any debug flags before resuming */
979 cortex_m3_clear_halt(target);
980
981 /* clear C_HALT in dhcsr reg */
982 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
983 } else {
984 /* Halt in debug on reset; endreset_event() restores DEMCR.
985 *
986 * REVISIT catching BUSERR presumably helps to defend against
987 * bad vector table entries. Should this include MMERR or
988 * other flags too?
989 */
990 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
991 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
992 if (retval != ERROR_OK)
993 return retval;
994 }
995
996 if (jtag_reset_config & RESET_HAS_SRST) {
997 /* default to asserting srst */
998 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
999 jtag_add_reset(1, 1);
1000 else
1001 jtag_add_reset(0, 1);
1002 } else {
1003 /* Use a standard Cortex-M3 software reset mechanism.
1004 * We default to using VECRESET as it is supported on all current cores.
1005 * This has the disadvantage of not resetting the peripherals, so a
1006 * reset-init event handler is needed to perform any peripheral resets.
1007 */
1008 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1009 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1010 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1011 if (retval != ERROR_OK)
1012 return retval;
1013
1014 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1015 ? "SYSRESETREQ" : "VECTRESET");
1016
1017 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1018 LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1019 "handler to reset any peripherals");
1020 }
1021
1022 {
1023 /* I do not know why this is necessary, but it
1024 * fixes strange effects (step/resume cause NMI
1025 * after reset) on LM3S6918 -- Michael Schwingen
1026 */
1027 uint32_t tmp;
1028 retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1029 if (retval != ERROR_OK)
1030 return retval;
1031 }
1032 }
1033
1034 target->state = TARGET_RESET;
1035 jtag_add_sleep(50000);
1036
1037 register_cache_invalidate(cortex_m3->armv7m.core_cache);
1038
1039 if (target->reset_halt) {
1040 retval = target_halt(target);
1041 if (retval != ERROR_OK)
1042 return retval;
1043 }
1044
1045 return ERROR_OK;
1046 }
1047
1048 static int cortex_m3_deassert_reset(struct target *target)
1049 {
1050 LOG_DEBUG("target->state: %s",
1051 target_state_name(target));
1052
1053 /* deassert reset lines */
1054 jtag_add_reset(0, 0);
1055
1056 return ERROR_OK;
1057 }
1058
1059 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1060 {
1061 int retval;
1062 int fp_num = 0;
1063 uint32_t hilo;
1064 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1065 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1066
1067 if (breakpoint->set) {
1068 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1069 return ERROR_OK;
1070 }
1071
1072 if (cortex_m3->auto_bp_type)
1073 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1074
1075 if (breakpoint->type == BKPT_HARD) {
1076 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1077 fp_num++;
1078 if (fp_num >= cortex_m3->fp_num_code) {
1079 LOG_ERROR("Can not find free FPB Comparator!");
1080 return ERROR_FAIL;
1081 }
1082 breakpoint->set = fp_num + 1;
1083 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1084 comparator_list[fp_num].used = 1;
1085 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1086 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1087 comparator_list[fp_num].fpcr_value);
1088 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1089 fp_num,
1090 comparator_list[fp_num].fpcr_value);
1091 if (!cortex_m3->fpb_enabled) {
1092 LOG_DEBUG("FPB wasn't enabled, do it now");
1093 target_write_u32(target, FP_CTRL, 3);
1094 }
1095 } else if (breakpoint->type == BKPT_SOFT) {
1096 uint8_t code[4];
1097
1098 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1099 * semihosting; don't use that. Otherwise the BKPT
1100 * parameter is arbitrary.
1101 */
1102 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1103 retval = target_read_memory(target,
1104 breakpoint->address & 0xFFFFFFFE,
1105 breakpoint->length, 1,
1106 breakpoint->orig_instr);
1107 if (retval != ERROR_OK)
1108 return retval;
1109 retval = target_write_memory(target,
1110 breakpoint->address & 0xFFFFFFFE,
1111 breakpoint->length, 1,
1112 code);
1113 if (retval != ERROR_OK)
1114 return retval;
1115 breakpoint->set = true;
1116 }
1117
1118 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1119 breakpoint->unique_id,
1120 (int)(breakpoint->type),
1121 breakpoint->address,
1122 breakpoint->length,
1123 breakpoint->set);
1124
1125 return ERROR_OK;
1126 }
1127
1128 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1129 {
1130 int retval;
1131 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1132 struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1133
1134 if (!breakpoint->set) {
1135 LOG_WARNING("breakpoint not set");
1136 return ERROR_OK;
1137 }
1138
1139 LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1140 breakpoint->unique_id,
1141 (int)(breakpoint->type),
1142 breakpoint->address,
1143 breakpoint->length,
1144 breakpoint->set);
1145
1146 if (breakpoint->type == BKPT_HARD) {
1147 int fp_num = breakpoint->set - 1;
1148 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1149 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1150 return ERROR_OK;
1151 }
1152 comparator_list[fp_num].used = 0;
1153 comparator_list[fp_num].fpcr_value = 0;
1154 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1155 comparator_list[fp_num].fpcr_value);
1156 } else {
1157 /* restore original instruction (kept in target endianness) */
1158 if (breakpoint->length == 4) {
1159 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1160 breakpoint->orig_instr);
1161 if (retval != ERROR_OK)
1162 return retval;
1163 } else {
1164 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1165 breakpoint->orig_instr);
1166 if (retval != ERROR_OK)
1167 return retval;
1168 }
1169 }
1170 breakpoint->set = false;
1171
1172 return ERROR_OK;
1173 }
1174
1175 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1176 {
1177 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1178
1179 if (cortex_m3->auto_bp_type) {
1180 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1181 #ifdef ARMV7_GDB_HACKS
1182 if (breakpoint->length != 2) {
1183 /* XXX Hack: Replace all breakpoints with length != 2 with
1184 * a hardware breakpoint. */
1185 breakpoint->type = BKPT_HARD;
1186 breakpoint->length = 2;
1187 }
1188 #endif
1189 }
1190
1191 if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1192 if (breakpoint->type == BKPT_HARD) {
1193 LOG_INFO("flash patch comparator requested outside code memory region");
1194 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1195 }
1196
1197 if (breakpoint->type == BKPT_SOFT) {
1198 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1199 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1200 }
1201 }
1202
1203 if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1204 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1205 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1206 }
1207
1208 if ((breakpoint->length != 2)) {
1209 LOG_INFO("only breakpoints of two bytes length supported");
1210 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1211 }
1212
1213 if (breakpoint->type == BKPT_HARD)
1214 cortex_m3->fp_code_available--;
1215
1216 return cortex_m3_set_breakpoint(target, breakpoint);
1217 }
1218
1219 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1220 {
1221 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1222
1223 /* REVISIT why check? FBP can be updated with core running ... */
1224 if (target->state != TARGET_HALTED) {
1225 LOG_WARNING("target not halted");
1226 return ERROR_TARGET_NOT_HALTED;
1227 }
1228
1229 if (cortex_m3->auto_bp_type)
1230 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1231
1232 if (breakpoint->set)
1233 cortex_m3_unset_breakpoint(target, breakpoint);
1234
1235 if (breakpoint->type == BKPT_HARD)
1236 cortex_m3->fp_code_available++;
1237
1238 return ERROR_OK;
1239 }
1240
1241 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1242 {
1243 int dwt_num = 0;
1244 uint32_t mask, temp;
1245 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1246
1247 /* watchpoint params were validated earlier */
1248 mask = 0;
1249 temp = watchpoint->length;
1250 while (temp) {
1251 temp >>= 1;
1252 mask++;
1253 }
1254 mask--;
1255
1256 /* REVISIT Don't fully trust these "not used" records ... users
1257 * may set up breakpoints by hand, e.g. dual-address data value
1258 * watchpoint using comparator #1; comparator #0 matching cycle
1259 * count; send data trace info through ITM and TPIU; etc
1260 */
1261 struct cortex_m3_dwt_comparator *comparator;
1262
1263 for (comparator = cortex_m3->dwt_comparator_list;
1264 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1265 comparator++, dwt_num++)
1266 continue;
1267 if (dwt_num >= cortex_m3->dwt_num_comp) {
1268 LOG_ERROR("Can not find free DWT Comparator");
1269 return ERROR_FAIL;
1270 }
1271 comparator->used = 1;
1272 watchpoint->set = dwt_num + 1;
1273
1274 comparator->comp = watchpoint->address;
1275 target_write_u32(target, comparator->dwt_comparator_address + 0,
1276 comparator->comp);
1277
1278 comparator->mask = mask;
1279 target_write_u32(target, comparator->dwt_comparator_address + 4,
1280 comparator->mask);
1281
1282 switch (watchpoint->rw) {
1283 case WPT_READ:
1284 comparator->function = 5;
1285 break;
1286 case WPT_WRITE:
1287 comparator->function = 6;
1288 break;
1289 case WPT_ACCESS:
1290 comparator->function = 7;
1291 break;
1292 }
1293 target_write_u32(target, comparator->dwt_comparator_address + 8,
1294 comparator->function);
1295
1296 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1297 watchpoint->unique_id, dwt_num,
1298 (unsigned) comparator->comp,
1299 (unsigned) comparator->mask,
1300 (unsigned) comparator->function);
1301 return ERROR_OK;
1302 }
1303
1304 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1305 {
1306 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1307 struct cortex_m3_dwt_comparator *comparator;
1308 int dwt_num;
1309
1310 if (!watchpoint->set) {
1311 LOG_WARNING("watchpoint (wpid: %d) not set",
1312 watchpoint->unique_id);
1313 return ERROR_OK;
1314 }
1315
1316 dwt_num = watchpoint->set - 1;
1317
1318 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1319 watchpoint->unique_id, dwt_num,
1320 (unsigned) watchpoint->address);
1321
1322 if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1323 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1324 return ERROR_OK;
1325 }
1326
1327 comparator = cortex_m3->dwt_comparator_list + dwt_num;
1328 comparator->used = 0;
1329 comparator->function = 0;
1330 target_write_u32(target, comparator->dwt_comparator_address + 8,
1331 comparator->function);
1332
1333 watchpoint->set = false;
1334
1335 return ERROR_OK;
1336 }
1337
1338 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1339 {
1340 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1341
1342 if (cortex_m3->dwt_comp_available < 1) {
1343 LOG_DEBUG("no comparators?");
1344 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1345 }
1346
1347 /* hardware doesn't support data value masking */
1348 if (watchpoint->mask != ~(uint32_t)0) {
1349 LOG_DEBUG("watchpoint value masks not supported");
1350 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1351 }
1352
1353 /* hardware allows address masks of up to 32K */
1354 unsigned mask;
1355
1356 for (mask = 0; mask < 16; mask++) {
1357 if ((1u << mask) == watchpoint->length)
1358 break;
1359 }
1360 if (mask == 16) {
1361 LOG_DEBUG("unsupported watchpoint length");
1362 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1363 }
1364 if (watchpoint->address & ((1 << mask) - 1)) {
1365 LOG_DEBUG("watchpoint address is unaligned");
1366 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1367 }
1368
1369 /* Caller doesn't seem to be able to describe watching for data
1370 * values of zero; that flags "no value".
1371 *
1372 * REVISIT This DWT may well be able to watch for specific data
1373 * values. Requires comparator #1 to set DATAVMATCH and match
1374 * the data, and another comparator (DATAVADDR0) matching addr.
1375 */
1376 if (watchpoint->value) {
1377 LOG_DEBUG("data value watchpoint not YET supported");
1378 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1379 }
1380
1381 cortex_m3->dwt_comp_available--;
1382 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1383
1384 return ERROR_OK;
1385 }
1386
1387 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1388 {
1389 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1390
1391 /* REVISIT why check? DWT can be updated with core running ... */
1392 if (target->state != TARGET_HALTED) {
1393 LOG_WARNING("target not halted");
1394 return ERROR_TARGET_NOT_HALTED;
1395 }
1396
1397 if (watchpoint->set)
1398 cortex_m3_unset_watchpoint(target, watchpoint);
1399
1400 cortex_m3->dwt_comp_available++;
1401 LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1402
1403 return ERROR_OK;
1404 }
1405
1406 void cortex_m3_enable_watchpoints(struct target *target)
1407 {
1408 struct watchpoint *watchpoint = target->watchpoints;
1409
1410 /* set any pending watchpoints */
1411 while (watchpoint) {
1412 if (!watchpoint->set)
1413 cortex_m3_set_watchpoint(target, watchpoint);
1414 watchpoint = watchpoint->next;
1415 }
1416 }
1417
1418 static int cortex_m3_load_core_reg_u32(struct target *target,
1419 enum armv7m_regtype type, uint32_t num, uint32_t *value)
1420 {
1421 int retval;
1422 struct armv7m_common *armv7m = target_to_armv7m(target);
1423 struct adiv5_dap *swjdp = &armv7m->dap;
1424
1425 /* NOTE: we "know" here that the register identifiers used
1426 * in the v7m header match the Cortex-M3 Debug Core Register
1427 * Selector values for R0..R15, xPSR, MSP, and PSP.
1428 */
1429 switch (num) {
1430 case 0 ... 18:
1431 /* read a normal core register */
1432 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1433
1434 if (retval != ERROR_OK) {
1435 LOG_ERROR("JTAG failure %i", retval);
1436 return ERROR_JTAG_DEVICE_ERROR;
1437 }
1438 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1439 break;
1440
1441 case ARMV7M_PRIMASK:
1442 case ARMV7M_BASEPRI:
1443 case ARMV7M_FAULTMASK:
1444 case ARMV7M_CONTROL:
1445 /* Cortex-M3 packages these four registers as bitfields
1446 * in one Debug Core register. So say r0 and r2 docs;
1447 * it was removed from r1 docs, but still works.
1448 */
1449 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1450
1451 switch (num) {
1452 case ARMV7M_PRIMASK:
1453 *value = buf_get_u32((uint8_t *)value, 0, 1);
1454 break;
1455
1456 case ARMV7M_BASEPRI:
1457 *value = buf_get_u32((uint8_t *)value, 8, 8);
1458 break;
1459
1460 case ARMV7M_FAULTMASK:
1461 *value = buf_get_u32((uint8_t *)value, 16, 1);
1462 break;
1463
1464 case ARMV7M_CONTROL:
1465 *value = buf_get_u32((uint8_t *)value, 24, 2);
1466 break;
1467 }
1468
1469 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1470 break;
1471
1472 default:
1473 return ERROR_COMMAND_SYNTAX_ERROR;
1474 }
1475
1476 return ERROR_OK;
1477 }
1478
1479 static int cortex_m3_store_core_reg_u32(struct target *target,
1480 enum armv7m_regtype type, uint32_t num, uint32_t value)
1481 {
1482 int retval;
1483 uint32_t reg;
1484 struct armv7m_common *armv7m = target_to_armv7m(target);
1485 struct adiv5_dap *swjdp = &armv7m->dap;
1486
1487 #ifdef ARMV7_GDB_HACKS
1488 /* If the LR register is being modified, make sure it will put us
1489 * in "thumb" mode, or an INVSTATE exception will occur. This is a
1490 * hack to deal with the fact that gdb will sometimes "forge"
1491 * return addresses, and doesn't set the LSB correctly (i.e., when
1492 * printing expressions containing function calls, it sets LR = 0.)
1493 * Valid exception return codes have bit 0 set too.
1494 */
1495 if (num == ARMV7M_R14)
1496 value |= 0x01;
1497 #endif
1498
1499 /* NOTE: we "know" here that the register identifiers used
1500 * in the v7m header match the Cortex-M3 Debug Core Register
1501 * Selector values for R0..R15, xPSR, MSP, and PSP.
1502 */
1503 switch (num) {
1504 case 0 ... 18:
1505 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1506 if (retval != ERROR_OK) {
1507 struct reg *r;
1508
1509 LOG_ERROR("JTAG failure");
1510 r = armv7m->core_cache->reg_list + num;
1511 r->dirty = r->valid;
1512 return ERROR_JTAG_DEVICE_ERROR;
1513 }
1514 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1515 break;
1516
1517 case ARMV7M_PRIMASK:
1518 case ARMV7M_BASEPRI:
1519 case ARMV7M_FAULTMASK:
1520 case ARMV7M_CONTROL:
1521 /* Cortex-M3 packages these four registers as bitfields
1522 * in one Debug Core register. So say r0 and r2 docs;
1523 * it was removed from r1 docs, but still works.
1524 */
1525 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1526
1527 switch (num) {
1528 case ARMV7M_PRIMASK:
1529 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1530 break;
1531
1532 case ARMV7M_BASEPRI:
1533 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1534 break;
1535
1536 case ARMV7M_FAULTMASK:
1537 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1538 break;
1539
1540 case ARMV7M_CONTROL:
1541 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1542 break;
1543 }
1544
1545 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1546
1547 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1548 break;
1549
1550 default:
1551 return ERROR_COMMAND_SYNTAX_ERROR;
1552 }
1553
1554 return ERROR_OK;
1555 }
1556
1557 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1558 uint32_t size, uint32_t count, uint8_t *buffer)
1559 {
1560 struct armv7m_common *armv7m = target_to_armv7m(target);
1561 struct adiv5_dap *swjdp = &armv7m->dap;
1562 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1563
1564 /* cortex_m3 handles unaligned memory access */
1565 if (count && buffer) {
1566 switch (size) {
1567 case 4:
1568 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1569 break;
1570 case 2:
1571 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1572 break;
1573 case 1:
1574 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1575 break;
1576 }
1577 }
1578
1579 return retval;
1580 }
1581
1582 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1583 uint32_t size, uint32_t count, const uint8_t *buffer)
1584 {
1585 struct armv7m_common *armv7m = target_to_armv7m(target);
1586 struct adiv5_dap *swjdp = &armv7m->dap;
1587 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1588
1589 if (count && buffer) {
1590 switch (size) {
1591 case 4:
1592 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1593 break;
1594 case 2:
1595 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1596 break;
1597 case 1:
1598 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1599 break;
1600 }
1601 }
1602
1603 return retval;
1604 }
1605
1606 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1607 uint32_t count, const uint8_t *buffer)
1608 {
1609 return cortex_m3_write_memory(target, address, 4, count, buffer);
1610 }
1611
1612 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1613 struct target *target)
1614 {
1615 armv7m_build_reg_cache(target);
1616 return ERROR_OK;
1617 }
1618
1619 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1620 * on r/w if the core is not running, and clear on resume or reset ... or
1621 * at least, in a post_restore_context() method.
1622 */
1623
1624 struct dwt_reg_state {
1625 struct target *target;
1626 uint32_t addr;
1627 uint32_t value; /* scratch/cache */
1628 };
1629
1630 static int cortex_m3_dwt_get_reg(struct reg *reg)
1631 {
1632 struct dwt_reg_state *state = reg->arch_info;
1633
1634 return target_read_u32(state->target, state->addr, &state->value);
1635 }
1636
1637 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1638 {
1639 struct dwt_reg_state *state = reg->arch_info;
1640
1641 return target_write_u32(state->target, state->addr,
1642 buf_get_u32(buf, 0, reg->size));
1643 }
1644
1645 struct dwt_reg {
1646 uint32_t addr;
1647 char *name;
1648 unsigned size;
1649 };
1650
1651 static struct dwt_reg dwt_base_regs[] = {
1652 { DWT_CTRL, "dwt_ctrl", 32, },
1653 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1654 * increments while the core is asleep.
1655 */
1656 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1657 /* plus some 8 bit counters, useful for profiling with TPIU */
1658 };
1659
1660 static struct dwt_reg dwt_comp[] = {
1661 #define DWT_COMPARATOR(i) \
1662 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1663 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1664 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1665 DWT_COMPARATOR(0),
1666 DWT_COMPARATOR(1),
1667 DWT_COMPARATOR(2),
1668 DWT_COMPARATOR(3),
1669 #undef DWT_COMPARATOR
1670 };
1671
1672 static const struct reg_arch_type dwt_reg_type = {
1673 .get = cortex_m3_dwt_get_reg,
1674 .set = cortex_m3_dwt_set_reg,
1675 };
1676
1677 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1678 {
1679 struct dwt_reg_state *state;
1680
1681 state = calloc(1, sizeof *state);
1682 if (!state)
1683 return;
1684 state->addr = d->addr;
1685 state->target = t;
1686
1687 r->name = d->name;
1688 r->size = d->size;
1689 r->value = &state->value;
1690 r->arch_info = state;
1691 r->type = &dwt_reg_type;
1692 }
1693
1694 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1695 {
1696 uint32_t dwtcr;
1697 struct reg_cache *cache;
1698 struct cortex_m3_dwt_comparator *comparator;
1699 int reg, i;
1700
1701 target_read_u32(target, DWT_CTRL, &dwtcr);
1702 if (!dwtcr) {
1703 LOG_DEBUG("no DWT");
1704 return;
1705 }
1706
1707 cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1708 cm3->dwt_comp_available = cm3->dwt_num_comp;
1709 cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1710 sizeof(struct cortex_m3_dwt_comparator));
1711 if (!cm3->dwt_comparator_list) {
1712 fail0:
1713 cm3->dwt_num_comp = 0;
1714 LOG_ERROR("out of mem");
1715 return;
1716 }
1717
1718 cache = calloc(1, sizeof *cache);
1719 if (!cache) {
1720 fail1:
1721 free(cm3->dwt_comparator_list);
1722 goto fail0;
1723 }
1724 cache->name = "cortex-m3 dwt registers";
1725 cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1726 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1727 if (!cache->reg_list) {
1728 free(cache);
1729 goto fail1;
1730 }
1731
1732 for (reg = 0; reg < 2; reg++)
1733 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1734 dwt_base_regs + reg);
1735
1736 comparator = cm3->dwt_comparator_list;
1737 for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1738 int j;
1739
1740 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1741 for (j = 0; j < 3; j++, reg++)
1742 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1743 dwt_comp + 3 * i + j);
1744 }
1745
1746 *register_get_last_cache_p(&target->reg_cache) = cache;
1747 cm3->dwt_cache = cache;
1748
1749 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1750 dwtcr, cm3->dwt_num_comp,
1751 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1752
1753 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1754 * implement single-address data value watchpoints ... so we
1755 * won't need to check it later, when asked to set one up.
1756 */
1757 }
1758
1759 int cortex_m3_examine(struct target *target)
1760 {
1761 int retval;
1762 uint32_t cpuid, fpcr;
1763 int i;
1764 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1765 struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1766
1767 retval = ahbap_debugport_init(swjdp);
1768 if (retval != ERROR_OK)
1769 return retval;
1770
1771 if (!target_was_examined(target)) {
1772 target_set_examined(target);
1773
1774 /* Read from Device Identification Registers */
1775 retval = target_read_u32(target, CPUID, &cpuid);
1776 if (retval != ERROR_OK)
1777 return retval;
1778
1779 /* Get CPU Type */
1780 i = (cpuid >> 4) & 0xf;
1781
1782 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1783 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1784 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1785
1786 /* NOTE: FPB and DWT are both optional. */
1787
1788 /* Setup FPB */
1789 target_read_u32(target, FP_CTRL, &fpcr);
1790 cortex_m3->auto_bp_type = 1;
1791 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits
1792 *[14:12]
1793 *and [7:4]
1794 **/
1795 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1796 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1797 cortex_m3->fp_comparator_list = calloc(
1798 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1799 sizeof(struct cortex_m3_fp_comparator));
1800 cortex_m3->fpb_enabled = fpcr & 1;
1801 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1802 cortex_m3->fp_comparator_list[i].type =
1803 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1804 cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1805 }
1806 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1807 fpcr,
1808 cortex_m3->fp_num_code,
1809 cortex_m3->fp_num_lit);
1810
1811 /* Setup DWT */
1812 cortex_m3_dwt_setup(cortex_m3, target);
1813
1814 /* These hardware breakpoints only work for code in flash! */
1815 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1816 target_name(target),
1817 cortex_m3->fp_num_code,
1818 cortex_m3->dwt_num_comp);
1819 }
1820
1821 return ERROR_OK;
1822 }
1823
1824 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1825 {
1826 uint16_t dcrdr;
1827 int retval;
1828
1829 mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1830 *ctrl = (uint8_t)dcrdr;
1831 *value = (uint8_t)(dcrdr >> 8);
1832
1833 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1834
1835 /* write ack back to software dcc register
1836 * signify we have read data */
1837 if (dcrdr & (1 << 0)) {
1838 dcrdr = 0;
1839 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1840 if (retval != ERROR_OK)
1841 return retval;
1842 }
1843
1844 return ERROR_OK;
1845 }
1846
1847 static int cortex_m3_target_request_data(struct target *target,
1848 uint32_t size, uint8_t *buffer)
1849 {
1850 struct armv7m_common *armv7m = target_to_armv7m(target);
1851 struct adiv5_dap *swjdp = &armv7m->dap;
1852 uint8_t data;
1853 uint8_t ctrl;
1854 uint32_t i;
1855
1856 for (i = 0; i < (size * 4); i++) {
1857 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1858 buffer[i] = data;
1859 }
1860
1861 return ERROR_OK;
1862 }
1863
1864 static int cortex_m3_handle_target_request(void *priv)
1865 {
1866 struct target *target = priv;
1867 if (!target_was_examined(target))
1868 return ERROR_OK;
1869 struct armv7m_common *armv7m = target_to_armv7m(target);
1870 struct adiv5_dap *swjdp = &armv7m->dap;
1871
1872 if (!target->dbg_msg_enabled)
1873 return ERROR_OK;
1874
1875 if (target->state == TARGET_RUNNING) {
1876 uint8_t data;
1877 uint8_t ctrl;
1878
1879 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1880
1881 /* check if we have data */
1882 if (ctrl & (1 << 0)) {
1883 uint32_t request;
1884
1885 /* we assume target is quick enough */
1886 request = data;
1887 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1888 request |= (data << 8);
1889 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1890 request |= (data << 16);
1891 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1892 request |= (data << 24);
1893 target_request(target, request);
1894 }
1895 }
1896
1897 return ERROR_OK;
1898 }
1899
1900 static int cortex_m3_init_arch_info(struct target *target,
1901 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1902 {
1903 int retval;
1904 struct armv7m_common *armv7m = &cortex_m3->armv7m;
1905
1906 armv7m_init_arch_info(target, armv7m);
1907
1908 /* prepare JTAG information for the new target */
1909 cortex_m3->jtag_info.tap = tap;
1910 cortex_m3->jtag_info.scann_size = 4;
1911
1912 /* default reset mode is to use srst if fitted
1913 * if not it will use CORTEX_M3_RESET_VECTRESET */
1914 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
1915
1916 armv7m->arm.dap = &armv7m->dap;
1917
1918 /* Leave (only) generic DAP stuff for debugport_init(); */
1919 armv7m->dap.jtag_info = &cortex_m3->jtag_info;
1920 armv7m->dap.memaccess_tck = 8;
1921 /* Cortex-M3 has 4096 bytes autoincrement range */
1922 armv7m->dap.tar_autoincr_block = (1 << 12);
1923
1924 /* register arch-specific functions */
1925 armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1926
1927 armv7m->post_debug_entry = NULL;
1928
1929 armv7m->pre_restore_context = NULL;
1930
1931 armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1932 armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1933
1934 target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1935
1936 retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
1937 if (retval != ERROR_OK)
1938 return retval;
1939
1940 return ERROR_OK;
1941 }
1942
1943 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1944 {
1945 struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
1946
1947 cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1948 cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1949
1950 return ERROR_OK;
1951 }
1952
1953 /*--------------------------------------------------------------------------*/
1954
1955 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1956 struct cortex_m3_common *cm3)
1957 {
1958 if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1959 command_print(cmd_ctx, "target is not a Cortex-M3");
1960 return ERROR_TARGET_INVALID;
1961 }
1962 return ERROR_OK;
1963 }
1964
1965 /*
1966 * Only stuff below this line should need to verify that its target
1967 * is a Cortex-M3. Everything else should have indirected through the
1968 * cortexm3_target structure, which is only used with CM3 targets.
1969 */
1970
1971 static const struct {
1972 char name[10];
1973 unsigned mask;
1974 } vec_ids[] = {
1975 { "hard_err", VC_HARDERR, },
1976 { "int_err", VC_INTERR, },
1977 { "bus_err", VC_BUSERR, },
1978 { "state_err", VC_STATERR, },
1979 { "chk_err", VC_CHKERR, },
1980 { "nocp_err", VC_NOCPERR, },
1981 { "mm_err", VC_MMERR, },
1982 { "reset", VC_CORERESET, },
1983 };
1984
1985 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1986 {
1987 struct target *target = get_current_target(CMD_CTX);
1988 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1989 struct armv7m_common *armv7m = &cortex_m3->armv7m;
1990 struct adiv5_dap *swjdp = &armv7m->dap;
1991 uint32_t demcr = 0;
1992 int retval;
1993
1994 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1995 if (retval != ERROR_OK)
1996 return retval;
1997
1998 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1999 if (retval != ERROR_OK)
2000 return retval;
2001
2002 if (CMD_ARGC > 0) {
2003 unsigned catch = 0;
2004
2005 if (CMD_ARGC == 1) {
2006 if (strcmp(CMD_ARGV[0], "all") == 0) {
2007 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2008 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2009 | VC_MMERR | VC_CORERESET;
2010 goto write;
2011 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2012 goto write;
2013 }
2014 while (CMD_ARGC-- > 0) {
2015 unsigned i;
2016 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2017 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2018 continue;
2019 catch |= vec_ids[i].mask;
2020 break;
2021 }
2022 if (i == ARRAY_SIZE(vec_ids)) {
2023 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2024 return ERROR_COMMAND_SYNTAX_ERROR;
2025 }
2026 }
2027 write:
2028 /* For now, armv7m->demcr only stores vector catch flags. */
2029 armv7m->demcr = catch;
2030
2031 demcr &= ~0xffff;
2032 demcr |= catch;
2033
2034 /* write, but don't assume it stuck (why not??) */
2035 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2036 if (retval != ERROR_OK)
2037 return retval;
2038 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2039 if (retval != ERROR_OK)
2040 return retval;
2041
2042 /* FIXME be sure to clear DEMCR on clean server shutdown.
2043 * Otherwise the vector catch hardware could fire when there's
2044 * no debugger hooked up, causing much confusion...
2045 */
2046 }
2047
2048 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2049 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2050 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2051 }
2052
2053 return ERROR_OK;
2054 }
2055
2056 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2057 {
2058 struct target *target = get_current_target(CMD_CTX);
2059 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2060 int retval;
2061
2062 static const Jim_Nvp nvp_maskisr_modes[] = {
2063 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2064 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2065 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2066 { .name = NULL, .value = -1 },
2067 };
2068 const Jim_Nvp *n;
2069
2070
2071 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2072 if (retval != ERROR_OK)
2073 return retval;
2074
2075 if (target->state != TARGET_HALTED) {
2076 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2077 return ERROR_OK;
2078 }
2079
2080 if (CMD_ARGC > 0) {
2081 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2082 if (n->name == NULL)
2083 return ERROR_COMMAND_SYNTAX_ERROR;
2084 cortex_m3->isrmasking_mode = n->value;
2085
2086
2087 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2088 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2089 else
2090 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2091 }
2092
2093 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2094 command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2095
2096 return ERROR_OK;
2097 }
2098
2099 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2100 {
2101 struct target *target = get_current_target(CMD_CTX);
2102 struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2103 int retval;
2104 char *reset_config;
2105
2106 retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2107 if (retval != ERROR_OK)
2108 return retval;
2109
2110 if (CMD_ARGC > 0) {
2111 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2112 cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2113 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2114 cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2115 }
2116
2117 switch (cortex_m3->soft_reset_config) {
2118 case CORTEX_M3_RESET_SYSRESETREQ:
2119 reset_config = "sysresetreq";
2120 break;
2121
2122 case CORTEX_M3_RESET_VECTRESET:
2123 reset_config = "vectreset";
2124 break;
2125
2126 default:
2127 reset_config = "unknown";
2128 break;
2129 }
2130
2131 command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2132
2133 return ERROR_OK;
2134 }
2135
2136 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2137 {
2138 .name = "maskisr",
2139 .handler = handle_cortex_m3_mask_interrupts_command,
2140 .mode = COMMAND_EXEC,
2141 .help = "mask cortex_m3 interrupts",
2142 .usage = "['auto'|'on'|'off']",
2143 },
2144 {
2145 .name = "vector_catch",
2146 .handler = handle_cortex_m3_vector_catch_command,
2147 .mode = COMMAND_EXEC,
2148 .help = "configure hardware vectors to trigger debug entry",
2149 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2150 },
2151 {
2152 .name = "reset_config",
2153 .handler = handle_cortex_m3_reset_config_command,
2154 .mode = COMMAND_ANY,
2155 .help = "configure software reset handling",
2156 .usage = "['srst'|'sysresetreq'|'vectreset']",
2157 },
2158 COMMAND_REGISTRATION_DONE
2159 };
2160 static const struct command_registration cortex_m3_command_handlers[] = {
2161 {
2162 .chain = armv7m_command_handlers,
2163 },
2164 {
2165 .name = "cortex_m3",
2166 .mode = COMMAND_EXEC,
2167 .help = "Cortex-M3 command group",
2168 .usage = "",
2169 .chain = cortex_m3_exec_command_handlers,
2170 },
2171 COMMAND_REGISTRATION_DONE
2172 };
2173
2174 struct target_type cortexm3_target = {
2175 .name = "cortex_m3",
2176
2177 .poll = cortex_m3_poll,
2178 .arch_state = armv7m_arch_state,
2179
2180 .target_request_data = cortex_m3_target_request_data,
2181
2182 .halt = cortex_m3_halt,
2183 .resume = cortex_m3_resume,
2184 .step = cortex_m3_step,
2185
2186 .assert_reset = cortex_m3_assert_reset,
2187 .deassert_reset = cortex_m3_deassert_reset,
2188 .soft_reset_halt = cortex_m3_soft_reset_halt,
2189
2190 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2191
2192 .read_memory = cortex_m3_read_memory,
2193 .write_memory = cortex_m3_write_memory,
2194 .bulk_write_memory = cortex_m3_bulk_write_memory,
2195 .checksum_memory = armv7m_checksum_memory,
2196 .blank_check_memory = armv7m_blank_check_memory,
2197
2198 .run_algorithm = armv7m_run_algorithm,
2199 .start_algorithm = armv7m_start_algorithm,
2200 .wait_algorithm = armv7m_wait_algorithm,
2201
2202 .add_breakpoint = cortex_m3_add_breakpoint,
2203 .remove_breakpoint = cortex_m3_remove_breakpoint,
2204 .add_watchpoint = cortex_m3_add_watchpoint,
2205 .remove_watchpoint = cortex_m3_remove_watchpoint,
2206
2207 .commands = cortex_m3_command_handlers,
2208 .target_create = cortex_m3_target_create,
2209 .init_target = cortex_m3_init_target,
2210 .examine = cortex_m3_examine,
2211 };