target: restructure dap support
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 * *
24 * *
25 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
26 * *
27 ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE: most of this should work fine for the Cortex-M1 and
44 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45 * Some differences: M0/M1 doesn't have FBP remapping or the
46 * DWT tracing/profiling support. (So the cycle counter will
47 * not be usable; the other stuff isn't currently used here.)
48 *
49 * Although there are some workarounds for errata seen only in r0p0
50 * silicon, such old parts are hard to find and thus not much tested
51 * any longer.
52 */
53
54 /**
55 * Returns the type of a break point required by address location
56 */
57 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
58
59 /* forward declarations */
60 static int cortex_m_store_core_reg_u32(struct target *target,
61 uint32_t num, uint32_t value);
62 static void cortex_m_dwt_free(struct target *target);
63
64 static int cortexm_dap_read_coreregister_u32(struct target *target,
65 uint32_t *value, int regnum)
66 {
67 struct armv7m_common *armv7m = target_to_armv7m(target);
68 int retval;
69 uint32_t dcrdr;
70
71 /* because the DCB_DCRDR is used for the emulated dcc channel
72 * we have to save/restore the DCB_DCRDR when used */
73 if (target->dbg_msg_enabled) {
74 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
75 if (retval != ERROR_OK)
76 return retval;
77 }
78
79 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
80 if (retval != ERROR_OK)
81 return retval;
82
83 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
84 if (retval != ERROR_OK)
85 return retval;
86
87 if (target->dbg_msg_enabled) {
88 /* restore DCB_DCRDR - this needs to be in a separate
89 * transaction otherwise the emulated DCC channel breaks */
90 if (retval == ERROR_OK)
91 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
92 }
93
94 return retval;
95 }
96
97 static int cortexm_dap_write_coreregister_u32(struct target *target,
98 uint32_t value, int regnum)
99 {
100 struct armv7m_common *armv7m = target_to_armv7m(target);
101 int retval;
102 uint32_t dcrdr;
103
104 /* because the DCB_DCRDR is used for the emulated dcc channel
105 * we have to save/restore the DCB_DCRDR when used */
106 if (target->dbg_msg_enabled) {
107 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
108 if (retval != ERROR_OK)
109 return retval;
110 }
111
112 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
113 if (retval != ERROR_OK)
114 return retval;
115
116 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
117 if (retval != ERROR_OK)
118 return retval;
119
120 if (target->dbg_msg_enabled) {
121 /* restore DCB_DCRDR - this needs to be in a seperate
122 * transaction otherwise the emulated DCC channel breaks */
123 if (retval == ERROR_OK)
124 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
125 }
126
127 return retval;
128 }
129
130 static int cortex_m_write_debug_halt_mask(struct target *target,
131 uint32_t mask_on, uint32_t mask_off)
132 {
133 struct cortex_m_common *cortex_m = target_to_cm(target);
134 struct armv7m_common *armv7m = &cortex_m->armv7m;
135
136 /* mask off status bits */
137 cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
138 /* create new register mask */
139 cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
140
141 return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
142 }
143
144 static int cortex_m_clear_halt(struct target *target)
145 {
146 struct cortex_m_common *cortex_m = target_to_cm(target);
147 struct armv7m_common *armv7m = &cortex_m->armv7m;
148 int retval;
149
150 /* clear step if any */
151 cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
152
153 /* Read Debug Fault Status Register */
154 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
155 if (retval != ERROR_OK)
156 return retval;
157
158 /* Clear Debug Fault Status */
159 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
160 if (retval != ERROR_OK)
161 return retval;
162 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
163
164 return ERROR_OK;
165 }
166
167 static int cortex_m_single_step_core(struct target *target)
168 {
169 struct cortex_m_common *cortex_m = target_to_cm(target);
170 struct armv7m_common *armv7m = &cortex_m->armv7m;
171 int retval;
172
173 /* Mask interrupts before clearing halt, if done already. This avoids
174 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
175 * HALT can put the core into an unknown state.
176 */
177 if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
178 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
179 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
180 if (retval != ERROR_OK)
181 return retval;
182 }
183 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
184 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
185 if (retval != ERROR_OK)
186 return retval;
187 LOG_DEBUG(" ");
188
189 /* restore dhcsr reg */
190 cortex_m_clear_halt(target);
191
192 return ERROR_OK;
193 }
194
195 static int cortex_m_enable_fpb(struct target *target)
196 {
197 int retval = target_write_u32(target, FP_CTRL, 3);
198 if (retval != ERROR_OK)
199 return retval;
200
201 /* check the fpb is actually enabled */
202 uint32_t fpctrl;
203 retval = target_read_u32(target, FP_CTRL, &fpctrl);
204 if (retval != ERROR_OK)
205 return retval;
206
207 if (fpctrl & 1)
208 return ERROR_OK;
209
210 return ERROR_FAIL;
211 }
212
213 static int cortex_m_endreset_event(struct target *target)
214 {
215 int i;
216 int retval;
217 uint32_t dcb_demcr;
218 struct cortex_m_common *cortex_m = target_to_cm(target);
219 struct armv7m_common *armv7m = &cortex_m->armv7m;
220 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
221 struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
222 struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
223
224 /* REVISIT The four debug monitor bits are currently ignored... */
225 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
226 if (retval != ERROR_OK)
227 return retval;
228 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
229
230 /* this register is used for emulated dcc channel */
231 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
232 if (retval != ERROR_OK)
233 return retval;
234
235 /* Enable debug requests */
236 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
237 if (retval != ERROR_OK)
238 return retval;
239 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
240 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
241 if (retval != ERROR_OK)
242 return retval;
243 }
244
245 /* clear any interrupt masking */
246 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
247
248 /* Enable features controlled by ITM and DWT blocks, and catch only
249 * the vectors we were told to pay attention to.
250 *
251 * Target firmware is responsible for all fault handling policy
252 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
253 * or manual updates to the NVIC SHCSR and CCR registers.
254 */
255 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
256 if (retval != ERROR_OK)
257 return retval;
258
259 /* Paranoia: evidently some (early?) chips don't preserve all the
260 * debug state (including FBP, DWT, etc) across reset...
261 */
262
263 /* Enable FPB */
264 retval = cortex_m_enable_fpb(target);
265 if (retval != ERROR_OK) {
266 LOG_ERROR("Failed to enable the FPB");
267 return retval;
268 }
269
270 cortex_m->fpb_enabled = 1;
271
272 /* Restore FPB registers */
273 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
274 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
275 if (retval != ERROR_OK)
276 return retval;
277 }
278
279 /* Restore DWT registers */
280 for (i = 0; i < cortex_m->dwt_num_comp; i++) {
281 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
282 dwt_list[i].comp);
283 if (retval != ERROR_OK)
284 return retval;
285 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
286 dwt_list[i].mask);
287 if (retval != ERROR_OK)
288 return retval;
289 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
290 dwt_list[i].function);
291 if (retval != ERROR_OK)
292 return retval;
293 }
294 retval = dap_run(swjdp);
295 if (retval != ERROR_OK)
296 return retval;
297
298 register_cache_invalidate(armv7m->arm.core_cache);
299
300 /* make sure we have latest dhcsr flags */
301 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
302
303 return retval;
304 }
305
306 static int cortex_m_examine_debug_reason(struct target *target)
307 {
308 struct cortex_m_common *cortex_m = target_to_cm(target);
309
310 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
311 * only check the debug reason if we don't know it already */
312
313 if ((target->debug_reason != DBG_REASON_DBGRQ)
314 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
315 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
316 target->debug_reason = DBG_REASON_BREAKPOINT;
317 if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
318 target->debug_reason = DBG_REASON_WPTANDBKPT;
319 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
320 target->debug_reason = DBG_REASON_WATCHPOINT;
321 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
322 target->debug_reason = DBG_REASON_BREAKPOINT;
323 else /* EXTERNAL, HALTED */
324 target->debug_reason = DBG_REASON_UNDEFINED;
325 }
326
327 return ERROR_OK;
328 }
329
330 static int cortex_m_examine_exception_reason(struct target *target)
331 {
332 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
333 struct armv7m_common *armv7m = target_to_armv7m(target);
334 struct adiv5_dap *swjdp = armv7m->arm.dap;
335 int retval;
336
337 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
338 if (retval != ERROR_OK)
339 return retval;
340 switch (armv7m->exception_number) {
341 case 2: /* NMI */
342 break;
343 case 3: /* Hard Fault */
344 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
345 if (retval != ERROR_OK)
346 return retval;
347 if (except_sr & 0x40000000) {
348 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
349 if (retval != ERROR_OK)
350 return retval;
351 }
352 break;
353 case 4: /* Memory Management */
354 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
355 if (retval != ERROR_OK)
356 return retval;
357 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
358 if (retval != ERROR_OK)
359 return retval;
360 break;
361 case 5: /* Bus Fault */
362 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
363 if (retval != ERROR_OK)
364 return retval;
365 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
366 if (retval != ERROR_OK)
367 return retval;
368 break;
369 case 6: /* Usage Fault */
370 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
371 if (retval != ERROR_OK)
372 return retval;
373 break;
374 case 11: /* SVCall */
375 break;
376 case 12: /* Debug Monitor */
377 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
378 if (retval != ERROR_OK)
379 return retval;
380 break;
381 case 14: /* PendSV */
382 break;
383 case 15: /* SysTick */
384 break;
385 default:
386 except_sr = 0;
387 break;
388 }
389 retval = dap_run(swjdp);
390 if (retval == ERROR_OK)
391 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
392 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
393 armv7m_exception_string(armv7m->exception_number),
394 shcsr, except_sr, cfsr, except_ar);
395 return retval;
396 }
397
398 static int cortex_m_debug_entry(struct target *target)
399 {
400 int i;
401 uint32_t xPSR;
402 int retval;
403 struct cortex_m_common *cortex_m = target_to_cm(target);
404 struct armv7m_common *armv7m = &cortex_m->armv7m;
405 struct arm *arm = &armv7m->arm;
406 struct reg *r;
407
408 LOG_DEBUG(" ");
409
410 cortex_m_clear_halt(target);
411 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
412 if (retval != ERROR_OK)
413 return retval;
414
415 retval = armv7m->examine_debug_reason(target);
416 if (retval != ERROR_OK)
417 return retval;
418
419 /* Examine target state and mode
420 * First load register accessible through core debug port */
421 int num_regs = arm->core_cache->num_regs;
422
423 for (i = 0; i < num_regs; i++) {
424 r = &armv7m->arm.core_cache->reg_list[i];
425 if (!r->valid)
426 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
427 }
428
429 r = arm->cpsr;
430 xPSR = buf_get_u32(r->value, 0, 32);
431
432 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
433 if (xPSR & 0xf00) {
434 r->dirty = r->valid;
435 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
436 }
437
438 /* Are we in an exception handler */
439 if (xPSR & 0x1FF) {
440 armv7m->exception_number = (xPSR & 0x1FF);
441
442 arm->core_mode = ARM_MODE_HANDLER;
443 arm->map = armv7m_msp_reg_map;
444 } else {
445 unsigned control = buf_get_u32(arm->core_cache
446 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
447
448 /* is this thread privileged? */
449 arm->core_mode = control & 1
450 ? ARM_MODE_USER_THREAD
451 : ARM_MODE_THREAD;
452
453 /* which stack is it using? */
454 if (control & 2)
455 arm->map = armv7m_psp_reg_map;
456 else
457 arm->map = armv7m_msp_reg_map;
458
459 armv7m->exception_number = 0;
460 }
461
462 if (armv7m->exception_number)
463 cortex_m_examine_exception_reason(target);
464
465 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
466 arm_mode_name(arm->core_mode),
467 buf_get_u32(arm->pc->value, 0, 32),
468 target_state_name(target));
469
470 if (armv7m->post_debug_entry) {
471 retval = armv7m->post_debug_entry(target);
472 if (retval != ERROR_OK)
473 return retval;
474 }
475
476 return ERROR_OK;
477 }
478
479 static int cortex_m_poll(struct target *target)
480 {
481 int detected_failure = ERROR_OK;
482 int retval = ERROR_OK;
483 enum target_state prev_target_state = target->state;
484 struct cortex_m_common *cortex_m = target_to_cm(target);
485 struct armv7m_common *armv7m = &cortex_m->armv7m;
486
487 /* Read from Debug Halting Control and Status Register */
488 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
489 if (retval != ERROR_OK) {
490 target->state = TARGET_UNKNOWN;
491 return retval;
492 }
493
494 /* Recover from lockup. See ARMv7-M architecture spec,
495 * section B1.5.15 "Unrecoverable exception cases".
496 */
497 if (cortex_m->dcb_dhcsr & S_LOCKUP) {
498 LOG_ERROR("%s -- clearing lockup after double fault",
499 target_name(target));
500 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
501 target->debug_reason = DBG_REASON_DBGRQ;
502
503 /* We have to execute the rest (the "finally" equivalent, but
504 * still throw this exception again).
505 */
506 detected_failure = ERROR_FAIL;
507
508 /* refresh status bits */
509 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
510 if (retval != ERROR_OK)
511 return retval;
512 }
513
514 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
515 target->state = TARGET_RESET;
516 return ERROR_OK;
517 }
518
519 if (target->state == TARGET_RESET) {
520 /* Cannot switch context while running so endreset is
521 * called with target->state == TARGET_RESET
522 */
523 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
524 cortex_m->dcb_dhcsr);
525 retval = cortex_m_endreset_event(target);
526 if (retval != ERROR_OK) {
527 target->state = TARGET_UNKNOWN;
528 return retval;
529 }
530 target->state = TARGET_RUNNING;
531 prev_target_state = TARGET_RUNNING;
532 }
533
534 if (cortex_m->dcb_dhcsr & S_HALT) {
535 target->state = TARGET_HALTED;
536
537 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
538 retval = cortex_m_debug_entry(target);
539 if (retval != ERROR_OK)
540 return retval;
541
542 if (arm_semihosting(target, &retval) != 0)
543 return retval;
544
545 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
546 }
547 if (prev_target_state == TARGET_DEBUG_RUNNING) {
548 LOG_DEBUG(" ");
549 retval = cortex_m_debug_entry(target);
550 if (retval != ERROR_OK)
551 return retval;
552
553 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
554 }
555 }
556
557 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
558 * How best to model low power modes?
559 */
560
561 if (target->state == TARGET_UNKNOWN) {
562 /* check if processor is retiring instructions */
563 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
564 target->state = TARGET_RUNNING;
565 retval = ERROR_OK;
566 }
567 }
568
569 /* Did we detect a failure condition that we cleared? */
570 if (detected_failure != ERROR_OK)
571 retval = detected_failure;
572 return retval;
573 }
574
575 static int cortex_m_halt(struct target *target)
576 {
577 LOG_DEBUG("target->state: %s",
578 target_state_name(target));
579
580 if (target->state == TARGET_HALTED) {
581 LOG_DEBUG("target was already halted");
582 return ERROR_OK;
583 }
584
585 if (target->state == TARGET_UNKNOWN)
586 LOG_WARNING("target was in unknown state when halt was requested");
587
588 if (target->state == TARGET_RESET) {
589 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
590 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
591 return ERROR_TARGET_FAILURE;
592 } else {
593 /* we came here in a reset_halt or reset_init sequence
594 * debug entry was already prepared in cortex_m3_assert_reset()
595 */
596 target->debug_reason = DBG_REASON_DBGRQ;
597
598 return ERROR_OK;
599 }
600 }
601
602 /* Write to Debug Halting Control and Status Register */
603 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
604
605 target->debug_reason = DBG_REASON_DBGRQ;
606
607 return ERROR_OK;
608 }
609
610 static int cortex_m_soft_reset_halt(struct target *target)
611 {
612 struct cortex_m_common *cortex_m = target_to_cm(target);
613 struct armv7m_common *armv7m = &cortex_m->armv7m;
614 uint32_t dcb_dhcsr = 0;
615 int retval, timeout = 0;
616
617 /* soft_reset_halt is deprecated on cortex_m as the same functionality
618 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
619 * As this reset only used VC_CORERESET it would only ever reset the cortex_m
620 * core, not the peripherals */
621 LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
622
623 /* Enter debug state on reset; restore DEMCR in endreset_event() */
624 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
625 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
626 if (retval != ERROR_OK)
627 return retval;
628
629 /* Request a core-only reset */
630 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
631 AIRCR_VECTKEY | AIRCR_VECTRESET);
632 if (retval != ERROR_OK)
633 return retval;
634 target->state = TARGET_RESET;
635
636 /* registers are now invalid */
637 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
638
639 while (timeout < 100) {
640 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
641 if (retval == ERROR_OK) {
642 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
643 &cortex_m->nvic_dfsr);
644 if (retval != ERROR_OK)
645 return retval;
646 if ((dcb_dhcsr & S_HALT)
647 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
648 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
649 "DFSR 0x%08x",
650 (unsigned) dcb_dhcsr,
651 (unsigned) cortex_m->nvic_dfsr);
652 cortex_m_poll(target);
653 /* FIXME restore user's vector catch config */
654 return ERROR_OK;
655 } else
656 LOG_DEBUG("waiting for system reset-halt, "
657 "DHCSR 0x%08x, %d ms",
658 (unsigned) dcb_dhcsr, timeout);
659 }
660 timeout++;
661 alive_sleep(1);
662 }
663
664 return ERROR_OK;
665 }
666
667 void cortex_m_enable_breakpoints(struct target *target)
668 {
669 struct breakpoint *breakpoint = target->breakpoints;
670
671 /* set any pending breakpoints */
672 while (breakpoint) {
673 if (!breakpoint->set)
674 cortex_m_set_breakpoint(target, breakpoint);
675 breakpoint = breakpoint->next;
676 }
677 }
678
679 static int cortex_m_resume(struct target *target, int current,
680 target_addr_t address, int handle_breakpoints, int debug_execution)
681 {
682 struct armv7m_common *armv7m = target_to_armv7m(target);
683 struct breakpoint *breakpoint = NULL;
684 uint32_t resume_pc;
685 struct reg *r;
686
687 if (target->state != TARGET_HALTED) {
688 LOG_WARNING("target not halted");
689 return ERROR_TARGET_NOT_HALTED;
690 }
691
692 if (!debug_execution) {
693 target_free_all_working_areas(target);
694 cortex_m_enable_breakpoints(target);
695 cortex_m_enable_watchpoints(target);
696 }
697
698 if (debug_execution) {
699 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
700
701 /* Disable interrupts */
702 /* We disable interrupts in the PRIMASK register instead of
703 * masking with C_MASKINTS. This is probably the same issue
704 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
705 * in parallel with disabled interrupts can cause local faults
706 * to not be taken.
707 *
708 * REVISIT this clearly breaks non-debug execution, since the
709 * PRIMASK register state isn't saved/restored... workaround
710 * by never resuming app code after debug execution.
711 */
712 buf_set_u32(r->value, 0, 1, 1);
713 r->dirty = true;
714 r->valid = true;
715
716 /* Make sure we are in Thumb mode */
717 r = armv7m->arm.cpsr;
718 buf_set_u32(r->value, 24, 1, 1);
719 r->dirty = true;
720 r->valid = true;
721 }
722
723 /* current = 1: continue on current pc, otherwise continue at <address> */
724 r = armv7m->arm.pc;
725 if (!current) {
726 buf_set_u32(r->value, 0, 32, address);
727 r->dirty = true;
728 r->valid = true;
729 }
730
731 /* if we halted last time due to a bkpt instruction
732 * then we have to manually step over it, otherwise
733 * the core will break again */
734
735 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
736 && !debug_execution)
737 armv7m_maybe_skip_bkpt_inst(target, NULL);
738
739 resume_pc = buf_get_u32(r->value, 0, 32);
740
741 armv7m_restore_context(target);
742
743 /* the front-end may request us not to handle breakpoints */
744 if (handle_breakpoints) {
745 /* Single step past breakpoint at current address */
746 breakpoint = breakpoint_find(target, resume_pc);
747 if (breakpoint) {
748 LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
749 breakpoint->address,
750 breakpoint->unique_id);
751 cortex_m_unset_breakpoint(target, breakpoint);
752 cortex_m_single_step_core(target);
753 cortex_m_set_breakpoint(target, breakpoint);
754 }
755 }
756
757 /* Restart core */
758 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
759
760 target->debug_reason = DBG_REASON_NOTHALTED;
761
762 /* registers are now invalid */
763 register_cache_invalidate(armv7m->arm.core_cache);
764
765 if (!debug_execution) {
766 target->state = TARGET_RUNNING;
767 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
768 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
769 } else {
770 target->state = TARGET_DEBUG_RUNNING;
771 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
772 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
773 }
774
775 return ERROR_OK;
776 }
777
778 /* int irqstepcount = 0; */
779 static int cortex_m_step(struct target *target, int current,
780 target_addr_t address, int handle_breakpoints)
781 {
782 struct cortex_m_common *cortex_m = target_to_cm(target);
783 struct armv7m_common *armv7m = &cortex_m->armv7m;
784 struct breakpoint *breakpoint = NULL;
785 struct reg *pc = armv7m->arm.pc;
786 bool bkpt_inst_found = false;
787 int retval;
788 bool isr_timed_out = false;
789
790 if (target->state != TARGET_HALTED) {
791 LOG_WARNING("target not halted");
792 return ERROR_TARGET_NOT_HALTED;
793 }
794
795 /* current = 1: continue on current pc, otherwise continue at <address> */
796 if (!current)
797 buf_set_u32(pc->value, 0, 32, address);
798
799 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
800
801 /* the front-end may request us not to handle breakpoints */
802 if (handle_breakpoints) {
803 breakpoint = breakpoint_find(target, pc_value);
804 if (breakpoint)
805 cortex_m_unset_breakpoint(target, breakpoint);
806 }
807
808 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
809
810 target->debug_reason = DBG_REASON_SINGLESTEP;
811
812 armv7m_restore_context(target);
813
814 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
815
816 /* if no bkpt instruction is found at pc then we can perform
817 * a normal step, otherwise we have to manually step over the bkpt
818 * instruction - as such simulate a step */
819 if (bkpt_inst_found == false) {
820 /* Automatic ISR masking mode off: Just step over the next instruction */
821 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
822 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
823 else {
824 /* Process interrupts during stepping in a way they don't interfere
825 * debugging.
826 *
827 * Principle:
828 *
829 * Set a temporary break point at the current pc and let the core run
830 * with interrupts enabled. Pending interrupts get served and we run
831 * into the breakpoint again afterwards. Then we step over the next
832 * instruction with interrupts disabled.
833 *
834 * If the pending interrupts don't complete within time, we leave the
835 * core running. This may happen if the interrupts trigger faster
836 * than the core can process them or the handler doesn't return.
837 *
838 * If no more breakpoints are available we simply do a step with
839 * interrupts enabled.
840 *
841 */
842
843 /* 2012-09-29 ph
844 *
845 * If a break point is already set on the lower half word then a break point on
846 * the upper half word will not break again when the core is restarted. So we
847 * just step over the instruction with interrupts disabled.
848 *
849 * The documentation has no information about this, it was found by observation
850 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
851 * suffer from this problem.
852 *
853 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
854 * address has it always cleared. The former is done to indicate thumb mode
855 * to gdb.
856 *
857 */
858 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
859 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
860 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
861 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
862 /* Re-enable interrupts */
863 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
864 }
865 else {
866
867 /* Set a temporary break point */
868 if (breakpoint)
869 retval = cortex_m_set_breakpoint(target, breakpoint);
870 else
871 retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
872 bool tmp_bp_set = (retval == ERROR_OK);
873
874 /* No more breakpoints left, just do a step */
875 if (!tmp_bp_set)
876 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
877 else {
878 /* Start the core */
879 LOG_DEBUG("Starting core to serve pending interrupts");
880 int64_t t_start = timeval_ms();
881 cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
882
883 /* Wait for pending handlers to complete or timeout */
884 do {
885 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
886 DCB_DHCSR,
887 &cortex_m->dcb_dhcsr);
888 if (retval != ERROR_OK) {
889 target->state = TARGET_UNKNOWN;
890 return retval;
891 }
892 isr_timed_out = ((timeval_ms() - t_start) > 500);
893 } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
894
895 /* only remove breakpoint if we created it */
896 if (breakpoint)
897 cortex_m_unset_breakpoint(target, breakpoint);
898 else {
899 /* Remove the temporary breakpoint */
900 breakpoint_remove(target, pc_value);
901 }
902
903 if (isr_timed_out) {
904 LOG_DEBUG("Interrupt handlers didn't complete within time, "
905 "leaving target running");
906 } else {
907 /* Step over next instruction with interrupts disabled */
908 cortex_m_write_debug_halt_mask(target,
909 C_HALT | C_MASKINTS,
910 0);
911 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
912 /* Re-enable interrupts */
913 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
914 }
915 }
916 }
917 }
918 }
919
920 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
921 if (retval != ERROR_OK)
922 return retval;
923
924 /* registers are now invalid */
925 register_cache_invalidate(armv7m->arm.core_cache);
926
927 if (breakpoint)
928 cortex_m_set_breakpoint(target, breakpoint);
929
930 if (isr_timed_out) {
931 /* Leave the core running. The user has to stop execution manually. */
932 target->debug_reason = DBG_REASON_NOTHALTED;
933 target->state = TARGET_RUNNING;
934 return ERROR_OK;
935 }
936
937 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
938 " nvic_icsr = 0x%" PRIx32,
939 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
940
941 retval = cortex_m_debug_entry(target);
942 if (retval != ERROR_OK)
943 return retval;
944 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
945
946 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
947 " nvic_icsr = 0x%" PRIx32,
948 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
949
950 return ERROR_OK;
951 }
952
953 static int cortex_m_assert_reset(struct target *target)
954 {
955 struct cortex_m_common *cortex_m = target_to_cm(target);
956 struct armv7m_common *armv7m = &cortex_m->armv7m;
957 enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
958
959 LOG_DEBUG("target->state: %s",
960 target_state_name(target));
961
962 enum reset_types jtag_reset_config = jtag_get_reset_config();
963
964 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
965 /* allow scripts to override the reset event */
966
967 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
968 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
969 target->state = TARGET_RESET;
970
971 return ERROR_OK;
972 }
973
974 /* some cores support connecting while srst is asserted
975 * use that mode is it has been configured */
976
977 bool srst_asserted = false;
978
979 if (!target_was_examined(target)) {
980 if (jtag_reset_config & RESET_HAS_SRST) {
981 adapter_assert_reset();
982 if (target->reset_halt)
983 LOG_ERROR("Target not examined, will not halt after reset!");
984 return ERROR_OK;
985 } else {
986 LOG_ERROR("Target not examined, reset NOT asserted!");
987 return ERROR_FAIL;
988 }
989 }
990
991 if ((jtag_reset_config & RESET_HAS_SRST) &&
992 (jtag_reset_config & RESET_SRST_NO_GATING)) {
993 adapter_assert_reset();
994 srst_asserted = true;
995 }
996
997 /* Enable debug requests */
998 int retval;
999 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1000 /* Store important errors instead of failing and proceed to reset assert */
1001
1002 if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1003 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1004
1005 /* If the processor is sleeping in a WFI or WFE instruction, the
1006 * C_HALT bit must be asserted to regain control */
1007 if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1008 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1009
1010 mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1011 /* Ignore less important errors */
1012
1013 if (!target->reset_halt) {
1014 /* Set/Clear C_MASKINTS in a separate operation */
1015 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1016 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
1017
1018 /* clear any debug flags before resuming */
1019 cortex_m_clear_halt(target);
1020
1021 /* clear C_HALT in dhcsr reg */
1022 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1023 } else {
1024 /* Halt in debug on reset; endreset_event() restores DEMCR.
1025 *
1026 * REVISIT catching BUSERR presumably helps to defend against
1027 * bad vector table entries. Should this include MMERR or
1028 * other flags too?
1029 */
1030 int retval2;
1031 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1032 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1033 if (retval != ERROR_OK || retval2 != ERROR_OK)
1034 LOG_INFO("AP write error, reset will not halt");
1035 }
1036
1037 if (jtag_reset_config & RESET_HAS_SRST) {
1038 /* default to asserting srst */
1039 if (!srst_asserted)
1040 adapter_assert_reset();
1041
1042 /* srst is asserted, ignore AP access errors */
1043 retval = ERROR_OK;
1044 } else {
1045 /* Use a standard Cortex-M3 software reset mechanism.
1046 * We default to using VECRESET as it is supported on all current cores.
1047 * This has the disadvantage of not resetting the peripherals, so a
1048 * reset-init event handler is needed to perform any peripheral resets.
1049 */
1050 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1051 ? "SYSRESETREQ" : "VECTRESET");
1052
1053 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1054 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1055 "handler to reset any peripherals or configure hardware srst support.");
1056 }
1057
1058 int retval3;
1059 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1060 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1061 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1062 if (retval3 != ERROR_OK)
1063 LOG_DEBUG("Ignoring AP write error right after reset");
1064
1065 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1066 if (retval3 != ERROR_OK)
1067 LOG_ERROR("DP initialisation failed");
1068
1069 else {
1070 /* I do not know why this is necessary, but it
1071 * fixes strange effects (step/resume cause NMI
1072 * after reset) on LM3S6918 -- Michael Schwingen
1073 */
1074 uint32_t tmp;
1075 mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1076 }
1077 }
1078
1079 target->state = TARGET_RESET;
1080 jtag_add_sleep(50000);
1081
1082 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1083
1084 /* now return stored error code if any */
1085 if (retval != ERROR_OK)
1086 return retval;
1087
1088 if (target->reset_halt) {
1089 retval = target_halt(target);
1090 if (retval != ERROR_OK)
1091 return retval;
1092 }
1093
1094 return ERROR_OK;
1095 }
1096
1097 static int cortex_m_deassert_reset(struct target *target)
1098 {
1099 struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1100
1101 LOG_DEBUG("target->state: %s",
1102 target_state_name(target));
1103
1104 /* deassert reset lines */
1105 adapter_deassert_reset();
1106
1107 enum reset_types jtag_reset_config = jtag_get_reset_config();
1108
1109 if ((jtag_reset_config & RESET_HAS_SRST) &&
1110 !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1111 target_was_examined(target)) {
1112 int retval = dap_dp_init(armv7m->debug_ap->dap);
1113 if (retval != ERROR_OK) {
1114 LOG_ERROR("DP initialisation failed");
1115 return retval;
1116 }
1117 }
1118
1119 return ERROR_OK;
1120 }
1121
1122 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1123 {
1124 int retval;
1125 int fp_num = 0;
1126 struct cortex_m_common *cortex_m = target_to_cm(target);
1127 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1128
1129 if (breakpoint->set) {
1130 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1131 return ERROR_OK;
1132 }
1133
1134 if (cortex_m->auto_bp_type)
1135 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1136
1137 if (breakpoint->type == BKPT_HARD) {
1138 uint32_t fpcr_value;
1139 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1140 fp_num++;
1141 if (fp_num >= cortex_m->fp_num_code) {
1142 LOG_ERROR("Can not find free FPB Comparator!");
1143 return ERROR_FAIL;
1144 }
1145 breakpoint->set = fp_num + 1;
1146 fpcr_value = breakpoint->address | 1;
1147 if (cortex_m->fp_rev == 0) {
1148 uint32_t hilo;
1149 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1150 fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1151 } else if (cortex_m->fp_rev > 1) {
1152 LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1153 return ERROR_FAIL;
1154 }
1155 comparator_list[fp_num].used = 1;
1156 comparator_list[fp_num].fpcr_value = fpcr_value;
1157 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1158 comparator_list[fp_num].fpcr_value);
1159 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1160 fp_num,
1161 comparator_list[fp_num].fpcr_value);
1162 if (!cortex_m->fpb_enabled) {
1163 LOG_DEBUG("FPB wasn't enabled, do it now");
1164 retval = cortex_m_enable_fpb(target);
1165 if (retval != ERROR_OK) {
1166 LOG_ERROR("Failed to enable the FPB");
1167 return retval;
1168 }
1169
1170 cortex_m->fpb_enabled = 1;
1171 }
1172 } else if (breakpoint->type == BKPT_SOFT) {
1173 uint8_t code[4];
1174
1175 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1176 * semihosting; don't use that. Otherwise the BKPT
1177 * parameter is arbitrary.
1178 */
1179 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1180 retval = target_read_memory(target,
1181 breakpoint->address & 0xFFFFFFFE,
1182 breakpoint->length, 1,
1183 breakpoint->orig_instr);
1184 if (retval != ERROR_OK)
1185 return retval;
1186 retval = target_write_memory(target,
1187 breakpoint->address & 0xFFFFFFFE,
1188 breakpoint->length, 1,
1189 code);
1190 if (retval != ERROR_OK)
1191 return retval;
1192 breakpoint->set = true;
1193 }
1194
1195 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1196 breakpoint->unique_id,
1197 (int)(breakpoint->type),
1198 breakpoint->address,
1199 breakpoint->length,
1200 breakpoint->set);
1201
1202 return ERROR_OK;
1203 }
1204
1205 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1206 {
1207 int retval;
1208 struct cortex_m_common *cortex_m = target_to_cm(target);
1209 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1210
1211 if (!breakpoint->set) {
1212 LOG_WARNING("breakpoint not set");
1213 return ERROR_OK;
1214 }
1215
1216 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1217 breakpoint->unique_id,
1218 (int)(breakpoint->type),
1219 breakpoint->address,
1220 breakpoint->length,
1221 breakpoint->set);
1222
1223 if (breakpoint->type == BKPT_HARD) {
1224 int fp_num = breakpoint->set - 1;
1225 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1226 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1227 return ERROR_OK;
1228 }
1229 comparator_list[fp_num].used = 0;
1230 comparator_list[fp_num].fpcr_value = 0;
1231 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1232 comparator_list[fp_num].fpcr_value);
1233 } else {
1234 /* restore original instruction (kept in target endianness) */
1235 if (breakpoint->length == 4) {
1236 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1237 breakpoint->orig_instr);
1238 if (retval != ERROR_OK)
1239 return retval;
1240 } else {
1241 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1242 breakpoint->orig_instr);
1243 if (retval != ERROR_OK)
1244 return retval;
1245 }
1246 }
1247 breakpoint->set = false;
1248
1249 return ERROR_OK;
1250 }
1251
1252 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1253 {
1254 struct cortex_m_common *cortex_m = target_to_cm(target);
1255
1256 if (cortex_m->auto_bp_type)
1257 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1258
1259 if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1260 if (breakpoint->type == BKPT_HARD) {
1261 LOG_INFO("flash patch comparator requested outside code memory region");
1262 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1263 }
1264
1265 if (breakpoint->type == BKPT_SOFT) {
1266 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1267 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1268 }
1269 }
1270
1271 if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1272 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1273 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1274 }
1275
1276 if (breakpoint->length == 3) {
1277 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1278 breakpoint->length = 2;
1279 }
1280
1281 if ((breakpoint->length != 2)) {
1282 LOG_INFO("only breakpoints of two bytes length supported");
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284 }
1285
1286 if (breakpoint->type == BKPT_HARD)
1287 cortex_m->fp_code_available--;
1288
1289 return cortex_m_set_breakpoint(target, breakpoint);
1290 }
1291
1292 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1293 {
1294 struct cortex_m_common *cortex_m = target_to_cm(target);
1295
1296 /* REVISIT why check? FBP can be updated with core running ... */
1297 if (target->state != TARGET_HALTED) {
1298 LOG_WARNING("target not halted");
1299 return ERROR_TARGET_NOT_HALTED;
1300 }
1301
1302 if (cortex_m->auto_bp_type)
1303 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1304
1305 if (breakpoint->set)
1306 cortex_m_unset_breakpoint(target, breakpoint);
1307
1308 if (breakpoint->type == BKPT_HARD)
1309 cortex_m->fp_code_available++;
1310
1311 return ERROR_OK;
1312 }
1313
1314 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1315 {
1316 int dwt_num = 0;
1317 uint32_t mask, temp;
1318 struct cortex_m_common *cortex_m = target_to_cm(target);
1319
1320 /* watchpoint params were validated earlier */
1321 mask = 0;
1322 temp = watchpoint->length;
1323 while (temp) {
1324 temp >>= 1;
1325 mask++;
1326 }
1327 mask--;
1328
1329 /* REVISIT Don't fully trust these "not used" records ... users
1330 * may set up breakpoints by hand, e.g. dual-address data value
1331 * watchpoint using comparator #1; comparator #0 matching cycle
1332 * count; send data trace info through ITM and TPIU; etc
1333 */
1334 struct cortex_m_dwt_comparator *comparator;
1335
1336 for (comparator = cortex_m->dwt_comparator_list;
1337 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1338 comparator++, dwt_num++)
1339 continue;
1340 if (dwt_num >= cortex_m->dwt_num_comp) {
1341 LOG_ERROR("Can not find free DWT Comparator");
1342 return ERROR_FAIL;
1343 }
1344 comparator->used = 1;
1345 watchpoint->set = dwt_num + 1;
1346
1347 comparator->comp = watchpoint->address;
1348 target_write_u32(target, comparator->dwt_comparator_address + 0,
1349 comparator->comp);
1350
1351 comparator->mask = mask;
1352 target_write_u32(target, comparator->dwt_comparator_address + 4,
1353 comparator->mask);
1354
1355 switch (watchpoint->rw) {
1356 case WPT_READ:
1357 comparator->function = 5;
1358 break;
1359 case WPT_WRITE:
1360 comparator->function = 6;
1361 break;
1362 case WPT_ACCESS:
1363 comparator->function = 7;
1364 break;
1365 }
1366 target_write_u32(target, comparator->dwt_comparator_address + 8,
1367 comparator->function);
1368
1369 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1370 watchpoint->unique_id, dwt_num,
1371 (unsigned) comparator->comp,
1372 (unsigned) comparator->mask,
1373 (unsigned) comparator->function);
1374 return ERROR_OK;
1375 }
1376
1377 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1378 {
1379 struct cortex_m_common *cortex_m = target_to_cm(target);
1380 struct cortex_m_dwt_comparator *comparator;
1381 int dwt_num;
1382
1383 if (!watchpoint->set) {
1384 LOG_WARNING("watchpoint (wpid: %d) not set",
1385 watchpoint->unique_id);
1386 return ERROR_OK;
1387 }
1388
1389 dwt_num = watchpoint->set - 1;
1390
1391 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1392 watchpoint->unique_id, dwt_num,
1393 (unsigned) watchpoint->address);
1394
1395 if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1396 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1397 return ERROR_OK;
1398 }
1399
1400 comparator = cortex_m->dwt_comparator_list + dwt_num;
1401 comparator->used = 0;
1402 comparator->function = 0;
1403 target_write_u32(target, comparator->dwt_comparator_address + 8,
1404 comparator->function);
1405
1406 watchpoint->set = false;
1407
1408 return ERROR_OK;
1409 }
1410
1411 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1412 {
1413 struct cortex_m_common *cortex_m = target_to_cm(target);
1414
1415 if (cortex_m->dwt_comp_available < 1) {
1416 LOG_DEBUG("no comparators?");
1417 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1418 }
1419
1420 /* hardware doesn't support data value masking */
1421 if (watchpoint->mask != ~(uint32_t)0) {
1422 LOG_DEBUG("watchpoint value masks not supported");
1423 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1424 }
1425
1426 /* hardware allows address masks of up to 32K */
1427 unsigned mask;
1428
1429 for (mask = 0; mask < 16; mask++) {
1430 if ((1u << mask) == watchpoint->length)
1431 break;
1432 }
1433 if (mask == 16) {
1434 LOG_DEBUG("unsupported watchpoint length");
1435 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1436 }
1437 if (watchpoint->address & ((1 << mask) - 1)) {
1438 LOG_DEBUG("watchpoint address is unaligned");
1439 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1440 }
1441
1442 /* Caller doesn't seem to be able to describe watching for data
1443 * values of zero; that flags "no value".
1444 *
1445 * REVISIT This DWT may well be able to watch for specific data
1446 * values. Requires comparator #1 to set DATAVMATCH and match
1447 * the data, and another comparator (DATAVADDR0) matching addr.
1448 */
1449 if (watchpoint->value) {
1450 LOG_DEBUG("data value watchpoint not YET supported");
1451 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1452 }
1453
1454 cortex_m->dwt_comp_available--;
1455 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1456
1457 return ERROR_OK;
1458 }
1459
1460 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1461 {
1462 struct cortex_m_common *cortex_m = target_to_cm(target);
1463
1464 /* REVISIT why check? DWT can be updated with core running ... */
1465 if (target->state != TARGET_HALTED) {
1466 LOG_WARNING("target not halted");
1467 return ERROR_TARGET_NOT_HALTED;
1468 }
1469
1470 if (watchpoint->set)
1471 cortex_m_unset_watchpoint(target, watchpoint);
1472
1473 cortex_m->dwt_comp_available++;
1474 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1475
1476 return ERROR_OK;
1477 }
1478
1479 void cortex_m_enable_watchpoints(struct target *target)
1480 {
1481 struct watchpoint *watchpoint = target->watchpoints;
1482
1483 /* set any pending watchpoints */
1484 while (watchpoint) {
1485 if (!watchpoint->set)
1486 cortex_m_set_watchpoint(target, watchpoint);
1487 watchpoint = watchpoint->next;
1488 }
1489 }
1490
1491 static int cortex_m_load_core_reg_u32(struct target *target,
1492 uint32_t num, uint32_t *value)
1493 {
1494 int retval;
1495
1496 /* NOTE: we "know" here that the register identifiers used
1497 * in the v7m header match the Cortex-M3 Debug Core Register
1498 * Selector values for R0..R15, xPSR, MSP, and PSP.
1499 */
1500 switch (num) {
1501 case 0 ... 18:
1502 /* read a normal core register */
1503 retval = cortexm_dap_read_coreregister_u32(target, value, num);
1504
1505 if (retval != ERROR_OK) {
1506 LOG_ERROR("JTAG failure %i", retval);
1507 return ERROR_JTAG_DEVICE_ERROR;
1508 }
1509 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1510 break;
1511
1512 case ARMV7M_FPSCR:
1513 /* Floating-point Status and Registers */
1514 retval = target_write_u32(target, DCB_DCRSR, 0x21);
1515 if (retval != ERROR_OK)
1516 return retval;
1517 retval = target_read_u32(target, DCB_DCRDR, value);
1518 if (retval != ERROR_OK)
1519 return retval;
1520 LOG_DEBUG("load from FPSCR value 0x%" PRIx32, *value);
1521 break;
1522
1523 case ARMV7M_S0 ... ARMV7M_S31:
1524 /* Floating-point Status and Registers */
1525 retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1526 if (retval != ERROR_OK)
1527 return retval;
1528 retval = target_read_u32(target, DCB_DCRDR, value);
1529 if (retval != ERROR_OK)
1530 return retval;
1531 LOG_DEBUG("load from FPU reg S%d value 0x%" PRIx32,
1532 (int)(num - ARMV7M_S0), *value);
1533 break;
1534
1535 case ARMV7M_PRIMASK:
1536 case ARMV7M_BASEPRI:
1537 case ARMV7M_FAULTMASK:
1538 case ARMV7M_CONTROL:
1539 /* Cortex-M3 packages these four registers as bitfields
1540 * in one Debug Core register. So say r0 and r2 docs;
1541 * it was removed from r1 docs, but still works.
1542 */
1543 cortexm_dap_read_coreregister_u32(target, value, 20);
1544
1545 switch (num) {
1546 case ARMV7M_PRIMASK:
1547 *value = buf_get_u32((uint8_t *)value, 0, 1);
1548 break;
1549
1550 case ARMV7M_BASEPRI:
1551 *value = buf_get_u32((uint8_t *)value, 8, 8);
1552 break;
1553
1554 case ARMV7M_FAULTMASK:
1555 *value = buf_get_u32((uint8_t *)value, 16, 1);
1556 break;
1557
1558 case ARMV7M_CONTROL:
1559 *value = buf_get_u32((uint8_t *)value, 24, 2);
1560 break;
1561 }
1562
1563 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1564 break;
1565
1566 default:
1567 return ERROR_COMMAND_SYNTAX_ERROR;
1568 }
1569
1570 return ERROR_OK;
1571 }
1572
1573 static int cortex_m_store_core_reg_u32(struct target *target,
1574 uint32_t num, uint32_t value)
1575 {
1576 int retval;
1577 uint32_t reg;
1578 struct armv7m_common *armv7m = target_to_armv7m(target);
1579
1580 /* NOTE: we "know" here that the register identifiers used
1581 * in the v7m header match the Cortex-M3 Debug Core Register
1582 * Selector values for R0..R15, xPSR, MSP, and PSP.
1583 */
1584 switch (num) {
1585 case 0 ... 18:
1586 retval = cortexm_dap_write_coreregister_u32(target, value, num);
1587 if (retval != ERROR_OK) {
1588 struct reg *r;
1589
1590 LOG_ERROR("JTAG failure");
1591 r = armv7m->arm.core_cache->reg_list + num;
1592 r->dirty = r->valid;
1593 return ERROR_JTAG_DEVICE_ERROR;
1594 }
1595 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1596 break;
1597
1598 case ARMV7M_FPSCR:
1599 /* Floating-point Status and Registers */
1600 retval = target_write_u32(target, DCB_DCRDR, value);
1601 if (retval != ERROR_OK)
1602 return retval;
1603 retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1604 if (retval != ERROR_OK)
1605 return retval;
1606 LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1607 break;
1608
1609 case ARMV7M_S0 ... ARMV7M_S31:
1610 /* Floating-point Status and Registers */
1611 retval = target_write_u32(target, DCB_DCRDR, value);
1612 if (retval != ERROR_OK)
1613 return retval;
1614 retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1615 if (retval != ERROR_OK)
1616 return retval;
1617 LOG_DEBUG("write FPU reg S%d value 0x%" PRIx32,
1618 (int)(num - ARMV7M_S0), value);
1619 break;
1620
1621 case ARMV7M_PRIMASK:
1622 case ARMV7M_BASEPRI:
1623 case ARMV7M_FAULTMASK:
1624 case ARMV7M_CONTROL:
1625 /* Cortex-M3 packages these four registers as bitfields
1626 * in one Debug Core register. So say r0 and r2 docs;
1627 * it was removed from r1 docs, but still works.
1628 */
1629 cortexm_dap_read_coreregister_u32(target, &reg, 20);
1630
1631 switch (num) {
1632 case ARMV7M_PRIMASK:
1633 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1634 break;
1635
1636 case ARMV7M_BASEPRI:
1637 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1638 break;
1639
1640 case ARMV7M_FAULTMASK:
1641 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1642 break;
1643
1644 case ARMV7M_CONTROL:
1645 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1646 break;
1647 }
1648
1649 cortexm_dap_write_coreregister_u32(target, reg, 20);
1650
1651 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1652 break;
1653
1654 default:
1655 return ERROR_COMMAND_SYNTAX_ERROR;
1656 }
1657
1658 return ERROR_OK;
1659 }
1660
1661 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1662 uint32_t size, uint32_t count, uint8_t *buffer)
1663 {
1664 struct armv7m_common *armv7m = target_to_armv7m(target);
1665
1666 if (armv7m->arm.is_armv6m) {
1667 /* armv6m does not handle unaligned memory access */
1668 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1669 return ERROR_TARGET_UNALIGNED_ACCESS;
1670 }
1671
1672 return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1673 }
1674
1675 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1676 uint32_t size, uint32_t count, const uint8_t *buffer)
1677 {
1678 struct armv7m_common *armv7m = target_to_armv7m(target);
1679
1680 if (armv7m->arm.is_armv6m) {
1681 /* armv6m does not handle unaligned memory access */
1682 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1683 return ERROR_TARGET_UNALIGNED_ACCESS;
1684 }
1685
1686 return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1687 }
1688
1689 static int cortex_m_init_target(struct command_context *cmd_ctx,
1690 struct target *target)
1691 {
1692 armv7m_build_reg_cache(target);
1693 arm_semihosting_init(target);
1694 return ERROR_OK;
1695 }
1696
1697 void cortex_m_deinit_target(struct target *target)
1698 {
1699 struct cortex_m_common *cortex_m = target_to_cm(target);
1700
1701 free(cortex_m->fp_comparator_list);
1702
1703 cortex_m_dwt_free(target);
1704 armv7m_free_reg_cache(target);
1705
1706 free(target->private_config);
1707 free(cortex_m);
1708 }
1709
1710 int cortex_m_profiling(struct target *target, uint32_t *samples,
1711 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1712 {
1713 struct timeval timeout, now;
1714 struct armv7m_common *armv7m = target_to_armv7m(target);
1715 uint32_t reg_value;
1716 bool use_pcsr = false;
1717 int retval = ERROR_OK;
1718 struct reg *reg;
1719
1720 gettimeofday(&timeout, NULL);
1721 timeval_add_time(&timeout, seconds, 0);
1722
1723 retval = target_read_u32(target, DWT_PCSR, &reg_value);
1724 if (retval != ERROR_OK) {
1725 LOG_ERROR("Error while reading PCSR");
1726 return retval;
1727 }
1728
1729 if (reg_value != 0) {
1730 use_pcsr = true;
1731 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1732 } else {
1733 LOG_INFO("Starting profiling. Halting and resuming the"
1734 " target as often as we can...");
1735 reg = register_get_by_name(target->reg_cache, "pc", 1);
1736 }
1737
1738 /* Make sure the target is running */
1739 target_poll(target);
1740 if (target->state == TARGET_HALTED)
1741 retval = target_resume(target, 1, 0, 0, 0);
1742
1743 if (retval != ERROR_OK) {
1744 LOG_ERROR("Error while resuming target");
1745 return retval;
1746 }
1747
1748 uint32_t sample_count = 0;
1749
1750 for (;;) {
1751 if (use_pcsr) {
1752 if (armv7m && armv7m->debug_ap) {
1753 uint32_t read_count = max_num_samples - sample_count;
1754 if (read_count > 1024)
1755 read_count = 1024;
1756
1757 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1758 (void *)&samples[sample_count],
1759 4, read_count, DWT_PCSR);
1760 sample_count += read_count;
1761 } else {
1762 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1763 }
1764 } else {
1765 target_poll(target);
1766 if (target->state == TARGET_HALTED) {
1767 reg_value = buf_get_u32(reg->value, 0, 32);
1768 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1769 retval = target_resume(target, 1, 0, 0, 0);
1770 samples[sample_count++] = reg_value;
1771 target_poll(target);
1772 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1773 } else if (target->state == TARGET_RUNNING) {
1774 /* We want to quickly sample the PC. */
1775 retval = target_halt(target);
1776 } else {
1777 LOG_INFO("Target not halted or running");
1778 retval = ERROR_OK;
1779 break;
1780 }
1781 }
1782
1783 if (retval != ERROR_OK) {
1784 LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1785 return retval;
1786 }
1787
1788
1789 gettimeofday(&now, NULL);
1790 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1791 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1792 break;
1793 }
1794 }
1795
1796 *num_samples = sample_count;
1797 return retval;
1798 }
1799
1800
1801 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1802 * on r/w if the core is not running, and clear on resume or reset ... or
1803 * at least, in a post_restore_context() method.
1804 */
1805
1806 struct dwt_reg_state {
1807 struct target *target;
1808 uint32_t addr;
1809 uint8_t value[4]; /* scratch/cache */
1810 };
1811
1812 static int cortex_m_dwt_get_reg(struct reg *reg)
1813 {
1814 struct dwt_reg_state *state = reg->arch_info;
1815
1816 uint32_t tmp;
1817 int retval = target_read_u32(state->target, state->addr, &tmp);
1818 if (retval != ERROR_OK)
1819 return retval;
1820
1821 buf_set_u32(state->value, 0, 32, tmp);
1822 return ERROR_OK;
1823 }
1824
1825 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1826 {
1827 struct dwt_reg_state *state = reg->arch_info;
1828
1829 return target_write_u32(state->target, state->addr,
1830 buf_get_u32(buf, 0, reg->size));
1831 }
1832
1833 struct dwt_reg {
1834 uint32_t addr;
1835 char *name;
1836 unsigned size;
1837 };
1838
1839 static struct dwt_reg dwt_base_regs[] = {
1840 { DWT_CTRL, "dwt_ctrl", 32, },
1841 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1842 * increments while the core is asleep.
1843 */
1844 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1845 /* plus some 8 bit counters, useful for profiling with TPIU */
1846 };
1847
1848 static struct dwt_reg dwt_comp[] = {
1849 #define DWT_COMPARATOR(i) \
1850 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1851 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1852 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1853 DWT_COMPARATOR(0),
1854 DWT_COMPARATOR(1),
1855 DWT_COMPARATOR(2),
1856 DWT_COMPARATOR(3),
1857 #undef DWT_COMPARATOR
1858 };
1859
1860 static const struct reg_arch_type dwt_reg_type = {
1861 .get = cortex_m_dwt_get_reg,
1862 .set = cortex_m_dwt_set_reg,
1863 };
1864
1865 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1866 {
1867 struct dwt_reg_state *state;
1868
1869 state = calloc(1, sizeof *state);
1870 if (!state)
1871 return;
1872 state->addr = d->addr;
1873 state->target = t;
1874
1875 r->name = d->name;
1876 r->size = d->size;
1877 r->value = state->value;
1878 r->arch_info = state;
1879 r->type = &dwt_reg_type;
1880 }
1881
1882 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1883 {
1884 uint32_t dwtcr;
1885 struct reg_cache *cache;
1886 struct cortex_m_dwt_comparator *comparator;
1887 int reg, i;
1888
1889 target_read_u32(target, DWT_CTRL, &dwtcr);
1890 if (!dwtcr) {
1891 LOG_DEBUG("no DWT");
1892 return;
1893 }
1894
1895 cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1896 cm->dwt_comp_available = cm->dwt_num_comp;
1897 cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1898 sizeof(struct cortex_m_dwt_comparator));
1899 if (!cm->dwt_comparator_list) {
1900 fail0:
1901 cm->dwt_num_comp = 0;
1902 LOG_ERROR("out of mem");
1903 return;
1904 }
1905
1906 cache = calloc(1, sizeof *cache);
1907 if (!cache) {
1908 fail1:
1909 free(cm->dwt_comparator_list);
1910 goto fail0;
1911 }
1912 cache->name = "Cortex-M DWT registers";
1913 cache->num_regs = 2 + cm->dwt_num_comp * 3;
1914 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1915 if (!cache->reg_list) {
1916 free(cache);
1917 goto fail1;
1918 }
1919
1920 for (reg = 0; reg < 2; reg++)
1921 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1922 dwt_base_regs + reg);
1923
1924 comparator = cm->dwt_comparator_list;
1925 for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1926 int j;
1927
1928 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1929 for (j = 0; j < 3; j++, reg++)
1930 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1931 dwt_comp + 3 * i + j);
1932
1933 /* make sure we clear any watchpoints enabled on the target */
1934 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1935 }
1936
1937 *register_get_last_cache_p(&target->reg_cache) = cache;
1938 cm->dwt_cache = cache;
1939
1940 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1941 dwtcr, cm->dwt_num_comp,
1942 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1943
1944 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1945 * implement single-address data value watchpoints ... so we
1946 * won't need to check it later, when asked to set one up.
1947 */
1948 }
1949
1950 static void cortex_m_dwt_free(struct target *target)
1951 {
1952 struct cortex_m_common *cm = target_to_cm(target);
1953 struct reg_cache *cache = cm->dwt_cache;
1954
1955 free(cm->dwt_comparator_list);
1956 cm->dwt_comparator_list = NULL;
1957 cm->dwt_num_comp = 0;
1958
1959 if (cache) {
1960 register_unlink_cache(&target->reg_cache, cache);
1961
1962 if (cache->reg_list) {
1963 for (size_t i = 0; i < cache->num_regs; i++)
1964 free(cache->reg_list[i].arch_info);
1965 free(cache->reg_list);
1966 }
1967 free(cache);
1968 }
1969 cm->dwt_cache = NULL;
1970 }
1971
1972 #define MVFR0 0xe000ef40
1973 #define MVFR1 0xe000ef44
1974
1975 #define MVFR0_DEFAULT_M4 0x10110021
1976 #define MVFR1_DEFAULT_M4 0x11000011
1977
1978 #define MVFR0_DEFAULT_M7_SP 0x10110021
1979 #define MVFR0_DEFAULT_M7_DP 0x10110221
1980 #define MVFR1_DEFAULT_M7_SP 0x11000011
1981 #define MVFR1_DEFAULT_M7_DP 0x12000011
1982
1983 int cortex_m_examine(struct target *target)
1984 {
1985 int retval;
1986 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1987 int i;
1988 struct cortex_m_common *cortex_m = target_to_cm(target);
1989 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1990 struct armv7m_common *armv7m = target_to_armv7m(target);
1991
1992 /* stlink shares the examine handler but does not support
1993 * all its calls */
1994 if (!armv7m->stlink) {
1995 if (cortex_m->apsel < 0) {
1996 /* Search for the MEM-AP */
1997 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
1998 if (retval != ERROR_OK) {
1999 LOG_ERROR("Could not find MEM-AP to control the core");
2000 return retval;
2001 }
2002 } else {
2003 armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
2004 }
2005
2006 /* Leave (only) generic DAP stuff for debugport_init(); */
2007 armv7m->debug_ap->memaccess_tck = 8;
2008
2009 retval = mem_ap_init(armv7m->debug_ap);
2010 if (retval != ERROR_OK)
2011 return retval;
2012 }
2013
2014 if (!target_was_examined(target)) {
2015 target_set_examined(target);
2016
2017 /* Read from Device Identification Registers */
2018 retval = target_read_u32(target, CPUID, &cpuid);
2019 if (retval != ERROR_OK)
2020 return retval;
2021
2022 /* Get CPU Type */
2023 i = (cpuid >> 4) & 0xf;
2024
2025 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2026 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2027 if (i == 7) {
2028 uint8_t rev, patch;
2029 rev = (cpuid >> 20) & 0xf;
2030 patch = (cpuid >> 0) & 0xf;
2031 if ((rev == 0) && (patch < 2))
2032 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
2033 }
2034 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2035
2036 if (i == 4) {
2037 target_read_u32(target, MVFR0, &mvfr0);
2038 target_read_u32(target, MVFR1, &mvfr1);
2039
2040 /* test for floating point feature on Cortex-M4 */
2041 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2042 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2043 armv7m->fp_feature = FPv4_SP;
2044 }
2045 } else if (i == 7) {
2046 target_read_u32(target, MVFR0, &mvfr0);
2047 target_read_u32(target, MVFR1, &mvfr1);
2048
2049 /* test for floating point features on Cortex-M7 */
2050 if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2051 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2052 armv7m->fp_feature = FPv5_SP;
2053 } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2054 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2055 armv7m->fp_feature = FPv5_DP;
2056 }
2057 } else if (i == 0) {
2058 /* Cortex-M0 does not support unaligned memory access */
2059 armv7m->arm.is_armv6m = true;
2060 }
2061
2062 if (armv7m->fp_feature == FP_NONE &&
2063 armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2064 /* free unavailable FPU registers */
2065 size_t idx;
2066
2067 for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2068 idx < armv7m->arm.core_cache->num_regs;
2069 idx++) {
2070 free(armv7m->arm.core_cache->reg_list[idx].value);
2071 free(armv7m->arm.core_cache->reg_list[idx].feature);
2072 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2073 }
2074 armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2075 }
2076
2077 if (!armv7m->stlink) {
2078 if (i == 3 || i == 4)
2079 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2080 * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2081 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2082 else if (i == 7)
2083 /* Cortex-M7 has only 1024 bytes autoincrement range */
2084 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2085 }
2086
2087 /* Configure trace modules */
2088 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2089 if (retval != ERROR_OK)
2090 return retval;
2091
2092 if (armv7m->trace_config.config_type != DISABLED) {
2093 armv7m_trace_tpiu_config(target);
2094 armv7m_trace_itm_config(target);
2095 }
2096
2097 /* NOTE: FPB and DWT are both optional. */
2098
2099 /* Setup FPB */
2100 target_read_u32(target, FP_CTRL, &fpcr);
2101 cortex_m->auto_bp_type = 1;
2102 /* bits [14:12] and [7:4] */
2103 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2104 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2105 cortex_m->fp_code_available = cortex_m->fp_num_code;
2106 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2107 Revision is zero base, fp_rev == 1 means Rev.2 ! */
2108 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2109 free(cortex_m->fp_comparator_list);
2110 cortex_m->fp_comparator_list = calloc(
2111 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2112 sizeof(struct cortex_m_fp_comparator));
2113 cortex_m->fpb_enabled = fpcr & 1;
2114 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2115 cortex_m->fp_comparator_list[i].type =
2116 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2117 cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2118
2119 /* make sure we clear any breakpoints enabled on the target */
2120 target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2121 }
2122 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2123 fpcr,
2124 cortex_m->fp_num_code,
2125 cortex_m->fp_num_lit);
2126
2127 /* Setup DWT */
2128 cortex_m_dwt_free(target);
2129 cortex_m_dwt_setup(cortex_m, target);
2130
2131 /* These hardware breakpoints only work for code in flash! */
2132 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2133 target_name(target),
2134 cortex_m->fp_num_code,
2135 cortex_m->dwt_num_comp);
2136 }
2137
2138 return ERROR_OK;
2139 }
2140
2141 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2142 {
2143 struct armv7m_common *armv7m = target_to_armv7m(target);
2144 uint16_t dcrdr;
2145 uint8_t buf[2];
2146 int retval;
2147
2148 retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2149 if (retval != ERROR_OK)
2150 return retval;
2151
2152 dcrdr = target_buffer_get_u16(target, buf);
2153 *ctrl = (uint8_t)dcrdr;
2154 *value = (uint8_t)(dcrdr >> 8);
2155
2156 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2157
2158 /* write ack back to software dcc register
2159 * signify we have read data */
2160 if (dcrdr & (1 << 0)) {
2161 target_buffer_set_u16(target, buf, 0);
2162 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2163 if (retval != ERROR_OK)
2164 return retval;
2165 }
2166
2167 return ERROR_OK;
2168 }
2169
2170 static int cortex_m_target_request_data(struct target *target,
2171 uint32_t size, uint8_t *buffer)
2172 {
2173 uint8_t data;
2174 uint8_t ctrl;
2175 uint32_t i;
2176
2177 for (i = 0; i < (size * 4); i++) {
2178 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2179 if (retval != ERROR_OK)
2180 return retval;
2181 buffer[i] = data;
2182 }
2183
2184 return ERROR_OK;
2185 }
2186
2187 static int cortex_m_handle_target_request(void *priv)
2188 {
2189 struct target *target = priv;
2190 if (!target_was_examined(target))
2191 return ERROR_OK;
2192
2193 if (!target->dbg_msg_enabled)
2194 return ERROR_OK;
2195
2196 if (target->state == TARGET_RUNNING) {
2197 uint8_t data;
2198 uint8_t ctrl;
2199 int retval;
2200
2201 retval = cortex_m_dcc_read(target, &data, &ctrl);
2202 if (retval != ERROR_OK)
2203 return retval;
2204
2205 /* check if we have data */
2206 if (ctrl & (1 << 0)) {
2207 uint32_t request;
2208
2209 /* we assume target is quick enough */
2210 request = data;
2211 for (int i = 1; i <= 3; i++) {
2212 retval = cortex_m_dcc_read(target, &data, &ctrl);
2213 if (retval != ERROR_OK)
2214 return retval;
2215 request |= ((uint32_t)data << (i * 8));
2216 }
2217 target_request(target, request);
2218 }
2219 }
2220
2221 return ERROR_OK;
2222 }
2223
2224 static int cortex_m_init_arch_info(struct target *target,
2225 struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2226 {
2227 struct armv7m_common *armv7m = &cortex_m->armv7m;
2228
2229 armv7m_init_arch_info(target, armv7m);
2230
2231 /* default reset mode is to use srst if fitted
2232 * if not it will use CORTEX_M3_RESET_VECTRESET */
2233 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2234
2235 armv7m->arm.dap = dap;
2236
2237 /* register arch-specific functions */
2238 armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2239
2240 armv7m->post_debug_entry = NULL;
2241
2242 armv7m->pre_restore_context = NULL;
2243
2244 armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2245 armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2246
2247 target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2248
2249 return ERROR_OK;
2250 }
2251
2252 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2253 {
2254 struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2255 cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2256 struct adiv5_private_config *pc;
2257
2258 pc = (struct adiv5_private_config *)target->private_config;
2259 if (adiv5_verify_config(pc) != ERROR_OK)
2260 return ERROR_FAIL;
2261
2262 cortex_m->apsel = pc->ap_num;
2263
2264 cortex_m_init_arch_info(target, cortex_m, pc->dap);
2265
2266 return ERROR_OK;
2267 }
2268
2269 /*--------------------------------------------------------------------------*/
2270
2271 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2272 struct cortex_m_common *cm)
2273 {
2274 if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2275 command_print(cmd_ctx, "target is not a Cortex-M");
2276 return ERROR_TARGET_INVALID;
2277 }
2278 return ERROR_OK;
2279 }
2280
2281 /*
2282 * Only stuff below this line should need to verify that its target
2283 * is a Cortex-M3. Everything else should have indirected through the
2284 * cortexm3_target structure, which is only used with CM3 targets.
2285 */
2286
2287 static const struct {
2288 char name[10];
2289 unsigned mask;
2290 } vec_ids[] = {
2291 { "hard_err", VC_HARDERR, },
2292 { "int_err", VC_INTERR, },
2293 { "bus_err", VC_BUSERR, },
2294 { "state_err", VC_STATERR, },
2295 { "chk_err", VC_CHKERR, },
2296 { "nocp_err", VC_NOCPERR, },
2297 { "mm_err", VC_MMERR, },
2298 { "reset", VC_CORERESET, },
2299 };
2300
2301 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2302 {
2303 struct target *target = get_current_target(CMD_CTX);
2304 struct cortex_m_common *cortex_m = target_to_cm(target);
2305 struct armv7m_common *armv7m = &cortex_m->armv7m;
2306 uint32_t demcr = 0;
2307 int retval;
2308
2309 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2310 if (retval != ERROR_OK)
2311 return retval;
2312
2313 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2314 if (retval != ERROR_OK)
2315 return retval;
2316
2317 if (CMD_ARGC > 0) {
2318 unsigned catch = 0;
2319
2320 if (CMD_ARGC == 1) {
2321 if (strcmp(CMD_ARGV[0], "all") == 0) {
2322 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2323 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2324 | VC_MMERR | VC_CORERESET;
2325 goto write;
2326 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2327 goto write;
2328 }
2329 while (CMD_ARGC-- > 0) {
2330 unsigned i;
2331 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2332 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2333 continue;
2334 catch |= vec_ids[i].mask;
2335 break;
2336 }
2337 if (i == ARRAY_SIZE(vec_ids)) {
2338 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2339 return ERROR_COMMAND_SYNTAX_ERROR;
2340 }
2341 }
2342 write:
2343 /* For now, armv7m->demcr only stores vector catch flags. */
2344 armv7m->demcr = catch;
2345
2346 demcr &= ~0xffff;
2347 demcr |= catch;
2348
2349 /* write, but don't assume it stuck (why not??) */
2350 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2351 if (retval != ERROR_OK)
2352 return retval;
2353 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2354 if (retval != ERROR_OK)
2355 return retval;
2356
2357 /* FIXME be sure to clear DEMCR on clean server shutdown.
2358 * Otherwise the vector catch hardware could fire when there's
2359 * no debugger hooked up, causing much confusion...
2360 */
2361 }
2362
2363 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2364 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2365 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2366 }
2367
2368 return ERROR_OK;
2369 }
2370
2371 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2372 {
2373 struct target *target = get_current_target(CMD_CTX);
2374 struct cortex_m_common *cortex_m = target_to_cm(target);
2375 int retval;
2376
2377 static const Jim_Nvp nvp_maskisr_modes[] = {
2378 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2379 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2380 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2381 { .name = NULL, .value = -1 },
2382 };
2383 const Jim_Nvp *n;
2384
2385
2386 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2387 if (retval != ERROR_OK)
2388 return retval;
2389
2390 if (target->state != TARGET_HALTED) {
2391 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2392 return ERROR_OK;
2393 }
2394
2395 if (CMD_ARGC > 0) {
2396 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2397 if (n->name == NULL)
2398 return ERROR_COMMAND_SYNTAX_ERROR;
2399 cortex_m->isrmasking_mode = n->value;
2400
2401
2402 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2403 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2404 else
2405 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2406 }
2407
2408 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2409 command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2410
2411 return ERROR_OK;
2412 }
2413
2414 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2415 {
2416 struct target *target = get_current_target(CMD_CTX);
2417 struct cortex_m_common *cortex_m = target_to_cm(target);
2418 int retval;
2419 char *reset_config;
2420
2421 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2422 if (retval != ERROR_OK)
2423 return retval;
2424
2425 if (CMD_ARGC > 0) {
2426 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2427 cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2428 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2429 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2430 }
2431
2432 switch (cortex_m->soft_reset_config) {
2433 case CORTEX_M_RESET_SYSRESETREQ:
2434 reset_config = "sysresetreq";
2435 break;
2436
2437 case CORTEX_M_RESET_VECTRESET:
2438 reset_config = "vectreset";
2439 break;
2440
2441 default:
2442 reset_config = "unknown";
2443 break;
2444 }
2445
2446 command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2447
2448 return ERROR_OK;
2449 }
2450
2451 static const struct command_registration cortex_m_exec_command_handlers[] = {
2452 {
2453 .name = "maskisr",
2454 .handler = handle_cortex_m_mask_interrupts_command,
2455 .mode = COMMAND_EXEC,
2456 .help = "mask cortex_m interrupts",
2457 .usage = "['auto'|'on'|'off']",
2458 },
2459 {
2460 .name = "vector_catch",
2461 .handler = handle_cortex_m_vector_catch_command,
2462 .mode = COMMAND_EXEC,
2463 .help = "configure hardware vectors to trigger debug entry",
2464 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2465 },
2466 {
2467 .name = "reset_config",
2468 .handler = handle_cortex_m_reset_config_command,
2469 .mode = COMMAND_ANY,
2470 .help = "configure software reset handling",
2471 .usage = "['srst'|'sysresetreq'|'vectreset']",
2472 },
2473 COMMAND_REGISTRATION_DONE
2474 };
2475 static const struct command_registration cortex_m_command_handlers[] = {
2476 {
2477 .chain = armv7m_command_handlers,
2478 },
2479 {
2480 .chain = armv7m_trace_command_handlers,
2481 },
2482 {
2483 .name = "cortex_m",
2484 .mode = COMMAND_EXEC,
2485 .help = "Cortex-M command group",
2486 .usage = "",
2487 .chain = cortex_m_exec_command_handlers,
2488 },
2489 COMMAND_REGISTRATION_DONE
2490 };
2491
2492 struct target_type cortexm_target = {
2493 .name = "cortex_m",
2494 .deprecated_name = "cortex_m3",
2495
2496 .poll = cortex_m_poll,
2497 .arch_state = armv7m_arch_state,
2498
2499 .target_request_data = cortex_m_target_request_data,
2500
2501 .halt = cortex_m_halt,
2502 .resume = cortex_m_resume,
2503 .step = cortex_m_step,
2504
2505 .assert_reset = cortex_m_assert_reset,
2506 .deassert_reset = cortex_m_deassert_reset,
2507 .soft_reset_halt = cortex_m_soft_reset_halt,
2508
2509 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2510
2511 .read_memory = cortex_m_read_memory,
2512 .write_memory = cortex_m_write_memory,
2513 .checksum_memory = armv7m_checksum_memory,
2514 .blank_check_memory = armv7m_blank_check_memory,
2515
2516 .run_algorithm = armv7m_run_algorithm,
2517 .start_algorithm = armv7m_start_algorithm,
2518 .wait_algorithm = armv7m_wait_algorithm,
2519
2520 .add_breakpoint = cortex_m_add_breakpoint,
2521 .remove_breakpoint = cortex_m_remove_breakpoint,
2522 .add_watchpoint = cortex_m_add_watchpoint,
2523 .remove_watchpoint = cortex_m_remove_watchpoint,
2524
2525 .commands = cortex_m_command_handlers,
2526 .target_create = cortex_m_target_create,
2527 .target_jim_configure = adiv5_jim_configure,
2528 .init_target = cortex_m_init_target,
2529 .examine = cortex_m_examine,
2530 .deinit_target = cortex_m_deinit_target,
2531
2532 .profiling = cortex_m_profiling,
2533 };