06e1c1c754ce5f0716a227445a121f1f15f7fa2f
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 * *
24 * *
25 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
26 * *
27 ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE: most of this should work fine for the Cortex-M1 and
44 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45 * Some differences: M0/M1 doesn't have FPB remapping or the
46 * DWT tracing/profiling support. (So the cycle counter will
47 * not be usable; the other stuff isn't currently used here.)
48 *
49 * Although there are some workarounds for errata seen only in r0p0
50 * silicon, such old parts are hard to find and thus not much tested
51 * any longer.
52 */
53
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
58
59 static int cortexm_dap_read_coreregister_u32(struct target *target,
60 uint32_t *value, int regnum)
61 {
62 struct armv7m_common *armv7m = target_to_armv7m(target);
63 int retval;
64 uint32_t dcrdr;
65
66 /* because the DCB_DCRDR is used for the emulated dcc channel
67 * we have to save/restore the DCB_DCRDR when used */
68 if (target->dbg_msg_enabled) {
69 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70 if (retval != ERROR_OK)
71 return retval;
72 }
73
74 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
75 if (retval != ERROR_OK)
76 return retval;
77
78 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79 if (retval != ERROR_OK)
80 return retval;
81
82 if (target->dbg_msg_enabled) {
83 /* restore DCB_DCRDR - this needs to be in a separate
84 * transaction otherwise the emulated DCC channel breaks */
85 if (retval == ERROR_OK)
86 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
87 }
88
89 return retval;
90 }
91
92 static int cortexm_dap_write_coreregister_u32(struct target *target,
93 uint32_t value, int regnum)
94 {
95 struct armv7m_common *armv7m = target_to_armv7m(target);
96 int retval;
97 uint32_t dcrdr;
98
99 /* because the DCB_DCRDR is used for the emulated dcc channel
100 * we have to save/restore the DCB_DCRDR when used */
101 if (target->dbg_msg_enabled) {
102 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103 if (retval != ERROR_OK)
104 return retval;
105 }
106
107 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108 if (retval != ERROR_OK)
109 return retval;
110
111 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
112 if (retval != ERROR_OK)
113 return retval;
114
115 if (target->dbg_msg_enabled) {
116 /* restore DCB_DCRDR - this needs to be in a seperate
117 * transaction otherwise the emulated DCC channel breaks */
118 if (retval == ERROR_OK)
119 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
120 }
121
122 return retval;
123 }
124
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126 uint32_t mask_on, uint32_t mask_off)
127 {
128 struct cortex_m_common *cortex_m = target_to_cm(target);
129 struct armv7m_common *armv7m = &cortex_m->armv7m;
130
131 /* mask off status bits */
132 cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
133 /* create new register mask */
134 cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
135
136 return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
137 }
138
139 static int cortex_m_clear_halt(struct target *target)
140 {
141 struct cortex_m_common *cortex_m = target_to_cm(target);
142 struct armv7m_common *armv7m = &cortex_m->armv7m;
143 int retval;
144
145 /* clear step if any */
146 cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
147
148 /* Read Debug Fault Status Register */
149 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
150 if (retval != ERROR_OK)
151 return retval;
152
153 /* Clear Debug Fault Status */
154 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
155 if (retval != ERROR_OK)
156 return retval;
157 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
158
159 return ERROR_OK;
160 }
161
162 static int cortex_m_single_step_core(struct target *target)
163 {
164 struct cortex_m_common *cortex_m = target_to_cm(target);
165 struct armv7m_common *armv7m = &cortex_m->armv7m;
166 int retval;
167
168 /* Mask interrupts before clearing halt, if not done already. This avoids
169 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
170 * HALT can put the core into an unknown state.
171 */
172 if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
173 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
174 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
175 if (retval != ERROR_OK)
176 return retval;
177 }
178 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
179 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
180 if (retval != ERROR_OK)
181 return retval;
182 LOG_DEBUG(" ");
183
184 /* restore dhcsr reg */
185 cortex_m_clear_halt(target);
186
187 return ERROR_OK;
188 }
189
190 static int cortex_m_enable_fpb(struct target *target)
191 {
192 int retval = target_write_u32(target, FP_CTRL, 3);
193 if (retval != ERROR_OK)
194 return retval;
195
196 /* check the fpb is actually enabled */
197 uint32_t fpctrl;
198 retval = target_read_u32(target, FP_CTRL, &fpctrl);
199 if (retval != ERROR_OK)
200 return retval;
201
202 if (fpctrl & 1)
203 return ERROR_OK;
204
205 return ERROR_FAIL;
206 }
207
208 static int cortex_m_endreset_event(struct target *target)
209 {
210 int i;
211 int retval;
212 uint32_t dcb_demcr;
213 struct cortex_m_common *cortex_m = target_to_cm(target);
214 struct armv7m_common *armv7m = &cortex_m->armv7m;
215 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
216 struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
217 struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
218
219 /* REVISIT The four debug monitor bits are currently ignored... */
220 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
221 if (retval != ERROR_OK)
222 return retval;
223 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
224
225 /* this register is used for emulated dcc channel */
226 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
227 if (retval != ERROR_OK)
228 return retval;
229
230 /* Enable debug requests */
231 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
232 if (retval != ERROR_OK)
233 return retval;
234 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
235 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
236 if (retval != ERROR_OK)
237 return retval;
238 }
239
240 /* Restore proper interrupt masking setting. */
241 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
242 cortex_m_write_debug_halt_mask(target, C_MASKINTS, 0);
243 else
244 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
245
246 /* Enable features controlled by ITM and DWT blocks, and catch only
247 * the vectors we were told to pay attention to.
248 *
249 * Target firmware is responsible for all fault handling policy
250 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
251 * or manual updates to the NVIC SHCSR and CCR registers.
252 */
253 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
254 if (retval != ERROR_OK)
255 return retval;
256
257 /* Paranoia: evidently some (early?) chips don't preserve all the
258 * debug state (including FPB, DWT, etc) across reset...
259 */
260
261 /* Enable FPB */
262 retval = cortex_m_enable_fpb(target);
263 if (retval != ERROR_OK) {
264 LOG_ERROR("Failed to enable the FPB");
265 return retval;
266 }
267
268 cortex_m->fpb_enabled = 1;
269
270 /* Restore FPB registers */
271 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
272 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
273 if (retval != ERROR_OK)
274 return retval;
275 }
276
277 /* Restore DWT registers */
278 for (i = 0; i < cortex_m->dwt_num_comp; i++) {
279 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
280 dwt_list[i].comp);
281 if (retval != ERROR_OK)
282 return retval;
283 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
284 dwt_list[i].mask);
285 if (retval != ERROR_OK)
286 return retval;
287 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
288 dwt_list[i].function);
289 if (retval != ERROR_OK)
290 return retval;
291 }
292 retval = dap_run(swjdp);
293 if (retval != ERROR_OK)
294 return retval;
295
296 register_cache_invalidate(armv7m->arm.core_cache);
297
298 /* make sure we have latest dhcsr flags */
299 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
300
301 return retval;
302 }
303
304 static int cortex_m_examine_debug_reason(struct target *target)
305 {
306 struct cortex_m_common *cortex_m = target_to_cm(target);
307
308 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
309 * only check the debug reason if we don't know it already */
310
311 if ((target->debug_reason != DBG_REASON_DBGRQ)
312 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
313 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
314 target->debug_reason = DBG_REASON_BREAKPOINT;
315 if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
316 target->debug_reason = DBG_REASON_WPTANDBKPT;
317 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
318 target->debug_reason = DBG_REASON_WATCHPOINT;
319 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
320 target->debug_reason = DBG_REASON_BREAKPOINT;
321 else /* EXTERNAL, HALTED */
322 target->debug_reason = DBG_REASON_UNDEFINED;
323 }
324
325 return ERROR_OK;
326 }
327
328 static int cortex_m_examine_exception_reason(struct target *target)
329 {
330 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
331 struct armv7m_common *armv7m = target_to_armv7m(target);
332 struct adiv5_dap *swjdp = armv7m->arm.dap;
333 int retval;
334
335 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
336 if (retval != ERROR_OK)
337 return retval;
338 switch (armv7m->exception_number) {
339 case 2: /* NMI */
340 break;
341 case 3: /* Hard Fault */
342 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
343 if (retval != ERROR_OK)
344 return retval;
345 if (except_sr & 0x40000000) {
346 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
347 if (retval != ERROR_OK)
348 return retval;
349 }
350 break;
351 case 4: /* Memory Management */
352 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
353 if (retval != ERROR_OK)
354 return retval;
355 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
356 if (retval != ERROR_OK)
357 return retval;
358 break;
359 case 5: /* Bus Fault */
360 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
361 if (retval != ERROR_OK)
362 return retval;
363 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
364 if (retval != ERROR_OK)
365 return retval;
366 break;
367 case 6: /* Usage Fault */
368 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
369 if (retval != ERROR_OK)
370 return retval;
371 break;
372 case 11: /* SVCall */
373 break;
374 case 12: /* Debug Monitor */
375 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
376 if (retval != ERROR_OK)
377 return retval;
378 break;
379 case 14: /* PendSV */
380 break;
381 case 15: /* SysTick */
382 break;
383 default:
384 except_sr = 0;
385 break;
386 }
387 retval = dap_run(swjdp);
388 if (retval == ERROR_OK)
389 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
390 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
391 armv7m_exception_string(armv7m->exception_number),
392 shcsr, except_sr, cfsr, except_ar);
393 return retval;
394 }
395
396 static int cortex_m_debug_entry(struct target *target)
397 {
398 int i;
399 uint32_t xPSR;
400 int retval;
401 struct cortex_m_common *cortex_m = target_to_cm(target);
402 struct armv7m_common *armv7m = &cortex_m->armv7m;
403 struct arm *arm = &armv7m->arm;
404 struct reg *r;
405
406 LOG_DEBUG(" ");
407
408 cortex_m_clear_halt(target);
409 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
410 if (retval != ERROR_OK)
411 return retval;
412
413 retval = armv7m->examine_debug_reason(target);
414 if (retval != ERROR_OK)
415 return retval;
416
417 /* Examine target state and mode
418 * First load register accessible through core debug port */
419 int num_regs = arm->core_cache->num_regs;
420
421 for (i = 0; i < num_regs; i++) {
422 r = &armv7m->arm.core_cache->reg_list[i];
423 if (!r->valid)
424 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
425 }
426
427 r = arm->cpsr;
428 xPSR = buf_get_u32(r->value, 0, 32);
429
430 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
431 if (xPSR & 0xf00) {
432 r->dirty = r->valid;
433 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
434 }
435
436 /* Are we in an exception handler */
437 if (xPSR & 0x1FF) {
438 armv7m->exception_number = (xPSR & 0x1FF);
439
440 arm->core_mode = ARM_MODE_HANDLER;
441 arm->map = armv7m_msp_reg_map;
442 } else {
443 unsigned control = buf_get_u32(arm->core_cache
444 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
445
446 /* is this thread privileged? */
447 arm->core_mode = control & 1
448 ? ARM_MODE_USER_THREAD
449 : ARM_MODE_THREAD;
450
451 /* which stack is it using? */
452 if (control & 2)
453 arm->map = armv7m_psp_reg_map;
454 else
455 arm->map = armv7m_msp_reg_map;
456
457 armv7m->exception_number = 0;
458 }
459
460 if (armv7m->exception_number)
461 cortex_m_examine_exception_reason(target);
462
463 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
464 arm_mode_name(arm->core_mode),
465 buf_get_u32(arm->pc->value, 0, 32),
466 target_state_name(target));
467
468 if (armv7m->post_debug_entry) {
469 retval = armv7m->post_debug_entry(target);
470 if (retval != ERROR_OK)
471 return retval;
472 }
473
474 return ERROR_OK;
475 }
476
477 static int cortex_m_poll(struct target *target)
478 {
479 int detected_failure = ERROR_OK;
480 int retval = ERROR_OK;
481 enum target_state prev_target_state = target->state;
482 struct cortex_m_common *cortex_m = target_to_cm(target);
483 struct armv7m_common *armv7m = &cortex_m->armv7m;
484
485 /* Read from Debug Halting Control and Status Register */
486 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
487 if (retval != ERROR_OK) {
488 target->state = TARGET_UNKNOWN;
489 return retval;
490 }
491
492 /* Recover from lockup. See ARMv7-M architecture spec,
493 * section B1.5.15 "Unrecoverable exception cases".
494 */
495 if (cortex_m->dcb_dhcsr & S_LOCKUP) {
496 LOG_ERROR("%s -- clearing lockup after double fault",
497 target_name(target));
498 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
499 target->debug_reason = DBG_REASON_DBGRQ;
500
501 /* We have to execute the rest (the "finally" equivalent, but
502 * still throw this exception again).
503 */
504 detected_failure = ERROR_FAIL;
505
506 /* refresh status bits */
507 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
508 if (retval != ERROR_OK)
509 return retval;
510 }
511
512 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
513 target->state = TARGET_RESET;
514 return ERROR_OK;
515 }
516
517 if (target->state == TARGET_RESET) {
518 /* Cannot switch context while running so endreset is
519 * called with target->state == TARGET_RESET
520 */
521 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
522 cortex_m->dcb_dhcsr);
523 retval = cortex_m_endreset_event(target);
524 if (retval != ERROR_OK) {
525 target->state = TARGET_UNKNOWN;
526 return retval;
527 }
528 target->state = TARGET_RUNNING;
529 prev_target_state = TARGET_RUNNING;
530 }
531
532 if (cortex_m->dcb_dhcsr & S_HALT) {
533 target->state = TARGET_HALTED;
534
535 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
536 retval = cortex_m_debug_entry(target);
537 if (retval != ERROR_OK)
538 return retval;
539
540 if (arm_semihosting(target, &retval) != 0)
541 return retval;
542
543 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
544 }
545 if (prev_target_state == TARGET_DEBUG_RUNNING) {
546 LOG_DEBUG(" ");
547 retval = cortex_m_debug_entry(target);
548 if (retval != ERROR_OK)
549 return retval;
550
551 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
552 }
553 }
554
555 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
556 * How best to model low power modes?
557 */
558
559 if (target->state == TARGET_UNKNOWN) {
560 /* check if processor is retiring instructions */
561 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
562 target->state = TARGET_RUNNING;
563 retval = ERROR_OK;
564 }
565 }
566
567 /* Check that target is truly halted, since the target could be resumed externally */
568 if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
569 /* registers are now invalid */
570 register_cache_invalidate(armv7m->arm.core_cache);
571
572 target->state = TARGET_RUNNING;
573 LOG_WARNING("%s: external resume detected", target_name(target));
574 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
575 retval = ERROR_OK;
576 }
577
578 /* Did we detect a failure condition that we cleared? */
579 if (detected_failure != ERROR_OK)
580 retval = detected_failure;
581 return retval;
582 }
583
584 static int cortex_m_halt(struct target *target)
585 {
586 LOG_DEBUG("target->state: %s",
587 target_state_name(target));
588
589 if (target->state == TARGET_HALTED) {
590 LOG_DEBUG("target was already halted");
591 return ERROR_OK;
592 }
593
594 if (target->state == TARGET_UNKNOWN)
595 LOG_WARNING("target was in unknown state when halt was requested");
596
597 if (target->state == TARGET_RESET) {
598 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
599 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
600 return ERROR_TARGET_FAILURE;
601 } else {
602 /* we came here in a reset_halt or reset_init sequence
603 * debug entry was already prepared in cortex_m3_assert_reset()
604 */
605 target->debug_reason = DBG_REASON_DBGRQ;
606
607 return ERROR_OK;
608 }
609 }
610
611 /* Write to Debug Halting Control and Status Register */
612 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
613
614 target->debug_reason = DBG_REASON_DBGRQ;
615
616 return ERROR_OK;
617 }
618
619 static int cortex_m_soft_reset_halt(struct target *target)
620 {
621 struct cortex_m_common *cortex_m = target_to_cm(target);
622 struct armv7m_common *armv7m = &cortex_m->armv7m;
623 uint32_t dcb_dhcsr = 0;
624 int retval, timeout = 0;
625
626 /* soft_reset_halt is deprecated on cortex_m as the same functionality
627 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
628 * As this reset only used VC_CORERESET it would only ever reset the cortex_m
629 * core, not the peripherals */
630 LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
631
632 /* Enter debug state on reset; restore DEMCR in endreset_event() */
633 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
634 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
635 if (retval != ERROR_OK)
636 return retval;
637
638 /* Request a core-only reset */
639 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
640 AIRCR_VECTKEY | AIRCR_VECTRESET);
641 if (retval != ERROR_OK)
642 return retval;
643 target->state = TARGET_RESET;
644
645 /* registers are now invalid */
646 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
647
648 while (timeout < 100) {
649 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
650 if (retval == ERROR_OK) {
651 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
652 &cortex_m->nvic_dfsr);
653 if (retval != ERROR_OK)
654 return retval;
655 if ((dcb_dhcsr & S_HALT)
656 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
657 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
658 "DFSR 0x%08x",
659 (unsigned) dcb_dhcsr,
660 (unsigned) cortex_m->nvic_dfsr);
661 cortex_m_poll(target);
662 /* FIXME restore user's vector catch config */
663 return ERROR_OK;
664 } else
665 LOG_DEBUG("waiting for system reset-halt, "
666 "DHCSR 0x%08x, %d ms",
667 (unsigned) dcb_dhcsr, timeout);
668 }
669 timeout++;
670 alive_sleep(1);
671 }
672
673 return ERROR_OK;
674 }
675
676 void cortex_m_enable_breakpoints(struct target *target)
677 {
678 struct breakpoint *breakpoint = target->breakpoints;
679
680 /* set any pending breakpoints */
681 while (breakpoint) {
682 if (!breakpoint->set)
683 cortex_m_set_breakpoint(target, breakpoint);
684 breakpoint = breakpoint->next;
685 }
686 }
687
688 static int cortex_m_resume(struct target *target, int current,
689 target_addr_t address, int handle_breakpoints, int debug_execution)
690 {
691 struct armv7m_common *armv7m = target_to_armv7m(target);
692 struct breakpoint *breakpoint = NULL;
693 uint32_t resume_pc;
694 struct reg *r;
695
696 if (target->state != TARGET_HALTED) {
697 LOG_WARNING("target not halted");
698 return ERROR_TARGET_NOT_HALTED;
699 }
700
701 if (!debug_execution) {
702 target_free_all_working_areas(target);
703 cortex_m_enable_breakpoints(target);
704 cortex_m_enable_watchpoints(target);
705 }
706
707 if (debug_execution) {
708 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
709
710 /* Disable interrupts */
711 /* We disable interrupts in the PRIMASK register instead of
712 * masking with C_MASKINTS. This is probably the same issue
713 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
714 * in parallel with disabled interrupts can cause local faults
715 * to not be taken.
716 *
717 * REVISIT this clearly breaks non-debug execution, since the
718 * PRIMASK register state isn't saved/restored... workaround
719 * by never resuming app code after debug execution.
720 */
721 buf_set_u32(r->value, 0, 1, 1);
722 r->dirty = true;
723 r->valid = true;
724
725 /* Make sure we are in Thumb mode */
726 r = armv7m->arm.cpsr;
727 buf_set_u32(r->value, 24, 1, 1);
728 r->dirty = true;
729 r->valid = true;
730 }
731
732 /* current = 1: continue on current pc, otherwise continue at <address> */
733 r = armv7m->arm.pc;
734 if (!current) {
735 buf_set_u32(r->value, 0, 32, address);
736 r->dirty = true;
737 r->valid = true;
738 }
739
740 /* if we halted last time due to a bkpt instruction
741 * then we have to manually step over it, otherwise
742 * the core will break again */
743
744 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
745 && !debug_execution)
746 armv7m_maybe_skip_bkpt_inst(target, NULL);
747
748 resume_pc = buf_get_u32(r->value, 0, 32);
749
750 armv7m_restore_context(target);
751
752 /* the front-end may request us not to handle breakpoints */
753 if (handle_breakpoints) {
754 /* Single step past breakpoint at current address */
755 breakpoint = breakpoint_find(target, resume_pc);
756 if (breakpoint) {
757 LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
758 breakpoint->address,
759 breakpoint->unique_id);
760 cortex_m_unset_breakpoint(target, breakpoint);
761 cortex_m_single_step_core(target);
762 cortex_m_set_breakpoint(target, breakpoint);
763 }
764 }
765
766 /* Restart core */
767 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
768
769 target->debug_reason = DBG_REASON_NOTHALTED;
770
771 /* registers are now invalid */
772 register_cache_invalidate(armv7m->arm.core_cache);
773
774 if (!debug_execution) {
775 target->state = TARGET_RUNNING;
776 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
777 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
778 } else {
779 target->state = TARGET_DEBUG_RUNNING;
780 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
781 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
782 }
783
784 return ERROR_OK;
785 }
786
787 /* int irqstepcount = 0; */
788 static int cortex_m_step(struct target *target, int current,
789 target_addr_t address, int handle_breakpoints)
790 {
791 struct cortex_m_common *cortex_m = target_to_cm(target);
792 struct armv7m_common *armv7m = &cortex_m->armv7m;
793 struct breakpoint *breakpoint = NULL;
794 struct reg *pc = armv7m->arm.pc;
795 bool bkpt_inst_found = false;
796 int retval;
797 bool isr_timed_out = false;
798
799 if (target->state != TARGET_HALTED) {
800 LOG_WARNING("target not halted");
801 return ERROR_TARGET_NOT_HALTED;
802 }
803
804 /* current = 1: continue on current pc, otherwise continue at <address> */
805 if (!current)
806 buf_set_u32(pc->value, 0, 32, address);
807
808 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
809
810 /* the front-end may request us not to handle breakpoints */
811 if (handle_breakpoints) {
812 breakpoint = breakpoint_find(target, pc_value);
813 if (breakpoint)
814 cortex_m_unset_breakpoint(target, breakpoint);
815 }
816
817 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
818
819 target->debug_reason = DBG_REASON_SINGLESTEP;
820
821 armv7m_restore_context(target);
822
823 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
824
825 /* if no bkpt instruction is found at pc then we can perform
826 * a normal step, otherwise we have to manually step over the bkpt
827 * instruction - as such simulate a step */
828 if (bkpt_inst_found == false) {
829 /* Automatic ISR masking mode off: Just step over the next instruction */
830 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
831 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
832 else {
833 /* Process interrupts during stepping in a way they don't interfere
834 * debugging.
835 *
836 * Principle:
837 *
838 * Set a temporary break point at the current pc and let the core run
839 * with interrupts enabled. Pending interrupts get served and we run
840 * into the breakpoint again afterwards. Then we step over the next
841 * instruction with interrupts disabled.
842 *
843 * If the pending interrupts don't complete within time, we leave the
844 * core running. This may happen if the interrupts trigger faster
845 * than the core can process them or the handler doesn't return.
846 *
847 * If no more breakpoints are available we simply do a step with
848 * interrupts enabled.
849 *
850 */
851
852 /* 2012-09-29 ph
853 *
854 * If a break point is already set on the lower half word then a break point on
855 * the upper half word will not break again when the core is restarted. So we
856 * just step over the instruction with interrupts disabled.
857 *
858 * The documentation has no information about this, it was found by observation
859 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
860 * suffer from this problem.
861 *
862 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
863 * address has it always cleared. The former is done to indicate thumb mode
864 * to gdb.
865 *
866 */
867 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
868 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
869 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
870 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
871 /* Re-enable interrupts */
872 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
873 }
874 else {
875
876 /* Set a temporary break point */
877 if (breakpoint)
878 retval = cortex_m_set_breakpoint(target, breakpoint);
879 else
880 retval = breakpoint_add(target, pc_value, 2, BKPT_HARD);
881 bool tmp_bp_set = (retval == ERROR_OK);
882
883 /* No more breakpoints left, just do a step */
884 if (!tmp_bp_set)
885 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
886 else {
887 /* Start the core */
888 LOG_DEBUG("Starting core to serve pending interrupts");
889 int64_t t_start = timeval_ms();
890 cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
891
892 /* Wait for pending handlers to complete or timeout */
893 do {
894 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
895 DCB_DHCSR,
896 &cortex_m->dcb_dhcsr);
897 if (retval != ERROR_OK) {
898 target->state = TARGET_UNKNOWN;
899 return retval;
900 }
901 isr_timed_out = ((timeval_ms() - t_start) > 500);
902 } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
903
904 /* only remove breakpoint if we created it */
905 if (breakpoint)
906 cortex_m_unset_breakpoint(target, breakpoint);
907 else {
908 /* Remove the temporary breakpoint */
909 breakpoint_remove(target, pc_value);
910 }
911
912 if (isr_timed_out) {
913 LOG_DEBUG("Interrupt handlers didn't complete within time, "
914 "leaving target running");
915 } else {
916 /* Step over next instruction with interrupts disabled */
917 cortex_m_write_debug_halt_mask(target,
918 C_HALT | C_MASKINTS,
919 0);
920 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
921 /* Re-enable interrupts */
922 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
923 }
924 }
925 }
926 }
927 }
928
929 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
930 if (retval != ERROR_OK)
931 return retval;
932
933 /* registers are now invalid */
934 register_cache_invalidate(armv7m->arm.core_cache);
935
936 if (breakpoint)
937 cortex_m_set_breakpoint(target, breakpoint);
938
939 if (isr_timed_out) {
940 /* Leave the core running. The user has to stop execution manually. */
941 target->debug_reason = DBG_REASON_NOTHALTED;
942 target->state = TARGET_RUNNING;
943 return ERROR_OK;
944 }
945
946 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
947 " nvic_icsr = 0x%" PRIx32,
948 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
949
950 retval = cortex_m_debug_entry(target);
951 if (retval != ERROR_OK)
952 return retval;
953 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
954
955 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
956 " nvic_icsr = 0x%" PRIx32,
957 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
958
959 return ERROR_OK;
960 }
961
962 static int cortex_m_assert_reset(struct target *target)
963 {
964 struct cortex_m_common *cortex_m = target_to_cm(target);
965 struct armv7m_common *armv7m = &cortex_m->armv7m;
966 enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
967
968 LOG_DEBUG("target->state: %s",
969 target_state_name(target));
970
971 enum reset_types jtag_reset_config = jtag_get_reset_config();
972
973 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
974 /* allow scripts to override the reset event */
975
976 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
977 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
978 target->state = TARGET_RESET;
979
980 return ERROR_OK;
981 }
982
983 /* some cores support connecting while srst is asserted
984 * use that mode is it has been configured */
985
986 bool srst_asserted = false;
987
988 if (!target_was_examined(target)) {
989 if (jtag_reset_config & RESET_HAS_SRST) {
990 adapter_assert_reset();
991 if (target->reset_halt)
992 LOG_ERROR("Target not examined, will not halt after reset!");
993 return ERROR_OK;
994 } else {
995 LOG_ERROR("Target not examined, reset NOT asserted!");
996 return ERROR_FAIL;
997 }
998 }
999
1000 if ((jtag_reset_config & RESET_HAS_SRST) &&
1001 (jtag_reset_config & RESET_SRST_NO_GATING)) {
1002 adapter_assert_reset();
1003 srst_asserted = true;
1004 }
1005
1006 /* Enable debug requests */
1007 int retval;
1008 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1009 /* Store important errors instead of failing and proceed to reset assert */
1010
1011 if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1012 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1013
1014 /* If the processor is sleeping in a WFI or WFE instruction, the
1015 * C_HALT bit must be asserted to regain control */
1016 if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1017 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1018
1019 mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1020 /* Ignore less important errors */
1021
1022 if (!target->reset_halt) {
1023 /* Set/Clear C_MASKINTS in a separate operation */
1024 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1025 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
1026
1027 /* clear any debug flags before resuming */
1028 cortex_m_clear_halt(target);
1029
1030 /* clear C_HALT in dhcsr reg */
1031 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1032 } else {
1033 /* Halt in debug on reset; endreset_event() restores DEMCR.
1034 *
1035 * REVISIT catching BUSERR presumably helps to defend against
1036 * bad vector table entries. Should this include MMERR or
1037 * other flags too?
1038 */
1039 int retval2;
1040 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1041 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1042 if (retval != ERROR_OK || retval2 != ERROR_OK)
1043 LOG_INFO("AP write error, reset will not halt");
1044 }
1045
1046 if (jtag_reset_config & RESET_HAS_SRST) {
1047 /* default to asserting srst */
1048 if (!srst_asserted)
1049 adapter_assert_reset();
1050
1051 /* srst is asserted, ignore AP access errors */
1052 retval = ERROR_OK;
1053 } else {
1054 /* Use a standard Cortex-M3 software reset mechanism.
1055 * We default to using VECRESET as it is supported on all current cores
1056 * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1057 * This has the disadvantage of not resetting the peripherals, so a
1058 * reset-init event handler is needed to perform any peripheral resets.
1059 */
1060 if (!cortex_m->vectreset_supported
1061 && reset_config == CORTEX_M_RESET_VECTRESET) {
1062 reset_config = CORTEX_M_RESET_SYSRESETREQ;
1063 LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1064 LOG_WARNING("Set 'cortex_m reset_config sysresetreq'.");
1065 }
1066
1067 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1068 ? "SYSRESETREQ" : "VECTRESET");
1069
1070 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1071 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1072 "handler to reset any peripherals or configure hardware srst support.");
1073 }
1074
1075 int retval3;
1076 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1077 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1078 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1079 if (retval3 != ERROR_OK)
1080 LOG_DEBUG("Ignoring AP write error right after reset");
1081
1082 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1083 if (retval3 != ERROR_OK)
1084 LOG_ERROR("DP initialisation failed");
1085
1086 else {
1087 /* I do not know why this is necessary, but it
1088 * fixes strange effects (step/resume cause NMI
1089 * after reset) on LM3S6918 -- Michael Schwingen
1090 */
1091 uint32_t tmp;
1092 mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1093 }
1094 }
1095
1096 target->state = TARGET_RESET;
1097 jtag_add_sleep(50000);
1098
1099 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1100
1101 /* now return stored error code if any */
1102 if (retval != ERROR_OK)
1103 return retval;
1104
1105 if (target->reset_halt) {
1106 retval = target_halt(target);
1107 if (retval != ERROR_OK)
1108 return retval;
1109 }
1110
1111 return ERROR_OK;
1112 }
1113
1114 static int cortex_m_deassert_reset(struct target *target)
1115 {
1116 struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1117
1118 LOG_DEBUG("target->state: %s",
1119 target_state_name(target));
1120
1121 /* deassert reset lines */
1122 adapter_deassert_reset();
1123
1124 enum reset_types jtag_reset_config = jtag_get_reset_config();
1125
1126 if ((jtag_reset_config & RESET_HAS_SRST) &&
1127 !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1128 target_was_examined(target)) {
1129 int retval = dap_dp_init(armv7m->debug_ap->dap);
1130 if (retval != ERROR_OK) {
1131 LOG_ERROR("DP initialisation failed");
1132 return retval;
1133 }
1134 }
1135
1136 return ERROR_OK;
1137 }
1138
1139 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1140 {
1141 int retval;
1142 int fp_num = 0;
1143 struct cortex_m_common *cortex_m = target_to_cm(target);
1144 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1145
1146 if (breakpoint->set) {
1147 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1148 return ERROR_OK;
1149 }
1150
1151 if (breakpoint->type == BKPT_HARD) {
1152 uint32_t fpcr_value;
1153 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1154 fp_num++;
1155 if (fp_num >= cortex_m->fp_num_code) {
1156 LOG_ERROR("Can not find free FPB Comparator!");
1157 return ERROR_FAIL;
1158 }
1159 breakpoint->set = fp_num + 1;
1160 fpcr_value = breakpoint->address | 1;
1161 if (cortex_m->fp_rev == 0) {
1162 if (breakpoint->address > 0x1FFFFFFF) {
1163 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1164 return ERROR_FAIL;
1165 }
1166 uint32_t hilo;
1167 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1168 fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1169 } else if (cortex_m->fp_rev > 1) {
1170 LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1171 return ERROR_FAIL;
1172 }
1173 comparator_list[fp_num].used = 1;
1174 comparator_list[fp_num].fpcr_value = fpcr_value;
1175 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1176 comparator_list[fp_num].fpcr_value);
1177 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1178 fp_num,
1179 comparator_list[fp_num].fpcr_value);
1180 if (!cortex_m->fpb_enabled) {
1181 LOG_DEBUG("FPB wasn't enabled, do it now");
1182 retval = cortex_m_enable_fpb(target);
1183 if (retval != ERROR_OK) {
1184 LOG_ERROR("Failed to enable the FPB");
1185 return retval;
1186 }
1187
1188 cortex_m->fpb_enabled = 1;
1189 }
1190 } else if (breakpoint->type == BKPT_SOFT) {
1191 uint8_t code[4];
1192
1193 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1194 * semihosting; don't use that. Otherwise the BKPT
1195 * parameter is arbitrary.
1196 */
1197 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1198 retval = target_read_memory(target,
1199 breakpoint->address & 0xFFFFFFFE,
1200 breakpoint->length, 1,
1201 breakpoint->orig_instr);
1202 if (retval != ERROR_OK)
1203 return retval;
1204 retval = target_write_memory(target,
1205 breakpoint->address & 0xFFFFFFFE,
1206 breakpoint->length, 1,
1207 code);
1208 if (retval != ERROR_OK)
1209 return retval;
1210 breakpoint->set = true;
1211 }
1212
1213 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1214 breakpoint->unique_id,
1215 (int)(breakpoint->type),
1216 breakpoint->address,
1217 breakpoint->length,
1218 breakpoint->set);
1219
1220 return ERROR_OK;
1221 }
1222
1223 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1224 {
1225 int retval;
1226 struct cortex_m_common *cortex_m = target_to_cm(target);
1227 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1228
1229 if (!breakpoint->set) {
1230 LOG_WARNING("breakpoint not set");
1231 return ERROR_OK;
1232 }
1233
1234 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1235 breakpoint->unique_id,
1236 (int)(breakpoint->type),
1237 breakpoint->address,
1238 breakpoint->length,
1239 breakpoint->set);
1240
1241 if (breakpoint->type == BKPT_HARD) {
1242 int fp_num = breakpoint->set - 1;
1243 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1244 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1245 return ERROR_OK;
1246 }
1247 comparator_list[fp_num].used = 0;
1248 comparator_list[fp_num].fpcr_value = 0;
1249 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1250 comparator_list[fp_num].fpcr_value);
1251 } else {
1252 /* restore original instruction (kept in target endianness) */
1253 if (breakpoint->length == 4) {
1254 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1255 breakpoint->orig_instr);
1256 if (retval != ERROR_OK)
1257 return retval;
1258 } else {
1259 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1260 breakpoint->orig_instr);
1261 if (retval != ERROR_OK)
1262 return retval;
1263 }
1264 }
1265 breakpoint->set = false;
1266
1267 return ERROR_OK;
1268 }
1269
1270 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1271 {
1272 struct cortex_m_common *cortex_m = target_to_cm(target);
1273
1274 if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1275 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1276 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1277 }
1278
1279 if (breakpoint->length == 3) {
1280 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1281 breakpoint->length = 2;
1282 }
1283
1284 if ((breakpoint->length != 2)) {
1285 LOG_INFO("only breakpoints of two bytes length supported");
1286 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1287 }
1288
1289 if (breakpoint->type == BKPT_HARD)
1290 cortex_m->fp_code_available--;
1291
1292 return cortex_m_set_breakpoint(target, breakpoint);
1293 }
1294
1295 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1296 {
1297 struct cortex_m_common *cortex_m = target_to_cm(target);
1298
1299 /* REVISIT why check? FPB can be updated with core running ... */
1300 if (target->state != TARGET_HALTED) {
1301 LOG_WARNING("target not halted");
1302 return ERROR_TARGET_NOT_HALTED;
1303 }
1304
1305 if (breakpoint->set)
1306 cortex_m_unset_breakpoint(target, breakpoint);
1307
1308 if (breakpoint->type == BKPT_HARD)
1309 cortex_m->fp_code_available++;
1310
1311 return ERROR_OK;
1312 }
1313
1314 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1315 {
1316 int dwt_num = 0;
1317 uint32_t mask, temp;
1318 struct cortex_m_common *cortex_m = target_to_cm(target);
1319
1320 /* watchpoint params were validated earlier */
1321 mask = 0;
1322 temp = watchpoint->length;
1323 while (temp) {
1324 temp >>= 1;
1325 mask++;
1326 }
1327 mask--;
1328
1329 /* REVISIT Don't fully trust these "not used" records ... users
1330 * may set up breakpoints by hand, e.g. dual-address data value
1331 * watchpoint using comparator #1; comparator #0 matching cycle
1332 * count; send data trace info through ITM and TPIU; etc
1333 */
1334 struct cortex_m_dwt_comparator *comparator;
1335
1336 for (comparator = cortex_m->dwt_comparator_list;
1337 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1338 comparator++, dwt_num++)
1339 continue;
1340 if (dwt_num >= cortex_m->dwt_num_comp) {
1341 LOG_ERROR("Can not find free DWT Comparator");
1342 return ERROR_FAIL;
1343 }
1344 comparator->used = 1;
1345 watchpoint->set = dwt_num + 1;
1346
1347 comparator->comp = watchpoint->address;
1348 target_write_u32(target, comparator->dwt_comparator_address + 0,
1349 comparator->comp);
1350
1351 comparator->mask = mask;
1352 target_write_u32(target, comparator->dwt_comparator_address + 4,
1353 comparator->mask);
1354
1355 switch (watchpoint->rw) {
1356 case WPT_READ:
1357 comparator->function = 5;
1358 break;
1359 case WPT_WRITE:
1360 comparator->function = 6;
1361 break;
1362 case WPT_ACCESS:
1363 comparator->function = 7;
1364 break;
1365 }
1366 target_write_u32(target, comparator->dwt_comparator_address + 8,
1367 comparator->function);
1368
1369 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1370 watchpoint->unique_id, dwt_num,
1371 (unsigned) comparator->comp,
1372 (unsigned) comparator->mask,
1373 (unsigned) comparator->function);
1374 return ERROR_OK;
1375 }
1376
1377 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1378 {
1379 struct cortex_m_common *cortex_m = target_to_cm(target);
1380 struct cortex_m_dwt_comparator *comparator;
1381 int dwt_num;
1382
1383 if (!watchpoint->set) {
1384 LOG_WARNING("watchpoint (wpid: %d) not set",
1385 watchpoint->unique_id);
1386 return ERROR_OK;
1387 }
1388
1389 dwt_num = watchpoint->set - 1;
1390
1391 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1392 watchpoint->unique_id, dwt_num,
1393 (unsigned) watchpoint->address);
1394
1395 if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1396 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1397 return ERROR_OK;
1398 }
1399
1400 comparator = cortex_m->dwt_comparator_list + dwt_num;
1401 comparator->used = 0;
1402 comparator->function = 0;
1403 target_write_u32(target, comparator->dwt_comparator_address + 8,
1404 comparator->function);
1405
1406 watchpoint->set = false;
1407
1408 return ERROR_OK;
1409 }
1410
1411 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1412 {
1413 struct cortex_m_common *cortex_m = target_to_cm(target);
1414
1415 if (cortex_m->dwt_comp_available < 1) {
1416 LOG_DEBUG("no comparators?");
1417 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1418 }
1419
1420 /* hardware doesn't support data value masking */
1421 if (watchpoint->mask != ~(uint32_t)0) {
1422 LOG_DEBUG("watchpoint value masks not supported");
1423 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1424 }
1425
1426 /* hardware allows address masks of up to 32K */
1427 unsigned mask;
1428
1429 for (mask = 0; mask < 16; mask++) {
1430 if ((1u << mask) == watchpoint->length)
1431 break;
1432 }
1433 if (mask == 16) {
1434 LOG_DEBUG("unsupported watchpoint length");
1435 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1436 }
1437 if (watchpoint->address & ((1 << mask) - 1)) {
1438 LOG_DEBUG("watchpoint address is unaligned");
1439 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1440 }
1441
1442 /* Caller doesn't seem to be able to describe watching for data
1443 * values of zero; that flags "no value".
1444 *
1445 * REVISIT This DWT may well be able to watch for specific data
1446 * values. Requires comparator #1 to set DATAVMATCH and match
1447 * the data, and another comparator (DATAVADDR0) matching addr.
1448 */
1449 if (watchpoint->value) {
1450 LOG_DEBUG("data value watchpoint not YET supported");
1451 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1452 }
1453
1454 cortex_m->dwt_comp_available--;
1455 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1456
1457 return ERROR_OK;
1458 }
1459
1460 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1461 {
1462 struct cortex_m_common *cortex_m = target_to_cm(target);
1463
1464 /* REVISIT why check? DWT can be updated with core running ... */
1465 if (target->state != TARGET_HALTED) {
1466 LOG_WARNING("target not halted");
1467 return ERROR_TARGET_NOT_HALTED;
1468 }
1469
1470 if (watchpoint->set)
1471 cortex_m_unset_watchpoint(target, watchpoint);
1472
1473 cortex_m->dwt_comp_available++;
1474 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1475
1476 return ERROR_OK;
1477 }
1478
1479 void cortex_m_enable_watchpoints(struct target *target)
1480 {
1481 struct watchpoint *watchpoint = target->watchpoints;
1482
1483 /* set any pending watchpoints */
1484 while (watchpoint) {
1485 if (!watchpoint->set)
1486 cortex_m_set_watchpoint(target, watchpoint);
1487 watchpoint = watchpoint->next;
1488 }
1489 }
1490
1491 static int cortex_m_load_core_reg_u32(struct target *target,
1492 uint32_t num, uint32_t *value)
1493 {
1494 int retval;
1495
1496 /* NOTE: we "know" here that the register identifiers used
1497 * in the v7m header match the Cortex-M3 Debug Core Register
1498 * Selector values for R0..R15, xPSR, MSP, and PSP.
1499 */
1500 switch (num) {
1501 case 0 ... 18:
1502 /* read a normal core register */
1503 retval = cortexm_dap_read_coreregister_u32(target, value, num);
1504
1505 if (retval != ERROR_OK) {
1506 LOG_ERROR("JTAG failure %i", retval);
1507 return ERROR_JTAG_DEVICE_ERROR;
1508 }
1509 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1510 break;
1511
1512 case ARMV7M_FPSCR:
1513 /* Floating-point Status and Registers */
1514 retval = target_write_u32(target, DCB_DCRSR, 0x21);
1515 if (retval != ERROR_OK)
1516 return retval;
1517 retval = target_read_u32(target, DCB_DCRDR, value);
1518 if (retval != ERROR_OK)
1519 return retval;
1520 LOG_DEBUG("load from FPSCR value 0x%" PRIx32, *value);
1521 break;
1522
1523 case ARMV7M_S0 ... ARMV7M_S31:
1524 /* Floating-point Status and Registers */
1525 retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1526 if (retval != ERROR_OK)
1527 return retval;
1528 retval = target_read_u32(target, DCB_DCRDR, value);
1529 if (retval != ERROR_OK)
1530 return retval;
1531 LOG_DEBUG("load from FPU reg S%d value 0x%" PRIx32,
1532 (int)(num - ARMV7M_S0), *value);
1533 break;
1534
1535 case ARMV7M_PRIMASK:
1536 case ARMV7M_BASEPRI:
1537 case ARMV7M_FAULTMASK:
1538 case ARMV7M_CONTROL:
1539 /* Cortex-M3 packages these four registers as bitfields
1540 * in one Debug Core register. So say r0 and r2 docs;
1541 * it was removed from r1 docs, but still works.
1542 */
1543 cortexm_dap_read_coreregister_u32(target, value, 20);
1544
1545 switch (num) {
1546 case ARMV7M_PRIMASK:
1547 *value = buf_get_u32((uint8_t *)value, 0, 1);
1548 break;
1549
1550 case ARMV7M_BASEPRI:
1551 *value = buf_get_u32((uint8_t *)value, 8, 8);
1552 break;
1553
1554 case ARMV7M_FAULTMASK:
1555 *value = buf_get_u32((uint8_t *)value, 16, 1);
1556 break;
1557
1558 case ARMV7M_CONTROL:
1559 *value = buf_get_u32((uint8_t *)value, 24, 2);
1560 break;
1561 }
1562
1563 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1564 break;
1565
1566 default:
1567 return ERROR_COMMAND_SYNTAX_ERROR;
1568 }
1569
1570 return ERROR_OK;
1571 }
1572
1573 static int cortex_m_store_core_reg_u32(struct target *target,
1574 uint32_t num, uint32_t value)
1575 {
1576 int retval;
1577 uint32_t reg;
1578 struct armv7m_common *armv7m = target_to_armv7m(target);
1579
1580 /* NOTE: we "know" here that the register identifiers used
1581 * in the v7m header match the Cortex-M3 Debug Core Register
1582 * Selector values for R0..R15, xPSR, MSP, and PSP.
1583 */
1584 switch (num) {
1585 case 0 ... 18:
1586 retval = cortexm_dap_write_coreregister_u32(target, value, num);
1587 if (retval != ERROR_OK) {
1588 struct reg *r;
1589
1590 LOG_ERROR("JTAG failure");
1591 r = armv7m->arm.core_cache->reg_list + num;
1592 r->dirty = r->valid;
1593 return ERROR_JTAG_DEVICE_ERROR;
1594 }
1595 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1596 break;
1597
1598 case ARMV7M_FPSCR:
1599 /* Floating-point Status and Registers */
1600 retval = target_write_u32(target, DCB_DCRDR, value);
1601 if (retval != ERROR_OK)
1602 return retval;
1603 retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1604 if (retval != ERROR_OK)
1605 return retval;
1606 LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1607 break;
1608
1609 case ARMV7M_S0 ... ARMV7M_S31:
1610 /* Floating-point Status and Registers */
1611 retval = target_write_u32(target, DCB_DCRDR, value);
1612 if (retval != ERROR_OK)
1613 return retval;
1614 retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1615 if (retval != ERROR_OK)
1616 return retval;
1617 LOG_DEBUG("write FPU reg S%d value 0x%" PRIx32,
1618 (int)(num - ARMV7M_S0), value);
1619 break;
1620
1621 case ARMV7M_PRIMASK:
1622 case ARMV7M_BASEPRI:
1623 case ARMV7M_FAULTMASK:
1624 case ARMV7M_CONTROL:
1625 /* Cortex-M3 packages these four registers as bitfields
1626 * in one Debug Core register. So say r0 and r2 docs;
1627 * it was removed from r1 docs, but still works.
1628 */
1629 cortexm_dap_read_coreregister_u32(target, &reg, 20);
1630
1631 switch (num) {
1632 case ARMV7M_PRIMASK:
1633 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1634 break;
1635
1636 case ARMV7M_BASEPRI:
1637 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1638 break;
1639
1640 case ARMV7M_FAULTMASK:
1641 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1642 break;
1643
1644 case ARMV7M_CONTROL:
1645 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1646 break;
1647 }
1648
1649 cortexm_dap_write_coreregister_u32(target, reg, 20);
1650
1651 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1652 break;
1653
1654 default:
1655 return ERROR_COMMAND_SYNTAX_ERROR;
1656 }
1657
1658 return ERROR_OK;
1659 }
1660
1661 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1662 uint32_t size, uint32_t count, uint8_t *buffer)
1663 {
1664 struct armv7m_common *armv7m = target_to_armv7m(target);
1665
1666 if (armv7m->arm.is_armv6m) {
1667 /* armv6m does not handle unaligned memory access */
1668 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1669 return ERROR_TARGET_UNALIGNED_ACCESS;
1670 }
1671
1672 return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1673 }
1674
1675 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1676 uint32_t size, uint32_t count, const uint8_t *buffer)
1677 {
1678 struct armv7m_common *armv7m = target_to_armv7m(target);
1679
1680 if (armv7m->arm.is_armv6m) {
1681 /* armv6m does not handle unaligned memory access */
1682 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1683 return ERROR_TARGET_UNALIGNED_ACCESS;
1684 }
1685
1686 return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1687 }
1688
1689 static int cortex_m_init_target(struct command_context *cmd_ctx,
1690 struct target *target)
1691 {
1692 armv7m_build_reg_cache(target);
1693 arm_semihosting_init(target);
1694 return ERROR_OK;
1695 }
1696
1697 void cortex_m_deinit_target(struct target *target)
1698 {
1699 struct cortex_m_common *cortex_m = target_to_cm(target);
1700
1701 free(cortex_m->fp_comparator_list);
1702
1703 cortex_m_dwt_free(target);
1704 armv7m_free_reg_cache(target);
1705
1706 free(target->private_config);
1707 free(cortex_m);
1708 }
1709
1710 int cortex_m_profiling(struct target *target, uint32_t *samples,
1711 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1712 {
1713 struct timeval timeout, now;
1714 struct armv7m_common *armv7m = target_to_armv7m(target);
1715 uint32_t reg_value;
1716 bool use_pcsr = false;
1717 int retval = ERROR_OK;
1718 struct reg *reg;
1719
1720 gettimeofday(&timeout, NULL);
1721 timeval_add_time(&timeout, seconds, 0);
1722
1723 retval = target_read_u32(target, DWT_PCSR, &reg_value);
1724 if (retval != ERROR_OK) {
1725 LOG_ERROR("Error while reading PCSR");
1726 return retval;
1727 }
1728
1729 if (reg_value != 0) {
1730 use_pcsr = true;
1731 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1732 } else {
1733 LOG_INFO("Starting profiling. Halting and resuming the"
1734 " target as often as we can...");
1735 reg = register_get_by_name(target->reg_cache, "pc", 1);
1736 }
1737
1738 /* Make sure the target is running */
1739 target_poll(target);
1740 if (target->state == TARGET_HALTED)
1741 retval = target_resume(target, 1, 0, 0, 0);
1742
1743 if (retval != ERROR_OK) {
1744 LOG_ERROR("Error while resuming target");
1745 return retval;
1746 }
1747
1748 uint32_t sample_count = 0;
1749
1750 for (;;) {
1751 if (use_pcsr) {
1752 if (armv7m && armv7m->debug_ap) {
1753 uint32_t read_count = max_num_samples - sample_count;
1754 if (read_count > 1024)
1755 read_count = 1024;
1756
1757 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1758 (void *)&samples[sample_count],
1759 4, read_count, DWT_PCSR);
1760 sample_count += read_count;
1761 } else {
1762 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1763 }
1764 } else {
1765 target_poll(target);
1766 if (target->state == TARGET_HALTED) {
1767 reg_value = buf_get_u32(reg->value, 0, 32);
1768 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1769 retval = target_resume(target, 1, 0, 0, 0);
1770 samples[sample_count++] = reg_value;
1771 target_poll(target);
1772 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1773 } else if (target->state == TARGET_RUNNING) {
1774 /* We want to quickly sample the PC. */
1775 retval = target_halt(target);
1776 } else {
1777 LOG_INFO("Target not halted or running");
1778 retval = ERROR_OK;
1779 break;
1780 }
1781 }
1782
1783 if (retval != ERROR_OK) {
1784 LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1785 return retval;
1786 }
1787
1788
1789 gettimeofday(&now, NULL);
1790 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1791 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1792 break;
1793 }
1794 }
1795
1796 *num_samples = sample_count;
1797 return retval;
1798 }
1799
1800
1801 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1802 * on r/w if the core is not running, and clear on resume or reset ... or
1803 * at least, in a post_restore_context() method.
1804 */
1805
1806 struct dwt_reg_state {
1807 struct target *target;
1808 uint32_t addr;
1809 uint8_t value[4]; /* scratch/cache */
1810 };
1811
1812 static int cortex_m_dwt_get_reg(struct reg *reg)
1813 {
1814 struct dwt_reg_state *state = reg->arch_info;
1815
1816 uint32_t tmp;
1817 int retval = target_read_u32(state->target, state->addr, &tmp);
1818 if (retval != ERROR_OK)
1819 return retval;
1820
1821 buf_set_u32(state->value, 0, 32, tmp);
1822 return ERROR_OK;
1823 }
1824
1825 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1826 {
1827 struct dwt_reg_state *state = reg->arch_info;
1828
1829 return target_write_u32(state->target, state->addr,
1830 buf_get_u32(buf, 0, reg->size));
1831 }
1832
1833 struct dwt_reg {
1834 uint32_t addr;
1835 const char *name;
1836 unsigned size;
1837 };
1838
1839 static const struct dwt_reg dwt_base_regs[] = {
1840 { DWT_CTRL, "dwt_ctrl", 32, },
1841 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1842 * increments while the core is asleep.
1843 */
1844 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1845 /* plus some 8 bit counters, useful for profiling with TPIU */
1846 };
1847
1848 static const struct dwt_reg dwt_comp[] = {
1849 #define DWT_COMPARATOR(i) \
1850 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1851 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1852 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1853 DWT_COMPARATOR(0),
1854 DWT_COMPARATOR(1),
1855 DWT_COMPARATOR(2),
1856 DWT_COMPARATOR(3),
1857 DWT_COMPARATOR(4),
1858 DWT_COMPARATOR(5),
1859 DWT_COMPARATOR(6),
1860 DWT_COMPARATOR(7),
1861 DWT_COMPARATOR(8),
1862 DWT_COMPARATOR(9),
1863 DWT_COMPARATOR(10),
1864 DWT_COMPARATOR(11),
1865 DWT_COMPARATOR(12),
1866 DWT_COMPARATOR(13),
1867 DWT_COMPARATOR(14),
1868 DWT_COMPARATOR(15),
1869 #undef DWT_COMPARATOR
1870 };
1871
1872 static const struct reg_arch_type dwt_reg_type = {
1873 .get = cortex_m_dwt_get_reg,
1874 .set = cortex_m_dwt_set_reg,
1875 };
1876
1877 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1878 {
1879 struct dwt_reg_state *state;
1880
1881 state = calloc(1, sizeof *state);
1882 if (!state)
1883 return;
1884 state->addr = d->addr;
1885 state->target = t;
1886
1887 r->name = d->name;
1888 r->size = d->size;
1889 r->value = state->value;
1890 r->arch_info = state;
1891 r->type = &dwt_reg_type;
1892 }
1893
1894 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1895 {
1896 uint32_t dwtcr;
1897 struct reg_cache *cache;
1898 struct cortex_m_dwt_comparator *comparator;
1899 int reg, i;
1900
1901 target_read_u32(target, DWT_CTRL, &dwtcr);
1902 LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1903 if (!dwtcr) {
1904 LOG_DEBUG("no DWT");
1905 return;
1906 }
1907
1908 cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1909 cm->dwt_comp_available = cm->dwt_num_comp;
1910 cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1911 sizeof(struct cortex_m_dwt_comparator));
1912 if (!cm->dwt_comparator_list) {
1913 fail0:
1914 cm->dwt_num_comp = 0;
1915 LOG_ERROR("out of mem");
1916 return;
1917 }
1918
1919 cache = calloc(1, sizeof *cache);
1920 if (!cache) {
1921 fail1:
1922 free(cm->dwt_comparator_list);
1923 goto fail0;
1924 }
1925 cache->name = "Cortex-M DWT registers";
1926 cache->num_regs = 2 + cm->dwt_num_comp * 3;
1927 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1928 if (!cache->reg_list) {
1929 free(cache);
1930 goto fail1;
1931 }
1932
1933 for (reg = 0; reg < 2; reg++)
1934 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1935 dwt_base_regs + reg);
1936
1937 comparator = cm->dwt_comparator_list;
1938 for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1939 int j;
1940
1941 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1942 for (j = 0; j < 3; j++, reg++)
1943 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1944 dwt_comp + 3 * i + j);
1945
1946 /* make sure we clear any watchpoints enabled on the target */
1947 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1948 }
1949
1950 *register_get_last_cache_p(&target->reg_cache) = cache;
1951 cm->dwt_cache = cache;
1952
1953 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1954 dwtcr, cm->dwt_num_comp,
1955 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1956
1957 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1958 * implement single-address data value watchpoints ... so we
1959 * won't need to check it later, when asked to set one up.
1960 */
1961 }
1962
1963 static void cortex_m_dwt_free(struct target *target)
1964 {
1965 struct cortex_m_common *cm = target_to_cm(target);
1966 struct reg_cache *cache = cm->dwt_cache;
1967
1968 free(cm->dwt_comparator_list);
1969 cm->dwt_comparator_list = NULL;
1970 cm->dwt_num_comp = 0;
1971
1972 if (cache) {
1973 register_unlink_cache(&target->reg_cache, cache);
1974
1975 if (cache->reg_list) {
1976 for (size_t i = 0; i < cache->num_regs; i++)
1977 free(cache->reg_list[i].arch_info);
1978 free(cache->reg_list);
1979 }
1980 free(cache);
1981 }
1982 cm->dwt_cache = NULL;
1983 }
1984
1985 #define MVFR0 0xe000ef40
1986 #define MVFR1 0xe000ef44
1987
1988 #define MVFR0_DEFAULT_M4 0x10110021
1989 #define MVFR1_DEFAULT_M4 0x11000011
1990
1991 #define MVFR0_DEFAULT_M7_SP 0x10110021
1992 #define MVFR0_DEFAULT_M7_DP 0x10110221
1993 #define MVFR1_DEFAULT_M7_SP 0x11000011
1994 #define MVFR1_DEFAULT_M7_DP 0x12000011
1995
1996 int cortex_m_examine(struct target *target)
1997 {
1998 int retval;
1999 uint32_t cpuid, fpcr, mvfr0, mvfr1;
2000 int i;
2001 struct cortex_m_common *cortex_m = target_to_cm(target);
2002 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
2003 struct armv7m_common *armv7m = target_to_armv7m(target);
2004
2005 /* stlink shares the examine handler but does not support
2006 * all its calls */
2007 if (!armv7m->stlink) {
2008 if (cortex_m->apsel == DP_APSEL_INVALID) {
2009 /* Search for the MEM-AP */
2010 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
2011 if (retval != ERROR_OK) {
2012 LOG_ERROR("Could not find MEM-AP to control the core");
2013 return retval;
2014 }
2015 } else {
2016 armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
2017 }
2018
2019 /* Leave (only) generic DAP stuff for debugport_init(); */
2020 armv7m->debug_ap->memaccess_tck = 8;
2021
2022 retval = mem_ap_init(armv7m->debug_ap);
2023 if (retval != ERROR_OK)
2024 return retval;
2025 }
2026
2027 if (!target_was_examined(target)) {
2028 target_set_examined(target);
2029
2030 /* Read from Device Identification Registers */
2031 retval = target_read_u32(target, CPUID, &cpuid);
2032 if (retval != ERROR_OK)
2033 return retval;
2034
2035 /* Get CPU Type */
2036 i = (cpuid >> 4) & 0xf;
2037
2038 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2039 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2040 if (i == 7) {
2041 uint8_t rev, patch;
2042 rev = (cpuid >> 20) & 0xf;
2043 patch = (cpuid >> 0) & 0xf;
2044 if ((rev == 0) && (patch < 2))
2045 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
2046 }
2047 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2048
2049 /* VECTRESET is not supported on Cortex-M0, M0+ and M1 */
2050 cortex_m->vectreset_supported = i > 1;
2051
2052 if (i == 4) {
2053 target_read_u32(target, MVFR0, &mvfr0);
2054 target_read_u32(target, MVFR1, &mvfr1);
2055
2056 /* test for floating point feature on Cortex-M4 */
2057 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2058 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2059 armv7m->fp_feature = FPv4_SP;
2060 }
2061 } else if (i == 7) {
2062 target_read_u32(target, MVFR0, &mvfr0);
2063 target_read_u32(target, MVFR1, &mvfr1);
2064
2065 /* test for floating point features on Cortex-M7 */
2066 if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2067 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2068 armv7m->fp_feature = FPv5_SP;
2069 } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2070 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2071 armv7m->fp_feature = FPv5_DP;
2072 }
2073 } else if (i == 0) {
2074 /* Cortex-M0 does not support unaligned memory access */
2075 armv7m->arm.is_armv6m = true;
2076 }
2077
2078 if (armv7m->fp_feature == FP_NONE &&
2079 armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2080 /* free unavailable FPU registers */
2081 size_t idx;
2082
2083 for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2084 idx < armv7m->arm.core_cache->num_regs;
2085 idx++) {
2086 free(armv7m->arm.core_cache->reg_list[idx].value);
2087 free(armv7m->arm.core_cache->reg_list[idx].feature);
2088 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2089 }
2090 armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2091 }
2092
2093 if (!armv7m->stlink) {
2094 if (i == 3 || i == 4)
2095 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2096 * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2097 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2098 else if (i == 7)
2099 /* Cortex-M7 has only 1024 bytes autoincrement range */
2100 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2101 }
2102
2103 /* Configure trace modules */
2104 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2105 if (retval != ERROR_OK)
2106 return retval;
2107
2108 if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) {
2109 armv7m_trace_tpiu_config(target);
2110 armv7m_trace_itm_config(target);
2111 }
2112
2113 /* NOTE: FPB and DWT are both optional. */
2114
2115 /* Setup FPB */
2116 target_read_u32(target, FP_CTRL, &fpcr);
2117 /* bits [14:12] and [7:4] */
2118 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2119 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2120 cortex_m->fp_code_available = cortex_m->fp_num_code;
2121 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2122 Revision is zero base, fp_rev == 1 means Rev.2 ! */
2123 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2124 free(cortex_m->fp_comparator_list);
2125 cortex_m->fp_comparator_list = calloc(
2126 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2127 sizeof(struct cortex_m_fp_comparator));
2128 cortex_m->fpb_enabled = fpcr & 1;
2129 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2130 cortex_m->fp_comparator_list[i].type =
2131 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2132 cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2133
2134 /* make sure we clear any breakpoints enabled on the target */
2135 target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2136 }
2137 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2138 fpcr,
2139 cortex_m->fp_num_code,
2140 cortex_m->fp_num_lit);
2141
2142 /* Setup DWT */
2143 cortex_m_dwt_free(target);
2144 cortex_m_dwt_setup(cortex_m, target);
2145
2146 /* These hardware breakpoints only work for code in flash! */
2147 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2148 target_name(target),
2149 cortex_m->fp_num_code,
2150 cortex_m->dwt_num_comp);
2151 }
2152
2153 return ERROR_OK;
2154 }
2155
2156 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2157 {
2158 struct armv7m_common *armv7m = target_to_armv7m(target);
2159 uint16_t dcrdr;
2160 uint8_t buf[2];
2161 int retval;
2162
2163 retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2164 if (retval != ERROR_OK)
2165 return retval;
2166
2167 dcrdr = target_buffer_get_u16(target, buf);
2168 *ctrl = (uint8_t)dcrdr;
2169 *value = (uint8_t)(dcrdr >> 8);
2170
2171 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2172
2173 /* write ack back to software dcc register
2174 * signify we have read data */
2175 if (dcrdr & (1 << 0)) {
2176 target_buffer_set_u16(target, buf, 0);
2177 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2178 if (retval != ERROR_OK)
2179 return retval;
2180 }
2181
2182 return ERROR_OK;
2183 }
2184
2185 static int cortex_m_target_request_data(struct target *target,
2186 uint32_t size, uint8_t *buffer)
2187 {
2188 uint8_t data;
2189 uint8_t ctrl;
2190 uint32_t i;
2191
2192 for (i = 0; i < (size * 4); i++) {
2193 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2194 if (retval != ERROR_OK)
2195 return retval;
2196 buffer[i] = data;
2197 }
2198
2199 return ERROR_OK;
2200 }
2201
2202 static int cortex_m_handle_target_request(void *priv)
2203 {
2204 struct target *target = priv;
2205 if (!target_was_examined(target))
2206 return ERROR_OK;
2207
2208 if (!target->dbg_msg_enabled)
2209 return ERROR_OK;
2210
2211 if (target->state == TARGET_RUNNING) {
2212 uint8_t data;
2213 uint8_t ctrl;
2214 int retval;
2215
2216 retval = cortex_m_dcc_read(target, &data, &ctrl);
2217 if (retval != ERROR_OK)
2218 return retval;
2219
2220 /* check if we have data */
2221 if (ctrl & (1 << 0)) {
2222 uint32_t request;
2223
2224 /* we assume target is quick enough */
2225 request = data;
2226 for (int i = 1; i <= 3; i++) {
2227 retval = cortex_m_dcc_read(target, &data, &ctrl);
2228 if (retval != ERROR_OK)
2229 return retval;
2230 request |= ((uint32_t)data << (i * 8));
2231 }
2232 target_request(target, request);
2233 }
2234 }
2235
2236 return ERROR_OK;
2237 }
2238
2239 static int cortex_m_init_arch_info(struct target *target,
2240 struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2241 {
2242 struct armv7m_common *armv7m = &cortex_m->armv7m;
2243
2244 armv7m_init_arch_info(target, armv7m);
2245
2246 /* default reset mode is to use srst if fitted
2247 * if not it will use CORTEX_M3_RESET_VECTRESET */
2248 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2249
2250 armv7m->arm.dap = dap;
2251
2252 /* register arch-specific functions */
2253 armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2254
2255 armv7m->post_debug_entry = NULL;
2256
2257 armv7m->pre_restore_context = NULL;
2258
2259 armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2260 armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2261
2262 target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2263
2264 return ERROR_OK;
2265 }
2266
2267 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2268 {
2269 struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2270 cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2271 struct adiv5_private_config *pc;
2272
2273 pc = (struct adiv5_private_config *)target->private_config;
2274 if (adiv5_verify_config(pc) != ERROR_OK)
2275 return ERROR_FAIL;
2276
2277 cortex_m->apsel = pc->ap_num;
2278
2279 cortex_m_init_arch_info(target, cortex_m, pc->dap);
2280
2281 return ERROR_OK;
2282 }
2283
2284 /*--------------------------------------------------------------------------*/
2285
2286 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2287 struct cortex_m_common *cm)
2288 {
2289 if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2290 command_print(cmd_ctx, "target is not a Cortex-M");
2291 return ERROR_TARGET_INVALID;
2292 }
2293 return ERROR_OK;
2294 }
2295
2296 /*
2297 * Only stuff below this line should need to verify that its target
2298 * is a Cortex-M3. Everything else should have indirected through the
2299 * cortexm3_target structure, which is only used with CM3 targets.
2300 */
2301
2302 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2303 {
2304 struct target *target = get_current_target(CMD_CTX);
2305 struct cortex_m_common *cortex_m = target_to_cm(target);
2306 struct armv7m_common *armv7m = &cortex_m->armv7m;
2307 uint32_t demcr = 0;
2308 int retval;
2309
2310 static const struct {
2311 char name[10];
2312 unsigned mask;
2313 } vec_ids[] = {
2314 { "hard_err", VC_HARDERR, },
2315 { "int_err", VC_INTERR, },
2316 { "bus_err", VC_BUSERR, },
2317 { "state_err", VC_STATERR, },
2318 { "chk_err", VC_CHKERR, },
2319 { "nocp_err", VC_NOCPERR, },
2320 { "mm_err", VC_MMERR, },
2321 { "reset", VC_CORERESET, },
2322 };
2323
2324 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2325 if (retval != ERROR_OK)
2326 return retval;
2327
2328 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2329 if (retval != ERROR_OK)
2330 return retval;
2331
2332 if (CMD_ARGC > 0) {
2333 unsigned catch = 0;
2334
2335 if (CMD_ARGC == 1) {
2336 if (strcmp(CMD_ARGV[0], "all") == 0) {
2337 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2338 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2339 | VC_MMERR | VC_CORERESET;
2340 goto write;
2341 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2342 goto write;
2343 }
2344 while (CMD_ARGC-- > 0) {
2345 unsigned i;
2346 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2347 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2348 continue;
2349 catch |= vec_ids[i].mask;
2350 break;
2351 }
2352 if (i == ARRAY_SIZE(vec_ids)) {
2353 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2354 return ERROR_COMMAND_SYNTAX_ERROR;
2355 }
2356 }
2357 write:
2358 /* For now, armv7m->demcr only stores vector catch flags. */
2359 armv7m->demcr = catch;
2360
2361 demcr &= ~0xffff;
2362 demcr |= catch;
2363
2364 /* write, but don't assume it stuck (why not??) */
2365 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2366 if (retval != ERROR_OK)
2367 return retval;
2368 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2369 if (retval != ERROR_OK)
2370 return retval;
2371
2372 /* FIXME be sure to clear DEMCR on clean server shutdown.
2373 * Otherwise the vector catch hardware could fire when there's
2374 * no debugger hooked up, causing much confusion...
2375 */
2376 }
2377
2378 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2379 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2380 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2381 }
2382
2383 return ERROR_OK;
2384 }
2385
2386 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2387 {
2388 struct target *target = get_current_target(CMD_CTX);
2389 struct cortex_m_common *cortex_m = target_to_cm(target);
2390 int retval;
2391
2392 static const Jim_Nvp nvp_maskisr_modes[] = {
2393 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2394 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2395 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2396 { .name = NULL, .value = -1 },
2397 };
2398 const Jim_Nvp *n;
2399
2400
2401 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2402 if (retval != ERROR_OK)
2403 return retval;
2404
2405 if (target->state != TARGET_HALTED) {
2406 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2407 return ERROR_OK;
2408 }
2409
2410 if (CMD_ARGC > 0) {
2411 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2412 if (n->name == NULL)
2413 return ERROR_COMMAND_SYNTAX_ERROR;
2414 cortex_m->isrmasking_mode = n->value;
2415
2416
2417 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2418 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2419 else
2420 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2421 }
2422
2423 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2424 command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2425
2426 return ERROR_OK;
2427 }
2428
2429 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2430 {
2431 struct target *target = get_current_target(CMD_CTX);
2432 struct cortex_m_common *cortex_m = target_to_cm(target);
2433 int retval;
2434 char *reset_config;
2435
2436 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2437 if (retval != ERROR_OK)
2438 return retval;
2439
2440 if (CMD_ARGC > 0) {
2441 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2442 cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2443
2444 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2445 if (target_was_examined(target)
2446 && !cortex_m->vectreset_supported)
2447 LOG_WARNING("VECTRESET is not supported on your Cortex-M core!");
2448 else
2449 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2450
2451 } else
2452 return ERROR_COMMAND_SYNTAX_ERROR;
2453 }
2454
2455 switch (cortex_m->soft_reset_config) {
2456 case CORTEX_M_RESET_SYSRESETREQ:
2457 reset_config = "sysresetreq";
2458 break;
2459
2460 case CORTEX_M_RESET_VECTRESET:
2461 reset_config = "vectreset";
2462 break;
2463
2464 default:
2465 reset_config = "unknown";
2466 break;
2467 }
2468
2469 command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2470
2471 return ERROR_OK;
2472 }
2473
2474 static const struct command_registration cortex_m_exec_command_handlers[] = {
2475 {
2476 .name = "maskisr",
2477 .handler = handle_cortex_m_mask_interrupts_command,
2478 .mode = COMMAND_EXEC,
2479 .help = "mask cortex_m interrupts",
2480 .usage = "['auto'|'on'|'off']",
2481 },
2482 {
2483 .name = "vector_catch",
2484 .handler = handle_cortex_m_vector_catch_command,
2485 .mode = COMMAND_EXEC,
2486 .help = "configure hardware vectors to trigger debug entry",
2487 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2488 },
2489 {
2490 .name = "reset_config",
2491 .handler = handle_cortex_m_reset_config_command,
2492 .mode = COMMAND_ANY,
2493 .help = "configure software reset handling",
2494 .usage = "['sysresetreq'|'vectreset']",
2495 },
2496 COMMAND_REGISTRATION_DONE
2497 };
2498 static const struct command_registration cortex_m_command_handlers[] = {
2499 {
2500 .chain = armv7m_command_handlers,
2501 },
2502 {
2503 .chain = armv7m_trace_command_handlers,
2504 },
2505 {
2506 .name = "cortex_m",
2507 .mode = COMMAND_EXEC,
2508 .help = "Cortex-M command group",
2509 .usage = "",
2510 .chain = cortex_m_exec_command_handlers,
2511 },
2512 COMMAND_REGISTRATION_DONE
2513 };
2514
2515 struct target_type cortexm_target = {
2516 .name = "cortex_m",
2517 .deprecated_name = "cortex_m3",
2518
2519 .poll = cortex_m_poll,
2520 .arch_state = armv7m_arch_state,
2521
2522 .target_request_data = cortex_m_target_request_data,
2523
2524 .halt = cortex_m_halt,
2525 .resume = cortex_m_resume,
2526 .step = cortex_m_step,
2527
2528 .assert_reset = cortex_m_assert_reset,
2529 .deassert_reset = cortex_m_deassert_reset,
2530 .soft_reset_halt = cortex_m_soft_reset_halt,
2531
2532 .get_gdb_arch = arm_get_gdb_arch,
2533 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2534
2535 .read_memory = cortex_m_read_memory,
2536 .write_memory = cortex_m_write_memory,
2537 .checksum_memory = armv7m_checksum_memory,
2538 .blank_check_memory = armv7m_blank_check_memory,
2539
2540 .run_algorithm = armv7m_run_algorithm,
2541 .start_algorithm = armv7m_start_algorithm,
2542 .wait_algorithm = armv7m_wait_algorithm,
2543
2544 .add_breakpoint = cortex_m_add_breakpoint,
2545 .remove_breakpoint = cortex_m_remove_breakpoint,
2546 .add_watchpoint = cortex_m_add_watchpoint,
2547 .remove_watchpoint = cortex_m_remove_watchpoint,
2548
2549 .commands = cortex_m_command_handlers,
2550 .target_create = cortex_m_target_create,
2551 .target_jim_configure = adiv5_jim_configure,
2552 .init_target = cortex_m_init_target,
2553 .examine = cortex_m_examine,
2554 .deinit_target = cortex_m_deinit_target,
2555
2556 .profiling = cortex_m_profiling,
2557 };