f92531152be3c8627cc27f871f178bff74ea28c7
[openocd.git] / src / target / cortex_a8.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 * *
29 * Cortex-A8(tm) TRM, ARM DDI 0344H *
30 * *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 static int cortex_a8_poll(target_t *target);
44 static int cortex_a8_debug_entry(target_t *target);
45 static int cortex_a8_restore_context(target_t *target);
46 static int cortex_a8_set_breakpoint(struct target_s *target,
47 struct breakpoint *breakpoint, uint8_t matchmode);
48 static int cortex_a8_unset_breakpoint(struct target_s *target,
49 struct breakpoint *breakpoint);
50 static int cortex_a8_dap_read_coreregister_u32(target_t *target,
51 uint32_t *value, int regnum);
52 static int cortex_a8_dap_write_coreregister_u32(target_t *target,
53 uint32_t value, int regnum);
54 /*
55 * FIXME do topology discovery using the ROM; don't
56 * assume this is an OMAP3.
57 */
58 #define swjdp_memoryap 0
59 #define swjdp_debugap 1
60 #define OMAP3530_DEBUG_BASE 0x54011000
61
62 /*
63 * Cortex-A8 Basic debug access, very low level assumes state is saved
64 */
65 static int cortex_a8_init_debug_access(target_t *target)
66 {
67 struct armv7a_common *armv7a = target_to_armv7a(target);
68 struct swjdp_common *swjdp = &armv7a->swjdp_info;
69
70 int retval;
71 uint32_t dummy;
72
73 LOG_DEBUG(" ");
74
75 /* Unlocking the debug registers for modification */
76 /* The debugport might be uninitialised so try twice */
77 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
78 if (retval != ERROR_OK)
79 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
80 /* Clear Sticky Power Down status Bit in PRSR to enable access to
81 the registers in the Core Power Domain */
82 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
83 /* Enabling of instruction execution in debug mode is done in debug_entry code */
84
85 /* Resync breakpoint registers */
86
87 /* Since this is likley called from init or reset, update targtet state information*/
88 cortex_a8_poll(target);
89
90 return retval;
91 }
92
93 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
94 {
95 uint32_t dscr;
96 int retval;
97 struct armv7a_common *armv7a = target_to_armv7a(target);
98 struct swjdp_common *swjdp = &armv7a->swjdp_info;
99
100 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
101 do
102 {
103 retval = mem_ap_read_atomic_u32(swjdp,
104 armv7a->debug_base + CPUDBG_DSCR, &dscr);
105 if (retval != ERROR_OK)
106 {
107 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
108 return retval;
109 }
110 }
111 while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
112
113 mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
114
115 do
116 {
117 retval = mem_ap_read_atomic_u32(swjdp,
118 armv7a->debug_base + CPUDBG_DSCR, &dscr);
119 if (retval != ERROR_OK)
120 {
121 LOG_ERROR("Could not read DSCR register");
122 return retval;
123 }
124 }
125 while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
126
127 return retval;
128 }
129
130 /**************************************************************************
131 Read core register with very few exec_opcode, fast but needs work_area.
132 This can cause problems with MMU active.
133 **************************************************************************/
134 static int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
135 uint32_t * regfile)
136 {
137 int retval = ERROR_OK;
138 struct armv7a_common *armv7a = target_to_armv7a(target);
139 struct swjdp_common *swjdp = &armv7a->swjdp_info;
140
141 cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
142 cortex_a8_dap_write_coreregister_u32(target, address, 0);
143 cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
144 dap_ap_select(swjdp, swjdp_memoryap);
145 mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
146 dap_ap_select(swjdp, swjdp_debugap);
147
148 return retval;
149 }
150
151 static int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
152 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
153 {
154 int retval;
155 struct armv7a_common *armv7a = target_to_armv7a(target);
156 struct swjdp_common *swjdp = &armv7a->swjdp_info;
157
158 cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
159 /* Move R0 to DTRTX */
160 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
161
162 /* Read DCCTX */
163 retval = mem_ap_read_atomic_u32(swjdp,
164 armv7a->debug_base + CPUDBG_DTRTX, value);
165
166 return retval;
167 }
168
169 static int cortex_a8_write_cp(target_t *target, uint32_t value,
170 uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
171 {
172 int retval;
173 uint32_t dscr;
174 struct armv7a_common *armv7a = target_to_armv7a(target);
175 struct swjdp_common *swjdp = &armv7a->swjdp_info;
176
177 LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
178
179 /* Check that DCCRX is not full */
180 retval = mem_ap_read_atomic_u32(swjdp,
181 armv7a->debug_base + CPUDBG_DSCR, &dscr);
182 if (dscr & (1 << DSCR_DTR_RX_FULL))
183 {
184 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
185 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
186 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
187 }
188
189 retval = mem_ap_write_u32(swjdp,
190 armv7a->debug_base + CPUDBG_DTRRX, value);
191 /* Move DTRRX to r0 */
192 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
193
194 cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
195 return retval;
196 }
197
198 static int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
199 uint32_t CRn, uint32_t CRm, uint32_t *value)
200 {
201 return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
202 }
203
204 static int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
205 uint32_t CRn, uint32_t CRm, uint32_t value)
206 {
207 return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
208 }
209
210 static int cortex_a8_mrc(target_t *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
211 {
212 if (cpnum!=15)
213 {
214 LOG_ERROR("Only cp15 is supported");
215 return ERROR_FAIL;
216 }
217 return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
218 }
219
220 static int cortex_a8_mcr(target_t *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
221 {
222 if (cpnum!=15)
223 {
224 LOG_ERROR("Only cp15 is supported");
225 return ERROR_FAIL;
226 }
227 return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
228 }
229
230
231
232 static int cortex_a8_dap_read_coreregister_u32(target_t *target,
233 uint32_t *value, int regnum)
234 {
235 int retval = ERROR_OK;
236 uint8_t reg = regnum&0xFF;
237 uint32_t dscr;
238 struct armv7a_common *armv7a = target_to_armv7a(target);
239 struct swjdp_common *swjdp = &armv7a->swjdp_info;
240
241 if (reg > 16)
242 return retval;
243
244 if (reg < 15)
245 {
246 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0, 0xEE000E15 */
247 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
248 }
249 else if (reg == 15)
250 {
251 cortex_a8_exec_opcode(target, 0xE1A0000F);
252 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253 }
254 else if (reg == 16)
255 {
256 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
257 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
258 }
259
260 /* Read DTRRTX */
261 do
262 {
263 retval = mem_ap_read_atomic_u32(swjdp,
264 armv7a->debug_base + CPUDBG_DSCR, &dscr);
265 }
266 while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
267
268 retval = mem_ap_read_atomic_u32(swjdp,
269 armv7a->debug_base + CPUDBG_DTRTX, value);
270
271 return retval;
272 }
273
274 static int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
275 {
276 int retval = ERROR_OK;
277 uint8_t Rd = regnum&0xFF;
278 uint32_t dscr;
279 struct armv7a_common *armv7a = target_to_armv7a(target);
280 struct swjdp_common *swjdp = &armv7a->swjdp_info;
281
282 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
283
284 /* Check that DCCRX is not full */
285 retval = mem_ap_read_atomic_u32(swjdp,
286 armv7a->debug_base + CPUDBG_DSCR, &dscr);
287 if (dscr & (1 << DSCR_DTR_RX_FULL))
288 {
289 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
290 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
291 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
292 }
293
294 if (Rd > 16)
295 return retval;
296
297 /* Write to DCCRX */
298 retval = mem_ap_write_u32(swjdp,
299 armv7a->debug_base + CPUDBG_DTRRX, value);
300
301 if (Rd < 15)
302 {
303 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0, 0xEE000E15 */
304 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
305 }
306 else if (Rd == 15)
307 {
308 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
309 cortex_a8_exec_opcode(target, 0xE1A0F000);
310 }
311 else if (Rd == 16)
312 {
313 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
314 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
315 /* Execute a PrefetchFlush instruction through the ITR. */
316 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
317 }
318
319 return retval;
320 }
321
322 /* Write to memory mapped registers directly with no cache or mmu handling */
323 static int cortex_a8_dap_write_memap_register_u32(target_t *target, uint32_t address, uint32_t value)
324 {
325 int retval;
326 struct armv7a_common *armv7a = target_to_armv7a(target);
327 struct swjdp_common *swjdp = &armv7a->swjdp_info;
328
329 retval = mem_ap_write_atomic_u32(swjdp, address, value);
330
331 return retval;
332 }
333
334 /*
335 * Cortex-A8 Run control
336 */
337
338 static int cortex_a8_poll(target_t *target)
339 {
340 int retval = ERROR_OK;
341 uint32_t dscr;
342 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
343 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
344 struct swjdp_common *swjdp = &armv7a->swjdp_info;
345 enum target_state prev_target_state = target->state;
346 uint8_t saved_apsel = dap_ap_get_select(swjdp);
347
348 dap_ap_select(swjdp, swjdp_debugap);
349 retval = mem_ap_read_atomic_u32(swjdp,
350 armv7a->debug_base + CPUDBG_DSCR, &dscr);
351 if (retval != ERROR_OK)
352 {
353 dap_ap_select(swjdp, saved_apsel);
354 return retval;
355 }
356 cortex_a8->cpudbg_dscr = dscr;
357
358 if ((dscr & 0x3) == 0x3)
359 {
360 if (prev_target_state != TARGET_HALTED)
361 {
362 /* We have a halting debug event */
363 LOG_DEBUG("Target halted");
364 target->state = TARGET_HALTED;
365 if ((prev_target_state == TARGET_RUNNING)
366 || (prev_target_state == TARGET_RESET))
367 {
368 retval = cortex_a8_debug_entry(target);
369 if (retval != ERROR_OK)
370 return retval;
371
372 target_call_event_callbacks(target,
373 TARGET_EVENT_HALTED);
374 }
375 if (prev_target_state == TARGET_DEBUG_RUNNING)
376 {
377 LOG_DEBUG(" ");
378
379 retval = cortex_a8_debug_entry(target);
380 if (retval != ERROR_OK)
381 return retval;
382
383 target_call_event_callbacks(target,
384 TARGET_EVENT_DEBUG_HALTED);
385 }
386 }
387 }
388 else if ((dscr & 0x3) == 0x2)
389 {
390 target->state = TARGET_RUNNING;
391 }
392 else
393 {
394 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
395 target->state = TARGET_UNKNOWN;
396 }
397
398 dap_ap_select(swjdp, saved_apsel);
399
400 return retval;
401 }
402
403 static int cortex_a8_halt(target_t *target)
404 {
405 int retval = ERROR_OK;
406 uint32_t dscr;
407 struct armv7a_common *armv7a = target_to_armv7a(target);
408 struct swjdp_common *swjdp = &armv7a->swjdp_info;
409 uint8_t saved_apsel = dap_ap_get_select(swjdp);
410 dap_ap_select(swjdp, swjdp_debugap);
411
412 /*
413 * Tell the core to be halted by writing DRCR with 0x1
414 * and then wait for the core to be halted.
415 */
416 retval = mem_ap_write_atomic_u32(swjdp,
417 armv7a->debug_base + CPUDBG_DRCR, 0x1);
418
419 /*
420 * enter halting debug mode
421 */
422 mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
423 retval = mem_ap_write_atomic_u32(swjdp,
424 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
425
426 if (retval != ERROR_OK)
427 goto out;
428
429 do {
430 mem_ap_read_atomic_u32(swjdp,
431 armv7a->debug_base + CPUDBG_DSCR, &dscr);
432 } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
433
434 target->debug_reason = DBG_REASON_DBGRQ;
435
436 out:
437 dap_ap_select(swjdp, saved_apsel);
438 return retval;
439 }
440
441 static int cortex_a8_resume(struct target_s *target, int current,
442 uint32_t address, int handle_breakpoints, int debug_execution)
443 {
444 struct armv7a_common *armv7a = target_to_armv7a(target);
445 struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
446 struct swjdp_common *swjdp = &armv7a->swjdp_info;
447
448 // struct breakpoint *breakpoint = NULL;
449 uint32_t resume_pc, dscr;
450
451 uint8_t saved_apsel = dap_ap_get_select(swjdp);
452 dap_ap_select(swjdp, swjdp_debugap);
453
454 if (!debug_execution)
455 {
456 target_free_all_working_areas(target);
457 // cortex_m3_enable_breakpoints(target);
458 // cortex_m3_enable_watchpoints(target);
459 }
460
461 #if 0
462 if (debug_execution)
463 {
464 /* Disable interrupts */
465 /* We disable interrupts in the PRIMASK register instead of
466 * masking with C_MASKINTS,
467 * This is probably the same issue as Cortex-M3 Errata 377493:
468 * C_MASKINTS in parallel with disabled interrupts can cause
469 * local faults to not be taken. */
470 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
471 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
472 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
473
474 /* Make sure we are in Thumb mode */
475 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
476 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
477 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
478 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
479 }
480 #endif
481
482 /* current = 1: continue on current pc, otherwise continue at <address> */
483 resume_pc = buf_get_u32(
484 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
485 armv4_5->core_mode, 15).value,
486 0, 32);
487 if (!current)
488 resume_pc = address;
489
490 /* Make sure that the Armv7 gdb thumb fixups does not
491 * kill the return address
492 */
493 if (armv7a->core_state == ARMV7A_STATE_ARM)
494 {
495 resume_pc &= 0xFFFFFFFC;
496 }
497 /* When the return address is loaded into PC
498 * bit 0 must be 1 to stay in Thumb state
499 */
500 if (armv7a->core_state == ARMV7A_STATE_THUMB)
501 {
502 resume_pc |= 0x1;
503 }
504 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
505 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
506 armv4_5->core_mode, 15).value,
507 0, 32, resume_pc);
508 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
509 armv4_5->core_mode, 15).dirty = 1;
510 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
511 armv4_5->core_mode, 15).valid = 1;
512
513 cortex_a8_restore_context(target);
514 // arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
515 #if 0
516 /* the front-end may request us not to handle breakpoints */
517 if (handle_breakpoints)
518 {
519 /* Single step past breakpoint at current address */
520 if ((breakpoint = breakpoint_find(target, resume_pc)))
521 {
522 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
523 cortex_m3_unset_breakpoint(target, breakpoint);
524 cortex_m3_single_step_core(target);
525 cortex_m3_set_breakpoint(target, breakpoint);
526 }
527 }
528
529 #endif
530 /* Restart core and wait for it to be started */
531 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
532
533 do {
534 mem_ap_read_atomic_u32(swjdp,
535 armv7a->debug_base + CPUDBG_DSCR, &dscr);
536 } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
537
538 target->debug_reason = DBG_REASON_NOTHALTED;
539 target->state = TARGET_RUNNING;
540
541 /* registers are now invalid */
542 armv4_5_invalidate_core_regs(target);
543
544 if (!debug_execution)
545 {
546 target->state = TARGET_RUNNING;
547 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
548 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
549 }
550 else
551 {
552 target->state = TARGET_DEBUG_RUNNING;
553 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
554 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
555 }
556
557 dap_ap_select(swjdp, saved_apsel);
558
559 return ERROR_OK;
560 }
561
562 static int cortex_a8_debug_entry(target_t *target)
563 {
564 int i;
565 uint32_t regfile[16], pc, cpsr, dscr;
566 int retval = ERROR_OK;
567 struct working_area *regfile_working_area = NULL;
568 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
569 struct armv7a_common *armv7a = target_to_armv7a(target);
570 struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
571 struct swjdp_common *swjdp = &armv7a->swjdp_info;
572
573 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
574
575 /* Enable the ITR execution once we are in debug mode */
576 mem_ap_read_atomic_u32(swjdp,
577 armv7a->debug_base + CPUDBG_DSCR, &dscr);
578 dscr |= (1 << DSCR_EXT_INT_EN);
579 retval = mem_ap_write_atomic_u32(swjdp,
580 armv7a->debug_base + CPUDBG_DSCR, dscr);
581
582 /* Examine debug reason */
583 switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
584 {
585 case 0:
586 case 4:
587 target->debug_reason = DBG_REASON_DBGRQ;
588 break;
589 case 1:
590 case 3:
591 target->debug_reason = DBG_REASON_BREAKPOINT;
592 break;
593 case 10:
594 target->debug_reason = DBG_REASON_WATCHPOINT;
595 break;
596 default:
597 target->debug_reason = DBG_REASON_UNDEFINED;
598 break;
599 }
600
601 /* Examine target state and mode */
602 if (cortex_a8->fast_reg_read)
603 target_alloc_working_area(target, 64, &regfile_working_area);
604
605 /* First load register acessible through core debug port*/
606 if (!regfile_working_area)
607 {
608 for (i = 0; i <= 15; i++)
609 cortex_a8_dap_read_coreregister_u32(target,
610 &regfile[i], i);
611 }
612 else
613 {
614 dap_ap_select(swjdp, swjdp_memoryap);
615 cortex_a8_read_regs_through_mem(target,
616 regfile_working_area->address, regfile);
617 dap_ap_select(swjdp, swjdp_memoryap);
618 target_free_working_area(target, regfile_working_area);
619 }
620
621 cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
622 pc = regfile[15];
623 dap_ap_select(swjdp, swjdp_debugap);
624 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
625
626 armv4_5->core_mode = cpsr & 0x1F;
627 armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
628
629 for (i = 0; i <= ARM_PC; i++)
630 {
631 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
632 armv4_5->core_mode, i).value,
633 0, 32, regfile[i]);
634 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
635 armv4_5->core_mode, i).valid = 1;
636 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
637 armv4_5->core_mode, i).dirty = 0;
638 }
639 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
640 armv4_5->core_mode, 16).value,
641 0, 32, cpsr);
642 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
643 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
644
645 /* Fixup PC Resume Address */
646 if (armv7a->core_state == ARMV7A_STATE_THUMB)
647 {
648 // T bit set for Thumb or ThumbEE state
649 regfile[ARM_PC] -= 4;
650 }
651 else
652 {
653 // ARM state
654 regfile[ARM_PC] -= 8;
655 }
656 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
657 armv4_5->core_mode, ARM_PC).value,
658 0, 32, regfile[ARM_PC]);
659
660 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
661 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
662 armv4_5->core_mode, 0).valid;
663 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
664 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
665 armv4_5->core_mode, 15).valid;
666
667 #if 0
668 /* TODO, Move this */
669 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
670 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
671 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
672
673 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
674 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
675
676 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
677 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
678 #endif
679
680 /* Are we in an exception handler */
681 // armv4_5->exception_number = 0;
682 if (armv7a->post_debug_entry)
683 armv7a->post_debug_entry(target);
684
685
686
687 return retval;
688
689 }
690
691 static void cortex_a8_post_debug_entry(target_t *target)
692 {
693 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
694 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
695
696 // cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
697 /* examine cp15 control reg */
698 armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
699 jtag_execute_queue();
700 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
701
702 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
703 {
704 uint32_t cache_type_reg;
705 /* identify caches */
706 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
707 jtag_execute_queue();
708 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
709 armv4_5_identify_cache(cache_type_reg,
710 &armv7a->armv4_5_mmu.armv4_5_cache);
711 }
712
713 armv7a->armv4_5_mmu.mmu_enabled =
714 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
715 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
716 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
717 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
718 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
719
720
721 }
722
723 static int cortex_a8_step(struct target_s *target, int current, uint32_t address,
724 int handle_breakpoints)
725 {
726 struct armv7a_common *armv7a = target_to_armv7a(target);
727 struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
728 struct breakpoint *breakpoint = NULL;
729 struct breakpoint stepbreakpoint;
730
731 int timeout = 100;
732
733 if (target->state != TARGET_HALTED)
734 {
735 LOG_WARNING("target not halted");
736 return ERROR_TARGET_NOT_HALTED;
737 }
738
739 /* current = 1: continue on current pc, otherwise continue at <address> */
740 if (!current)
741 {
742 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
743 armv4_5->core_mode, ARM_PC).value,
744 0, 32, address);
745 }
746 else
747 {
748 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
749 armv4_5->core_mode, ARM_PC).value,
750 0, 32);
751 }
752
753 /* The front-end may request us not to handle breakpoints.
754 * But since Cortex-A8 uses breakpoint for single step,
755 * we MUST handle breakpoints.
756 */
757 handle_breakpoints = 1;
758 if (handle_breakpoints) {
759 breakpoint = breakpoint_find(target,
760 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
761 armv4_5->core_mode, 15).value,
762 0, 32));
763 if (breakpoint)
764 cortex_a8_unset_breakpoint(target, breakpoint);
765 }
766
767 /* Setup single step breakpoint */
768 stepbreakpoint.address = address;
769 stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
770 stepbreakpoint.type = BKPT_HARD;
771 stepbreakpoint.set = 0;
772
773 /* Break on IVA mismatch */
774 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
775
776 target->debug_reason = DBG_REASON_SINGLESTEP;
777
778 cortex_a8_resume(target, 1, address, 0, 0);
779
780 while (target->state != TARGET_HALTED)
781 {
782 cortex_a8_poll(target);
783 if (--timeout == 0)
784 {
785 LOG_WARNING("timeout waiting for target halt");
786 break;
787 }
788 }
789
790 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
791 if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
792
793 if (breakpoint)
794 cortex_a8_set_breakpoint(target, breakpoint, 0);
795
796 if (target->state != TARGET_HALTED)
797 LOG_DEBUG("target stepped");
798
799 return ERROR_OK;
800 }
801
802 static int cortex_a8_restore_context(target_t *target)
803 {
804 int i;
805 uint32_t value;
806 struct armv7a_common *armv7a = target_to_armv7a(target);
807 struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
808
809 LOG_DEBUG(" ");
810
811 if (armv7a->pre_restore_context)
812 armv7a->pre_restore_context(target);
813
814 for (i = 15; i >= 0; i--)
815 {
816 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
817 armv4_5->core_mode, i).dirty)
818 {
819 value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
820 armv4_5->core_mode, i).value,
821 0, 32);
822 /* TODO Check return values */
823 cortex_a8_dap_write_coreregister_u32(target, value, i);
824 }
825 }
826
827 if (armv7a->post_restore_context)
828 armv7a->post_restore_context(target);
829
830 return ERROR_OK;
831 }
832
833
834 #if 0
835 /*
836 * Cortex-A8 Core register functions
837 */
838 static int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
839 armv4_5_mode_t mode, uint32_t * value)
840 {
841 int retval;
842 struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
843
844 if ((num <= ARM_CPSR))
845 {
846 /* read a normal core register */
847 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
848
849 if (retval != ERROR_OK)
850 {
851 LOG_ERROR("JTAG failure %i", retval);
852 return ERROR_JTAG_DEVICE_ERROR;
853 }
854 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
855 }
856 else
857 {
858 return ERROR_INVALID_ARGUMENTS;
859 }
860
861 /* Register other than r0 - r14 uses r0 for access */
862 if (num > 14)
863 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
864 armv4_5->core_mode, 0).dirty =
865 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
866 armv4_5->core_mode, 0).valid;
867 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
868 armv4_5->core_mode, 15).dirty =
869 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
870 armv4_5->core_mode, 15).valid;
871
872 return ERROR_OK;
873 }
874
875 static int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
876 armv4_5_mode_t mode, uint32_t value)
877 {
878 int retval;
879 // uint32_t reg;
880 struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
881
882 #ifdef ARMV7_GDB_HACKS
883 /* If the LR register is being modified, make sure it will put us
884 * in "thumb" mode, or an INVSTATE exception will occur. This is a
885 * hack to deal with the fact that gdb will sometimes "forge"
886 * return addresses, and doesn't set the LSB correctly (i.e., when
887 * printing expressions containing function calls, it sets LR=0.) */
888
889 if (num == 14)
890 value |= 0x01;
891 #endif
892
893 if ((num <= ARM_CPSR))
894 {
895 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
896 if (retval != ERROR_OK)
897 {
898 LOG_ERROR("JTAG failure %i", retval);
899 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
900 armv4_5->core_mode, num).dirty =
901 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
902 armv4_5->core_mode, num).valid;
903 return ERROR_JTAG_DEVICE_ERROR;
904 }
905 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
906 }
907 else
908 {
909 return ERROR_INVALID_ARGUMENTS;
910 }
911
912 return ERROR_OK;
913 }
914 #endif
915
916
917 static int cortex_a8_read_core_reg(struct target_s *target, int num,
918 enum armv4_5_mode mode)
919 {
920 uint32_t value;
921 int retval;
922 struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
923
924 cortex_a8_dap_read_coreregister_u32(target, &value, num);
925
926 if ((retval = jtag_execute_queue()) != ERROR_OK)
927 {
928 return retval;
929 }
930
931 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
932 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
933 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
934 mode, num).value, 0, 32, value);
935
936 return ERROR_OK;
937 }
938
939 int cortex_a8_write_core_reg(struct target_s *target, int num,
940 enum armv4_5_mode mode, uint32_t value)
941 {
942 int retval;
943 struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
944
945 cortex_a8_dap_write_coreregister_u32(target, value, num);
946 if ((retval = jtag_execute_queue()) != ERROR_OK)
947 {
948 return retval;
949 }
950
951 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
952 ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
953
954 return ERROR_OK;
955 }
956
957
958 /*
959 * Cortex-A8 Breakpoint and watchpoint fuctions
960 */
961
962 /* Setup hardware Breakpoint Register Pair */
963 static int cortex_a8_set_breakpoint(struct target_s *target,
964 struct breakpoint *breakpoint, uint8_t matchmode)
965 {
966 int retval;
967 int brp_i=0;
968 uint32_t control;
969 uint8_t byte_addr_select = 0x0F;
970 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
971 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
972 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
973
974 if (breakpoint->set)
975 {
976 LOG_WARNING("breakpoint already set");
977 return ERROR_OK;
978 }
979
980 if (breakpoint->type == BKPT_HARD)
981 {
982 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
983 brp_i++ ;
984 if (brp_i >= cortex_a8->brp_num)
985 {
986 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
987 exit(-1);
988 }
989 breakpoint->set = brp_i + 1;
990 if (breakpoint->length == 2)
991 {
992 byte_addr_select = (3 << (breakpoint->address & 0x02));
993 }
994 control = ((matchmode & 0x7) << 20)
995 | (byte_addr_select << 5)
996 | (3 << 1) | 1;
997 brp_list[brp_i].used = 1;
998 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
999 brp_list[brp_i].control = control;
1000 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1001 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1002 brp_list[brp_i].value);
1003 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1004 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1005 brp_list[brp_i].control);
1006 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1007 brp_list[brp_i].control,
1008 brp_list[brp_i].value);
1009 }
1010 else if (breakpoint->type == BKPT_SOFT)
1011 {
1012 uint8_t code[4];
1013 if (breakpoint->length == 2)
1014 {
1015 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1016 }
1017 else
1018 {
1019 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1020 }
1021 retval = target->type->read_memory(target,
1022 breakpoint->address & 0xFFFFFFFE,
1023 breakpoint->length, 1,
1024 breakpoint->orig_instr);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 retval = target->type->write_memory(target,
1028 breakpoint->address & 0xFFFFFFFE,
1029 breakpoint->length, 1, code);
1030 if (retval != ERROR_OK)
1031 return retval;
1032 breakpoint->set = 0x11; /* Any nice value but 0 */
1033 }
1034
1035 return ERROR_OK;
1036 }
1037
1038 static int cortex_a8_unset_breakpoint(struct target_s *target, struct breakpoint *breakpoint)
1039 {
1040 int retval;
1041 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1042 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1043 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1044
1045 if (!breakpoint->set)
1046 {
1047 LOG_WARNING("breakpoint not set");
1048 return ERROR_OK;
1049 }
1050
1051 if (breakpoint->type == BKPT_HARD)
1052 {
1053 int brp_i = breakpoint->set - 1;
1054 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1055 {
1056 LOG_DEBUG("Invalid BRP number in breakpoint");
1057 return ERROR_OK;
1058 }
1059 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1060 brp_list[brp_i].control, brp_list[brp_i].value);
1061 brp_list[brp_i].used = 0;
1062 brp_list[brp_i].value = 0;
1063 brp_list[brp_i].control = 0;
1064 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1065 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1066 brp_list[brp_i].control);
1067 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1068 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1069 brp_list[brp_i].value);
1070 }
1071 else
1072 {
1073 /* restore original instruction (kept in target endianness) */
1074 if (breakpoint->length == 4)
1075 {
1076 retval = target->type->write_memory(target,
1077 breakpoint->address & 0xFFFFFFFE,
1078 4, 1, breakpoint->orig_instr);
1079 if (retval != ERROR_OK)
1080 return retval;
1081 }
1082 else
1083 {
1084 retval = target->type->write_memory(target,
1085 breakpoint->address & 0xFFFFFFFE,
1086 2, 1, breakpoint->orig_instr);
1087 if (retval != ERROR_OK)
1088 return retval;
1089 }
1090 }
1091 breakpoint->set = 0;
1092
1093 return ERROR_OK;
1094 }
1095
1096 int cortex_a8_add_breakpoint(struct target_s *target, struct breakpoint *breakpoint)
1097 {
1098 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1099
1100 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1101 {
1102 LOG_INFO("no hardware breakpoint available");
1103 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1104 }
1105
1106 if (breakpoint->type == BKPT_HARD)
1107 cortex_a8->brp_num_available--;
1108 cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1109
1110 return ERROR_OK;
1111 }
1112
1113 static int cortex_a8_remove_breakpoint(struct target_s *target, struct breakpoint *breakpoint)
1114 {
1115 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1116
1117 #if 0
1118 /* It is perfectly possible to remove brakpoints while the taget is running */
1119 if (target->state != TARGET_HALTED)
1120 {
1121 LOG_WARNING("target not halted");
1122 return ERROR_TARGET_NOT_HALTED;
1123 }
1124 #endif
1125
1126 if (breakpoint->set)
1127 {
1128 cortex_a8_unset_breakpoint(target, breakpoint);
1129 if (breakpoint->type == BKPT_HARD)
1130 cortex_a8->brp_num_available++ ;
1131 }
1132
1133
1134 return ERROR_OK;
1135 }
1136
1137
1138
1139 /*
1140 * Cortex-A8 Reset fuctions
1141 */
1142
1143 static int cortex_a8_assert_reset(target_t *target)
1144 {
1145
1146 LOG_DEBUG(" ");
1147
1148 /* registers are now invalid */
1149 armv4_5_invalidate_core_regs(target);
1150
1151 target->state = TARGET_RESET;
1152
1153 return ERROR_OK;
1154 }
1155
1156 static int cortex_a8_deassert_reset(target_t *target)
1157 {
1158
1159 LOG_DEBUG(" ");
1160
1161 if (target->reset_halt)
1162 {
1163 int retval;
1164 if ((retval = target_halt(target)) != ERROR_OK)
1165 return retval;
1166 }
1167
1168 return ERROR_OK;
1169 }
1170
1171 /*
1172 * Cortex-A8 Memory access
1173 *
1174 * This is same Cortex M3 but we must also use the correct
1175 * ap number for every access.
1176 */
1177
1178 static int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1179 uint32_t size, uint32_t count, uint8_t *buffer)
1180 {
1181 struct armv7a_common *armv7a = target_to_armv7a(target);
1182 struct swjdp_common *swjdp = &armv7a->swjdp_info;
1183
1184 int retval = ERROR_OK;
1185
1186 /* sanitize arguments */
1187 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1188 return ERROR_INVALID_ARGUMENTS;
1189
1190 /* cortex_a8 handles unaligned memory access */
1191
1192 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1193
1194 switch (size)
1195 {
1196 case 4:
1197 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1198 break;
1199 case 2:
1200 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1201 break;
1202 case 1:
1203 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1204 break;
1205 default:
1206 LOG_ERROR("BUG: we shouldn't get here");
1207 exit(-1);
1208 }
1209
1210 return retval;
1211 }
1212
1213 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1214 uint32_t size, uint32_t count, uint8_t *buffer)
1215 {
1216 struct armv7a_common *armv7a = target_to_armv7a(target);
1217 struct swjdp_common *swjdp = &armv7a->swjdp_info;
1218
1219 int retval;
1220
1221 /* sanitize arguments */
1222 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1223 return ERROR_INVALID_ARGUMENTS;
1224
1225 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1226
1227 switch (size)
1228 {
1229 case 4:
1230 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1231 break;
1232 case 2:
1233 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1234 break;
1235 case 1:
1236 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1237 break;
1238 default:
1239 LOG_ERROR("BUG: we shouldn't get here");
1240 exit(-1);
1241 }
1242
1243 if (target->state == TARGET_HALTED)
1244 {
1245 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1246 /* invalidate I-Cache */
1247 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1248 {
1249 /* Invalidate ICache single entry with MVA, repeat this for all cache
1250 lines in the address range, Cortex-A8 has fixed 64 byte line length */
1251 /* Invalidate Cache single entry with MVA to PoU */
1252 for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1253 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1254 }
1255 /* invalidate D-Cache */
1256 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1257 {
1258 /* Invalidate Cache single entry with MVA to PoC */
1259 for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1260 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1261 }
1262 }
1263
1264 return retval;
1265 }
1266
1267 static int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1268 uint32_t count, uint8_t *buffer)
1269 {
1270 return cortex_a8_write_memory(target, address, 4, count, buffer);
1271 }
1272
1273
1274 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1275 {
1276 #if 0
1277 u16 dcrdr;
1278
1279 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1280 *ctrl = (uint8_t)dcrdr;
1281 *value = (uint8_t)(dcrdr >> 8);
1282
1283 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1284
1285 /* write ack back to software dcc register
1286 * signify we have read data */
1287 if (dcrdr & (1 << 0))
1288 {
1289 dcrdr = 0;
1290 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1291 }
1292 #endif
1293 return ERROR_OK;
1294 }
1295
1296
1297 static int cortex_a8_handle_target_request(void *priv)
1298 {
1299 target_t *target = priv;
1300 if (!target->type->examined)
1301 return ERROR_OK;
1302 struct armv7a_common *armv7a = target_to_armv7a(target);
1303 struct swjdp_common *swjdp = &armv7a->swjdp_info;
1304
1305 if (!target->dbg_msg_enabled)
1306 return ERROR_OK;
1307
1308 if (target->state == TARGET_RUNNING)
1309 {
1310 uint8_t data = 0;
1311 uint8_t ctrl = 0;
1312
1313 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1314
1315 /* check if we have data */
1316 if (ctrl & (1 << 0))
1317 {
1318 uint32_t request;
1319
1320 /* we assume target is quick enough */
1321 request = data;
1322 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1323 request |= (data << 8);
1324 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1325 request |= (data << 16);
1326 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1327 request |= (data << 24);
1328 target_request(target, request);
1329 }
1330 }
1331
1332 return ERROR_OK;
1333 }
1334
1335 /*
1336 * Cortex-A8 target information and configuration
1337 */
1338
1339 static int cortex_a8_examine(struct target_s *target)
1340 {
1341 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1342 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1343 struct swjdp_common *swjdp = &armv7a->swjdp_info;
1344 int i;
1345 int retval = ERROR_OK;
1346 uint32_t didr, ctypr, ttypr, cpuid;
1347
1348 LOG_DEBUG("TODO");
1349
1350 /* Here we shall insert a proper ROM Table scan */
1351 armv7a->debug_base = OMAP3530_DEBUG_BASE;
1352
1353 /* We do one extra read to ensure DAP is configured,
1354 * we call ahbap_debugport_init(swjdp) instead
1355 */
1356 ahbap_debugport_init(swjdp);
1357 mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1358 if ((retval = mem_ap_read_atomic_u32(swjdp,
1359 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1360 {
1361 LOG_DEBUG("Examine failed");
1362 return retval;
1363 }
1364
1365 if ((retval = mem_ap_read_atomic_u32(swjdp,
1366 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1367 {
1368 LOG_DEBUG("Examine failed");
1369 return retval;
1370 }
1371
1372 if ((retval = mem_ap_read_atomic_u32(swjdp,
1373 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1374 {
1375 LOG_DEBUG("Examine failed");
1376 return retval;
1377 }
1378
1379 if ((retval = mem_ap_read_atomic_u32(swjdp,
1380 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1381 {
1382 LOG_DEBUG("Examine failed");
1383 return retval;
1384 }
1385
1386 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1387 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1388 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1389 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1390
1391 /* Setup Breakpoint Register Pairs */
1392 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1393 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1394 cortex_a8->brp_num_available = cortex_a8->brp_num;
1395 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1396 // cortex_a8->brb_enabled = ????;
1397 for (i = 0; i < cortex_a8->brp_num; i++)
1398 {
1399 cortex_a8->brp_list[i].used = 0;
1400 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1401 cortex_a8->brp_list[i].type = BRP_NORMAL;
1402 else
1403 cortex_a8->brp_list[i].type = BRP_CONTEXT;
1404 cortex_a8->brp_list[i].value = 0;
1405 cortex_a8->brp_list[i].control = 0;
1406 cortex_a8->brp_list[i].BRPn = i;
1407 }
1408
1409 /* Setup Watchpoint Register Pairs */
1410 cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1411 cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1412 cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1413 for (i = 0; i < cortex_a8->wrp_num; i++)
1414 {
1415 cortex_a8->wrp_list[i].used = 0;
1416 cortex_a8->wrp_list[i].type = 0;
1417 cortex_a8->wrp_list[i].value = 0;
1418 cortex_a8->wrp_list[i].control = 0;
1419 cortex_a8->wrp_list[i].WRPn = i;
1420 }
1421 LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1422 cortex_a8->brp_num , cortex_a8->wrp_num);
1423
1424 /* Configure core debug access */
1425 cortex_a8_init_debug_access(target);
1426
1427 target->type->examined = 1;
1428
1429 return retval;
1430 }
1431
1432 /*
1433 * Cortex-A8 target creation and initialization
1434 */
1435
1436 static void cortex_a8_build_reg_cache(target_t *target)
1437 {
1438 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1439 struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1440
1441 (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1442 armv4_5->core_cache = (*cache_p);
1443 }
1444
1445
1446 static int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1447 struct target_s *target)
1448 {
1449 cortex_a8_build_reg_cache(target);
1450 return ERROR_OK;
1451 }
1452
1453 int cortex_a8_init_arch_info(target_t *target,
1454 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1455 {
1456 struct arm *armv4_5;
1457 struct armv7a_common *armv7a;
1458
1459 armv7a = &cortex_a8->armv7a_common;
1460 armv4_5 = &armv7a->armv4_5_common;
1461 struct swjdp_common *swjdp = &armv7a->swjdp_info;
1462
1463 /* Setup struct cortex_a8_common */
1464 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1465 armv4_5->arch_info = armv7a;
1466
1467 armv4_5_init_arch_info(target, armv4_5);
1468
1469 /* prepare JTAG information for the new target */
1470 cortex_a8->jtag_info.tap = tap;
1471 cortex_a8->jtag_info.scann_size = 4;
1472 LOG_DEBUG(" ");
1473 swjdp->dp_select_value = -1;
1474 swjdp->ap_csw_value = -1;
1475 swjdp->ap_tar_value = -1;
1476 swjdp->jtag_info = &cortex_a8->jtag_info;
1477 swjdp->memaccess_tck = 80;
1478
1479 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1480 swjdp->tar_autoincr_block = (1 << 10);
1481
1482 cortex_a8->fast_reg_read = 0;
1483
1484
1485 /* register arch-specific functions */
1486 armv7a->examine_debug_reason = NULL;
1487
1488 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1489
1490 armv7a->pre_restore_context = NULL;
1491 armv7a->post_restore_context = NULL;
1492 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1493 // armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1494 armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1495 armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1496 // armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1497 // armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1498 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1499 armv7a->armv4_5_mmu.mmu_enabled = 0;
1500 armv7a->read_cp15 = cortex_a8_read_cp15;
1501 armv7a->write_cp15 = cortex_a8_write_cp15;
1502
1503
1504 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1505
1506 armv4_5->read_core_reg = cortex_a8_read_core_reg;
1507 armv4_5->write_core_reg = cortex_a8_write_core_reg;
1508 // armv4_5->full_context = arm7_9_full_context;
1509
1510 // armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1511 // armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1512 // armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1513 // armv4_5->write_core_reg = armv4_5_write_core_reg;
1514
1515 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1516
1517 return ERROR_OK;
1518 }
1519
1520 static int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1521 {
1522 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1523
1524 cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1525
1526 return ERROR_OK;
1527 }
1528
1529 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1530 {
1531 target_t *target = get_current_target(cmd_ctx);
1532 struct armv7a_common *armv7a = target_to_armv7a(target);
1533
1534 return armv4_5_handle_cache_info_command(cmd_ctx,
1535 &armv7a->armv4_5_mmu.armv4_5_cache);
1536 }
1537
1538
1539 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1540 {
1541 target_t *target = get_current_target(cmd_ctx);
1542
1543 cortex_a8_init_debug_access(target);
1544
1545 return ERROR_OK;
1546 }
1547
1548
1549 static int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1550 {
1551 command_t *cortex_a8_cmd;
1552 int retval = ERROR_OK;
1553
1554 armv4_5_register_commands(cmd_ctx);
1555 armv7a_register_commands(cmd_ctx);
1556
1557 cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1558 NULL, COMMAND_ANY,
1559 "cortex_a8 specific commands");
1560
1561 register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1562 cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1563 "display information about target caches");
1564
1565 register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1566 cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1567 "Initialize core debug");
1568
1569 return retval;
1570 }
1571
1572 struct target_type cortexa8_target = {
1573 .name = "cortex_a8",
1574
1575 .poll = cortex_a8_poll,
1576 .arch_state = armv7a_arch_state,
1577
1578 .target_request_data = NULL,
1579
1580 .halt = cortex_a8_halt,
1581 .resume = cortex_a8_resume,
1582 .step = cortex_a8_step,
1583
1584 .assert_reset = cortex_a8_assert_reset,
1585 .deassert_reset = cortex_a8_deassert_reset,
1586 .soft_reset_halt = NULL,
1587
1588 .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1589
1590 .read_memory = cortex_a8_read_memory,
1591 .write_memory = cortex_a8_write_memory,
1592 .bulk_write_memory = cortex_a8_bulk_write_memory,
1593 .checksum_memory = arm7_9_checksum_memory,
1594 .blank_check_memory = arm7_9_blank_check_memory,
1595
1596 .run_algorithm = armv4_5_run_algorithm,
1597
1598 .add_breakpoint = cortex_a8_add_breakpoint,
1599 .remove_breakpoint = cortex_a8_remove_breakpoint,
1600 .add_watchpoint = NULL,
1601 .remove_watchpoint = NULL,
1602
1603 .register_commands = cortex_a8_register_commands,
1604 .target_create = cortex_a8_target_create,
1605 .init_target = cortex_a8_init_target,
1606 .examine = cortex_a8_examine,
1607 .mrc = cortex_a8_mrc,
1608 .mcr = cortex_a8_mcr,
1609 };