ed2f6137705fd5e96925d05993f29876ed040b16
[openocd.git] / src / target / cortex_a.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 √ėyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
22 * *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 * *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
43 * *
44 ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include <helper/time_support.h>
58
59 static int cortex_a_poll(struct target *target);
60 static int cortex_a_debug_entry(struct target *target);
61 static int cortex_a_restore_context(struct target *target, bool bpwp);
62 static int cortex_a_set_breakpoint(struct target *target,
63 struct breakpoint *breakpoint, uint8_t matchmode);
64 static int cortex_a_set_context_breakpoint(struct target *target,
65 struct breakpoint *breakpoint, uint8_t matchmode);
66 static int cortex_a_set_hybrid_breakpoint(struct target *target,
67 struct breakpoint *breakpoint);
68 static int cortex_a_unset_breakpoint(struct target *target,
69 struct breakpoint *breakpoint);
70 static int cortex_a_dap_read_coreregister_u32(struct target *target,
71 uint32_t *value, int regnum);
72 static int cortex_a_dap_write_coreregister_u32(struct target *target,
73 uint32_t value, int regnum);
74 static int cortex_a_mmu(struct target *target, int *enabled);
75 static int cortex_a_mmu_modify(struct target *target, int enable);
76 static int cortex_a_virt2phys(struct target *target,
77 uint32_t virt, uint32_t *phys);
78 static int cortex_a_read_cpu_memory(struct target *target,
79 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
80
81
82 /* restore cp15_control_reg at resume */
83 static int cortex_a_restore_cp15_control_reg(struct target *target)
84 {
85 int retval = ERROR_OK;
86 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
87 struct armv7a_common *armv7a = target_to_armv7a(target);
88
89 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
90 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
91 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
92 retval = armv7a->arm.mcr(target, 15,
93 0, 0, /* op1, op2 */
94 1, 0, /* CRn, CRm */
95 cortex_a->cp15_control_reg);
96 }
97 return retval;
98 }
99
100 /*
101 * Set up ARM core for memory access.
102 * If !phys_access, switch to SVC mode and make sure MMU is on
103 * If phys_access, switch off mmu
104 */
105 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
106 {
107 struct armv7a_common *armv7a = target_to_armv7a(target);
108 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
109 int mmu_enabled = 0;
110
111 if (phys_access == 0) {
112 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
113 cortex_a_mmu(target, &mmu_enabled);
114 if (mmu_enabled)
115 cortex_a_mmu_modify(target, 1);
116 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
117 /* overwrite DACR to all-manager */
118 armv7a->arm.mcr(target, 15,
119 0, 0, 3, 0,
120 0xFFFFFFFF);
121 }
122 } else {
123 cortex_a_mmu(target, &mmu_enabled);
124 if (mmu_enabled)
125 cortex_a_mmu_modify(target, 0);
126 }
127 return ERROR_OK;
128 }
129
130 /*
131 * Restore ARM core after memory access.
132 * If !phys_access, switch to previous mode
133 * If phys_access, restore MMU setting
134 */
135 static int cortex_a_post_memaccess(struct target *target, int phys_access)
136 {
137 struct armv7a_common *armv7a = target_to_armv7a(target);
138 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
139
140 if (phys_access == 0) {
141 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
142 /* restore */
143 armv7a->arm.mcr(target, 15,
144 0, 0, 3, 0,
145 cortex_a->cp15_dacr_reg);
146 }
147 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
148 } else {
149 int mmu_enabled = 0;
150 cortex_a_mmu(target, &mmu_enabled);
151 if (mmu_enabled)
152 cortex_a_mmu_modify(target, 1);
153 }
154 return ERROR_OK;
155 }
156
157
158 /* modify cp15_control_reg in order to enable or disable mmu for :
159 * - virt2phys address conversion
160 * - read or write memory in phys or virt address */
161 static int cortex_a_mmu_modify(struct target *target, int enable)
162 {
163 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
164 struct armv7a_common *armv7a = target_to_armv7a(target);
165 int retval = ERROR_OK;
166 int need_write = 0;
167
168 if (enable) {
169 /* if mmu enabled at target stop and mmu not enable */
170 if (!(cortex_a->cp15_control_reg & 0x1U)) {
171 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
172 return ERROR_FAIL;
173 }
174 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
175 cortex_a->cp15_control_reg_curr |= 0x1U;
176 need_write = 1;
177 }
178 } else {
179 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
180 cortex_a->cp15_control_reg_curr &= ~0x1U;
181 need_write = 1;
182 }
183 }
184
185 if (need_write) {
186 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
187 enable ? "enable mmu" : "disable mmu",
188 cortex_a->cp15_control_reg_curr);
189
190 retval = armv7a->arm.mcr(target, 15,
191 0, 0, /* op1, op2 */
192 1, 0, /* CRn, CRm */
193 cortex_a->cp15_control_reg_curr);
194 }
195 return retval;
196 }
197
198 /*
199 * Cortex-A Basic debug access, very low level assumes state is saved
200 */
201 static int cortex_a_init_debug_access(struct target *target)
202 {
203 struct armv7a_common *armv7a = target_to_armv7a(target);
204 int retval;
205
206 /* lock memory-mapped access to debug registers to prevent
207 * software interference */
208 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
209 armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
210 if (retval != ERROR_OK)
211 return retval;
212
213 /* Disable cacheline fills and force cache write-through in debug state */
214 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
215 armv7a->debug_base + CPUDBG_DSCCR, 0);
216 if (retval != ERROR_OK)
217 return retval;
218
219 /* Disable TLB lookup and refill/eviction in debug state */
220 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
221 armv7a->debug_base + CPUDBG_DSMCR, 0);
222 if (retval != ERROR_OK)
223 return retval;
224
225 /* Enabling of instruction execution in debug mode is done in debug_entry code */
226
227 /* Resync breakpoint registers */
228
229 /* Since this is likely called from init or reset, update target state information*/
230 return cortex_a_poll(target);
231 }
232
233 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
234 {
235 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
236 * Writes final value of DSCR into *dscr. Pass force to force always
237 * reading DSCR at least once. */
238 struct armv7a_common *armv7a = target_to_armv7a(target);
239 int64_t then = timeval_ms();
240 while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
241 force = false;
242 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
243 armv7a->debug_base + CPUDBG_DSCR, dscr);
244 if (retval != ERROR_OK) {
245 LOG_ERROR("Could not read DSCR register");
246 return retval;
247 }
248 if (timeval_ms() > then + 1000) {
249 LOG_ERROR("Timeout waiting for InstrCompl=1");
250 return ERROR_FAIL;
251 }
252 }
253 return ERROR_OK;
254 }
255
256 /* To reduce needless round-trips, pass in a pointer to the current
257 * DSCR value. Initialize it to zero if you just need to know the
258 * value on return from this function; or DSCR_INSTR_COMP if you
259 * happen to know that no instruction is pending.
260 */
261 static int cortex_a_exec_opcode(struct target *target,
262 uint32_t opcode, uint32_t *dscr_p)
263 {
264 uint32_t dscr;
265 int retval;
266 struct armv7a_common *armv7a = target_to_armv7a(target);
267
268 dscr = dscr_p ? *dscr_p : 0;
269
270 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
271
272 /* Wait for InstrCompl bit to be set */
273 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
274 if (retval != ERROR_OK)
275 return retval;
276
277 retval = mem_ap_write_u32(armv7a->debug_ap,
278 armv7a->debug_base + CPUDBG_ITR, opcode);
279 if (retval != ERROR_OK)
280 return retval;
281
282 int64_t then = timeval_ms();
283 do {
284 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
285 armv7a->debug_base + CPUDBG_DSCR, &dscr);
286 if (retval != ERROR_OK) {
287 LOG_ERROR("Could not read DSCR register");
288 return retval;
289 }
290 if (timeval_ms() > then + 1000) {
291 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
292 return ERROR_FAIL;
293 }
294 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
295
296 if (dscr_p)
297 *dscr_p = dscr;
298
299 return retval;
300 }
301
302 /**************************************************************************
303 Read core register with very few exec_opcode, fast but needs work_area.
304 This can cause problems with MMU active.
305 **************************************************************************/
306 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
307 uint32_t *regfile)
308 {
309 int retval = ERROR_OK;
310 struct armv7a_common *armv7a = target_to_armv7a(target);
311
312 retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
313 if (retval != ERROR_OK)
314 return retval;
315 retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
316 if (retval != ERROR_OK)
317 return retval;
318 retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
319 if (retval != ERROR_OK)
320 return retval;
321
322 retval = mem_ap_read_buf(armv7a->memory_ap,
323 (uint8_t *)(&regfile[1]), 4, 15, address);
324
325 return retval;
326 }
327
328 static int cortex_a_dap_read_coreregister_u32(struct target *target,
329 uint32_t *value, int regnum)
330 {
331 int retval = ERROR_OK;
332 uint8_t reg = regnum&0xFF;
333 uint32_t dscr = 0;
334 struct armv7a_common *armv7a = target_to_armv7a(target);
335
336 if (reg > 17)
337 return retval;
338
339 if (reg < 15) {
340 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
341 retval = cortex_a_exec_opcode(target,
342 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
343 &dscr);
344 if (retval != ERROR_OK)
345 return retval;
346 } else if (reg == 15) {
347 /* "MOV r0, r15"; then move r0 to DCCTX */
348 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
349 if (retval != ERROR_OK)
350 return retval;
351 retval = cortex_a_exec_opcode(target,
352 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
353 &dscr);
354 if (retval != ERROR_OK)
355 return retval;
356 } else {
357 /* "MRS r0, CPSR" or "MRS r0, SPSR"
358 * then move r0 to DCCTX
359 */
360 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
361 if (retval != ERROR_OK)
362 return retval;
363 retval = cortex_a_exec_opcode(target,
364 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
365 &dscr);
366 if (retval != ERROR_OK)
367 return retval;
368 }
369
370 /* Wait for DTRRXfull then read DTRRTX */
371 int64_t then = timeval_ms();
372 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
373 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
374 armv7a->debug_base + CPUDBG_DSCR, &dscr);
375 if (retval != ERROR_OK)
376 return retval;
377 if (timeval_ms() > then + 1000) {
378 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
379 return ERROR_FAIL;
380 }
381 }
382
383 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
384 armv7a->debug_base + CPUDBG_DTRTX, value);
385 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
386
387 return retval;
388 }
389
390 static int cortex_a_dap_write_coreregister_u32(struct target *target,
391 uint32_t value, int regnum)
392 {
393 int retval = ERROR_OK;
394 uint8_t Rd = regnum&0xFF;
395 uint32_t dscr;
396 struct armv7a_common *armv7a = target_to_armv7a(target);
397
398 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
399
400 /* Check that DCCRX is not full */
401 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
402 armv7a->debug_base + CPUDBG_DSCR, &dscr);
403 if (retval != ERROR_OK)
404 return retval;
405 if (dscr & DSCR_DTR_RX_FULL) {
406 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
407 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
408 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
409 &dscr);
410 if (retval != ERROR_OK)
411 return retval;
412 }
413
414 if (Rd > 17)
415 return retval;
416
417 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
418 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
419 retval = mem_ap_write_u32(armv7a->debug_ap,
420 armv7a->debug_base + CPUDBG_DTRRX, value);
421 if (retval != ERROR_OK)
422 return retval;
423
424 if (Rd < 15) {
425 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
426 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
427 &dscr);
428
429 if (retval != ERROR_OK)
430 return retval;
431 } else if (Rd == 15) {
432 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
433 * then "mov r15, r0"
434 */
435 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
436 &dscr);
437 if (retval != ERROR_OK)
438 return retval;
439 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
440 if (retval != ERROR_OK)
441 return retval;
442 } else {
443 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
444 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
445 */
446 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
447 &dscr);
448 if (retval != ERROR_OK)
449 return retval;
450 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
451 &dscr);
452 if (retval != ERROR_OK)
453 return retval;
454
455 /* "Prefetch flush" after modifying execution status in CPSR */
456 if (Rd == 16) {
457 retval = cortex_a_exec_opcode(target,
458 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
459 &dscr);
460 if (retval != ERROR_OK)
461 return retval;
462 }
463 }
464
465 return retval;
466 }
467
468 /* Write to memory mapped registers directly with no cache or mmu handling */
469 static int cortex_a_dap_write_memap_register_u32(struct target *target,
470 uint32_t address,
471 uint32_t value)
472 {
473 int retval;
474 struct armv7a_common *armv7a = target_to_armv7a(target);
475
476 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
477
478 return retval;
479 }
480
481 /*
482 * Cortex-A implementation of Debug Programmer's Model
483 *
484 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
485 * so there's no need to poll for it before executing an instruction.
486 *
487 * NOTE that in several of these cases the "stall" mode might be useful.
488 * It'd let us queue a few operations together... prepare/finish might
489 * be the places to enable/disable that mode.
490 */
491
492 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
493 {
494 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
495 }
496
497 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
498 {
499 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
500 return mem_ap_write_u32(a->armv7a_common.debug_ap,
501 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
502 }
503
504 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
505 uint32_t *dscr_p)
506 {
507 uint32_t dscr = DSCR_INSTR_COMP;
508 int retval;
509
510 if (dscr_p)
511 dscr = *dscr_p;
512
513 /* Wait for DTRRXfull */
514 int64_t then = timeval_ms();
515 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
516 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
517 a->armv7a_common.debug_base + CPUDBG_DSCR,
518 &dscr);
519 if (retval != ERROR_OK)
520 return retval;
521 if (timeval_ms() > then + 1000) {
522 LOG_ERROR("Timeout waiting for read dcc");
523 return ERROR_FAIL;
524 }
525 }
526
527 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
528 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
529 if (retval != ERROR_OK)
530 return retval;
531 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
532
533 if (dscr_p)
534 *dscr_p = dscr;
535
536 return retval;
537 }
538
539 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
540 {
541 struct cortex_a_common *a = dpm_to_a(dpm);
542 uint32_t dscr;
543 int retval;
544
545 /* set up invariant: INSTR_COMP is set after ever DPM operation */
546 int64_t then = timeval_ms();
547 for (;; ) {
548 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
549 a->armv7a_common.debug_base + CPUDBG_DSCR,
550 &dscr);
551 if (retval != ERROR_OK)
552 return retval;
553 if ((dscr & DSCR_INSTR_COMP) != 0)
554 break;
555 if (timeval_ms() > then + 1000) {
556 LOG_ERROR("Timeout waiting for dpm prepare");
557 return ERROR_FAIL;
558 }
559 }
560
561 /* this "should never happen" ... */
562 if (dscr & DSCR_DTR_RX_FULL) {
563 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
564 /* Clear DCCRX */
565 retval = cortex_a_exec_opcode(
566 a->armv7a_common.arm.target,
567 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
568 &dscr);
569 if (retval != ERROR_OK)
570 return retval;
571 }
572
573 return retval;
574 }
575
576 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
577 {
578 /* REVISIT what could be done here? */
579 return ERROR_OK;
580 }
581
582 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
583 uint32_t opcode, uint32_t data)
584 {
585 struct cortex_a_common *a = dpm_to_a(dpm);
586 int retval;
587 uint32_t dscr = DSCR_INSTR_COMP;
588
589 retval = cortex_a_write_dcc(a, data);
590 if (retval != ERROR_OK)
591 return retval;
592
593 return cortex_a_exec_opcode(
594 a->armv7a_common.arm.target,
595 opcode,
596 &dscr);
597 }
598
599 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
600 uint32_t opcode, uint32_t data)
601 {
602 struct cortex_a_common *a = dpm_to_a(dpm);
603 uint32_t dscr = DSCR_INSTR_COMP;
604 int retval;
605
606 retval = cortex_a_write_dcc(a, data);
607 if (retval != ERROR_OK)
608 return retval;
609
610 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
611 retval = cortex_a_exec_opcode(
612 a->armv7a_common.arm.target,
613 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
614 &dscr);
615 if (retval != ERROR_OK)
616 return retval;
617
618 /* then the opcode, taking data from R0 */
619 retval = cortex_a_exec_opcode(
620 a->armv7a_common.arm.target,
621 opcode,
622 &dscr);
623
624 return retval;
625 }
626
627 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
628 {
629 struct target *target = dpm->arm->target;
630 uint32_t dscr = DSCR_INSTR_COMP;
631
632 /* "Prefetch flush" after modifying execution status in CPSR */
633 return cortex_a_exec_opcode(target,
634 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
635 &dscr);
636 }
637
638 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
639 uint32_t opcode, uint32_t *data)
640 {
641 struct cortex_a_common *a = dpm_to_a(dpm);
642 int retval;
643 uint32_t dscr = DSCR_INSTR_COMP;
644
645 /* the opcode, writing data to DCC */
646 retval = cortex_a_exec_opcode(
647 a->armv7a_common.arm.target,
648 opcode,
649 &dscr);
650 if (retval != ERROR_OK)
651 return retval;
652
653 return cortex_a_read_dcc(a, data, &dscr);
654 }
655
656
657 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
658 uint32_t opcode, uint32_t *data)
659 {
660 struct cortex_a_common *a = dpm_to_a(dpm);
661 uint32_t dscr = DSCR_INSTR_COMP;
662 int retval;
663
664 /* the opcode, writing data to R0 */
665 retval = cortex_a_exec_opcode(
666 a->armv7a_common.arm.target,
667 opcode,
668 &dscr);
669 if (retval != ERROR_OK)
670 return retval;
671
672 /* write R0 to DCC */
673 retval = cortex_a_exec_opcode(
674 a->armv7a_common.arm.target,
675 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
676 &dscr);
677 if (retval != ERROR_OK)
678 return retval;
679
680 return cortex_a_read_dcc(a, data, &dscr);
681 }
682
683 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
684 uint32_t addr, uint32_t control)
685 {
686 struct cortex_a_common *a = dpm_to_a(dpm);
687 uint32_t vr = a->armv7a_common.debug_base;
688 uint32_t cr = a->armv7a_common.debug_base;
689 int retval;
690
691 switch (index_t) {
692 case 0 ... 15: /* breakpoints */
693 vr += CPUDBG_BVR_BASE;
694 cr += CPUDBG_BCR_BASE;
695 break;
696 case 16 ... 31: /* watchpoints */
697 vr += CPUDBG_WVR_BASE;
698 cr += CPUDBG_WCR_BASE;
699 index_t -= 16;
700 break;
701 default:
702 return ERROR_FAIL;
703 }
704 vr += 4 * index_t;
705 cr += 4 * index_t;
706
707 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
708 (unsigned) vr, (unsigned) cr);
709
710 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
711 vr, addr);
712 if (retval != ERROR_OK)
713 return retval;
714 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
715 cr, control);
716 return retval;
717 }
718
719 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
720 {
721 struct cortex_a_common *a = dpm_to_a(dpm);
722 uint32_t cr;
723
724 switch (index_t) {
725 case 0 ... 15:
726 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
727 break;
728 case 16 ... 31:
729 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
730 index_t -= 16;
731 break;
732 default:
733 return ERROR_FAIL;
734 }
735 cr += 4 * index_t;
736
737 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
738
739 /* clear control register */
740 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
741 }
742
743 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
744 {
745 struct arm_dpm *dpm = &a->armv7a_common.dpm;
746 int retval;
747
748 dpm->arm = &a->armv7a_common.arm;
749 dpm->didr = didr;
750
751 dpm->prepare = cortex_a_dpm_prepare;
752 dpm->finish = cortex_a_dpm_finish;
753
754 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
755 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
756 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
757
758 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
759 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
760
761 dpm->bpwp_enable = cortex_a_bpwp_enable;
762 dpm->bpwp_disable = cortex_a_bpwp_disable;
763
764 retval = arm_dpm_setup(dpm);
765 if (retval == ERROR_OK)
766 retval = arm_dpm_initialize(dpm);
767
768 return retval;
769 }
770 static struct target *get_cortex_a(struct target *target, int32_t coreid)
771 {
772 struct target_list *head;
773 struct target *curr;
774
775 head = target->head;
776 while (head != (struct target_list *)NULL) {
777 curr = head->target;
778 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
779 return curr;
780 head = head->next;
781 }
782 return target;
783 }
784 static int cortex_a_halt(struct target *target);
785
786 static int cortex_a_halt_smp(struct target *target)
787 {
788 int retval = 0;
789 struct target_list *head;
790 struct target *curr;
791 head = target->head;
792 while (head != (struct target_list *)NULL) {
793 curr = head->target;
794 if ((curr != target) && (curr->state != TARGET_HALTED)
795 && target_was_examined(curr))
796 retval += cortex_a_halt(curr);
797 head = head->next;
798 }
799 return retval;
800 }
801
802 static int update_halt_gdb(struct target *target)
803 {
804 int retval = 0;
805 if (target->gdb_service && target->gdb_service->core[0] == -1) {
806 target->gdb_service->target = target;
807 target->gdb_service->core[0] = target->coreid;
808 retval += cortex_a_halt_smp(target);
809 }
810 return retval;
811 }
812
813 /*
814 * Cortex-A Run control
815 */
816
817 static int cortex_a_poll(struct target *target)
818 {
819 int retval = ERROR_OK;
820 uint32_t dscr;
821 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
822 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
823 enum target_state prev_target_state = target->state;
824 /* toggle to another core is done by gdb as follow */
825 /* maint packet J core_id */
826 /* continue */
827 /* the next polling trigger an halt event sent to gdb */
828 if ((target->state == TARGET_HALTED) && (target->smp) &&
829 (target->gdb_service) &&
830 (target->gdb_service->target == NULL)) {
831 target->gdb_service->target =
832 get_cortex_a(target, target->gdb_service->core[1]);
833 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
834 return retval;
835 }
836 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
837 armv7a->debug_base + CPUDBG_DSCR, &dscr);
838 if (retval != ERROR_OK)
839 return retval;
840 cortex_a->cpudbg_dscr = dscr;
841
842 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
843 if (prev_target_state != TARGET_HALTED) {
844 /* We have a halting debug event */
845 LOG_DEBUG("Target halted");
846 target->state = TARGET_HALTED;
847 if ((prev_target_state == TARGET_RUNNING)
848 || (prev_target_state == TARGET_UNKNOWN)
849 || (prev_target_state == TARGET_RESET)) {
850 retval = cortex_a_debug_entry(target);
851 if (retval != ERROR_OK)
852 return retval;
853 if (target->smp) {
854 retval = update_halt_gdb(target);
855 if (retval != ERROR_OK)
856 return retval;
857 }
858
859 if (arm_semihosting(target, &retval) != 0)
860 return retval;
861
862 target_call_event_callbacks(target,
863 TARGET_EVENT_HALTED);
864 }
865 if (prev_target_state == TARGET_DEBUG_RUNNING) {
866 LOG_DEBUG(" ");
867
868 retval = cortex_a_debug_entry(target);
869 if (retval != ERROR_OK)
870 return retval;
871 if (target->smp) {
872 retval = update_halt_gdb(target);
873 if (retval != ERROR_OK)
874 return retval;
875 }
876
877 target_call_event_callbacks(target,
878 TARGET_EVENT_DEBUG_HALTED);
879 }
880 }
881 } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
882 target->state = TARGET_RUNNING;
883 else {
884 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
885 target->state = TARGET_UNKNOWN;
886 }
887
888 return retval;
889 }
890
891 static int cortex_a_halt(struct target *target)
892 {
893 int retval = ERROR_OK;
894 uint32_t dscr;
895 struct armv7a_common *armv7a = target_to_armv7a(target);
896
897 /*
898 * Tell the core to be halted by writing DRCR with 0x1
899 * and then wait for the core to be halted.
900 */
901 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
902 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
903 if (retval != ERROR_OK)
904 return retval;
905
906 /*
907 * enter halting debug mode
908 */
909 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
910 armv7a->debug_base + CPUDBG_DSCR, &dscr);
911 if (retval != ERROR_OK)
912 return retval;
913
914 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
915 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
916 if (retval != ERROR_OK)
917 return retval;
918
919 int64_t then = timeval_ms();
920 for (;; ) {
921 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
922 armv7a->debug_base + CPUDBG_DSCR, &dscr);
923 if (retval != ERROR_OK)
924 return retval;
925 if ((dscr & DSCR_CORE_HALTED) != 0)
926 break;
927 if (timeval_ms() > then + 1000) {
928 LOG_ERROR("Timeout waiting for halt");
929 return ERROR_FAIL;
930 }
931 }
932
933 target->debug_reason = DBG_REASON_DBGRQ;
934
935 return ERROR_OK;
936 }
937
938 static int cortex_a_internal_restore(struct target *target, int current,
939 uint32_t *address, int handle_breakpoints, int debug_execution)
940 {
941 struct armv7a_common *armv7a = target_to_armv7a(target);
942 struct arm *arm = &armv7a->arm;
943 int retval;
944 uint32_t resume_pc;
945
946 if (!debug_execution)
947 target_free_all_working_areas(target);
948
949 #if 0
950 if (debug_execution) {
951 /* Disable interrupts */
952 /* We disable interrupts in the PRIMASK register instead of
953 * masking with C_MASKINTS,
954 * This is probably the same issue as Cortex-M3 Errata 377493:
955 * C_MASKINTS in parallel with disabled interrupts can cause
956 * local faults to not be taken. */
957 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
958 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
959 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
960
961 /* Make sure we are in Thumb mode */
962 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
963 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
964 32) | (1 << 24));
965 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
966 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
967 }
968 #endif
969
970 /* current = 1: continue on current pc, otherwise continue at <address> */
971 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
972 if (!current)
973 resume_pc = *address;
974 else
975 *address = resume_pc;
976
977 /* Make sure that the Armv7 gdb thumb fixups does not
978 * kill the return address
979 */
980 switch (arm->core_state) {
981 case ARM_STATE_ARM:
982 resume_pc &= 0xFFFFFFFC;
983 break;
984 case ARM_STATE_THUMB:
985 case ARM_STATE_THUMB_EE:
986 /* When the return address is loaded into PC
987 * bit 0 must be 1 to stay in Thumb state
988 */
989 resume_pc |= 0x1;
990 break;
991 case ARM_STATE_JAZELLE:
992 LOG_ERROR("How do I resume into Jazelle state??");
993 return ERROR_FAIL;
994 }
995 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
996 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
997 arm->pc->dirty = 1;
998 arm->pc->valid = 1;
999
1000 /* restore dpm_mode at system halt */
1001 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1002 /* called it now before restoring context because it uses cpu
1003 * register r0 for restoring cp15 control register */
1004 retval = cortex_a_restore_cp15_control_reg(target);
1005 if (retval != ERROR_OK)
1006 return retval;
1007 retval = cortex_a_restore_context(target, handle_breakpoints);
1008 if (retval != ERROR_OK)
1009 return retval;
1010 target->debug_reason = DBG_REASON_NOTHALTED;
1011 target->state = TARGET_RUNNING;
1012
1013 /* registers are now invalid */
1014 register_cache_invalidate(arm->core_cache);
1015
1016 #if 0
1017 /* the front-end may request us not to handle breakpoints */
1018 if (handle_breakpoints) {
1019 /* Single step past breakpoint at current address */
1020 breakpoint = breakpoint_find(target, resume_pc);
1021 if (breakpoint) {
1022 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1023 cortex_m3_unset_breakpoint(target, breakpoint);
1024 cortex_m3_single_step_core(target);
1025 cortex_m3_set_breakpoint(target, breakpoint);
1026 }
1027 }
1028
1029 #endif
1030 return retval;
1031 }
1032
1033 static int cortex_a_internal_restart(struct target *target)
1034 {
1035 struct armv7a_common *armv7a = target_to_armv7a(target);
1036 struct arm *arm = &armv7a->arm;
1037 int retval;
1038 uint32_t dscr;
1039 /*
1040 * * Restart core and wait for it to be started. Clear ITRen and sticky
1041 * * exception flags: see ARMv7 ARM, C5.9.
1042 *
1043 * REVISIT: for single stepping, we probably want to
1044 * disable IRQs by default, with optional override...
1045 */
1046
1047 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1048 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1049 if (retval != ERROR_OK)
1050 return retval;
1051
1052 if ((dscr & DSCR_INSTR_COMP) == 0)
1053 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1054
1055 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1056 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1057 if (retval != ERROR_OK)
1058 return retval;
1059
1060 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1061 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1062 DRCR_CLEAR_EXCEPTIONS);
1063 if (retval != ERROR_OK)
1064 return retval;
1065
1066 int64_t then = timeval_ms();
1067 for (;; ) {
1068 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1069 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1070 if (retval != ERROR_OK)
1071 return retval;
1072 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1073 break;
1074 if (timeval_ms() > then + 1000) {
1075 LOG_ERROR("Timeout waiting for resume");
1076 return ERROR_FAIL;
1077 }
1078 }
1079
1080 target->debug_reason = DBG_REASON_NOTHALTED;
1081 target->state = TARGET_RUNNING;
1082
1083 /* registers are now invalid */
1084 register_cache_invalidate(arm->core_cache);
1085
1086 return ERROR_OK;
1087 }
1088
1089 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1090 {
1091 int retval = 0;
1092 struct target_list *head;
1093 struct target *curr;
1094 uint32_t address;
1095 head = target->head;
1096 while (head != (struct target_list *)NULL) {
1097 curr = head->target;
1098 if ((curr != target) && (curr->state != TARGET_RUNNING)
1099 && target_was_examined(curr)) {
1100 /* resume current address , not in step mode */
1101 retval += cortex_a_internal_restore(curr, 1, &address,
1102 handle_breakpoints, 0);
1103 retval += cortex_a_internal_restart(curr);
1104 }
1105 head = head->next;
1106
1107 }
1108 return retval;
1109 }
1110
1111 static int cortex_a_resume(struct target *target, int current,
1112 uint32_t address, int handle_breakpoints, int debug_execution)
1113 {
1114 int retval = 0;
1115 /* dummy resume for smp toggle in order to reduce gdb impact */
1116 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1117 /* simulate a start and halt of target */
1118 target->gdb_service->target = NULL;
1119 target->gdb_service->core[0] = target->gdb_service->core[1];
1120 /* fake resume at next poll we play the target core[1], see poll*/
1121 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1122 return 0;
1123 }
1124 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1125 if (target->smp) {
1126 target->gdb_service->core[0] = -1;
1127 retval = cortex_a_restore_smp(target, handle_breakpoints);
1128 if (retval != ERROR_OK)
1129 return retval;
1130 }
1131 cortex_a_internal_restart(target);
1132
1133 if (!debug_execution) {
1134 target->state = TARGET_RUNNING;
1135 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1136 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1137 } else {
1138 target->state = TARGET_DEBUG_RUNNING;
1139 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1140 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1141 }
1142
1143 return ERROR_OK;
1144 }
1145
1146 static int cortex_a_debug_entry(struct target *target)
1147 {
1148 int i;
1149 uint32_t regfile[16], cpsr, spsr, dscr;
1150 int retval = ERROR_OK;
1151 struct working_area *regfile_working_area = NULL;
1152 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1153 struct armv7a_common *armv7a = target_to_armv7a(target);
1154 struct arm *arm = &armv7a->arm;
1155 struct reg *reg;
1156
1157 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1158
1159 /* REVISIT surely we should not re-read DSCR !! */
1160 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1161 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1162 if (retval != ERROR_OK)
1163 return retval;
1164
1165 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1166 * imprecise data aborts get discarded by issuing a Data
1167 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1168 */
1169
1170 /* Enable the ITR execution once we are in debug mode */
1171 dscr |= DSCR_ITR_EN;
1172 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1173 armv7a->debug_base + CPUDBG_DSCR, dscr);
1174 if (retval != ERROR_OK)
1175 return retval;
1176
1177 /* Examine debug reason */
1178 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1179
1180 /* save address of instruction that triggered the watchpoint? */
1181 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1182 uint32_t wfar;
1183
1184 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1185 armv7a->debug_base + CPUDBG_WFAR,
1186 &wfar);
1187 if (retval != ERROR_OK)
1188 return retval;
1189 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1190 }
1191
1192 /* REVISIT fast_reg_read is never set ... */
1193
1194 /* Examine target state and mode */
1195 if (cortex_a->fast_reg_read)
1196 target_alloc_working_area(target, 64, &regfile_working_area);
1197
1198
1199 /* First load register acessible through core debug port*/
1200 if (!regfile_working_area)
1201 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1202 else {
1203 retval = cortex_a_read_regs_through_mem(target,
1204 regfile_working_area->address, regfile);
1205
1206 target_free_working_area(target, regfile_working_area);
1207 if (retval != ERROR_OK)
1208 return retval;
1209
1210 /* read Current PSR */
1211 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1212 /* store current cpsr */
1213 if (retval != ERROR_OK)
1214 return retval;
1215
1216 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1217
1218 arm_set_cpsr(arm, cpsr);
1219
1220 /* update cache */
1221 for (i = 0; i <= ARM_PC; i++) {
1222 reg = arm_reg_current(arm, i);
1223
1224 buf_set_u32(reg->value, 0, 32, regfile[i]);
1225 reg->valid = 1;
1226 reg->dirty = 0;
1227 }
1228
1229 /* Fixup PC Resume Address */
1230 if (cpsr & (1 << 5)) {
1231 /* T bit set for Thumb or ThumbEE state */
1232 regfile[ARM_PC] -= 4;
1233 } else {
1234 /* ARM state */
1235 regfile[ARM_PC] -= 8;
1236 }
1237
1238 reg = arm->pc;
1239 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1240 reg->dirty = reg->valid;
1241 }
1242
1243 /* read Saved PSR */
1244 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1245 /* store current spsr */
1246 if (retval != ERROR_OK)
1247 return retval;
1248
1249 reg = arm->spsr;
1250 buf_set_u32(reg->value, 0, 32, spsr);
1251 reg->valid = 1;
1252 reg->dirty = 0;
1253
1254 #if 0
1255 /* TODO, Move this */
1256 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1257 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1258 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1259
1260 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1261 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1262
1263 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1264 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1265 #endif
1266
1267 /* Are we in an exception handler */
1268 /* armv4_5->exception_number = 0; */
1269 if (armv7a->post_debug_entry) {
1270 retval = armv7a->post_debug_entry(target);
1271 if (retval != ERROR_OK)
1272 return retval;
1273 }
1274
1275 return retval;
1276 }
1277
1278 static int cortex_a_post_debug_entry(struct target *target)
1279 {
1280 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1281 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1282 int retval;
1283
1284 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1285 retval = armv7a->arm.mrc(target, 15,
1286 0, 0, /* op1, op2 */
1287 1, 0, /* CRn, CRm */
1288 &cortex_a->cp15_control_reg);
1289 if (retval != ERROR_OK)
1290 return retval;
1291 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1292 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1293
1294 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1295 armv7a_identify_cache(target);
1296
1297 if (armv7a->is_armv7r) {
1298 armv7a->armv7a_mmu.mmu_enabled = 0;
1299 } else {
1300 armv7a->armv7a_mmu.mmu_enabled =
1301 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1302 }
1303 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1304 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1305 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1306 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1307 cortex_a->curr_mode = armv7a->arm.core_mode;
1308
1309 /* switch to SVC mode to read DACR */
1310 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1311 armv7a->arm.mrc(target, 15,
1312 0, 0, 3, 0,
1313 &cortex_a->cp15_dacr_reg);
1314
1315 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1316 cortex_a->cp15_dacr_reg);
1317
1318 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1319 return ERROR_OK;
1320 }
1321
1322 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1323 {
1324 struct armv7a_common *armv7a = target_to_armv7a(target);
1325 uint32_t dscr;
1326
1327 /* Read DSCR */
1328 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1329 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1330 if (ERROR_OK != retval)
1331 return retval;
1332
1333 /* clear bitfield */
1334 dscr &= ~bit_mask;
1335 /* put new value */
1336 dscr |= value & bit_mask;
1337
1338 /* write new DSCR */
1339 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1340 armv7a->debug_base + CPUDBG_DSCR, dscr);
1341 return retval;
1342 }
1343
1344 static int cortex_a_step(struct target *target, int current, uint32_t address,
1345 int handle_breakpoints)
1346 {
1347 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1348 struct armv7a_common *armv7a = target_to_armv7a(target);
1349 struct arm *arm = &armv7a->arm;
1350 struct breakpoint *breakpoint = NULL;
1351 struct breakpoint stepbreakpoint;
1352 struct reg *r;
1353 int retval;
1354
1355 if (target->state != TARGET_HALTED) {
1356 LOG_WARNING("target not halted");
1357 return ERROR_TARGET_NOT_HALTED;
1358 }
1359
1360 /* current = 1: continue on current pc, otherwise continue at <address> */
1361 r = arm->pc;
1362 if (!current)
1363 buf_set_u32(r->value, 0, 32, address);
1364 else
1365 address = buf_get_u32(r->value, 0, 32);
1366
1367 /* The front-end may request us not to handle breakpoints.
1368 * But since Cortex-A uses breakpoint for single step,
1369 * we MUST handle breakpoints.
1370 */
1371 handle_breakpoints = 1;
1372 if (handle_breakpoints) {
1373 breakpoint = breakpoint_find(target, address);
1374 if (breakpoint)
1375 cortex_a_unset_breakpoint(target, breakpoint);
1376 }
1377
1378 /* Setup single step breakpoint */
1379 stepbreakpoint.address = address;
1380 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1381 ? 2 : 4;
1382 stepbreakpoint.type = BKPT_HARD;
1383 stepbreakpoint.set = 0;
1384
1385 /* Disable interrupts during single step if requested */
1386 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1387 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1388 if (ERROR_OK != retval)
1389 return retval;
1390 }
1391
1392 /* Break on IVA mismatch */
1393 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1394
1395 target->debug_reason = DBG_REASON_SINGLESTEP;
1396
1397 retval = cortex_a_resume(target, 1, address, 0, 0);
1398 if (retval != ERROR_OK)
1399 return retval;
1400
1401 int64_t then = timeval_ms();
1402 while (target->state != TARGET_HALTED) {
1403 retval = cortex_a_poll(target);
1404 if (retval != ERROR_OK)
1405 return retval;
1406 if (timeval_ms() > then + 1000) {
1407 LOG_ERROR("timeout waiting for target halt");
1408 return ERROR_FAIL;
1409 }
1410 }
1411
1412 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1413
1414 /* Re-enable interrupts if they were disabled */
1415 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1416 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1417 if (ERROR_OK != retval)
1418 return retval;
1419 }
1420
1421
1422 target->debug_reason = DBG_REASON_BREAKPOINT;
1423
1424 if (breakpoint)
1425 cortex_a_set_breakpoint(target, breakpoint, 0);
1426
1427 if (target->state != TARGET_HALTED)
1428 LOG_DEBUG("target stepped");
1429
1430 return ERROR_OK;
1431 }
1432
1433 static int cortex_a_restore_context(struct target *target, bool bpwp)
1434 {
1435 struct armv7a_common *armv7a = target_to_armv7a(target);
1436
1437 LOG_DEBUG(" ");
1438
1439 if (armv7a->pre_restore_context)
1440 armv7a->pre_restore_context(target);
1441
1442 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1443 }
1444
1445 /*
1446 * Cortex-A Breakpoint and watchpoint functions
1447 */
1448
1449 /* Setup hardware Breakpoint Register Pair */
1450 static int cortex_a_set_breakpoint(struct target *target,
1451 struct breakpoint *breakpoint, uint8_t matchmode)
1452 {
1453 int retval;
1454 int brp_i = 0;
1455 uint32_t control;
1456 uint8_t byte_addr_select = 0x0F;
1457 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1458 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1459 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1460
1461 if (breakpoint->set) {
1462 LOG_WARNING("breakpoint already set");
1463 return ERROR_OK;
1464 }
1465
1466 if (breakpoint->type == BKPT_HARD) {
1467 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1468 brp_i++;
1469 if (brp_i >= cortex_a->brp_num) {
1470 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1471 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1472 }
1473 breakpoint->set = brp_i + 1;
1474 if (breakpoint->length == 2)
1475 byte_addr_select = (3 << (breakpoint->address & 0x02));
1476 control = ((matchmode & 0x7) << 20)
1477 | (byte_addr_select << 5)
1478 | (3 << 1) | 1;
1479 brp_list[brp_i].used = 1;
1480 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1481 brp_list[brp_i].control = control;
1482 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1483 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1484 brp_list[brp_i].value);
1485 if (retval != ERROR_OK)
1486 return retval;
1487 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1488 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1489 brp_list[brp_i].control);
1490 if (retval != ERROR_OK)
1491 return retval;
1492 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1493 brp_list[brp_i].control,
1494 brp_list[brp_i].value);
1495 } else if (breakpoint->type == BKPT_SOFT) {
1496 uint8_t code[4];
1497 if (breakpoint->length == 2)
1498 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1499 else
1500 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1501 retval = target_read_memory(target,
1502 breakpoint->address & 0xFFFFFFFE,
1503 breakpoint->length, 1,
1504 breakpoint->orig_instr);
1505 if (retval != ERROR_OK)
1506 return retval;
1507
1508 /* make sure data cache is cleaned & invalidated down to PoC */
1509 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1510 armv7a_cache_flush_virt(target, breakpoint->address,
1511 breakpoint->length);
1512 }
1513
1514 retval = target_write_memory(target,
1515 breakpoint->address & 0xFFFFFFFE,
1516 breakpoint->length, 1, code);
1517 if (retval != ERROR_OK)
1518 return retval;
1519
1520 /* update i-cache at breakpoint location */
1521 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1522 breakpoint->length);
1523 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1524 breakpoint->length);
1525
1526 breakpoint->set = 0x11; /* Any nice value but 0 */
1527 }
1528
1529 return ERROR_OK;
1530 }
1531
1532 static int cortex_a_set_context_breakpoint(struct target *target,
1533 struct breakpoint *breakpoint, uint8_t matchmode)
1534 {
1535 int retval = ERROR_FAIL;
1536 int brp_i = 0;
1537 uint32_t control;
1538 uint8_t byte_addr_select = 0x0F;
1539 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1540 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1541 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1542
1543 if (breakpoint->set) {
1544 LOG_WARNING("breakpoint already set");
1545 return retval;
1546 }
1547 /*check available context BRPs*/
1548 while ((brp_list[brp_i].used ||
1549 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1550 brp_i++;
1551
1552 if (brp_i >= cortex_a->brp_num) {
1553 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1554 return ERROR_FAIL;
1555 }
1556
1557 breakpoint->set = brp_i + 1;
1558 control = ((matchmode & 0x7) << 20)
1559 | (byte_addr_select << 5)
1560 | (3 << 1) | 1;
1561 brp_list[brp_i].used = 1;
1562 brp_list[brp_i].value = (breakpoint->asid);
1563 brp_list[brp_i].control = control;
1564 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1565 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1566 brp_list[brp_i].value);
1567 if (retval != ERROR_OK)
1568 return retval;
1569 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1570 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1571 brp_list[brp_i].control);
1572 if (retval != ERROR_OK)
1573 return retval;
1574 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1575 brp_list[brp_i].control,
1576 brp_list[brp_i].value);
1577 return ERROR_OK;
1578
1579 }
1580
1581 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1582 {
1583 int retval = ERROR_FAIL;
1584 int brp_1 = 0; /* holds the contextID pair */
1585 int brp_2 = 0; /* holds the IVA pair */
1586 uint32_t control_CTX, control_IVA;
1587 uint8_t CTX_byte_addr_select = 0x0F;
1588 uint8_t IVA_byte_addr_select = 0x0F;
1589 uint8_t CTX_machmode = 0x03;
1590 uint8_t IVA_machmode = 0x01;
1591 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1592 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1593 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1594
1595 if (breakpoint->set) {
1596 LOG_WARNING("breakpoint already set");
1597 return retval;
1598 }
1599 /*check available context BRPs*/
1600 while ((brp_list[brp_1].used ||
1601 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1602 brp_1++;
1603
1604 printf("brp(CTX) found num: %d\n", brp_1);
1605 if (brp_1 >= cortex_a->brp_num) {
1606 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1607 return ERROR_FAIL;
1608 }
1609
1610 while ((brp_list[brp_2].used ||
1611 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1612 brp_2++;
1613
1614 printf("brp(IVA) found num: %d\n", brp_2);
1615 if (brp_2 >= cortex_a->brp_num) {
1616 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1617 return ERROR_FAIL;
1618 }
1619
1620 breakpoint->set = brp_1 + 1;
1621 breakpoint->linked_BRP = brp_2;
1622 control_CTX = ((CTX_machmode & 0x7) << 20)
1623 | (brp_2 << 16)
1624 | (0 << 14)
1625 | (CTX_byte_addr_select << 5)
1626 | (3 << 1) | 1;
1627 brp_list[brp_1].used = 1;
1628 brp_list[brp_1].value = (breakpoint->asid);
1629 brp_list[brp_1].control = control_CTX;
1630 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1631 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1632 brp_list[brp_1].value);
1633 if (retval != ERROR_OK)
1634 return retval;
1635 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1636 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1637 brp_list[brp_1].control);
1638 if (retval != ERROR_OK)
1639 return retval;
1640
1641 control_IVA = ((IVA_machmode & 0x7) << 20)
1642 | (brp_1 << 16)
1643 | (IVA_byte_addr_select << 5)
1644 | (3 << 1) | 1;
1645 brp_list[brp_2].used = 1;
1646 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1647 brp_list[brp_2].control = control_IVA;
1648 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1649 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1650 brp_list[brp_2].value);
1651 if (retval != ERROR_OK)
1652 return retval;
1653 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1654 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1655 brp_list[brp_2].control);
1656 if (retval != ERROR_OK)
1657 return retval;
1658
1659 return ERROR_OK;
1660 }
1661
1662 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1663 {
1664 int retval;
1665 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1666 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1667 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1668
1669 if (!breakpoint->set) {
1670 LOG_WARNING("breakpoint not set");
1671 return ERROR_OK;
1672 }
1673
1674 if (breakpoint->type == BKPT_HARD) {
1675 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1676 int brp_i = breakpoint->set - 1;
1677 int brp_j = breakpoint->linked_BRP;
1678 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1679 LOG_DEBUG("Invalid BRP number in breakpoint");
1680 return ERROR_OK;
1681 }
1682 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1683 brp_list[brp_i].control, brp_list[brp_i].value);
1684 brp_list[brp_i].used = 0;
1685 brp_list[brp_i].value = 0;
1686 brp_list[brp_i].control = 0;
1687 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1688 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1689 brp_list[brp_i].control);
1690 if (retval != ERROR_OK)
1691 return retval;
1692 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1693 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1694 brp_list[brp_i].value);
1695 if (retval != ERROR_OK)
1696 return retval;
1697 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1698 LOG_DEBUG("Invalid BRP number in breakpoint");
1699 return ERROR_OK;
1700 }
1701 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1702 brp_list[brp_j].control, brp_list[brp_j].value);
1703 brp_list[brp_j].used = 0;
1704 brp_list[brp_j].value = 0;
1705 brp_list[brp_j].control = 0;
1706 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1707 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1708 brp_list[brp_j].control);
1709 if (retval != ERROR_OK)
1710 return retval;
1711 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1712 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1713 brp_list[brp_j].value);
1714 if (retval != ERROR_OK)
1715 return retval;
1716 breakpoint->linked_BRP = 0;
1717 breakpoint->set = 0;
1718 return ERROR_OK;
1719
1720 } else {
1721 int brp_i = breakpoint->set - 1;
1722 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1723 LOG_DEBUG("Invalid BRP number in breakpoint");
1724 return ERROR_OK;
1725 }
1726 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1727 brp_list[brp_i].control, brp_list[brp_i].value);
1728 brp_list[brp_i].used = 0;
1729 brp_list[brp_i].value = 0;
1730 brp_list[brp_i].control = 0;
1731 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1732 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1733 brp_list[brp_i].control);
1734 if (retval != ERROR_OK)
1735 return retval;
1736 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1737 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1738 brp_list[brp_i].value);
1739 if (retval != ERROR_OK)
1740 return retval;
1741 breakpoint->set = 0;
1742 return ERROR_OK;
1743 }
1744 } else {
1745
1746 /* make sure data cache is cleaned & invalidated down to PoC */
1747 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1748 armv7a_cache_flush_virt(target, breakpoint->address,
1749 breakpoint->length);
1750 }
1751
1752 /* restore original instruction (kept in target endianness) */
1753 if (breakpoint->length == 4) {
1754 retval = target_write_memory(target,
1755 breakpoint->address & 0xFFFFFFFE,
1756 4, 1, breakpoint->orig_instr);
1757 if (retval != ERROR_OK)
1758 return retval;
1759 } else {
1760 retval = target_write_memory(target,
1761 breakpoint->address & 0xFFFFFFFE,
1762 2, 1, breakpoint->orig_instr);
1763 if (retval != ERROR_OK)
1764 return retval;
1765 }
1766
1767 /* update i-cache at breakpoint location */
1768 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1769 breakpoint->length);
1770 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1771 breakpoint->length);
1772 }
1773 breakpoint->set = 0;
1774
1775 return ERROR_OK;
1776 }
1777
1778 static int cortex_a_add_breakpoint(struct target *target,
1779 struct breakpoint *breakpoint)
1780 {
1781 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1782
1783 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1784 LOG_INFO("no hardware breakpoint available");
1785 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1786 }
1787
1788 if (breakpoint->type == BKPT_HARD)
1789 cortex_a->brp_num_available--;
1790
1791 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1792 }
1793
1794 static int cortex_a_add_context_breakpoint(struct target *target,
1795 struct breakpoint *breakpoint)
1796 {
1797 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1798
1799 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1800 LOG_INFO("no hardware breakpoint available");
1801 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1802 }
1803
1804 if (breakpoint->type == BKPT_HARD)
1805 cortex_a->brp_num_available--;
1806
1807 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1808 }
1809
1810 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1811 struct breakpoint *breakpoint)
1812 {
1813 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1814
1815 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1816 LOG_INFO("no hardware breakpoint available");
1817 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1818 }
1819
1820 if (breakpoint->type == BKPT_HARD)
1821 cortex_a->brp_num_available--;
1822
1823 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1824 }
1825
1826
1827 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1828 {
1829 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1830
1831 #if 0
1832 /* It is perfectly possible to remove breakpoints while the target is running */
1833 if (target->state != TARGET_HALTED) {
1834 LOG_WARNING("target not halted");
1835 return ERROR_TARGET_NOT_HALTED;
1836 }
1837 #endif
1838
1839 if (breakpoint->set) {
1840 cortex_a_unset_breakpoint(target, breakpoint);
1841 if (breakpoint->type == BKPT_HARD)
1842 cortex_a->brp_num_available++;
1843 }
1844
1845
1846 return ERROR_OK;
1847 }
1848
1849 /*
1850 * Cortex-A Reset functions
1851 */
1852
1853 static int cortex_a_assert_reset(struct target *target)
1854 {
1855 struct armv7a_common *armv7a = target_to_armv7a(target);
1856
1857 LOG_DEBUG(" ");
1858
1859 /* FIXME when halt is requested, make it work somehow... */
1860
1861 /* This function can be called in "target not examined" state */
1862
1863 /* Issue some kind of warm reset. */
1864 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1865 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1866 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1867 /* REVISIT handle "pulls" cases, if there's
1868 * hardware that needs them to work.
1869 */
1870 if (target->reset_halt)
1871 if (jtag_get_reset_config() & RESET_SRST_NO_GATING)
1872 jtag_add_reset(0, 1);
1873 } else {
1874 LOG_ERROR("%s: how to reset?", target_name(target));
1875 return ERROR_FAIL;
1876 }
1877
1878 /* registers are now invalid */
1879 if (target_was_examined(target))
1880 register_cache_invalidate(armv7a->arm.core_cache);
1881
1882 target->state = TARGET_RESET;
1883
1884 return ERROR_OK;
1885 }
1886
1887 static int cortex_a_deassert_reset(struct target *target)
1888 {
1889 int retval;
1890
1891 LOG_DEBUG(" ");
1892
1893 /* be certain SRST is off */
1894 jtag_add_reset(0, 0);
1895
1896 if (target_was_examined(target)) {
1897 retval = cortex_a_poll(target);
1898 if (retval != ERROR_OK)
1899 return retval;
1900 }
1901
1902 if (target->reset_halt) {
1903 if (target->state != TARGET_HALTED) {
1904 LOG_WARNING("%s: ran after reset and before halt ...",
1905 target_name(target));
1906 if (target_was_examined(target)) {
1907 retval = target_halt(target);
1908 if (retval != ERROR_OK)
1909 return retval;
1910 } else
1911 target->state = TARGET_UNKNOWN;
1912 }
1913 }
1914
1915 return ERROR_OK;
1916 }
1917
1918 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1919 {
1920 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1921 * New desired mode must be in mode. Current value of DSCR must be in
1922 * *dscr, which is updated with new value.
1923 *
1924 * This function elides actually sending the mode-change over the debug
1925 * interface if the mode is already set as desired.
1926 */
1927 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1928 if (new_dscr != *dscr) {
1929 struct armv7a_common *armv7a = target_to_armv7a(target);
1930 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1931 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1932 if (retval == ERROR_OK)
1933 *dscr = new_dscr;
1934 return retval;
1935 } else {
1936 return ERROR_OK;
1937 }
1938 }
1939
1940 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1941 uint32_t value, uint32_t *dscr)
1942 {
1943 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1944 struct armv7a_common *armv7a = target_to_armv7a(target);
1945 int64_t then = timeval_ms();
1946 int retval;
1947
1948 while ((*dscr & mask) != value) {
1949 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1950 armv7a->debug_base + CPUDBG_DSCR, dscr);
1951 if (retval != ERROR_OK)
1952 return retval;
1953 if (timeval_ms() > then + 1000) {
1954 LOG_ERROR("timeout waiting for DSCR bit change");
1955 return ERROR_FAIL;
1956 }
1957 }
1958 return ERROR_OK;
1959 }
1960
1961 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1962 uint32_t *data, uint32_t *dscr)
1963 {
1964 int retval;
1965 struct armv7a_common *armv7a = target_to_armv7a(target);
1966
1967 /* Move from coprocessor to R0. */
1968 retval = cortex_a_exec_opcode(target, opcode, dscr);
1969 if (retval != ERROR_OK)
1970 return retval;
1971
1972 /* Move from R0 to DTRTX. */
1973 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1974 if (retval != ERROR_OK)
1975 return retval;
1976
1977 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1978 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1979 * must also check TXfull_l). Most of the time this will be free
1980 * because TXfull_l will be set immediately and cached in dscr. */
1981 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1982 DSCR_DTRTX_FULL_LATCHED, dscr);
1983 if (retval != ERROR_OK)
1984 return retval;
1985
1986 /* Read the value transferred to DTRTX. */
1987 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1988 armv7a->debug_base + CPUDBG_DTRTX, data);
1989 if (retval != ERROR_OK)
1990 return retval;
1991
1992 return ERROR_OK;
1993 }
1994
1995 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1996 uint32_t *dfsr, uint32_t *dscr)
1997 {
1998 int retval;
1999
2000 if (dfar) {
2001 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2002 if (retval != ERROR_OK)
2003 return retval;
2004 }
2005
2006 if (dfsr) {
2007 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2008 if (retval != ERROR_OK)
2009 return retval;
2010 }
2011
2012 return ERROR_OK;
2013 }
2014
2015 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2016 uint32_t data, uint32_t *dscr)
2017 {
2018 int retval;
2019 struct armv7a_common *armv7a = target_to_armv7a(target);
2020
2021 /* Write the value into DTRRX. */
2022 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2023 armv7a->debug_base + CPUDBG_DTRRX, data);
2024 if (retval != ERROR_OK)
2025 return retval;
2026
2027 /* Move from DTRRX to R0. */
2028 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2029 if (retval != ERROR_OK)
2030 return retval;
2031
2032 /* Move from R0 to coprocessor. */
2033 retval = cortex_a_exec_opcode(target, opcode, dscr);
2034 if (retval != ERROR_OK)
2035 return retval;
2036
2037 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2038 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2039 * check RXfull_l). Most of the time this will be free because RXfull_l
2040 * will be cleared immediately and cached in dscr. */
2041 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2042 if (retval != ERROR_OK)
2043 return retval;
2044
2045 return ERROR_OK;
2046 }
2047
2048 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2049 uint32_t dfsr, uint32_t *dscr)
2050 {
2051 int retval;
2052
2053 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2054 if (retval != ERROR_OK)
2055 return retval;
2056
2057 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2058 if (retval != ERROR_OK)
2059 return retval;
2060
2061 return ERROR_OK;
2062 }
2063
2064 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2065 {
2066 uint32_t status, upper4;
2067
2068 if (dfsr & (1 << 9)) {
2069 /* LPAE format. */
2070 status = dfsr & 0x3f;
2071 upper4 = status >> 2;
2072 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2073 return ERROR_TARGET_TRANSLATION_FAULT;
2074 else if (status == 33)
2075 return ERROR_TARGET_UNALIGNED_ACCESS;
2076 else
2077 return ERROR_TARGET_DATA_ABORT;
2078 } else {
2079 /* Normal format. */
2080 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2081 if (status == 1)
2082 return ERROR_TARGET_UNALIGNED_ACCESS;
2083 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2084 status == 9 || status == 11 || status == 13 || status == 15)
2085 return ERROR_TARGET_TRANSLATION_FAULT;
2086 else
2087 return ERROR_TARGET_DATA_ABORT;
2088 }
2089 }
2090
2091 static int cortex_a_write_cpu_memory_slow(struct target *target,
2092 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2093 {
2094 /* Writes count objects of size size from *buffer. Old value of DSCR must
2095 * be in *dscr; updated to new value. This is slow because it works for
2096 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2097 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2098 * preferred.
2099 * Preconditions:
2100 * - Address is in R0.
2101 * - R0 is marked dirty.
2102 */
2103 struct armv7a_common *armv7a = target_to_armv7a(target);
2104 struct arm *arm = &armv7a->arm;
2105 int retval;
2106
2107 /* Mark register R1 as dirty, to use for transferring data. */
2108 arm_reg_current(arm, 1)->dirty = true;
2109
2110 /* Switch to non-blocking mode if not already in that mode. */
2111 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2112 if (retval != ERROR_OK)
2113 return retval;
2114
2115 /* Go through the objects. */
2116 while (count) {
2117 /* Write the value to store into DTRRX. */
2118 uint32_t data, opcode;
2119 if (size == 1)
2120 data = *buffer;
2121 else if (size == 2)
2122 data = target_buffer_get_u16(target, buffer);
2123 else
2124 data = target_buffer_get_u32(target, buffer);
2125 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2126 armv7a->debug_base + CPUDBG_DTRRX, data);
2127 if (retval != ERROR_OK)
2128 return retval;
2129
2130 /* Transfer the value from DTRRX to R1. */
2131 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2132 if (retval != ERROR_OK)
2133 return retval;
2134
2135 /* Write the value transferred to R1 into memory. */
2136 if (size == 1)
2137 opcode = ARMV4_5_STRB_IP(1, 0);
2138 else if (size == 2)
2139 opcode = ARMV4_5_STRH_IP(1, 0);
2140 else
2141 opcode = ARMV4_5_STRW_IP(1, 0);
2142 retval = cortex_a_exec_opcode(target, opcode, dscr);
2143 if (retval != ERROR_OK)
2144 return retval;
2145
2146 /* Check for faults and return early. */
2147 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2148 return ERROR_OK; /* A data fault is not considered a system failure. */
2149
2150 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2151 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2152 * must also check RXfull_l). Most of the time this will be free
2153 * because RXfull_l will be cleared immediately and cached in dscr. */
2154 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2155 if (retval != ERROR_OK)
2156 return retval;
2157
2158 /* Advance. */
2159 buffer += size;
2160 --count;
2161 }
2162
2163 return ERROR_OK;
2164 }
2165
2166 static int cortex_a_write_cpu_memory_fast(struct target *target,
2167 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2168 {
2169 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2170 * in *dscr; updated to new value. This is fast but only works for
2171 * word-sized objects at aligned addresses.
2172 * Preconditions:
2173 * - Address is in R0 and must be a multiple of 4.
2174 * - R0 is marked dirty.
2175 */
2176 struct armv7a_common *armv7a = target_to_armv7a(target);
2177 int retval;
2178
2179 /* Switch to fast mode if not already in that mode. */
2180 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2181 if (retval != ERROR_OK)
2182 return retval;
2183
2184 /* Latch STC instruction. */
2185 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2186 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2187 if (retval != ERROR_OK)
2188 return retval;
2189
2190 /* Transfer all the data and issue all the instructions. */
2191 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2192 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2193 }
2194
2195 static int cortex_a_write_cpu_memory(struct target *target,
2196 uint32_t address, uint32_t size,
2197 uint32_t count, const uint8_t *buffer)
2198 {
2199 /* Write memory through the CPU. */
2200 int retval, final_retval;
2201 struct armv7a_common *armv7a = target_to_armv7a(target);
2202 struct arm *arm = &armv7a->arm;
2203 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2204
2205 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2206 address, size, count);
2207 if (target->state != TARGET_HALTED) {
2208 LOG_WARNING("target not halted");
2209 return ERROR_TARGET_NOT_HALTED;
2210 }
2211
2212 if (!count)
2213 return ERROR_OK;
2214
2215 /* Clear any abort. */
2216 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2217 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2218 if (retval != ERROR_OK)
2219 return retval;
2220
2221 /* Read DSCR. */
2222 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2223 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2224 if (retval != ERROR_OK)
2225 return retval;
2226
2227 /* Switch to non-blocking mode if not already in that mode. */
2228 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2229 if (retval != ERROR_OK)
2230 goto out;
2231
2232 /* Mark R0 as dirty. */
2233 arm_reg_current(arm, 0)->dirty = true;
2234
2235 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2236 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2237 if (retval != ERROR_OK)
2238 goto out;
2239
2240 /* Get the memory address into R0. */
2241 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2242 armv7a->debug_base + CPUDBG_DTRRX, address);
2243 if (retval != ERROR_OK)
2244 goto out;
2245 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2246 if (retval != ERROR_OK)
2247 goto out;
2248
2249 if (size == 4 && (address % 4) == 0) {
2250 /* We are doing a word-aligned transfer, so use fast mode. */
2251 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2252 } else {
2253 /* Use slow path. */
2254 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2255 }
2256
2257 out:
2258 final_retval = retval;
2259
2260 /* Switch to non-blocking mode if not already in that mode. */
2261 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2262 if (final_retval == ERROR_OK)
2263 final_retval = retval;
2264
2265 /* Wait for last issued instruction to complete. */
2266 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2267 if (final_retval == ERROR_OK)
2268 final_retval = retval;
2269
2270 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2271 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2272 * check RXfull_l). Most of the time this will be free because RXfull_l
2273 * will be cleared immediately and cached in dscr. However, don't do this
2274 * if there is fault, because then the instruction might not have completed
2275 * successfully. */
2276 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2277 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2278 if (retval != ERROR_OK)
2279 return retval;
2280 }
2281
2282 /* If there were any sticky abort flags, clear them. */
2283 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2284 fault_dscr = dscr;
2285 mem_ap_write_atomic_u32(armv7a->debug_ap,
2286 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2287 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2288 } else {
2289 fault_dscr = 0;
2290 }
2291
2292 /* Handle synchronous data faults. */
2293 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2294 if (final_retval == ERROR_OK) {
2295 /* Final return value will reflect cause of fault. */
2296 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2297 if (retval == ERROR_OK) {
2298 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2299 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2300 } else
2301 final_retval = retval;
2302 }
2303 /* Fault destroyed DFAR/DFSR; restore them. */
2304 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2305 if (retval != ERROR_OK)
2306 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2307 }
2308
2309 /* Handle asynchronous data faults. */
2310 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2311 if (final_retval == ERROR_OK)
2312 /* No other error has been recorded so far, so keep this one. */
2313 final_retval = ERROR_TARGET_DATA_ABORT;
2314 }
2315
2316 /* If the DCC is nonempty, clear it. */
2317 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2318 uint32_t dummy;
2319 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2320 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2321 if (final_retval == ERROR_OK)
2322 final_retval = retval;
2323 }
2324 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2325 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2326 if (final_retval == ERROR_OK)
2327 final_retval = retval;
2328 }
2329
2330 /* Done. */
2331 return final_retval;
2332 }
2333
2334 static int cortex_a_read_cpu_memory_slow(struct target *target,
2335 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2336 {
2337 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2338 * in *dscr; updated to new value. This is slow because it works for
2339 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2340 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2341 * preferred.
2342 * Preconditions:
2343 * - Address is in R0.
2344 * - R0 is marked dirty.
2345 */
2346 struct armv7a_common *armv7a = target_to_armv7a(target);
2347 struct arm *arm = &armv7a->arm;
2348 int retval;
2349
2350 /* Mark register R1 as dirty, to use for transferring data. */
2351 arm_reg_current(arm, 1)->dirty = true;
2352
2353 /* Switch to non-blocking mode if not already in that mode. */
2354 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2355 if (retval != ERROR_OK)
2356 return retval;
2357
2358 /* Go through the objects. */
2359 while (count) {
2360 /* Issue a load of the appropriate size to R1. */
2361 uint32_t opcode, data;
2362 if (size == 1)
2363 opcode = ARMV4_5_LDRB_IP(1, 0);
2364 else if (size == 2)
2365 opcode = ARMV4_5_LDRH_IP(1, 0);
2366 else
2367 opcode = ARMV4_5_LDRW_IP(1, 0);
2368 retval = cortex_a_exec_opcode(target, opcode, dscr);
2369 if (retval != ERROR_OK)
2370 return retval;
2371
2372 /* Issue a write of R1 to DTRTX. */
2373 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2374 if (retval != ERROR_OK)
2375 return retval;
2376
2377 /* Check for faults and return early. */
2378 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2379 return ERROR_OK; /* A data fault is not considered a system failure. */
2380
2381 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2382 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2383 * must also check TXfull_l). Most of the time this will be free
2384 * because TXfull_l will be set immediately and cached in dscr. */
2385 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2386 DSCR_DTRTX_FULL_LATCHED, dscr);
2387 if (retval != ERROR_OK)
2388 return retval;
2389
2390 /* Read the value transferred to DTRTX into the buffer. */
2391 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2392 armv7a->debug_base + CPUDBG_DTRTX, &data);
2393 if (retval != ERROR_OK)
2394 return retval;
2395 if (size == 1)
2396 *buffer = (uint8_t) data;
2397 else if (size == 2)
2398 target_buffer_set_u16(target, buffer, (uint16_t) data);
2399 else
2400 target_buffer_set_u32(target, buffer, data);
2401
2402 /* Advance. */
2403 buffer += size;
2404 --count;
2405 }
2406
2407 return ERROR_OK;
2408 }
2409
2410 static int cortex_a_read_cpu_memory_fast(struct target *target,
2411 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2412 {
2413 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2414 * *dscr; updated to new value. This is fast but only works for word-sized
2415 * objects at aligned addresses.
2416 * Preconditions:
2417 * - Address is in R0 and must be a multiple of 4.
2418 * - R0 is marked dirty.
2419 */
2420 struct armv7a_common *armv7a = target_to_armv7a(target);
2421 uint32_t u32;
2422 int retval;
2423
2424 /* Switch to non-blocking mode if not already in that mode. */
2425 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2426 if (retval != ERROR_OK)
2427 return retval;
2428
2429 /* Issue the LDC instruction via a write to ITR. */
2430 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2431 if (retval != ERROR_OK)
2432 return retval;
2433
2434 count--;
2435
2436 if (count > 0) {
2437 /* Switch to fast mode if not already in that mode. */
2438 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2439 if (retval != ERROR_OK)
2440 return retval;
2441
2442 /* Latch LDC instruction. */
2443 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2444 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2445 if (retval != ERROR_OK)
2446 return retval;
2447
2448 /* Read the value transferred to DTRTX into the buffer. Due to fast
2449 * mode rules, this blocks until the instruction finishes executing and
2450 * then reissues the read instruction to read the next word from
2451 * memory. The last read of DTRTX in this call reads the second-to-last
2452 * word from memory and issues the read instruction for the last word.
2453 */
2454 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2455 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2456 if (retval != ERROR_OK)
2457 return retval;
2458
2459 /* Advance. */
2460 buffer += count * 4;
2461 }
2462
2463 /* Wait for last issued instruction to complete. */
2464 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2465 if (retval != ERROR_OK)
2466 return retval;
2467
2468 /* Switch to non-blocking mode if not already in that mode. */
2469 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2470 if (retval != ERROR_OK)
2471 return retval;
2472
2473 /* Check for faults and return early. */
2474 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2475 return ERROR_OK; /* A data fault is not considered a system failure. */
2476
2477 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2478 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2479 * check TXfull_l). Most of the time this will be free because TXfull_l
2480 * will be set immediately and cached in dscr. */
2481 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2482 DSCR_DTRTX_FULL_LATCHED, dscr);
2483 if (retval != ERROR_OK)
2484 return retval;
2485
2486 /* Read the value transferred to DTRTX into the buffer. This is the last
2487 * word. */
2488 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2489 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2490 if (retval != ERROR_OK)
2491 return retval;
2492 target_buffer_set_u32(target, buffer, u32);
2493
2494 return ERROR_OK;
2495 }
2496
2497 static int cortex_a_read_cpu_memory(struct target *target,
2498 uint32_t address, uint32_t size,
2499 uint32_t count, uint8_t *buffer)
2500 {
2501 /* Read memory through the CPU. */
2502 int retval, final_retval;
2503 struct armv7a_common *armv7a = target_to_armv7a(target);
2504 struct arm *arm = &armv7a->arm;
2505 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2506
2507 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2508 address, size, count);
2509 if (target->state != TARGET_HALTED) {
2510 LOG_WARNING("target not halted");
2511 return ERROR_TARGET_NOT_HALTED;
2512 }
2513
2514 if (!count)
2515 return ERROR_OK;
2516
2517 /* Clear any abort. */
2518 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2519 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2520 if (retval != ERROR_OK)
2521 return retval;
2522
2523 /* Read DSCR */
2524 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2525 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2526 if (retval != ERROR_OK)
2527 return retval;
2528
2529 /* Switch to non-blocking mode if not already in that mode. */
2530 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2531 if (retval != ERROR_OK)
2532 goto out;
2533
2534 /* Mark R0 as dirty. */
2535 arm_reg_current(arm, 0)->dirty = true;
2536
2537 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2538 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2539 if (retval != ERROR_OK)
2540 goto out;
2541
2542 /* Get the memory address into R0. */
2543 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2544 armv7a->debug_base + CPUDBG_DTRRX, address);
2545 if (retval != ERROR_OK)
2546 goto out;
2547 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2548 if (retval != ERROR_OK)
2549 goto out;
2550
2551 if (size == 4 && (address % 4) == 0) {
2552 /* We are doing a word-aligned transfer, so use fast mode. */
2553 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2554 } else {
2555 /* Use slow path. */
2556 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2557 }
2558
2559 out:
2560 final_retval = retval;
2561
2562 /* Switch to non-blocking mode if not already in that mode. */
2563 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2564 if (final_retval == ERROR_OK)
2565 final_retval = retval;
2566
2567 /* Wait for last issued instruction to complete. */
2568 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2569 if (final_retval == ERROR_OK)
2570 final_retval = retval;
2571
2572 /* If there were any sticky abort flags, clear them. */
2573 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2574 fault_dscr = dscr;
2575 mem_ap_write_atomic_u32(armv7a->debug_ap,
2576 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2577 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2578 } else {
2579 fault_dscr = 0;
2580 }
2581
2582 /* Handle synchronous data faults. */
2583 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2584 if (final_retval == ERROR_OK) {
2585 /* Final return value will reflect cause of fault. */
2586 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2587 if (retval == ERROR_OK) {
2588 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2589 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2590 } else
2591 final_retval = retval;
2592 }
2593 /* Fault destroyed DFAR/DFSR; restore them. */
2594 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2595 if (retval != ERROR_OK)
2596 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2597 }
2598
2599 /* Handle asynchronous data faults. */
2600 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2601 if (final_retval == ERROR_OK)
2602 /* No other error has been recorded so far, so keep this one. */
2603 final_retval = ERROR_TARGET_DATA_ABORT;
2604 }
2605
2606 /* If the DCC is nonempty, clear it. */
2607 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2608 uint32_t dummy;
2609 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2610 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2611 if (final_retval == ERROR_OK)
2612 final_retval = retval;
2613 }
2614 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2615 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2616 if (final_retval == ERROR_OK)
2617 final_retval = retval;
2618 }
2619
2620 /* Done. */
2621 return final_retval;
2622 }
2623
2624
2625 /*
2626 * Cortex-A Memory access
2627 *
2628 * This is same Cortex-M3 but we must also use the correct
2629 * ap number for every access.
2630 */
2631
2632 static int cortex_a_read_phys_memory(struct target *target,
2633 uint32_t address, uint32_t size,
2634 uint32_t count, uint8_t *buffer)
2635 {
2636 struct armv7a_common *armv7a = target_to_armv7a(target);
2637 struct adiv5_dap *swjdp = armv7a->arm.dap;
2638 uint8_t apsel = swjdp->apsel;
2639 int retval;
2640
2641 if (!count || !buffer)
2642 return ERROR_COMMAND_SYNTAX_ERROR;
2643
2644 LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
2645 address, size, count);
2646
2647 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2648 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2649
2650 /* read memory through the CPU */
2651 cortex_a_prep_memaccess(target, 1);
2652 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2653 cortex_a_post_memaccess(target, 1);
2654
2655 return retval;
2656 }
2657
2658 static int cortex_a_read_memory(struct target *target, uint32_t address,
2659 uint32_t size, uint32_t count, uint8_t *buffer)
2660 {
2661 int retval;
2662
2663 /* cortex_a handles unaligned memory access */
2664 LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2665 size, count);
2666
2667 cortex_a_prep_memaccess(target, 0);
2668 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2669 cortex_a_post_memaccess(target, 0);
2670
2671 return retval;
2672 }
2673
2674 static int cortex_a_read_memory_ahb(struct target *target, uint32_t address,
2675 uint32_t size, uint32_t count, uint8_t *buffer)
2676 {
2677 int mmu_enabled = 0;
2678 uint32_t virt, phys;
2679 int retval;
2680 struct armv7a_common *armv7a = target_to_armv7a(target);
2681 struct adiv5_dap *swjdp = armv7a->arm.dap;
2682 uint8_t apsel = swjdp->apsel;
2683
2684 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2685 return target_read_memory(target, address, size, count, buffer);
2686
2687 /* cortex_a handles unaligned memory access */
2688 LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2689 size, count);
2690
2691 /* determine if MMU was enabled on target stop */
2692 if (!armv7a->is_armv7r) {
2693 retval = cortex_a_mmu(target, &mmu_enabled);
2694 if (retval != ERROR_OK)
2695 return retval;
2696 }
2697
2698 if (mmu_enabled) {
2699 virt = address;
2700 retval = cortex_a_virt2phys(target, virt, &phys);
2701 if (retval != ERROR_OK)
2702 return retval;
2703
2704 LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2705 virt, phys);
2706 address = phys;
2707 }
2708
2709 if (!count || !buffer)
2710 return ERROR_COMMAND_SYNTAX_ERROR;
2711
2712 retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2713
2714 return retval;
2715 }
2716
2717 static int cortex_a_write_phys_memory(struct target *target,
2718 uint32_t address, uint32_t size,
2719 uint32_t count, const uint8_t *buffer)
2720 {
2721 struct armv7a_common *armv7a = target_to_armv7a(target);
2722 struct adiv5_dap *swjdp = armv7a->arm.dap;
2723 uint8_t apsel = swjdp->apsel;
2724 int retval;
2725
2726 if (!count || !buffer)
2727 return ERROR_COMMAND_SYNTAX_ERROR;
2728
2729 LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2730 size, count);
2731
2732 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2733 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2734
2735 /* write memory through the CPU */
2736 cortex_a_prep_memaccess(target, 1);
2737 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2738 cortex_a_post_memaccess(target, 1);
2739
2740 return retval;
2741 }
2742
2743 static int cortex_a_write_memory(struct target *target, uint32_t address,
2744 uint32_t size, uint32_t count, const uint8_t *buffer)
2745 {
2746 int retval;
2747
2748 /* cortex_a handles unaligned memory access */
2749 LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2750 size, count);
2751
2752 /* memory writes bypass the caches, must flush before writing */
2753 armv7a_cache_auto_flush_on_write(target, address, size * count);
2754
2755 cortex_a_prep_memaccess(target, 0);
2756 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2757 cortex_a_post_memaccess(target, 0);
2758 return retval;
2759 }
2760
2761 static int cortex_a_write_memory_ahb(struct target *target, uint32_t address,
2762 uint32_t size, uint32_t count, const uint8_t *buffer)
2763 {
2764 int mmu_enabled = 0;
2765 uint32_t virt, phys;
2766 int retval;
2767 struct armv7a_common *armv7a = target_to_armv7a(target);
2768 struct adiv5_dap *swjdp = armv7a->arm.dap;
2769 uint8_t apsel = swjdp->apsel;
2770
2771 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2772 return target_write_memory(target, address, size, count, buffer);
2773
2774 /* cortex_a handles unaligned memory access */
2775 LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2776 size, count);
2777
2778 /* determine if MMU was enabled on target stop */
2779 if (!armv7a->is_armv7r) {
2780 retval = cortex_a_mmu(target, &mmu_enabled);
2781 if (retval != ERROR_OK)
2782 return retval;
2783 }
2784
2785 if (mmu_enabled) {
2786 virt = address;
2787 retval = cortex_a_virt2phys(target, virt, &phys);
2788 if (retval != ERROR_OK)
2789 return retval;
2790
2791 LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2792 virt,
2793 phys);
2794 address = phys;
2795 }
2796
2797 if (!count || !buffer)
2798 return ERROR_COMMAND_SYNTAX_ERROR;
2799
2800 retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2801
2802 return retval;
2803 }
2804
2805 static int cortex_a_read_buffer(struct target *target, uint32_t address,
2806 uint32_t count, uint8_t *buffer)
2807 {
2808 uint32_t size;
2809
2810 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2811 * will have something to do with the size we leave to it. */
2812 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2813 if (address & size) {
2814 int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2815 if (retval != ERROR_OK)
2816 return retval;
2817 address += size;
2818 count -= size;
2819 buffer += size;
2820 }
2821 }
2822
2823 /* Read the data with as large access size as possible. */
2824 for (; size > 0; size /= 2) {
2825 uint32_t aligned = count - count % size;
2826 if (aligned > 0) {
2827 int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2828 if (retval != ERROR_OK)
2829 return retval;
2830 address += aligned;
2831 count -= aligned;
2832 buffer += aligned;
2833 }
2834 }
2835
2836 return ERROR_OK;
2837 }
2838
2839 static int cortex_a_write_buffer(struct target *target, uint32_t address,
2840 uint32_t count, const uint8_t *buffer)
2841 {
2842 uint32_t size;
2843
2844 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2845 * will have something to do with the size we leave to it. */
2846 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2847 if (address & size) {
2848 int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2849 if (retval != ERROR_OK)
2850 return retval;
2851 address += size;
2852 count -= size;
2853 buffer += size;
2854 }
2855 }
2856
2857 /* Write the data with as large access size as possible. */
2858 for (; size > 0; size /= 2) {
2859 uint32_t aligned = count - count % size;
2860 if (aligned > 0) {
2861 int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2862 if (retval != ERROR_OK)
2863 return retval;
2864 address += aligned;
2865 count -= aligned;
2866 buffer += aligned;
2867 }
2868 }
2869
2870 return ERROR_OK;
2871 }
2872
2873 static int cortex_a_handle_target_request(void *priv)
2874 {
2875 struct target *target = priv;
2876 struct armv7a_common *armv7a = target_to_armv7a(target);
2877 int retval;
2878
2879 if (!target_was_examined(target))
2880 return ERROR_OK;
2881 if (!target->dbg_msg_enabled)
2882 return ERROR_OK;
2883
2884 if (target->state == TARGET_RUNNING) {
2885 uint32_t request;
2886 uint32_t dscr;
2887 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2888 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2889
2890 /* check if we have data */
2891 int64_t then = timeval_ms();
2892 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2893 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2894 armv7a->debug_base + CPUDBG_DTRTX, &request);
2895 if (retval == ERROR_OK) {
2896 target_request(target, request);
2897 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2898 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2899 }
2900 if (timeval_ms() > then + 1000) {
2901 LOG_ERROR("Timeout waiting for dtr tx full");
2902 return ERROR_FAIL;
2903 }
2904 }
2905 }
2906
2907 return ERROR_OK;
2908 }
2909
2910 /*
2911 * Cortex-A target information and configuration
2912 */
2913
2914 static int cortex_a_examine_first(struct target *target)
2915 {
2916 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2917 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2918 struct adiv5_dap *swjdp = armv7a->arm.dap;
2919
2920 int i;
2921 int retval = ERROR_OK;
2922 uint32_t didr, cpuid, dbg_osreg;
2923
2924 retval = dap_dp_init(swjdp);
2925 if (retval != ERROR_OK) {
2926 LOG_ERROR("Could not initialize the debug port");
2927 return retval;
2928 }
2929
2930 /* Search for the APB-AP - it is needed for access to debug registers */
2931 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2932 if (retval != ERROR_OK) {
2933 LOG_ERROR("Could not find APB-AP for debug access");
2934 return retval;
2935 }
2936
2937 retval = mem_ap_init(armv7a->debug_ap);
2938 if (retval != ERROR_OK) {
2939 LOG_ERROR("Could not initialize the APB-AP");
2940 return retval;
2941 }
2942
2943 armv7a->debug_ap->memaccess_tck = 80;
2944
2945 /* Search for the AHB-AB.
2946 * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2947 * can access system memory. */
2948 armv7a->memory_ap_available = false;
2949 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2950 if (retval == ERROR_OK) {
2951 retval = mem_ap_init(armv7a->memory_ap);
2952 if (retval == ERROR_OK)
2953 armv7a->memory_ap_available = true;
2954 }
2955 if (retval != ERROR_OK) {
2956 /* AHB-AP not found or unavailable - use the CPU */
2957 LOG_DEBUG("No AHB-AP available for memory access");
2958 }
2959
2960 if (!target->dbgbase_set) {
2961 uint32_t dbgbase;
2962 /* Get ROM Table base */
2963 uint32_t apid;
2964 int32_t coreidx = target->coreid;
2965 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2966 target->cmd_name);
2967 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2968 if (retval != ERROR_OK)
2969 return retval;
2970 /* Lookup 0x15 -- Processor DAP */
2971 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2972 &armv7a->debug_base, &coreidx);
2973 if (retval != ERROR_OK) {
2974 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2975 target->cmd_name);
2976 return retval;
2977 }
2978 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2979 target->coreid, armv7a->debug_base);
2980 } else
2981 armv7a->debug_base = target->dbgbase;
2982
2983 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2984 armv7a->debug_base + CPUDBG_DIDR, &didr);
2985 if (retval != ERROR_OK) {
2986 LOG_DEBUG("Examine %s failed", "DIDR");
2987 return retval;
2988 }
2989
2990 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2991 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2992 if (retval != ERROR_OK) {
2993 LOG_DEBUG("Examine %s failed", "CPUID");
2994 return retval;
2995 }
2996
2997 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2998 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2999
3000 cortex_a->didr = didr;
3001 cortex_a->cpuid = cpuid;
3002
3003 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3004 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3005 if (retval != ERROR_OK)
3006 return retval;
3007 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
3008
3009 if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3010 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3011 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3012 return ERROR_TARGET_INIT_FAILED;
3013 }
3014
3015 if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3016 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3017
3018 /* Read DBGOSLSR and check if OSLK is implemented */
3019 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3020 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3021 if (retval != ERROR_OK)
3022 return retval;
3023 LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3024
3025 /* check if OS Lock is implemented */
3026 if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3027 /* check if OS Lock is set */
3028 if (dbg_osreg & OSLSR_OSLK) {
3029 LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3030
3031 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3032 armv7a->debug_base + CPUDBG_OSLAR,
3033 0);
3034 if (retval == ERROR_OK)
3035 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3036 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3037
3038 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3039 if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3040 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3041 target->coreid);
3042 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3043 return ERROR_TARGET_INIT_FAILED;
3044 }
3045 }
3046 }
3047
3048 armv7a->arm.core_type = ARM_MODE_MON;
3049
3050 /* Avoid recreating the registers cache */
3051 if (!target_was_examined(target)) {
3052 retval = cortex_a_dpm_setup(cortex_a, didr);
3053 if (retval != ERROR_OK)
3054 return retval;
3055 }
3056
3057 /* Setup Breakpoint Register Pairs */
3058 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3059 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3060 cortex_a->brp_num_available = cortex_a->brp_num;
3061 free(cortex_a->brp_list);
3062 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3063 /* cortex_a->brb_enabled = ????; */
3064 for (i = 0; i < cortex_a->brp_num; i++) {
3065 cortex_a->brp_list[i].used = 0;
3066 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3067 cortex_a->brp_list[i].type = BRP_NORMAL;
3068 else
3069 cortex_a->brp_list[i].type = BRP_CONTEXT;
3070 cortex_a->brp_list[i].value = 0;
3071 cortex_a->brp_list[i].control = 0;
3072 cortex_a->brp_list[i].BRPn = i;
3073 }
3074
3075 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3076
3077 /* select debug_ap as default */
3078 swjdp->apsel = armv7a->debug_ap->ap_num;
3079
3080 target_set_examined(target);
3081 return ERROR_OK;
3082 }
3083
3084 static int cortex_a_examine(struct target *target)
3085 {
3086 int retval = ERROR_OK;
3087
3088 /* Reestablish communication after target reset */
3089 retval = cortex_a_examine_first(target);
3090
3091 /* Configure core debug access */
3092 if (retval == ERROR_OK)
3093 retval = cortex_a_init_debug_access(target);
3094
3095 return retval;
3096 }
3097
3098 /*
3099 * Cortex-A target creation and initialization
3100 */
3101
3102 static int cortex_a_init_target(struct command_context *cmd_ctx,
3103 struct target *target)
3104 {
3105 /* examine_first() does a bunch of this */
3106 arm_semihosting_init(target);
3107 return ERROR_OK;
3108 }
3109
3110 static int cortex_a_init_arch_info(struct target *target,
3111 struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3112 {
3113 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3114
3115 /* Setup struct cortex_a_common */
3116 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3117
3118 /* tap has no dap initialized */
3119 if (!tap->dap) {
3120 tap->dap = dap_init();
3121
3122 /* Leave (only) generic DAP stuff for debugport_init() */
3123 tap->dap->tap = tap;
3124 }
3125
3126 armv7a->arm.dap = tap->dap;
3127
3128 cortex_a->fast_reg_read = 0;
3129
3130 /* register arch-specific functions */
3131 armv7a->examine_debug_reason = NULL;
3132
3133 armv7a->post_debug_entry = cortex_a_post_debug_entry;
3134
3135 armv7a->pre_restore_context = NULL;
3136
3137 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3138
3139
3140 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3141
3142 /* REVISIT v7a setup should be in a v7a-specific routine */
3143 armv7a_init_arch_info(target, armv7a);
3144 target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3145
3146 return ERROR_OK;
3147 }
3148
3149 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3150 {
3151 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3152
3153 cortex_a->armv7a_common.is_armv7r = false;
3154
3155 return cortex_a_init_arch_info(target, cortex_a, target->tap);
3156 }
3157
3158 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3159 {
3160 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3161
3162 cortex_a->armv7a_common.is_armv7r = true;
3163
3164 return cortex_a_init_arch_info(target, cortex_a, target->tap);
3165 }
3166
3167 static void cortex_a_deinit_target(struct target *target)
3168 {
3169 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3170 struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3171
3172 free(cortex_a->brp_list);
3173 free(dpm->dbp);
3174 free(dpm->dwp);
3175 free(cortex_a);
3176 }
3177
3178 static int cortex_a_mmu(struct target *target, int *enabled)
3179 {
3180 struct armv7a_common *armv7a = target_to_armv7a(target);
3181
3182 if (target->state != TARGET_HALTED) {
3183 LOG_ERROR("%s: target not halted", __func__);
3184 return ERROR_TARGET_INVALID;
3185 }
3186
3187 if (armv7a->is_armv7r)
3188 *enabled = 0;
3189 else
3190 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3191
3192 return ERROR_OK;
3193 }
3194
3195 static int cortex_a_virt2phys(struct target *target,
3196 uint32_t virt, uint32_t *phys)
3197 {
3198 int retval = ERROR_FAIL;
3199 struct armv7a_common *armv7a = target_to_armv7a(target);
3200 struct adiv5_dap *swjdp = armv7a->arm.dap;
3201 uint8_t apsel = swjdp->apsel;
3202 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3203 uint32_t ret;
3204 retval = armv7a_mmu_translate_va(target,
3205 virt, &ret);
3206 if (retval != ERROR_OK)
3207 goto done;
3208 *phys = ret;
3209 } else {/* use this method if armv7a->memory_ap not selected
3210 * mmu must be enable in order to get a correct translation */
3211 retval = cortex_a_mmu_modify(target, 1);
3212 if (retval != ERROR_OK)
3213 goto done;
3214 retval = armv7a_mmu_translate_va_pa(target, virt, phys, 1);
3215 }
3216 done:
3217 return retval;
3218 }
3219
3220 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3221 {
3222 struct target *target = get_current_target(CMD_CTX);
3223 struct armv7a_common *armv7a = target_to_armv7a(target);
3224
3225 return armv7a_handle_cache_info_command(CMD_CTX,
3226 &armv7a->armv7a_mmu.armv7a_cache);
3227 }
3228
3229
3230 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3231 {
3232 struct target *target = get_current_target(CMD_CTX);
3233 if (!target_was_examined(target)) {
3234 LOG_ERROR("target not examined yet");
3235 return ERROR_FAIL;
3236 }
3237
3238 return cortex_a_init_debug_access(target);
3239 }
3240 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3241 {
3242 struct target *target = get_current_target(CMD_CTX);
3243 /* check target is an smp target */
3244 struct target_list *head;
3245 struct target *curr;
3246 head = target->head;
3247 target->smp = 0;
3248 if (head != (struct target_list *)NULL) {
3249 while (head != (struct target_list *)NULL) {
3250 curr = head->target;
3251 curr->smp = 0;
3252 head = head->next;
3253 }
3254 /* fixes the target display to the debugger */
3255 target->gdb_service->target = target;
3256 }
3257 return ERROR_OK;
3258 }
3259
3260 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3261 {
3262 struct target *target = get_current_target(CMD_CTX);
3263 struct target_list *head;
3264 struct target *curr;
3265 head = target->head;
3266 if (head != (struct target_list *)NULL) {
3267 target->smp = 1;
3268 while (head != (struct target_list *)NULL) {
3269 curr = head->target;
3270 curr->smp = 1;
3271 head = head->next;
3272 }
3273 }
3274 return ERROR_OK;
3275 }
3276
3277 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3278 {
3279 struct target *target = get_current_target(CMD_CTX);
3280 int retval = ERROR_OK;
3281 struct target_list *head;
3282 head = target->head;
3283 if (head != (struct target_list *)NULL) {
3284 if (CMD_ARGC == 1) {
3285 int coreid = 0;
3286 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3287 if (ERROR_OK != retval)
3288 return retval;
3289 target->gdb_service->core[1] = coreid;
3290
3291 }
3292 command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3293 , target->gdb_service->core[1]);
3294 }
3295 return ERROR_OK;
3296 }
3297
3298 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3299 {
3300 struct target *target = get_current_target(CMD_CTX);
3301 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3302
3303 static const Jim_Nvp nvp_maskisr_modes[] = {
3304 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3305 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3306 { .name = NULL, .value = -1 },
3307 };
3308 const Jim_Nvp *n;
3309
3310 if (CMD_ARGC > 0) {
3311 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3312 if (n->name == NULL) {
3313 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3314 return ERROR_COMMAND_SYNTAX_ERROR;
3315 }
3316
3317 cortex_a->isrmasking_mode = n->value;
3318 }
3319
3320 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3321 command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3322
3323 return ERROR_OK;
3324 }
3325
3326 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3327 {
3328 struct target *target = get_current_target(CMD_CTX);
3329 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3330
3331 static const Jim_Nvp nvp_dacrfixup_modes[] = {
3332 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3333 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3334 { .name = NULL, .value = -1 },
3335 };
3336 const Jim_Nvp *n;
3337
3338 if (CMD_ARGC > 0) {
3339 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3340 if (n->name == NULL)
3341 return ERROR_COMMAND_SYNTAX_ERROR;
3342 cortex_a->dacrfixup_mode = n->value;
3343
3344 }
3345
3346 n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3347 command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3348
3349 return ERROR_OK;
3350 }
3351
3352 static const struct command_registration cortex_a_exec_command_handlers[] = {
3353 {
3354 .name = "cache_info",
3355 .handler = cortex_a_handle_cache_info_command,
3356 .mode = COMMAND_EXEC,
3357 .help = "display information about target caches",
3358 .usage = "",
3359 },
3360 {
3361 .name = "dbginit",
3362 .handler = cortex_a_handle_dbginit_command,
3363 .mode = COMMAND_EXEC,
3364 .help = "Initialize core debug",
3365 .usage = "",
3366 },
3367 { .name = "smp_off",
3368 .handler = cortex_a_handle_smp_off_command,
3369 .mode = COMMAND_EXEC,
3370 .help = "Stop smp handling",
3371 .usage = "",},
3372 {
3373 .name = "smp_on",
3374 .handler = cortex_a_handle_smp_on_command,
3375 .mode = COMMAND_EXEC,
3376 .help = "Restart smp handling",
3377 .usage = "",
3378 },
3379 {
3380 .name = "smp_gdb",
3381 .handler = cortex_a_handle_smp_gdb_command,
3382 .mode = COMMAND_EXEC,
3383 .help = "display/fix current core played to gdb",
3384 .usage = "",
3385 },
3386 {
3387 .name = "maskisr",
3388 .handler = handle_cortex_a_mask_interrupts_command,
3389 .mode = COMMAND_ANY,
3390 .help = "mask cortex_a interrupts",
3391 .usage = "['on'|'off']",
3392 },
3393 {
3394 .name = "dacrfixup",
3395 .handler = handle_cortex_a_dacrfixup_command,
3396 .mode = COMMAND_EXEC,
3397 .help = "set domain access control (DACR) to all-manager "
3398 "on memory access",
3399 .usage = "['on'|'off']",
3400 },
3401
3402 COMMAND_REGISTRATION_DONE
3403 };
3404 static const struct command_registration cortex_a_command_handlers[] = {
3405 {
3406 .chain = arm_command_handlers,
3407 },
3408 {
3409 .chain = armv7a_command_handlers,
3410 },
3411 {
3412 .name = "cortex_a",
3413 .mode = COMMAND_ANY,
3414 .help = "Cortex-A command group",
3415 .usage = "",
3416 .chain = cortex_a_exec_command_handlers,
3417 },
3418 COMMAND_REGISTRATION_DONE
3419 };
3420
3421 struct target_type cortexa_target = {
3422 .name = "cortex_a",
3423 .deprecated_name = "cortex_a8",
3424
3425 .poll = cortex_a_poll,
3426 .arch_state = armv7a_arch_state,
3427
3428 .halt = cortex_a_halt,
3429 .resume = cortex_a_resume,
3430 .step = cortex_a_step,
3431
3432 .assert_reset = cortex_a_assert_reset,
3433 .deassert_reset = cortex_a_deassert_reset,
3434
3435 /* REVISIT allow exporting VFP3 registers ... */
3436 .get_gdb_reg_list = arm_get_gdb_reg_list,
3437
3438 .read_memory = cortex_a_read_memory,
3439 .write_memory = cortex_a_write_memory,
3440
3441 .read_buffer = cortex_a_read_buffer,
3442 .write_buffer = cortex_a_write_buffer,
3443
3444 .checksum_memory = arm_checksum_memory,
3445 .blank_check_memory = arm_blank_check_memory,
3446
3447 .run_algorithm = armv4_5_run_algorithm,
3448
3449 .add_breakpoint = cortex_a_add_breakpoint,
3450 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3451 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3452 .remove_breakpoint = cortex_a_remove_breakpoint,
3453 .add_watchpoint = NULL,
3454 .remove_watchpoint = NULL,
3455
3456 .commands = cortex_a_command_handlers,
3457 .target_create = cortex_a_target_create,
3458 .init_target = cortex_a_init_target,
3459 .examine = cortex_a_examine,
3460 .deinit_target = cortex_a_deinit_target,
3461
3462 .read_phys_memory = cortex_a_read_phys_memory,
3463 .write_phys_memory = cortex_a_write_phys_memory,
3464 .mmu = cortex_a_mmu,
3465 .virt2phys = cortex_a_virt2phys,
3466 };
3467
3468 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3469 {
3470 .name = "cache_info",
3471 .handler = cortex_a_handle_cache_info_command,
3472 .mode = COMMAND_EXEC,
3473 .help = "display information about target caches",
3474 .usage = "",
3475 },
3476 {
3477 .name = "dbginit",
3478 .handler = cortex_a_handle_dbginit_command,
3479 .mode = COMMAND_EXEC,
3480 .help = "Initialize core debug",
3481 .usage = "",
3482 },
3483 {
3484 .name = "maskisr",
3485 .handler = handle_cortex_a_mask_interrupts_command,
3486 .mode = COMMAND_EXEC,
3487 .help = "mask cortex_r4 interrupts",
3488 .usage = "['on'|'off']",
3489 },
3490
3491 COMMAND_REGISTRATION_DONE
3492 };
3493 static const struct command_registration cortex_r4_command_handlers[] = {
3494 {
3495 .chain = arm_command_handlers,
3496 },
3497 {
3498 .chain = armv7a_command_handlers,
3499 },
3500 {
3501 .name = "cortex_r4",
3502 .mode = COMMAND_ANY,
3503 .help = "Cortex-R4 command group",
3504 .usage = "",
3505 .chain = cortex_r4_exec_command_handlers,
3506 },
3507 COMMAND_REGISTRATION_DONE
3508 };
3509
3510 struct target_type cortexr4_target = {
3511 .name = "cortex_r4",
3512
3513 .poll = cortex_a_poll,
3514 .arch_state = armv7a_arch_state,
3515
3516 .halt = cortex_a_halt,
3517 .resume = cortex_a_resume,
3518 .step = cortex_a_step,
3519
3520 .assert_reset = cortex_a_assert_reset,
3521 .deassert_reset = cortex_a_deassert_reset,
3522
3523 /* REVISIT allow exporting VFP3 registers ... */
3524 .get_gdb_reg_list = arm_get_gdb_reg_list,
3525
3526 .read_memory = cortex_a_read_phys_memory,
3527 .write_memory = cortex_a_write_phys_memory,
3528
3529 .checksum_memory = arm_checksum_memory,
3530 .blank_check_memory = arm_blank_check_memory,
3531
3532 .run_algorithm = armv4_5_run_algorithm,
3533
3534 .add_breakpoint = cortex_a_add_breakpoint,
3535 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3536 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3537 .remove_breakpoint = cortex_a_remove_breakpoint,
3538 .add_watchpoint = NULL,
3539 .remove_watchpoint = NULL,
3540
3541 .commands = cortex_r4_command_handlers,
3542 .target_create = cortex_r4_target_create,
3543 .init_target = cortex_a_init_target,
3544 .examine = cortex_a_examine,
3545 .deinit_target = cortex_a_deinit_target,
3546 };