cc1552d61a43c0889107cd1dc9669c4d04964f03
[openocd.git] / src / target / cortex_a.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 √ėyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * This program is free software; you can redistribute it and/or modify *
21 * it under the terms of the GNU General Public License as published by *
22 * the Free Software Foundation; either version 2 of the License, or *
23 * (at your option) any later version. *
24 * *
25 * This program is distributed in the hope that it will be useful, *
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
28 * GNU General Public License for more details. *
29 * *
30 * You should have received a copy of the GNU General Public License *
31 * along with this program; if not, write to the *
32 * Free Software Foundation, Inc., *
33 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
34 * *
35 * Cortex-A8(tm) TRM, ARM DDI 0344H *
36 * Cortex-A9(tm) TRM, ARM DDI 0407F *
37 * *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include "breakpoints.h"
45 #include "cortex_a.h"
46 #include "register.h"
47 #include "target_request.h"
48 #include "target_type.h"
49 #include "arm_opcodes.h"
50 #include <helper/time_support.h>
51
52 static int cortex_a8_poll(struct target *target);
53 static int cortex_a8_debug_entry(struct target *target);
54 static int cortex_a8_restore_context(struct target *target, bool bpwp);
55 static int cortex_a8_set_breakpoint(struct target *target,
56 struct breakpoint *breakpoint, uint8_t matchmode);
57 static int cortex_a8_set_context_breakpoint(struct target *target,
58 struct breakpoint *breakpoint, uint8_t matchmode);
59 static int cortex_a8_set_hybrid_breakpoint(struct target *target,
60 struct breakpoint *breakpoint);
61 static int cortex_a8_unset_breakpoint(struct target *target,
62 struct breakpoint *breakpoint);
63 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
64 uint32_t *value, int regnum);
65 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
66 uint32_t value, int regnum);
67 static int cortex_a8_mmu(struct target *target, int *enabled);
68 static int cortex_a8_virt2phys(struct target *target,
69 uint32_t virt, uint32_t *phys);
70 static int cortex_a8_read_apb_ab_memory(struct target *target,
71 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
72
73 /*
74 * FIXME do topology discovery using the ROM; don't
75 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
76 * cores, with different AP numbering ... don't use a #define
77 * for these numbers, use per-core armv7a state.
78 */
79 #define swjdp_memoryap 0
80 #define swjdp_debugap 1
81
82 /* restore cp15_control_reg at resume */
83 static int cortex_a8_restore_cp15_control_reg(struct target *target)
84 {
85 int retval = ERROR_OK;
86 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
87 struct armv7a_common *armv7a = target_to_armv7a(target);
88
89 if (cortex_a8->cp15_control_reg != cortex_a8->cp15_control_reg_curr) {
90 cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
91 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg); */
92 retval = armv7a->arm.mcr(target, 15,
93 0, 0, /* op1, op2 */
94 1, 0, /* CRn, CRm */
95 cortex_a8->cp15_control_reg);
96 }
97 return retval;
98 }
99
100 /* check address before cortex_a8_apb read write access with mmu on
101 * remove apb predictible data abort */
102 static int cortex_a8_check_address(struct target *target, uint32_t address)
103 {
104 struct armv7a_common *armv7a = target_to_armv7a(target);
105 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
106 uint32_t os_border = armv7a->armv7a_mmu.os_border;
107 if ((address < os_border) &&
108 (armv7a->arm.core_mode == ARM_MODE_SVC)) {
109 LOG_ERROR("%x access in userspace and target in supervisor", address);
110 return ERROR_FAIL;
111 }
112 if ((address >= os_border) &&
113 (cortex_a8->curr_mode != ARM_MODE_SVC)) {
114 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
115 cortex_a8->curr_mode = ARM_MODE_SVC;
116 LOG_INFO("%x access in kernel space and target not in supervisor",
117 address);
118 return ERROR_OK;
119 }
120 if ((address < os_border) &&
121 (cortex_a8->curr_mode == ARM_MODE_SVC)) {
122 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
123 cortex_a8->curr_mode = ARM_MODE_ANY;
124 }
125 return ERROR_OK;
126 }
127 /* modify cp15_control_reg in order to enable or disable mmu for :
128 * - virt2phys address conversion
129 * - read or write memory in phys or virt address */
130 static int cortex_a8_mmu_modify(struct target *target, int enable)
131 {
132 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
133 struct armv7a_common *armv7a = target_to_armv7a(target);
134 int retval = ERROR_OK;
135 if (enable) {
136 /* if mmu enabled at target stop and mmu not enable */
137 if (!(cortex_a8->cp15_control_reg & 0x1U)) {
138 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
139 return ERROR_FAIL;
140 }
141 if (!(cortex_a8->cp15_control_reg_curr & 0x1U)) {
142 cortex_a8->cp15_control_reg_curr |= 0x1U;
143 retval = armv7a->arm.mcr(target, 15,
144 0, 0, /* op1, op2 */
145 1, 0, /* CRn, CRm */
146 cortex_a8->cp15_control_reg_curr);
147 }
148 } else {
149 if (cortex_a8->cp15_control_reg_curr & 0x4U) {
150 /* data cache is active */
151 cortex_a8->cp15_control_reg_curr &= ~0x4U;
152 /* flush data cache armv7 function to be called */
153 if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache)
154 armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache(target);
155 }
156 if ((cortex_a8->cp15_control_reg_curr & 0x1U)) {
157 cortex_a8->cp15_control_reg_curr &= ~0x1U;
158 retval = armv7a->arm.mcr(target, 15,
159 0, 0, /* op1, op2 */
160 1, 0, /* CRn, CRm */
161 cortex_a8->cp15_control_reg_curr);
162 }
163 }
164 return retval;
165 }
166
167 /*
168 * Cortex-A8 Basic debug access, very low level assumes state is saved
169 */
170 static int cortex_a8_init_debug_access(struct target *target)
171 {
172 struct armv7a_common *armv7a = target_to_armv7a(target);
173 struct adiv5_dap *swjdp = armv7a->arm.dap;
174 int retval;
175 uint32_t dummy;
176
177 LOG_DEBUG(" ");
178
179 /* Unlocking the debug registers for modification
180 * The debugport might be uninitialised so try twice */
181 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
182 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
183 if (retval != ERROR_OK) {
184 /* try again */
185 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
186 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
187 if (retval == ERROR_OK)
188 LOG_USER(
189 "Locking debug access failed on first, but succeeded on second try.");
190 }
191 if (retval != ERROR_OK)
192 return retval;
193 /* Clear Sticky Power Down status Bit in PRSR to enable access to
194 the registers in the Core Power Domain */
195 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
196 armv7a->debug_base + CPUDBG_PRSR, &dummy);
197 if (retval != ERROR_OK)
198 return retval;
199
200 /* Enabling of instruction execution in debug mode is done in debug_entry code */
201
202 /* Resync breakpoint registers */
203
204 /* Since this is likely called from init or reset, update target state information*/
205 return cortex_a8_poll(target);
206 }
207
208 /* To reduce needless round-trips, pass in a pointer to the current
209 * DSCR value. Initialize it to zero if you just need to know the
210 * value on return from this function; or DSCR_INSTR_COMP if you
211 * happen to know that no instruction is pending.
212 */
213 static int cortex_a8_exec_opcode(struct target *target,
214 uint32_t opcode, uint32_t *dscr_p)
215 {
216 uint32_t dscr;
217 int retval;
218 struct armv7a_common *armv7a = target_to_armv7a(target);
219 struct adiv5_dap *swjdp = armv7a->arm.dap;
220
221 dscr = dscr_p ? *dscr_p : 0;
222
223 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
224
225 /* Wait for InstrCompl bit to be set */
226 long long then = timeval_ms();
227 while ((dscr & DSCR_INSTR_COMP) == 0) {
228 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
229 armv7a->debug_base + CPUDBG_DSCR, &dscr);
230 if (retval != ERROR_OK) {
231 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
232 return retval;
233 }
234 if (timeval_ms() > then + 1000) {
235 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
236 return ERROR_FAIL;
237 }
238 }
239
240 retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
241 armv7a->debug_base + CPUDBG_ITR, opcode);
242 if (retval != ERROR_OK)
243 return retval;
244
245 then = timeval_ms();
246 do {
247 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
248 armv7a->debug_base + CPUDBG_DSCR, &dscr);
249 if (retval != ERROR_OK) {
250 LOG_ERROR("Could not read DSCR register");
251 return retval;
252 }
253 if (timeval_ms() > then + 1000) {
254 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
255 return ERROR_FAIL;
256 }
257 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
258
259 if (dscr_p)
260 *dscr_p = dscr;
261
262 return retval;
263 }
264
265 /**************************************************************************
266 Read core register with very few exec_opcode, fast but needs work_area.
267 This can cause problems with MMU active.
268 **************************************************************************/
269 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
270 uint32_t *regfile)
271 {
272 int retval = ERROR_OK;
273 struct armv7a_common *armv7a = target_to_armv7a(target);
274 struct adiv5_dap *swjdp = armv7a->arm.dap;
275
276 retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
277 if (retval != ERROR_OK)
278 return retval;
279 retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
280 if (retval != ERROR_OK)
281 return retval;
282 retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
283 if (retval != ERROR_OK)
284 return retval;
285
286 retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
287 (uint8_t *)(&regfile[1]), 4*15, address);
288
289 return retval;
290 }
291
292 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
293 uint32_t *value, int regnum)
294 {
295 int retval = ERROR_OK;
296 uint8_t reg = regnum&0xFF;
297 uint32_t dscr = 0;
298 struct armv7a_common *armv7a = target_to_armv7a(target);
299 struct adiv5_dap *swjdp = armv7a->arm.dap;
300
301 if (reg > 17)
302 return retval;
303
304 if (reg < 15) {
305 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
306 retval = cortex_a8_exec_opcode(target,
307 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
308 &dscr);
309 if (retval != ERROR_OK)
310 return retval;
311 } else if (reg == 15) {
312 /* "MOV r0, r15"; then move r0 to DCCTX */
313 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
314 if (retval != ERROR_OK)
315 return retval;
316 retval = cortex_a8_exec_opcode(target,
317 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
318 &dscr);
319 if (retval != ERROR_OK)
320 return retval;
321 } else {
322 /* "MRS r0, CPSR" or "MRS r0, SPSR"
323 * then move r0 to DCCTX
324 */
325 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
326 if (retval != ERROR_OK)
327 return retval;
328 retval = cortex_a8_exec_opcode(target,
329 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
330 &dscr);
331 if (retval != ERROR_OK)
332 return retval;
333 }
334
335 /* Wait for DTRRXfull then read DTRRTX */
336 long long then = timeval_ms();
337 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
338 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
339 armv7a->debug_base + CPUDBG_DSCR, &dscr);
340 if (retval != ERROR_OK)
341 return retval;
342 if (timeval_ms() > then + 1000) {
343 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
344 return ERROR_FAIL;
345 }
346 }
347
348 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
349 armv7a->debug_base + CPUDBG_DTRTX, value);
350 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
351
352 return retval;
353 }
354
355 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
356 uint32_t value, int regnum)
357 {
358 int retval = ERROR_OK;
359 uint8_t Rd = regnum&0xFF;
360 uint32_t dscr;
361 struct armv7a_common *armv7a = target_to_armv7a(target);
362 struct adiv5_dap *swjdp = armv7a->arm.dap;
363
364 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
365
366 /* Check that DCCRX is not full */
367 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
368 armv7a->debug_base + CPUDBG_DSCR, &dscr);
369 if (retval != ERROR_OK)
370 return retval;
371 if (dscr & DSCR_DTR_RX_FULL) {
372 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
373 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
374 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
375 &dscr);
376 if (retval != ERROR_OK)
377 return retval;
378 }
379
380 if (Rd > 17)
381 return retval;
382
383 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
384 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
385 retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
386 armv7a->debug_base + CPUDBG_DTRRX, value);
387 if (retval != ERROR_OK)
388 return retval;
389
390 if (Rd < 15) {
391 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
392 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
393 &dscr);
394
395 if (retval != ERROR_OK)
396 return retval;
397 } else if (Rd == 15) {
398 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
399 * then "mov r15, r0"
400 */
401 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
402 &dscr);
403 if (retval != ERROR_OK)
404 return retval;
405 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
406 if (retval != ERROR_OK)
407 return retval;
408 } else {
409 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
410 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
411 */
412 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
413 &dscr);
414 if (retval != ERROR_OK)
415 return retval;
416 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
417 &dscr);
418 if (retval != ERROR_OK)
419 return retval;
420
421 /* "Prefetch flush" after modifying execution status in CPSR */
422 if (Rd == 16) {
423 retval = cortex_a8_exec_opcode(target,
424 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
425 &dscr);
426 if (retval != ERROR_OK)
427 return retval;
428 }
429 }
430
431 return retval;
432 }
433
434 /* Write to memory mapped registers directly with no cache or mmu handling */
435 static int cortex_a8_dap_write_memap_register_u32(struct target *target,
436 uint32_t address,
437 uint32_t value)
438 {
439 int retval;
440 struct armv7a_common *armv7a = target_to_armv7a(target);
441 struct adiv5_dap *swjdp = armv7a->arm.dap;
442
443 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap, address, value);
444
445 return retval;
446 }
447
448 /*
449 * Cortex-A8 implementation of Debug Programmer's Model
450 *
451 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
452 * so there's no need to poll for it before executing an instruction.
453 *
454 * NOTE that in several of these cases the "stall" mode might be useful.
455 * It'd let us queue a few operations together... prepare/finish might
456 * be the places to enable/disable that mode.
457 */
458
459 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
460 {
461 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
462 }
463
464 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
465 {
466 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
467 return mem_ap_sel_write_u32(a8->armv7a_common.arm.dap,
468 swjdp_debugap, a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
469 }
470
471 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
472 uint32_t *dscr_p)
473 {
474 struct adiv5_dap *swjdp = a8->armv7a_common.arm.dap;
475 uint32_t dscr = DSCR_INSTR_COMP;
476 int retval;
477
478 if (dscr_p)
479 dscr = *dscr_p;
480
481 /* Wait for DTRRXfull */
482 long long then = timeval_ms();
483 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
484 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
485 a8->armv7a_common.debug_base + CPUDBG_DSCR,
486 &dscr);
487 if (retval != ERROR_OK)
488 return retval;
489 if (timeval_ms() > then + 1000) {
490 LOG_ERROR("Timeout waiting for read dcc");
491 return ERROR_FAIL;
492 }
493 }
494
495 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
496 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
497 if (retval != ERROR_OK)
498 return retval;
499 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
500
501 if (dscr_p)
502 *dscr_p = dscr;
503
504 return retval;
505 }
506
507 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
508 {
509 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
510 struct adiv5_dap *swjdp = a8->armv7a_common.arm.dap;
511 uint32_t dscr;
512 int retval;
513
514 /* set up invariant: INSTR_COMP is set after ever DPM operation */
515 long long then = timeval_ms();
516 for (;; ) {
517 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
518 a8->armv7a_common.debug_base + CPUDBG_DSCR,
519 &dscr);
520 if (retval != ERROR_OK)
521 return retval;
522 if ((dscr & DSCR_INSTR_COMP) != 0)
523 break;
524 if (timeval_ms() > then + 1000) {
525 LOG_ERROR("Timeout waiting for dpm prepare");
526 return ERROR_FAIL;
527 }
528 }
529
530 /* this "should never happen" ... */
531 if (dscr & DSCR_DTR_RX_FULL) {
532 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
533 /* Clear DCCRX */
534 retval = cortex_a8_exec_opcode(
535 a8->armv7a_common.arm.target,
536 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
537 &dscr);
538 if (retval != ERROR_OK)
539 return retval;
540 }
541
542 return retval;
543 }
544
545 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
546 {
547 /* REVISIT what could be done here? */
548 return ERROR_OK;
549 }
550
551 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
552 uint32_t opcode, uint32_t data)
553 {
554 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
555 int retval;
556 uint32_t dscr = DSCR_INSTR_COMP;
557
558 retval = cortex_a8_write_dcc(a8, data);
559 if (retval != ERROR_OK)
560 return retval;
561
562 return cortex_a8_exec_opcode(
563 a8->armv7a_common.arm.target,
564 opcode,
565 &dscr);
566 }
567
568 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
569 uint32_t opcode, uint32_t data)
570 {
571 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
572 uint32_t dscr = DSCR_INSTR_COMP;
573 int retval;
574
575 retval = cortex_a8_write_dcc(a8, data);
576 if (retval != ERROR_OK)
577 return retval;
578
579 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
580 retval = cortex_a8_exec_opcode(
581 a8->armv7a_common.arm.target,
582 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
583 &dscr);
584 if (retval != ERROR_OK)
585 return retval;
586
587 /* then the opcode, taking data from R0 */
588 retval = cortex_a8_exec_opcode(
589 a8->armv7a_common.arm.target,
590 opcode,
591 &dscr);
592
593 return retval;
594 }
595
596 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
597 {
598 struct target *target = dpm->arm->target;
599 uint32_t dscr = DSCR_INSTR_COMP;
600
601 /* "Prefetch flush" after modifying execution status in CPSR */
602 return cortex_a8_exec_opcode(target,
603 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
604 &dscr);
605 }
606
607 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
608 uint32_t opcode, uint32_t *data)
609 {
610 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
611 int retval;
612 uint32_t dscr = DSCR_INSTR_COMP;
613
614 /* the opcode, writing data to DCC */
615 retval = cortex_a8_exec_opcode(
616 a8->armv7a_common.arm.target,
617 opcode,
618 &dscr);
619 if (retval != ERROR_OK)
620 return retval;
621
622 return cortex_a8_read_dcc(a8, data, &dscr);
623 }
624
625
626 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
627 uint32_t opcode, uint32_t *data)
628 {
629 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
630 uint32_t dscr = DSCR_INSTR_COMP;
631 int retval;
632
633 /* the opcode, writing data to R0 */
634 retval = cortex_a8_exec_opcode(
635 a8->armv7a_common.arm.target,
636 opcode,
637 &dscr);
638 if (retval != ERROR_OK)
639 return retval;
640
641 /* write R0 to DCC */
642 retval = cortex_a8_exec_opcode(
643 a8->armv7a_common.arm.target,
644 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
645 &dscr);
646 if (retval != ERROR_OK)
647 return retval;
648
649 return cortex_a8_read_dcc(a8, data, &dscr);
650 }
651
652 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
653 uint32_t addr, uint32_t control)
654 {
655 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
656 uint32_t vr = a8->armv7a_common.debug_base;
657 uint32_t cr = a8->armv7a_common.debug_base;
658 int retval;
659
660 switch (index_t) {
661 case 0 ... 15: /* breakpoints */
662 vr += CPUDBG_BVR_BASE;
663 cr += CPUDBG_BCR_BASE;
664 break;
665 case 16 ... 31: /* watchpoints */
666 vr += CPUDBG_WVR_BASE;
667 cr += CPUDBG_WCR_BASE;
668 index_t -= 16;
669 break;
670 default:
671 return ERROR_FAIL;
672 }
673 vr += 4 * index_t;
674 cr += 4 * index_t;
675
676 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
677 (unsigned) vr, (unsigned) cr);
678
679 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
680 vr, addr);
681 if (retval != ERROR_OK)
682 return retval;
683 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
684 cr, control);
685 return retval;
686 }
687
688 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
689 {
690 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
691 uint32_t cr;
692
693 switch (index_t) {
694 case 0 ... 15:
695 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
696 break;
697 case 16 ... 31:
698 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
699 index_t -= 16;
700 break;
701 default:
702 return ERROR_FAIL;
703 }
704 cr += 4 * index_t;
705
706 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
707
708 /* clear control register */
709 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
710 }
711
712 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
713 {
714 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
715 int retval;
716
717 dpm->arm = &a8->armv7a_common.arm;
718 dpm->didr = didr;
719
720 dpm->prepare = cortex_a8_dpm_prepare;
721 dpm->finish = cortex_a8_dpm_finish;
722
723 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
724 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
725 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
726
727 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
728 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
729
730 dpm->bpwp_enable = cortex_a8_bpwp_enable;
731 dpm->bpwp_disable = cortex_a8_bpwp_disable;
732
733 retval = arm_dpm_setup(dpm);
734 if (retval == ERROR_OK)
735 retval = arm_dpm_initialize(dpm);
736
737 return retval;
738 }
739 static struct target *get_cortex_a8(struct target *target, int32_t coreid)
740 {
741 struct target_list *head;
742 struct target *curr;
743
744 head = target->head;
745 while (head != (struct target_list *)NULL) {
746 curr = head->target;
747 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
748 return curr;
749 head = head->next;
750 }
751 return target;
752 }
753 static int cortex_a8_halt(struct target *target);
754
755 static int cortex_a8_halt_smp(struct target *target)
756 {
757 int retval = 0;
758 struct target_list *head;
759 struct target *curr;
760 head = target->head;
761 while (head != (struct target_list *)NULL) {
762 curr = head->target;
763 if ((curr != target) && (curr->state != TARGET_HALTED))
764 retval += cortex_a8_halt(curr);
765 head = head->next;
766 }
767 return retval;
768 }
769
770 static int update_halt_gdb(struct target *target)
771 {
772 int retval = 0;
773 if (target->gdb_service->core[0] == -1) {
774 target->gdb_service->target = target;
775 target->gdb_service->core[0] = target->coreid;
776 retval += cortex_a8_halt_smp(target);
777 }
778 return retval;
779 }
780
781 /*
782 * Cortex-A8 Run control
783 */
784
785 static int cortex_a8_poll(struct target *target)
786 {
787 int retval = ERROR_OK;
788 uint32_t dscr;
789 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
790 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
791 struct adiv5_dap *swjdp = armv7a->arm.dap;
792 enum target_state prev_target_state = target->state;
793 /* toggle to another core is done by gdb as follow */
794 /* maint packet J core_id */
795 /* continue */
796 /* the next polling trigger an halt event sent to gdb */
797 if ((target->state == TARGET_HALTED) && (target->smp) &&
798 (target->gdb_service) &&
799 (target->gdb_service->target == NULL)) {
800 target->gdb_service->target =
801 get_cortex_a8(target, target->gdb_service->core[1]);
802 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
803 return retval;
804 }
805 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
806 armv7a->debug_base + CPUDBG_DSCR, &dscr);
807 if (retval != ERROR_OK)
808 return retval;
809 cortex_a8->cpudbg_dscr = dscr;
810
811 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
812 if (prev_target_state != TARGET_HALTED) {
813 /* We have a halting debug event */
814 LOG_DEBUG("Target halted");
815 target->state = TARGET_HALTED;
816 if ((prev_target_state == TARGET_RUNNING)
817 || (prev_target_state == TARGET_UNKNOWN)
818 || (prev_target_state == TARGET_RESET)) {
819 retval = cortex_a8_debug_entry(target);
820 if (retval != ERROR_OK)
821 return retval;
822 if (target->smp) {
823 retval = update_halt_gdb(target);
824 if (retval != ERROR_OK)
825 return retval;
826 }
827 target_call_event_callbacks(target,
828 TARGET_EVENT_HALTED);
829 }
830 if (prev_target_state == TARGET_DEBUG_RUNNING) {
831 LOG_DEBUG(" ");
832
833 retval = cortex_a8_debug_entry(target);
834 if (retval != ERROR_OK)
835 return retval;
836 if (target->smp) {
837 retval = update_halt_gdb(target);
838 if (retval != ERROR_OK)
839 return retval;
840 }
841
842 target_call_event_callbacks(target,
843 TARGET_EVENT_DEBUG_HALTED);
844 }
845 }
846 } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
847 target->state = TARGET_RUNNING;
848 else {
849 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
850 target->state = TARGET_UNKNOWN;
851 }
852
853 return retval;
854 }
855
856 static int cortex_a8_halt(struct target *target)
857 {
858 int retval = ERROR_OK;
859 uint32_t dscr;
860 struct armv7a_common *armv7a = target_to_armv7a(target);
861 struct adiv5_dap *swjdp = armv7a->arm.dap;
862
863 /*
864 * Tell the core to be halted by writing DRCR with 0x1
865 * and then wait for the core to be halted.
866 */
867 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
868 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
869 if (retval != ERROR_OK)
870 return retval;
871
872 /*
873 * enter halting debug mode
874 */
875 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
876 armv7a->debug_base + CPUDBG_DSCR, &dscr);
877 if (retval != ERROR_OK)
878 return retval;
879
880 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
881 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
882 if (retval != ERROR_OK)
883 return retval;
884
885 long long then = timeval_ms();
886 for (;; ) {
887 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
888 armv7a->debug_base + CPUDBG_DSCR, &dscr);
889 if (retval != ERROR_OK)
890 return retval;
891 if ((dscr & DSCR_CORE_HALTED) != 0)
892 break;
893 if (timeval_ms() > then + 1000) {
894 LOG_ERROR("Timeout waiting for halt");
895 return ERROR_FAIL;
896 }
897 }
898
899 target->debug_reason = DBG_REASON_DBGRQ;
900
901 return ERROR_OK;
902 }
903
904 static int cortex_a8_internal_restore(struct target *target, int current,
905 uint32_t *address, int handle_breakpoints, int debug_execution)
906 {
907 struct armv7a_common *armv7a = target_to_armv7a(target);
908 struct arm *arm = &armv7a->arm;
909 int retval;
910 uint32_t resume_pc;
911
912 if (!debug_execution)
913 target_free_all_working_areas(target);
914
915 #if 0
916 if (debug_execution) {
917 /* Disable interrupts */
918 /* We disable interrupts in the PRIMASK register instead of
919 * masking with C_MASKINTS,
920 * This is probably the same issue as Cortex-M3 Errata 377493:
921 * C_MASKINTS in parallel with disabled interrupts can cause
922 * local faults to not be taken. */
923 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
924 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
925 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
926
927 /* Make sure we are in Thumb mode */
928 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
929 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
930 32) | (1 << 24));
931 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
932 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
933 }
934 #endif
935
936 /* current = 1: continue on current pc, otherwise continue at <address> */
937 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
938 if (!current)
939 resume_pc = *address;
940 else
941 *address = resume_pc;
942
943 /* Make sure that the Armv7 gdb thumb fixups does not
944 * kill the return address
945 */
946 switch (arm->core_state) {
947 case ARM_STATE_ARM:
948 resume_pc &= 0xFFFFFFFC;
949 break;
950 case ARM_STATE_THUMB:
951 case ARM_STATE_THUMB_EE:
952 /* When the return address is loaded into PC
953 * bit 0 must be 1 to stay in Thumb state
954 */
955 resume_pc |= 0x1;
956 break;
957 case ARM_STATE_JAZELLE:
958 LOG_ERROR("How do I resume into Jazelle state??");
959 return ERROR_FAIL;
960 }
961 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
962 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
963 arm->pc->dirty = 1;
964 arm->pc->valid = 1;
965 /* restore dpm_mode at system halt */
966 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
967 /* called it now before restoring context because it uses cpu
968 * register r0 for restoring cp15 control register */
969 retval = cortex_a8_restore_cp15_control_reg(target);
970 if (retval != ERROR_OK)
971 return retval;
972 retval = cortex_a8_restore_context(target, handle_breakpoints);
973 if (retval != ERROR_OK)
974 return retval;
975 target->debug_reason = DBG_REASON_NOTHALTED;
976 target->state = TARGET_RUNNING;
977
978 /* registers are now invalid */
979 register_cache_invalidate(arm->core_cache);
980
981 #if 0
982 /* the front-end may request us not to handle breakpoints */
983 if (handle_breakpoints) {
984 /* Single step past breakpoint at current address */
985 breakpoint = breakpoint_find(target, resume_pc);
986 if (breakpoint) {
987 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
988 cortex_m3_unset_breakpoint(target, breakpoint);
989 cortex_m3_single_step_core(target);
990 cortex_m3_set_breakpoint(target, breakpoint);
991 }
992 }
993
994 #endif
995 return retval;
996 }
997
998 static int cortex_a8_internal_restart(struct target *target)
999 {
1000 struct armv7a_common *armv7a = target_to_armv7a(target);
1001 struct arm *arm = &armv7a->arm;
1002 struct adiv5_dap *swjdp = arm->dap;
1003 int retval;
1004 uint32_t dscr;
1005 /*
1006 * * Restart core and wait for it to be started. Clear ITRen and sticky
1007 * * exception flags: see ARMv7 ARM, C5.9.
1008 *
1009 * REVISIT: for single stepping, we probably want to
1010 * disable IRQs by default, with optional override...
1011 */
1012
1013 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1014 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1015 if (retval != ERROR_OK)
1016 return retval;
1017
1018 if ((dscr & DSCR_INSTR_COMP) == 0)
1019 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1020
1021 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1022 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1023 if (retval != ERROR_OK)
1024 return retval;
1025
1026 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1027 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1028 DRCR_CLEAR_EXCEPTIONS);
1029 if (retval != ERROR_OK)
1030 return retval;
1031
1032 long long then = timeval_ms();
1033 for (;; ) {
1034 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1035 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1036 if (retval != ERROR_OK)
1037 return retval;
1038 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1039 break;
1040 if (timeval_ms() > then + 1000) {
1041 LOG_ERROR("Timeout waiting for resume");
1042 return ERROR_FAIL;
1043 }
1044 }
1045
1046 target->debug_reason = DBG_REASON_NOTHALTED;
1047 target->state = TARGET_RUNNING;
1048
1049 /* registers are now invalid */
1050 register_cache_invalidate(arm->core_cache);
1051
1052 return ERROR_OK;
1053 }
1054
1055 static int cortex_a8_restore_smp(struct target *target, int handle_breakpoints)
1056 {
1057 int retval = 0;
1058 struct target_list *head;
1059 struct target *curr;
1060 uint32_t address;
1061 head = target->head;
1062 while (head != (struct target_list *)NULL) {
1063 curr = head->target;
1064 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1065 /* resume current address , not in step mode */
1066 retval += cortex_a8_internal_restore(curr, 1, &address,
1067 handle_breakpoints, 0);
1068 retval += cortex_a8_internal_restart(curr);
1069 }
1070 head = head->next;
1071
1072 }
1073 return retval;
1074 }
1075
1076 static int cortex_a8_resume(struct target *target, int current,
1077 uint32_t address, int handle_breakpoints, int debug_execution)
1078 {
1079 int retval = 0;
1080 /* dummy resume for smp toggle in order to reduce gdb impact */
1081 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1082 /* simulate a start and halt of target */
1083 target->gdb_service->target = NULL;
1084 target->gdb_service->core[0] = target->gdb_service->core[1];
1085 /* fake resume at next poll we play the target core[1], see poll*/
1086 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1087 return 0;
1088 }
1089 cortex_a8_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1090 if (target->smp) {
1091 target->gdb_service->core[0] = -1;
1092 retval = cortex_a8_restore_smp(target, handle_breakpoints);
1093 if (retval != ERROR_OK)
1094 return retval;
1095 }
1096 cortex_a8_internal_restart(target);
1097
1098 if (!debug_execution) {
1099 target->state = TARGET_RUNNING;
1100 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1101 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1102 } else {
1103 target->state = TARGET_DEBUG_RUNNING;
1104 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1105 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1106 }
1107
1108 return ERROR_OK;
1109 }
1110
1111 static int cortex_a8_debug_entry(struct target *target)
1112 {
1113 int i;
1114 uint32_t regfile[16], cpsr, dscr;
1115 int retval = ERROR_OK;
1116 struct working_area *regfile_working_area = NULL;
1117 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1118 struct armv7a_common *armv7a = target_to_armv7a(target);
1119 struct arm *arm = &armv7a->arm;
1120 struct adiv5_dap *swjdp = armv7a->arm.dap;
1121 struct reg *reg;
1122
1123 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
1124
1125 /* REVISIT surely we should not re-read DSCR !! */
1126 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1127 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1128 if (retval != ERROR_OK)
1129 return retval;
1130
1131 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1132 * imprecise data aborts get discarded by issuing a Data
1133 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1134 */
1135
1136 /* Enable the ITR execution once we are in debug mode */
1137 dscr |= DSCR_ITR_EN;
1138 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1139 armv7a->debug_base + CPUDBG_DSCR, dscr);
1140 if (retval != ERROR_OK)
1141 return retval;
1142
1143 /* Examine debug reason */
1144 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
1145
1146 /* save address of instruction that triggered the watchpoint? */
1147 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1148 uint32_t wfar;
1149
1150 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1151 armv7a->debug_base + CPUDBG_WFAR,
1152 &wfar);
1153 if (retval != ERROR_OK)
1154 return retval;
1155 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1156 }
1157
1158 /* REVISIT fast_reg_read is never set ... */
1159
1160 /* Examine target state and mode */
1161 if (cortex_a8->fast_reg_read)
1162 target_alloc_working_area(target, 64, &regfile_working_area);
1163
1164 /* First load register acessible through core debug port*/
1165 if (!regfile_working_area)
1166 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1167 else {
1168 retval = cortex_a8_read_regs_through_mem(target,
1169 regfile_working_area->address, regfile);
1170
1171 target_free_working_area(target, regfile_working_area);
1172 if (retval != ERROR_OK)
1173 return retval;
1174
1175 /* read Current PSR */
1176 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
1177 /* store current cpsr */
1178 if (retval != ERROR_OK)
1179 return retval;
1180
1181 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1182
1183 arm_set_cpsr(arm, cpsr);
1184
1185 /* update cache */
1186 for (i = 0; i <= ARM_PC; i++) {
1187 reg = arm_reg_current(arm, i);
1188
1189 buf_set_u32(reg->value, 0, 32, regfile[i]);
1190 reg->valid = 1;
1191 reg->dirty = 0;
1192 }
1193
1194 /* Fixup PC Resume Address */
1195 if (cpsr & (1 << 5)) {
1196 /* T bit set for Thumb or ThumbEE state */
1197 regfile[ARM_PC] -= 4;
1198 } else {
1199 /* ARM state */
1200 regfile[ARM_PC] -= 8;
1201 }
1202
1203 reg = arm->pc;
1204 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1205 reg->dirty = reg->valid;
1206 }
1207
1208 #if 0
1209 /* TODO, Move this */
1210 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1211 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1212 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1213
1214 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1215 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1216
1217 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1218 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1219 #endif
1220
1221 /* Are we in an exception handler */
1222 /* armv4_5->exception_number = 0; */
1223 if (armv7a->post_debug_entry) {
1224 retval = armv7a->post_debug_entry(target);
1225 if (retval != ERROR_OK)
1226 return retval;
1227 }
1228
1229 return retval;
1230 }
1231
1232 static int cortex_a8_post_debug_entry(struct target *target)
1233 {
1234 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1235 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1236 int retval;
1237
1238 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1239 retval = armv7a->arm.mrc(target, 15,
1240 0, 0, /* op1, op2 */
1241 1, 0, /* CRn, CRm */
1242 &cortex_a8->cp15_control_reg);
1243 if (retval != ERROR_OK)
1244 return retval;
1245 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1246 cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
1247
1248 if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
1249 armv7a_identify_cache(target);
1250
1251 armv7a->armv7a_mmu.mmu_enabled =
1252 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1253 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1254 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1255 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1256 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1257 cortex_a8->curr_mode = armv7a->arm.core_mode;
1258
1259 return ERROR_OK;
1260 }
1261
1262 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1263 int handle_breakpoints)
1264 {
1265 struct armv7a_common *armv7a = target_to_armv7a(target);
1266 struct arm *arm = &armv7a->arm;
1267 struct breakpoint *breakpoint = NULL;
1268 struct breakpoint stepbreakpoint;
1269 struct reg *r;
1270 int retval;
1271
1272 if (target->state != TARGET_HALTED) {
1273 LOG_WARNING("target not halted");
1274 return ERROR_TARGET_NOT_HALTED;
1275 }
1276
1277 /* current = 1: continue on current pc, otherwise continue at <address> */
1278 r = arm->pc;
1279 if (!current)
1280 buf_set_u32(r->value, 0, 32, address);
1281 else
1282 address = buf_get_u32(r->value, 0, 32);
1283
1284 /* The front-end may request us not to handle breakpoints.
1285 * But since Cortex-A8 uses breakpoint for single step,
1286 * we MUST handle breakpoints.
1287 */
1288 handle_breakpoints = 1;
1289 if (handle_breakpoints) {
1290 breakpoint = breakpoint_find(target, address);
1291 if (breakpoint)
1292 cortex_a8_unset_breakpoint(target, breakpoint);
1293 }
1294
1295 /* Setup single step breakpoint */
1296 stepbreakpoint.address = address;
1297 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1298 ? 2 : 4;
1299 stepbreakpoint.type = BKPT_HARD;
1300 stepbreakpoint.set = 0;
1301
1302 /* Break on IVA mismatch */
1303 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1304
1305 target->debug_reason = DBG_REASON_SINGLESTEP;
1306
1307 retval = cortex_a8_resume(target, 1, address, 0, 0);
1308 if (retval != ERROR_OK)
1309 return retval;
1310
1311 long long then = timeval_ms();
1312 while (target->state != TARGET_HALTED) {
1313 retval = cortex_a8_poll(target);
1314 if (retval != ERROR_OK)
1315 return retval;
1316 if (timeval_ms() > then + 1000) {
1317 LOG_ERROR("timeout waiting for target halt");
1318 return ERROR_FAIL;
1319 }
1320 }
1321
1322 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1323
1324 target->debug_reason = DBG_REASON_BREAKPOINT;
1325
1326 if (breakpoint)
1327 cortex_a8_set_breakpoint(target, breakpoint, 0);
1328
1329 if (target->state != TARGET_HALTED)
1330 LOG_DEBUG("target stepped");
1331
1332 return ERROR_OK;
1333 }
1334
1335 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1336 {
1337 struct armv7a_common *armv7a = target_to_armv7a(target);
1338
1339 LOG_DEBUG(" ");
1340
1341 if (armv7a->pre_restore_context)
1342 armv7a->pre_restore_context(target);
1343
1344 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1345 }
1346
1347 /*
1348 * Cortex-A8 Breakpoint and watchpoint functions
1349 */
1350
1351 /* Setup hardware Breakpoint Register Pair */
1352 static int cortex_a8_set_breakpoint(struct target *target,
1353 struct breakpoint *breakpoint, uint8_t matchmode)
1354 {
1355 int retval;
1356 int brp_i = 0;
1357 uint32_t control;
1358 uint8_t byte_addr_select = 0x0F;
1359 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1360 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1361 struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1362
1363 if (breakpoint->set) {
1364 LOG_WARNING("breakpoint already set");
1365 return ERROR_OK;
1366 }
1367
1368 if (breakpoint->type == BKPT_HARD) {
1369 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1370 brp_i++;
1371 if (brp_i >= cortex_a8->brp_num) {
1372 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1373 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1374 }
1375 breakpoint->set = brp_i + 1;
1376 if (breakpoint->length == 2)
1377 byte_addr_select = (3 << (breakpoint->address & 0x02));
1378 control = ((matchmode & 0x7) << 20)
1379 | (byte_addr_select << 5)
1380 | (3 << 1) | 1;
1381 brp_list[brp_i].used = 1;
1382 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1383 brp_list[brp_i].control = control;
1384 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1385 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1386 brp_list[brp_i].value);
1387 if (retval != ERROR_OK)
1388 return retval;
1389 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1390 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1391 brp_list[brp_i].control);
1392 if (retval != ERROR_OK)
1393 return retval;
1394 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1395 brp_list[brp_i].control,
1396 brp_list[brp_i].value);
1397 } else if (breakpoint->type == BKPT_SOFT) {
1398 uint8_t code[4];
1399 if (breakpoint->length == 2)
1400 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1401 else
1402 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1403 retval = target_read_memory(target,
1404 breakpoint->address & 0xFFFFFFFE,
1405 breakpoint->length, 1,
1406 breakpoint->orig_instr);
1407 if (retval != ERROR_OK)
1408 return retval;
1409 retval = target_write_memory(target,
1410 breakpoint->address & 0xFFFFFFFE,
1411 breakpoint->length, 1, code);
1412 if (retval != ERROR_OK)
1413 return retval;
1414 breakpoint->set = 0x11; /* Any nice value but 0 */
1415 }
1416
1417 return ERROR_OK;
1418 }
1419
1420 static int cortex_a8_set_context_breakpoint(struct target *target,
1421 struct breakpoint *breakpoint, uint8_t matchmode)
1422 {
1423 int retval = ERROR_FAIL;
1424 int brp_i = 0;
1425 uint32_t control;
1426 uint8_t byte_addr_select = 0x0F;
1427 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1428 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1429 struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1430
1431 if (breakpoint->set) {
1432 LOG_WARNING("breakpoint already set");
1433 return retval;
1434 }
1435 /*check available context BRPs*/
1436 while ((brp_list[brp_i].used ||
1437 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a8->brp_num))
1438 brp_i++;
1439
1440 if (brp_i >= cortex_a8->brp_num) {
1441 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1442 return ERROR_FAIL;
1443 }
1444
1445 breakpoint->set = brp_i + 1;
1446 control = ((matchmode & 0x7) << 20)
1447 | (byte_addr_select << 5)
1448 | (3 << 1) | 1;
1449 brp_list[brp_i].used = 1;
1450 brp_list[brp_i].value = (breakpoint->asid);
1451 brp_list[brp_i].control = control;
1452 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1453 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1454 brp_list[brp_i].value);
1455 if (retval != ERROR_OK)
1456 return retval;
1457 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1458 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1459 brp_list[brp_i].control);
1460 if (retval != ERROR_OK)
1461 return retval;
1462 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1463 brp_list[brp_i].control,
1464 brp_list[brp_i].value);
1465 return ERROR_OK;
1466
1467 }
1468
1469 static int cortex_a8_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1470 {
1471 int retval = ERROR_FAIL;
1472 int brp_1 = 0; /* holds the contextID pair */
1473 int brp_2 = 0; /* holds the IVA pair */
1474 uint32_t control_CTX, control_IVA;
1475 uint8_t CTX_byte_addr_select = 0x0F;
1476 uint8_t IVA_byte_addr_select = 0x0F;
1477 uint8_t CTX_machmode = 0x03;
1478 uint8_t IVA_machmode = 0x01;
1479 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1480 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1481 struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1482
1483 if (breakpoint->set) {
1484 LOG_WARNING("breakpoint already set");
1485 return retval;
1486 }
1487 /*check available context BRPs*/
1488 while ((brp_list[brp_1].used ||
1489 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a8->brp_num))
1490 brp_1++;
1491
1492 printf("brp(CTX) found num: %d\n", brp_1);
1493 if (brp_1 >= cortex_a8->brp_num) {
1494 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1495 return ERROR_FAIL;
1496 }
1497
1498 while ((brp_list[brp_2].used ||
1499 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a8->brp_num))
1500 brp_2++;
1501
1502 printf("brp(IVA) found num: %d\n", brp_2);
1503 if (brp_2 >= cortex_a8->brp_num) {
1504 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1505 return ERROR_FAIL;
1506 }
1507
1508 breakpoint->set = brp_1 + 1;
1509 breakpoint->linked_BRP = brp_2;
1510 control_CTX = ((CTX_machmode & 0x7) << 20)
1511 | (brp_2 << 16)
1512 | (0 << 14)
1513 | (CTX_byte_addr_select << 5)
1514 | (3 << 1) | 1;
1515 brp_list[brp_1].used = 1;
1516 brp_list[brp_1].value = (breakpoint->asid);
1517 brp_list[brp_1].control = control_CTX;
1518 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1519 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1520 brp_list[brp_1].value);
1521 if (retval != ERROR_OK)
1522 return retval;
1523 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1524 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1525 brp_list[brp_1].control);
1526 if (retval != ERROR_OK)
1527 return retval;
1528
1529 control_IVA = ((IVA_machmode & 0x7) << 20)
1530 | (brp_1 << 16)
1531 | (IVA_byte_addr_select << 5)
1532 | (3 << 1) | 1;
1533 brp_list[brp_2].used = 1;
1534 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1535 brp_list[brp_2].control = control_IVA;
1536 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1537 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1538 brp_list[brp_2].value);
1539 if (retval != ERROR_OK)
1540 return retval;
1541 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1542 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1543 brp_list[brp_2].control);
1544 if (retval != ERROR_OK)
1545 return retval;
1546
1547 return ERROR_OK;
1548 }
1549
1550 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1551 {
1552 int retval;
1553 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1554 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1555 struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1556
1557 if (!breakpoint->set) {
1558 LOG_WARNING("breakpoint not set");
1559 return ERROR_OK;
1560 }
1561
1562 if (breakpoint->type == BKPT_HARD) {
1563 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1564 int brp_i = breakpoint->set - 1;
1565 int brp_j = breakpoint->linked_BRP;
1566 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) {
1567 LOG_DEBUG("Invalid BRP number in breakpoint");
1568 return ERROR_OK;
1569 }
1570 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1571 brp_list[brp_i].control, brp_list[brp_i].value);
1572 brp_list[brp_i].used = 0;
1573 brp_list[brp_i].value = 0;
1574 brp_list[brp_i].control = 0;
1575 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1576 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1577 brp_list[brp_i].control);
1578 if (retval != ERROR_OK)
1579 return retval;
1580 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1581 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1582 brp_list[brp_i].value);
1583 if (retval != ERROR_OK)
1584 return retval;
1585 if ((brp_j < 0) || (brp_j >= cortex_a8->brp_num)) {
1586 LOG_DEBUG("Invalid BRP number in breakpoint");
1587 return ERROR_OK;
1588 }
1589 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1590 brp_list[brp_j].control, brp_list[brp_j].value);
1591 brp_list[brp_j].used = 0;
1592 brp_list[brp_j].value = 0;
1593 brp_list[brp_j].control = 0;
1594 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1595 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1596 brp_list[brp_j].control);
1597 if (retval != ERROR_OK)
1598 return retval;
1599 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1600 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1601 brp_list[brp_j].value);
1602 if (retval != ERROR_OK)
1603 return retval;
1604 breakpoint->linked_BRP = 0;
1605 breakpoint->set = 0;
1606 return ERROR_OK;
1607
1608 } else {
1609 int brp_i = breakpoint->set - 1;
1610 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) {
1611 LOG_DEBUG("Invalid BRP number in breakpoint");
1612 return ERROR_OK;
1613 }
1614 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1615 brp_list[brp_i].control, brp_list[brp_i].value);
1616 brp_list[brp_i].used = 0;
1617 brp_list[brp_i].value = 0;
1618 brp_list[brp_i].control = 0;
1619 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1620 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1621 brp_list[brp_i].control);
1622 if (retval != ERROR_OK)
1623 return retval;
1624 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1625 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1626 brp_list[brp_i].value);
1627 if (retval != ERROR_OK)
1628 return retval;
1629 breakpoint->set = 0;
1630 return ERROR_OK;
1631 }
1632 } else {
1633 /* restore original instruction (kept in target endianness) */
1634 if (breakpoint->length == 4) {
1635 retval = target_write_memory(target,
1636 breakpoint->address & 0xFFFFFFFE,
1637 4, 1, breakpoint->orig_instr);
1638 if (retval != ERROR_OK)
1639 return retval;
1640 } else {
1641 retval = target_write_memory(target,
1642 breakpoint->address & 0xFFFFFFFE,
1643 2, 1, breakpoint->orig_instr);
1644 if (retval != ERROR_OK)
1645 return retval;
1646 }
1647 }
1648 breakpoint->set = 0;
1649
1650 return ERROR_OK;
1651 }
1652
1653 static int cortex_a8_add_breakpoint(struct target *target,
1654 struct breakpoint *breakpoint)
1655 {
1656 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1657
1658 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1659 LOG_INFO("no hardware breakpoint available");
1660 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1661 }
1662
1663 if (breakpoint->type == BKPT_HARD)
1664 cortex_a8->brp_num_available--;
1665
1666 return cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1667 }
1668
1669 static int cortex_a8_add_context_breakpoint(struct target *target,
1670 struct breakpoint *breakpoint)
1671 {
1672 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1673
1674 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1675 LOG_INFO("no hardware breakpoint available");
1676 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1677 }
1678
1679 if (breakpoint->type == BKPT_HARD)
1680 cortex_a8->brp_num_available--;
1681
1682 return cortex_a8_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1683 }
1684
1685 static int cortex_a8_add_hybrid_breakpoint(struct target *target,
1686 struct breakpoint *breakpoint)
1687 {
1688 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1689
1690 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1691 LOG_INFO("no hardware breakpoint available");
1692 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1693 }
1694
1695 if (breakpoint->type == BKPT_HARD)
1696 cortex_a8->brp_num_available--;
1697
1698 return cortex_a8_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1699 }
1700
1701
1702 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1703 {
1704 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1705
1706 #if 0
1707 /* It is perfectly possible to remove breakpoints while the target is running */
1708 if (target->state != TARGET_HALTED) {
1709 LOG_WARNING("target not halted");
1710 return ERROR_TARGET_NOT_HALTED;
1711 }
1712 #endif
1713
1714 if (breakpoint->set) {
1715 cortex_a8_unset_breakpoint(target, breakpoint);
1716 if (breakpoint->type == BKPT_HARD)
1717 cortex_a8->brp_num_available++;
1718 }
1719
1720
1721 return ERROR_OK;
1722 }
1723
1724 /*
1725 * Cortex-A8 Reset functions
1726 */
1727
1728 static int cortex_a8_assert_reset(struct target *target)
1729 {
1730 struct armv7a_common *armv7a = target_to_armv7a(target);
1731
1732 LOG_DEBUG(" ");
1733
1734 /* FIXME when halt is requested, make it work somehow... */
1735
1736 /* Issue some kind of warm reset. */
1737 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1738 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1739 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1740 /* REVISIT handle "pulls" cases, if there's
1741 * hardware that needs them to work.
1742 */
1743 jtag_add_reset(0, 1);
1744 } else {
1745 LOG_ERROR("%s: how to reset?", target_name(target));
1746 return ERROR_FAIL;
1747 }
1748
1749 /* registers are now invalid */
1750 register_cache_invalidate(armv7a->arm.core_cache);
1751
1752 target->state = TARGET_RESET;
1753
1754 return ERROR_OK;
1755 }
1756
1757 static int cortex_a8_deassert_reset(struct target *target)
1758 {
1759 int retval;
1760
1761 LOG_DEBUG(" ");
1762
1763 /* be certain SRST is off */
1764 jtag_add_reset(0, 0);
1765
1766 retval = cortex_a8_poll(target);
1767 if (retval != ERROR_OK)
1768 return retval;
1769
1770 if (target->reset_halt) {
1771 if (target->state != TARGET_HALTED) {
1772 LOG_WARNING("%s: ran after reset and before halt ...",
1773 target_name(target));
1774 retval = target_halt(target);
1775 if (retval != ERROR_OK)
1776 return retval;
1777 }
1778 }
1779
1780 return ERROR_OK;
1781 }
1782
1783 static int cortex_a8_write_apb_ab_memory(struct target *target,
1784 uint32_t address, uint32_t size,
1785 uint32_t count, const uint8_t *buffer)
1786 {
1787 /* write memory through APB-AP */
1788
1789 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1790 struct armv7a_common *armv7a = target_to_armv7a(target);
1791 struct arm *arm = &armv7a->arm;
1792 struct adiv5_dap *swjdp = armv7a->arm.dap;
1793 int total_bytes = count * size;
1794 int total_u32;
1795 int start_byte = address & 0x3;
1796 int end_byte = (address + total_bytes) & 0x3;
1797 struct reg *reg;
1798 uint32_t dscr;
1799 uint8_t *tmp_buff = NULL;
1800
1801 if (target->state != TARGET_HALTED) {
1802 LOG_WARNING("target not halted");
1803 return ERROR_TARGET_NOT_HALTED;
1804 }
1805
1806 total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1807
1808 /* Mark register R0 as dirty, as it will be used
1809 * for transferring the data.
1810 * It will be restored automatically when exiting
1811 * debug mode
1812 */
1813 reg = arm_reg_current(arm, 0);
1814 reg->dirty = true;
1815
1816 /* clear any abort */
1817 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, armv7a->debug_base + CPUDBG_DRCR, 1<<2);
1818 if (retval != ERROR_OK)
1819 return retval;
1820
1821 /* This algorithm comes from either :
1822 * Cortex-A8 TRM Example 12-25
1823 * Cortex-R4 TRM Example 11-26
1824 * (slight differences)
1825 */
1826
1827 /* The algorithm only copies 32 bit words, so the buffer
1828 * should be expanded to include the words at either end.
1829 * The first and last words will be read first to avoid
1830 * corruption if needed.
1831 */
1832 tmp_buff = (uint8_t *) malloc(total_u32 << 2);
1833
1834
1835 if ((start_byte != 0) && (total_u32 > 1)) {
1836 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1837 * the other bytes in the word.
1838 */
1839 retval = cortex_a8_read_apb_ab_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1840 if (retval != ERROR_OK)
1841 goto error_free_buff_w;
1842 }
1843
1844 /* If end of write is not aligned, or the write is less than 4 bytes */
1845 if ((end_byte != 0) ||
1846 ((total_u32 == 1) && (total_bytes != 4))) {
1847
1848 /* Read the last word to avoid corruption during 32 bit write */
1849 int mem_offset = (total_u32-1) << 4;
1850 retval = cortex_a8_read_apb_ab_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1851 if (retval != ERROR_OK)
1852 goto error_free_buff_w;
1853 }
1854
1855 /* Copy the write buffer over the top of the temporary buffer */
1856 memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1857
1858 /* We now have a 32 bit aligned buffer that can be written */
1859
1860 /* Read DSCR */
1861 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1862 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1863 if (retval != ERROR_OK)
1864 goto error_free_buff_w;
1865
1866 /* Set DTR mode to Fast (2) */
1867 dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
1868 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1869 armv7a->debug_base + CPUDBG_DSCR, dscr);
1870 if (retval != ERROR_OK)
1871 goto error_free_buff_w;
1872
1873 /* Copy the destination address into R0 */
1874 /* - pend an instruction MRC p14, 0, R0, c5, c0 */
1875 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1876 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
1877 if (retval != ERROR_OK)
1878 goto error_unset_dtr_w;
1879 /* Write address into DTRRX, which triggers previous instruction */
1880 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1881 armv7a->debug_base + CPUDBG_DTRRX, address & (~0x3));
1882 if (retval != ERROR_OK)
1883 goto error_unset_dtr_w;
1884
1885 /* Write the data transfer instruction into the ITR
1886 * (STC p14, c5, [R0], 4)
1887 */
1888 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1889 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
1890 if (retval != ERROR_OK)
1891 goto error_unset_dtr_w;
1892
1893 /* Do the write */
1894 retval = mem_ap_sel_write_buf_u32_noincr(swjdp, armv7a->debug_ap,
1895 tmp_buff, (total_u32)<<2, armv7a->debug_base + CPUDBG_DTRRX);
1896 if (retval != ERROR_OK)
1897 goto error_unset_dtr_w;
1898
1899
1900 /* Switch DTR mode back to non-blocking (0) */
1901 dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
1902 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1903 armv7a->debug_base + CPUDBG_DSCR, dscr);
1904 if (retval != ERROR_OK)
1905 goto error_unset_dtr_w;
1906
1907 /* Check for sticky abort flags in the DSCR */
1908 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1909 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1910 if (retval != ERROR_OK)
1911 goto error_free_buff_w;
1912 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
1913 /* Abort occurred - clear it and exit */
1914 LOG_ERROR("abort occurred - dscr = 0x%08x", dscr);
1915 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1916 armv7a->debug_base + CPUDBG_DRCR, 1<<2);
1917 goto error_free_buff_w;
1918 }
1919
1920 /* Done */
1921 free(tmp_buff);
1922 return ERROR_OK;
1923
1924 error_unset_dtr_w:
1925 /* Unset DTR mode */
1926 mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1927 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1928 dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
1929 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1930 armv7a->debug_base + CPUDBG_DSCR, dscr);
1931 error_free_buff_w:
1932 LOG_ERROR("error");
1933 free(tmp_buff);
1934 return ERROR_FAIL;
1935 }
1936
1937 static int cortex_a8_read_apb_ab_memory(struct target *target,
1938 uint32_t address, uint32_t size,
1939 uint32_t count, uint8_t *buffer)
1940 {
1941 /* read memory through APB-AP */
1942
1943 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1944 struct armv7a_common *armv7a = target_to_armv7a(target);
1945 struct adiv5_dap *swjdp = armv7a->arm.dap;
1946 struct arm *arm = &armv7a->arm;
1947 int total_bytes = count * size;
1948 int total_u32;
1949 int start_byte = address & 0x3;
1950 struct reg *reg;
1951 uint32_t dscr;
1952 char *tmp_buff = NULL;
1953 uint32_t buff32[2];
1954 if (target->state != TARGET_HALTED) {
1955 LOG_WARNING("target not halted");
1956 return ERROR_TARGET_NOT_HALTED;
1957 }
1958
1959 total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1960
1961 /* Mark register R0 as dirty, as it will be used
1962 * for transferring the data.
1963 * It will be restored automatically when exiting
1964 * debug mode
1965 */
1966 reg = arm_reg_current(arm, 0);
1967 reg->dirty = true;
1968
1969 /* clear any abort */
1970 retval =
1971 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, armv7a->debug_base + CPUDBG_DRCR, 1<<2);
1972 if (retval != ERROR_OK)
1973 return retval;
1974
1975 /* Read DSCR */
1976 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1977 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1978
1979 /* This algorithm comes from either :
1980 * Cortex-A8 TRM Example 12-24
1981 * Cortex-R4 TRM Example 11-25
1982 * (slight differences)
1983 */
1984
1985 /* Set DTR access mode to stall mode b01 */
1986 dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_STALL_MODE;
1987 retval += mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1988 armv7a->debug_base + CPUDBG_DSCR, dscr);
1989
1990 /* Write R0 with value 'address' using write procedure for stall mode */
1991 /* - Write the address for read access into DTRRX */
1992 retval += mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1993 armv7a->debug_base + CPUDBG_DTRRX, address & ~0x3);
1994 /* - Copy value from DTRRX to R0 using instruction mrc p14, 0, r0, c5, c0 */
1995 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
1996
1997
1998 /* Write the data transfer instruction (ldc p14, c5, [r0],4)
1999 * and the DTR mode setting to fast mode
2000 * in one combined write (since they are adjacent registers)
2001 */
2002 buff32[0] = ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4);
2003 dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
2004 buff32[1] = dscr;
2005 /* group the 2 access CPUDBG_ITR 0x84 and CPUDBG_DSCR 0x88 */
2006 retval += mem_ap_sel_write_buf_u32(swjdp, armv7a->debug_ap, (uint8_t *)buff32, 8,
2007 armv7a->debug_base + CPUDBG_ITR);
2008 if (retval != ERROR_OK)
2009 goto error_unset_dtr_r;
2010
2011
2012 /* Due to offset word alignment, the buffer may not have space
2013 * to read the full first and last int32 words,
2014 * hence, malloc space to read into, then copy and align into the buffer.
2015 */
2016 tmp_buff = (char *) malloc(total_u32<<2);
2017
2018 /* The last word needs to be handled separately - read all other words in one go.
2019 */
2020 if (total_u32 > 1) {
2021 /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2022 * Abort flags are sticky, so can be read at end of transactions
2023 *
2024 * This data is read in aligned to 32 bit boundary, hence may need shifting later.
2025 */
2026 retval = mem_ap_sel_read_buf_u32_noincr(swjdp, armv7a->debug_ap, (uint8_t *)tmp_buff, (total_u32-1)<<2,
2027 armv7a->debug_base + CPUDBG_DTRTX);
2028 if (retval != ERROR_OK)
2029 goto error_unset_dtr_r;
2030 }
2031
2032 /* set DTR access mode back to non blocking b00 */
2033 dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
2034 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2035 armv7a->debug_base + CPUDBG_DSCR, dscr);
2036 if (retval != ERROR_OK)
2037 goto error_free_buff_r;
2038
2039 /* Wait for the final read instruction to finish */
2040 do {
2041 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2042 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2043 if (retval != ERROR_OK)
2044 goto error_free_buff_r;
2045 } while ((dscr & DSCR_INSTR_COMP) == 0);
2046
2047
2048 /* Check for sticky abort flags in the DSCR */
2049 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2050 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2051 if (retval != ERROR_OK)
2052 goto error_free_buff_r;
2053 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2054 /* Abort occurred - clear it and exit */
2055 LOG_ERROR("abort occurred - dscr = 0x%08x", dscr);
2056 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2057 armv7a->debug_base + CPUDBG_DRCR, 1<<2);
2058 goto error_free_buff_r;
2059 }
2060
2061 /* Read the last word */
2062 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2063 armv7a->debug_base + CPUDBG_DTRTX, (uint32_t *)&tmp_buff[(total_u32-1)<<2]);
2064 if (retval != ERROR_OK)
2065 goto error_free_buff_r;
2066
2067 /* Copy and align the data into the output buffer */
2068 memcpy(buffer, &tmp_buff[start_byte], total_bytes);
2069
2070 free(tmp_buff);
2071
2072 /* Done */
2073 return ERROR_OK;
2074
2075
2076 error_unset_dtr_r:
2077 /* Unset DTR mode */
2078 mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2079 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2080 dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
2081 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2082 armv7a->debug_base + CPUDBG_DSCR, dscr);
2083 error_free_buff_r:
2084 LOG_ERROR("error");
2085 free(tmp_buff);
2086 return ERROR_FAIL;
2087 }
2088
2089
2090 /*
2091 * Cortex-A8 Memory access
2092 *
2093 * This is same Cortex M3 but we must also use the correct
2094 * ap number for every access.
2095 */
2096
2097 static int cortex_a8_read_phys_memory(struct target *target,
2098 uint32_t address, uint32_t size,
2099 uint32_t count, uint8_t *buffer)
2100 {
2101 struct armv7a_common *armv7a = target_to_armv7a(target);
2102 struct adiv5_dap *swjdp = armv7a->arm.dap;
2103 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2104 uint8_t apsel = swjdp->apsel;
2105 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d",
2106 address, size, count);
2107
2108 if (count && buffer) {
2109
2110 if (apsel == swjdp_memoryap) {
2111
2112 /* read memory through AHB-AP */
2113
2114 switch (size) {
2115 case 4:
2116 retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
2117 buffer, 4 * count, address);
2118 break;
2119 case 2:
2120 retval = mem_ap_sel_read_buf_u16(swjdp, swjdp_memoryap,
2121 buffer, 2 * count, address);
2122 break;
2123 case 1:
2124 retval = mem_ap_sel_read_buf_u8(swjdp, swjdp_memoryap,
2125 buffer, count, address);
2126 break;
2127 }
2128 } else {
2129
2130 /* read memory through APB-AP
2131 * disable mmu */
2132 retval = cortex_a8_mmu_modify(target, 0);
2133 if (retval != ERROR_OK)
2134 return retval;
2135 retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
2136 }
2137 }
2138 return retval;
2139 }
2140
2141 static int cortex_a8_read_memory(struct target *target, uint32_t address,
2142 uint32_t size, uint32_t count, uint8_t *buffer)
2143 {
2144 int enabled = 0;
2145 uint32_t virt, phys;
2146 int retval;
2147 struct armv7a_common *armv7a = target_to_armv7a(target);
2148 struct adiv5_dap *swjdp = armv7a->arm.dap;
2149 uint8_t apsel = swjdp->apsel;
2150
2151 /* cortex_a8 handles unaligned memory access */
2152 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
2153 size, count);
2154 if (apsel == swjdp_memoryap) {
2155 retval = cortex_a8_mmu(target, &enabled);
2156 if (retval != ERROR_OK)
2157 return retval;
2158
2159
2160 if (enabled) {
2161 virt = address;
2162 retval = cortex_a8_virt2phys(target, virt, &phys);
2163 if (retval != ERROR_OK)
2164 return retval;
2165
2166 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x",
2167 virt, phys);
2168 address = phys;
2169 }
2170 retval = cortex_a8_read_phys_memory(target, address, size, count, buffer);
2171 } else {
2172 retval = cortex_a8_check_address(target, address);
2173 if (retval != ERROR_OK)
2174 return retval;
2175 /* enable mmu */
2176 retval = cortex_a8_mmu_modify(target, 1);
2177 if (retval != ERROR_OK)
2178 return retval;
2179 retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
2180 }
2181 return retval;
2182 }
2183
2184 static int cortex_a8_write_phys_memory(struct target *target,
2185 uint32_t address, uint32_t size,
2186 uint32_t count, const uint8_t *buffer)
2187 {
2188 struct armv7a_common *armv7a = target_to_armv7a(target);
2189 struct adiv5_dap *swjdp = armv7a->arm.dap;
2190 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2191 uint8_t apsel = swjdp->apsel;
2192
2193 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address,
2194 size, count);
2195
2196 if (count && buffer) {
2197
2198 if (apsel == swjdp_memoryap) {
2199
2200 /* write memory through AHB-AP */
2201
2202 switch (size) {
2203 case 4:
2204 retval = mem_ap_sel_write_buf_u32(swjdp, swjdp_memoryap,
2205 buffer, 4 * count, address);
2206 break;
2207 case 2:
2208 retval = mem_ap_sel_write_buf_u16(swjdp, swjdp_memoryap,
2209 buffer, 2 * count, address);
2210 break;
2211 case 1:
2212 retval = mem_ap_sel_write_buf_u8(swjdp, swjdp_memoryap,
2213 buffer, count, address);
2214 break;
2215 }
2216
2217 } else {
2218
2219 /* write memory through APB-AP */
2220 retval = cortex_a8_mmu_modify(target, 0);
2221 if (retval != ERROR_OK)
2222 return retval;
2223 return cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
2224 }
2225 }
2226
2227
2228 /* REVISIT this op is generic ARMv7-A/R stuff */
2229 if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2230 struct arm_dpm *dpm = armv7a->arm.dpm;
2231
2232 retval = dpm->prepare(dpm);
2233 if (retval != ERROR_OK)
2234 return retval;
2235
2236 /* The Cache handling will NOT work with MMU active, the
2237 * wrong addresses will be invalidated!
2238 *
2239 * For both ICache and DCache, walk all cache lines in the
2240 * address range. Cortex-A8 has fixed 64 byte line length.
2241 *
2242 * REVISIT per ARMv7, these may trigger watchpoints ...
2243 */
2244
2245 /* invalidate I-Cache */
2246 if (armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled) {
2247 /* ICIMVAU - Invalidate Cache single entry
2248 * with MVA to PoU
2249 * MCR p15, 0, r0, c7, c5, 1
2250 */
2251 for (uint32_t cacheline = address;
2252 cacheline < address + size * count;
2253 cacheline += 64) {
2254 retval = dpm->instr_write_data_r0(dpm,
2255 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2256 cacheline);
2257 if (retval != ERROR_OK)
2258 return retval;
2259 }
2260 }
2261
2262 /* invalidate D-Cache */
2263 if (armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled) {
2264 /* DCIMVAC - Invalidate data Cache line
2265 * with MVA to PoC
2266 * MCR p15, 0, r0, c7, c6, 1
2267 */
2268 for (uint32_t cacheline = address;
2269 cacheline < address + size * count;
2270 cacheline += 64) {
2271 retval = dpm->instr_write_data_r0(dpm,
2272 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2273 cacheline);
2274 if (retval != ERROR_OK)
2275 return retval;
2276 }
2277 }
2278
2279 /* (void) */ dpm->finish(dpm);
2280 }
2281
2282 return retval;
2283 }
2284
2285 static int cortex_a8_write_memory(struct target *target, uint32_t address,
2286 uint32_t size, uint32_t count, const uint8_t *buffer)
2287 {
2288 int enabled = 0;
2289 uint32_t virt, phys;
2290 int retval;
2291 struct armv7a_common *armv7a = target_to_armv7a(target);
2292 struct adiv5_dap *swjdp = armv7a->arm.dap;
2293 uint8_t apsel = swjdp->apsel;
2294 /* cortex_a8 handles unaligned memory access */
2295 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
2296 size, count);
2297 if (apsel == swjdp_memoryap) {
2298
2299 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size,
2300 count);
2301 retval = cortex_a8_mmu(target, &enabled);
2302 if (retval != ERROR_OK)
2303 return retval;
2304
2305 if (enabled) {
2306 virt = address;
2307 retval = cortex_a8_virt2phys(target, virt, &phys);
2308 if (retval != ERROR_OK)
2309 return retval;
2310 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x",
2311 virt,
2312 phys);
2313 address = phys;
2314 }
2315
2316 retval = cortex_a8_write_phys_memory(target, address, size,
2317 count, buffer);
2318 } else {
2319 retval = cortex_a8_check_address(target, address);
2320 if (retval != ERROR_OK)
2321 return retval;
2322 /* enable mmu */
2323 retval = cortex_a8_mmu_modify(target, 1);
2324 if (retval != ERROR_OK)
2325 return retval;
2326 retval = cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
2327 }
2328 return retval;
2329 }
2330
2331 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
2332 uint32_t count, const uint8_t *buffer)
2333 {
2334 return cortex_a8_write_memory(target, address, 4, count, buffer);
2335 }
2336
2337 static int cortex_a8_handle_target_request(void *priv)
2338 {
2339 struct target *target = priv;
2340 struct armv7a_common *armv7a = target_to_armv7a(target);
2341 struct adiv5_dap *swjdp = armv7a->arm.dap;
2342 int retval;
2343
2344 if (!target_was_examined(target))
2345 return ERROR_OK;
2346 if (!target->dbg_msg_enabled)
2347 return ERROR_OK;
2348
2349 if (target->state == TARGET_RUNNING) {
2350 uint32_t request;
2351 uint32_t dscr;
2352 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2353 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2354
2355 /* check if we have data */
2356 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2357 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2358 armv7a->debug_base + CPUDBG_DTRTX, &request);
2359 if (retval == ERROR_OK) {
2360 target_request(target, request);
2361 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2362 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2363 }
2364 }
2365 }
2366
2367 return ERROR_OK;
2368 }
2369
2370 /*
2371 * Cortex-A8 target information and configuration
2372 */
2373
2374 static int cortex_a8_examine_first(struct target *target)
2375 {
2376 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2377 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2378 struct adiv5_dap *swjdp = armv7a->arm.dap;
2379 int i;
2380 int retval = ERROR_OK;
2381 uint32_t didr, ctypr, ttypr, cpuid;
2382
2383 /* We do one extra read to ensure DAP is configured,
2384 * we call ahbap_debugport_init(swjdp) instead
2385 */
2386 retval = ahbap_debugport_init(swjdp);
2387 if (retval != ERROR_OK)
2388 return retval;
2389
2390 if (!target->dbgbase_set) {
2391 uint32_t dbgbase;
2392 /* Get ROM Table base */
2393 uint32_t apid;
2394 retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
2395 if (retval != ERROR_OK)
2396 return retval;
2397 /* Lookup 0x15 -- Processor DAP */
2398 retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
2399 &armv7a->debug_base);
2400 if (retval != ERROR_OK)
2401 return retval;
2402 } else
2403 armv7a->debug_base = target->dbgbase;
2404
2405 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2406 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2407 if (retval != ERROR_OK)
2408 return retval;
2409
2410 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2411 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2412 if (retval != ERROR_OK) {
2413 LOG_DEBUG("Examine %s failed", "CPUID");
2414 return retval;
2415 }
2416
2417 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2418 armv7a->debug_base + CPUDBG_CTYPR, &ctypr);
2419 if (retval != ERROR_OK) {
2420 LOG_DEBUG("Examine %s failed", "CTYPR");
2421 return retval;
2422 }
2423
2424 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2425 armv7a->debug_base + CPUDBG_TTYPR, &ttypr);
2426 if (retval != ERROR_OK) {
2427 LOG_DEBUG("Examine %s failed", "TTYPR");
2428 return retval;
2429 }
2430
2431 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2432 armv7a->debug_base + CPUDBG_DIDR, &didr);
2433 if (retval != ERROR_OK) {
2434 LOG_DEBUG("Examine %s failed", "DIDR");
2435 return retval;
2436 }
2437
2438 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2439 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2440 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2441 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2442
2443 armv7a->arm.core_type = ARM_MODE_MON;
2444 retval = cortex_a8_dpm_setup(cortex_a8, didr);
2445 if (retval != ERROR_OK)
2446 return retval;
2447
2448 /* Setup Breakpoint Register Pairs */
2449 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
2450 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2451 cortex_a8->brp_num_available = cortex_a8->brp_num;
2452 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
2453 /* cortex_a8->brb_enabled = ????; */
2454 for (i = 0; i < cortex_a8->brp_num; i++) {
2455 cortex_a8->brp_list[i].used = 0;
2456 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
2457 cortex_a8->brp_list[i].type = BRP_NORMAL;
2458 else
2459 cortex_a8->brp_list[i].type = BRP_CONTEXT;
2460 cortex_a8->brp_list[i].value = 0;
2461 cortex_a8->brp_list[i].control = 0;
2462 cortex_a8->brp_list[i].BRPn = i;
2463 }
2464
2465 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
2466
2467 target_set_examined(target);
2468 return ERROR_OK;
2469 }
2470
2471 static int cortex_a8_examine(struct target *target)
2472 {
2473 int retval = ERROR_OK;
2474
2475 /* don't re-probe hardware after each reset */
2476 if (!target_was_examined(target))
2477 retval = cortex_a8_examine_first(target);
2478
2479 /* Configure core debug access */
2480 if (retval == ERROR_OK)
2481 retval = cortex_a8_init_debug_access(target);
2482
2483 return retval;
2484 }
2485
2486 /*
2487 * Cortex-A8 target creation and initialization
2488 */
2489
2490 static int cortex_a8_init_target(struct command_context *cmd_ctx,
2491 struct target *target)
2492 {
2493 /* examine_first() does a bunch of this */
2494 return ERROR_OK;
2495 }
2496
2497 static int cortex_a8_init_arch_info(struct target *target,
2498 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
2499 {
2500 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2501 struct adiv5_dap *dap = &armv7a->dap;
2502
2503 armv7a->arm.dap = dap;
2504
2505 /* Setup struct cortex_a8_common */
2506 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
2507 /* tap has no dap initialized */
2508 if (!tap->dap) {
2509 armv7a->arm.dap = dap;
2510 /* Setup struct cortex_a8_common */
2511
2512 /* prepare JTAG information for the new target */
2513 cortex_a8->jtag_info.tap = tap;
2514 cortex_a8->jtag_info.scann_size = 4;
2515
2516 /* Leave (only) generic DAP stuff for debugport_init() */
2517 dap->jtag_info = &cortex_a8->jtag_info;
2518
2519 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
2520 dap->tar_autoincr_block = (1 << 10);
2521 dap->memaccess_tck = 80;
2522 tap->dap = dap;
2523 } else
2524 armv7a->arm.dap = tap->dap;
2525
2526 cortex_a8->fast_reg_read = 0;
2527
2528 /* register arch-specific functions */
2529 armv7a->examine_debug_reason = NULL;
2530
2531 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
2532
2533 armv7a->pre_restore_context = NULL;
2534
2535 armv7a->armv7a_mmu.read_physical_memory = cortex_a8_read_phys_memory;
2536
2537
2538 /* arm7_9->handle_target_request = cortex_a8_handle_target_request; */
2539
2540 /* REVISIT v7a setup should be in a v7a-specific routine */
2541 armv7a_init_arch_info(target, armv7a);
2542 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
2543
2544 return ERROR_OK;
2545 }
2546
2547 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
2548 {
2549 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
2550
2551 return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
2552 }
2553
2554
2555
2556 static int cortex_a8_mmu(struct target *target, int *enabled)
2557 {
2558 if (target->state != TARGET_HALTED) {
2559 LOG_ERROR("%s: target not halted", __func__);
2560 return ERROR_TARGET_INVALID;
2561 }
2562
2563 *enabled = target_to_cortex_a8(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2564 return ERROR_OK;
2565 }
2566
2567 static int cortex_a8_virt2phys(struct target *target,
2568 uint32_t virt, uint32_t *phys)
2569 {
2570 int retval = ERROR_FAIL;
2571 struct armv7a_common *armv7a = target_to_armv7a(target);
2572 struct adiv5_dap *swjdp = armv7a->arm.dap;
2573 uint8_t apsel = swjdp->apsel;
2574 if (apsel == swjdp_memoryap) {
2575 uint32_t ret;
2576 retval = armv7a_mmu_translate_va(target,
2577 virt, &ret);
2578 if (retval != ERROR_OK)
2579 goto done;
2580 *phys = ret;
2581 } else {/* use this method if swjdp_memoryap not selected
2582 * mmu must be enable in order to get a correct translation */
2583 retval = cortex_a8_mmu_modify(target, 1);
2584 if (retval != ERROR_OK)
2585 goto done;
2586 retval = armv7a_mmu_translate_va_pa(target, virt, phys, 1);
2587 }
2588 done:
2589 return retval;
2590 }
2591
2592 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2593 {
2594 struct target *target = get_current_target(CMD_CTX);
2595 struct armv7a_common *armv7a = target_to_armv7a(target);
2596
2597 return armv7a_handle_cache_info_command(CMD_CTX,
2598 &armv7a->armv7a_mmu.armv7a_cache);
2599 }
2600
2601
2602 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2603 {
2604 struct target *target = get_current_target(CMD_CTX);
2605 if (!target_was_examined(target)) {
2606 LOG_ERROR("target not examined yet");
2607 return ERROR_FAIL;
2608 }
2609
2610 return cortex_a8_init_debug_access(target);
2611 }
2612 COMMAND_HANDLER(cortex_a8_handle_smp_off_command)
2613 {
2614 struct target *target = get_current_target(CMD_CTX);
2615 /* check target is an smp target */
2616 struct target_list *head;
2617 struct target *curr;
2618 head = target->head;
2619 target->smp = 0;
2620 if (head != (struct target_list *)NULL) {
2621 while (head != (struct target_list *)NULL) {
2622 curr = head->target;
2623 curr->smp = 0;
2624 head = head->next;
2625 }
2626 /* fixes the target display to the debugger */
2627 target->gdb_service->target = target;
2628 }
2629 return ERROR_OK;
2630 }
2631
2632 COMMAND_HANDLER(cortex_a8_handle_smp_on_command)
2633 {
2634 struct target *target = get_current_target(CMD_CTX);
2635 struct target_list *head;
2636 struct target *curr;
2637 head = target->head;
2638 if (head != (struct target_list *)NULL) {
2639 target->smp = 1;
2640 while (head != (struct target_list *)NULL) {
2641 curr = head->target;
2642 curr->smp = 1;
2643 head = head->next;
2644 }
2645 }
2646 return ERROR_OK;
2647 }
2648
2649 COMMAND_HANDLER(cortex_a8_handle_smp_gdb_command)
2650 {
2651 struct target *target = get_current_target(CMD_CTX);
2652 int retval = ERROR_OK;
2653 struct target_list *head;
2654 head = target->head;
2655 if (head != (struct target_list *)NULL) {
2656 if (CMD_ARGC == 1) {
2657 int coreid = 0;
2658 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2659 if (ERROR_OK != retval)
2660 return retval;
2661 target->gdb_service->core[1] = coreid;
2662
2663 }
2664 command_print(CMD_CTX, "gdb coreid %d -> %d", target->gdb_service->core[0]
2665 , target->gdb_service->core[1]);
2666 }
2667 return ERROR_OK;
2668 }
2669
2670 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2671 {
2672 .name = "cache_info",
2673 .handler = cortex_a8_handle_cache_info_command,
2674 .mode = COMMAND_EXEC,
2675 .help = "display information about target caches",
2676 .usage = "",
2677 },
2678 {
2679 .name = "dbginit",
2680 .handler = cortex_a8_handle_dbginit_command,
2681 .mode = COMMAND_EXEC,
2682 .help = "Initialize core debug",
2683 .usage = "",
2684 },
2685 { .name = "smp_off",
2686 .handler = cortex_a8_handle_smp_off_command,
2687 .mode = COMMAND_EXEC,
2688 .help = "Stop smp handling",
2689 .usage = "",},
2690 {
2691 .name = "smp_on",
2692 .handler = cortex_a8_handle_smp_on_command,
2693 .mode = COMMAND_EXEC,
2694 .help = "Restart smp handling",
2695 .usage = "",
2696 },
2697 {
2698 .name = "smp_gdb",
2699 .handler = cortex_a8_handle_smp_gdb_command,
2700 .mode = COMMAND_EXEC,
2701 .help = "display/fix current core played to gdb",
2702 .usage = "",
2703 },
2704
2705
2706 COMMAND_REGISTRATION_DONE
2707 };
2708 static const struct command_registration cortex_a8_command_handlers[] = {
2709 {
2710 .chain = arm_command_handlers,
2711 },
2712 {
2713 .chain = armv7a_command_handlers,
2714 },
2715 {
2716 .name = "cortex_a8",
2717 .mode = COMMAND_ANY,
2718 .help = "Cortex-A8 command group",
2719 .usage = "",
2720 .chain = cortex_a8_exec_command_handlers,
2721 },
2722 COMMAND_REGISTRATION_DONE
2723 };
2724
2725 struct target_type cortexa8_target = {
2726 .name = "cortex_a8",
2727
2728 .poll = cortex_a8_poll,
2729 .arch_state = armv7a_arch_state,
2730
2731 .target_request_data = NULL,
2732
2733 .halt = cortex_a8_halt,
2734 .resume = cortex_a8_resume,
2735 .step = cortex_a8_step,
2736
2737 .assert_reset = cortex_a8_assert_reset,
2738 .deassert_reset = cortex_a8_deassert_reset,
2739 .soft_reset_halt = NULL,
2740
2741 /* REVISIT allow exporting VFP3 registers ... */
2742 .get_gdb_reg_list = arm_get_gdb_reg_list,
2743
2744 .read_memory = cortex_a8_read_memory,
2745 .write_memory = cortex_a8_write_memory,
2746 .bulk_write_memory = cortex_a8_bulk_write_memory,
2747
2748 .checksum_memory = arm_checksum_memory,
2749 .blank_check_memory = arm_blank_check_memory,
2750
2751 .run_algorithm = armv4_5_run_algorithm,
2752
2753 .add_breakpoint = cortex_a8_add_breakpoint,
2754 .add_context_breakpoint = cortex_a8_add_context_breakpoint,
2755 .add_hybrid_breakpoint = cortex_a8_add_hybrid_breakpoint,
2756 .remove_breakpoint = cortex_a8_remove_breakpoint,
2757 .add_watchpoint = NULL,
2758 .remove_watchpoint = NULL,
2759
2760 .commands = cortex_a8_command_handlers,
2761 .target_create = cortex_a8_target_create,
2762 .init_target = cortex_a8_init_target,
2763 .examine = cortex_a8_examine,
2764
2765 .read_phys_memory = cortex_a8_read_phys_memory,
2766 .write_phys_memory = cortex_a8_write_phys_memory,
2767 .mmu = cortex_a8_mmu,
2768 .virt2phys = cortex_a8_virt2phys,
2769 };