bc4aa33b40fb66ade1fbe1b4a1d8df934737fc18
[openocd.git] / src / target / cortex_a.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 √ėyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
22 * *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 * *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
43 * *
44 ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "transport/transport.h"
58 #include <helper/time_support.h>
59
60 #define foreach_smp_target(pos, head) \
61 for (pos = head; (pos != NULL); pos = pos->next)
62
63 static int cortex_a_poll(struct target *target);
64 static int cortex_a_debug_entry(struct target *target);
65 static int cortex_a_restore_context(struct target *target, bool bpwp);
66 static int cortex_a_set_breakpoint(struct target *target,
67 struct breakpoint *breakpoint, uint8_t matchmode);
68 static int cortex_a_set_context_breakpoint(struct target *target,
69 struct breakpoint *breakpoint, uint8_t matchmode);
70 static int cortex_a_set_hybrid_breakpoint(struct target *target,
71 struct breakpoint *breakpoint);
72 static int cortex_a_unset_breakpoint(struct target *target,
73 struct breakpoint *breakpoint);
74 static int cortex_a_dap_read_coreregister_u32(struct target *target,
75 uint32_t *value, int regnum);
76 static int cortex_a_dap_write_coreregister_u32(struct target *target,
77 uint32_t value, int regnum);
78 static int cortex_a_mmu(struct target *target, int *enabled);
79 static int cortex_a_mmu_modify(struct target *target, int enable);
80 static int cortex_a_virt2phys(struct target *target,
81 target_addr_t virt, target_addr_t *phys);
82 static int cortex_a_read_cpu_memory(struct target *target,
83 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
84
85
86 /* restore cp15_control_reg at resume */
87 static int cortex_a_restore_cp15_control_reg(struct target *target)
88 {
89 int retval = ERROR_OK;
90 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
91 struct armv7a_common *armv7a = target_to_armv7a(target);
92
93 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
94 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
95 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
96 retval = armv7a->arm.mcr(target, 15,
97 0, 0, /* op1, op2 */
98 1, 0, /* CRn, CRm */
99 cortex_a->cp15_control_reg);
100 }
101 return retval;
102 }
103
104 /*
105 * Set up ARM core for memory access.
106 * If !phys_access, switch to SVC mode and make sure MMU is on
107 * If phys_access, switch off mmu
108 */
109 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
110 {
111 struct armv7a_common *armv7a = target_to_armv7a(target);
112 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
113 int mmu_enabled = 0;
114
115 if (phys_access == 0) {
116 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
117 cortex_a_mmu(target, &mmu_enabled);
118 if (mmu_enabled)
119 cortex_a_mmu_modify(target, 1);
120 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
121 /* overwrite DACR to all-manager */
122 armv7a->arm.mcr(target, 15,
123 0, 0, 3, 0,
124 0xFFFFFFFF);
125 }
126 } else {
127 cortex_a_mmu(target, &mmu_enabled);
128 if (mmu_enabled)
129 cortex_a_mmu_modify(target, 0);
130 }
131 return ERROR_OK;
132 }
133
134 /*
135 * Restore ARM core after memory access.
136 * If !phys_access, switch to previous mode
137 * If phys_access, restore MMU setting
138 */
139 static int cortex_a_post_memaccess(struct target *target, int phys_access)
140 {
141 struct armv7a_common *armv7a = target_to_armv7a(target);
142 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
143
144 if (phys_access == 0) {
145 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
146 /* restore */
147 armv7a->arm.mcr(target, 15,
148 0, 0, 3, 0,
149 cortex_a->cp15_dacr_reg);
150 }
151 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
152 } else {
153 int mmu_enabled = 0;
154 cortex_a_mmu(target, &mmu_enabled);
155 if (mmu_enabled)
156 cortex_a_mmu_modify(target, 1);
157 }
158 return ERROR_OK;
159 }
160
161
162 /* modify cp15_control_reg in order to enable or disable mmu for :
163 * - virt2phys address conversion
164 * - read or write memory in phys or virt address */
165 static int cortex_a_mmu_modify(struct target *target, int enable)
166 {
167 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
168 struct armv7a_common *armv7a = target_to_armv7a(target);
169 int retval = ERROR_OK;
170 int need_write = 0;
171
172 if (enable) {
173 /* if mmu enabled at target stop and mmu not enable */
174 if (!(cortex_a->cp15_control_reg & 0x1U)) {
175 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
176 return ERROR_FAIL;
177 }
178 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
179 cortex_a->cp15_control_reg_curr |= 0x1U;
180 need_write = 1;
181 }
182 } else {
183 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
184 cortex_a->cp15_control_reg_curr &= ~0x1U;
185 need_write = 1;
186 }
187 }
188
189 if (need_write) {
190 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
191 enable ? "enable mmu" : "disable mmu",
192 cortex_a->cp15_control_reg_curr);
193
194 retval = armv7a->arm.mcr(target, 15,
195 0, 0, /* op1, op2 */
196 1, 0, /* CRn, CRm */
197 cortex_a->cp15_control_reg_curr);
198 }
199 return retval;
200 }
201
202 /*
203 * Cortex-A Basic debug access, very low level assumes state is saved
204 */
205 static int cortex_a_init_debug_access(struct target *target)
206 {
207 struct armv7a_common *armv7a = target_to_armv7a(target);
208 int retval;
209
210 /* lock memory-mapped access to debug registers to prevent
211 * software interference */
212 retval = mem_ap_write_u32(armv7a->debug_ap,
213 armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
214 if (retval != ERROR_OK)
215 return retval;
216
217 /* Disable cacheline fills and force cache write-through in debug state */
218 retval = mem_ap_write_u32(armv7a->debug_ap,
219 armv7a->debug_base + CPUDBG_DSCCR, 0);
220 if (retval != ERROR_OK)
221 return retval;
222
223 /* Disable TLB lookup and refill/eviction in debug state */
224 retval = mem_ap_write_u32(armv7a->debug_ap,
225 armv7a->debug_base + CPUDBG_DSMCR, 0);
226 if (retval != ERROR_OK)
227 return retval;
228
229 retval = dap_run(armv7a->debug_ap->dap);
230 if (retval != ERROR_OK)
231 return retval;
232
233 /* Enabling of instruction execution in debug mode is done in debug_entry code */
234
235 /* Resync breakpoint registers */
236
237 /* Since this is likely called from init or reset, update target state information*/
238 return cortex_a_poll(target);
239 }
240
241 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
242 {
243 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
244 * Writes final value of DSCR into *dscr. Pass force to force always
245 * reading DSCR at least once. */
246 struct armv7a_common *armv7a = target_to_armv7a(target);
247 int64_t then = timeval_ms();
248 while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
249 force = false;
250 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
251 armv7a->debug_base + CPUDBG_DSCR, dscr);
252 if (retval != ERROR_OK) {
253 LOG_ERROR("Could not read DSCR register");
254 return retval;
255 }
256 if (timeval_ms() > then + 1000) {
257 LOG_ERROR("Timeout waiting for InstrCompl=1");
258 return ERROR_FAIL;
259 }
260 }
261 return ERROR_OK;
262 }
263
264 /* To reduce needless round-trips, pass in a pointer to the current
265 * DSCR value. Initialize it to zero if you just need to know the
266 * value on return from this function; or DSCR_INSTR_COMP if you
267 * happen to know that no instruction is pending.
268 */
269 static int cortex_a_exec_opcode(struct target *target,
270 uint32_t opcode, uint32_t *dscr_p)
271 {
272 uint32_t dscr;
273 int retval;
274 struct armv7a_common *armv7a = target_to_armv7a(target);
275
276 dscr = dscr_p ? *dscr_p : 0;
277
278 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
279
280 /* Wait for InstrCompl bit to be set */
281 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
282 if (retval != ERROR_OK)
283 return retval;
284
285 retval = mem_ap_write_u32(armv7a->debug_ap,
286 armv7a->debug_base + CPUDBG_ITR, opcode);
287 if (retval != ERROR_OK)
288 return retval;
289
290 int64_t then = timeval_ms();
291 do {
292 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
293 armv7a->debug_base + CPUDBG_DSCR, &dscr);
294 if (retval != ERROR_OK) {
295 LOG_ERROR("Could not read DSCR register");
296 return retval;
297 }
298 if (timeval_ms() > then + 1000) {
299 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
300 return ERROR_FAIL;
301 }
302 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
303
304 if (dscr_p)
305 *dscr_p = dscr;
306
307 return retval;
308 }
309
310 /**************************************************************************
311 Read core register with very few exec_opcode, fast but needs work_area.
312 This can cause problems with MMU active.
313 **************************************************************************/
314 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
315 uint32_t *regfile)
316 {
317 int retval = ERROR_OK;
318 struct armv7a_common *armv7a = target_to_armv7a(target);
319
320 retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
321 if (retval != ERROR_OK)
322 return retval;
323 retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
324 if (retval != ERROR_OK)
325 return retval;
326 retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
327 if (retval != ERROR_OK)
328 return retval;
329
330 retval = mem_ap_read_buf(armv7a->memory_ap,
331 (uint8_t *)(&regfile[1]), 4, 15, address);
332
333 return retval;
334 }
335
336 static int cortex_a_dap_read_coreregister_u32(struct target *target,
337 uint32_t *value, int regnum)
338 {
339 int retval = ERROR_OK;
340 uint8_t reg = regnum&0xFF;
341 uint32_t dscr = 0;
342 struct armv7a_common *armv7a = target_to_armv7a(target);
343
344 if (reg > 17)
345 return retval;
346
347 if (reg < 15) {
348 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
349 retval = cortex_a_exec_opcode(target,
350 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
351 &dscr);
352 if (retval != ERROR_OK)
353 return retval;
354 } else if (reg == 15) {
355 /* "MOV r0, r15"; then move r0 to DCCTX */
356 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
357 if (retval != ERROR_OK)
358 return retval;
359 retval = cortex_a_exec_opcode(target,
360 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
361 &dscr);
362 if (retval != ERROR_OK)
363 return retval;
364 } else {
365 /* "MRS r0, CPSR" or "MRS r0, SPSR"
366 * then move r0 to DCCTX
367 */
368 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
369 if (retval != ERROR_OK)
370 return retval;
371 retval = cortex_a_exec_opcode(target,
372 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
373 &dscr);
374 if (retval != ERROR_OK)
375 return retval;
376 }
377
378 /* Wait for DTRRXfull then read DTRRTX */
379 int64_t then = timeval_ms();
380 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
381 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
382 armv7a->debug_base + CPUDBG_DSCR, &dscr);
383 if (retval != ERROR_OK)
384 return retval;
385 if (timeval_ms() > then + 1000) {
386 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
387 return ERROR_FAIL;
388 }
389 }
390
391 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
392 armv7a->debug_base + CPUDBG_DTRTX, value);
393 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
394
395 return retval;
396 }
397
398 static int cortex_a_dap_write_coreregister_u32(struct target *target,
399 uint32_t value, int regnum)
400 {
401 int retval = ERROR_OK;
402 uint8_t Rd = regnum&0xFF;
403 uint32_t dscr;
404 struct armv7a_common *armv7a = target_to_armv7a(target);
405
406 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
407
408 /* Check that DCCRX is not full */
409 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
410 armv7a->debug_base + CPUDBG_DSCR, &dscr);
411 if (retval != ERROR_OK)
412 return retval;
413 if (dscr & DSCR_DTR_RX_FULL) {
414 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
415 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
416 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
417 &dscr);
418 if (retval != ERROR_OK)
419 return retval;
420 }
421
422 if (Rd > 17)
423 return retval;
424
425 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
426 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
427 retval = mem_ap_write_u32(armv7a->debug_ap,
428 armv7a->debug_base + CPUDBG_DTRRX, value);
429 if (retval != ERROR_OK)
430 return retval;
431
432 if (Rd < 15) {
433 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
434 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
435 &dscr);
436
437 if (retval != ERROR_OK)
438 return retval;
439 } else if (Rd == 15) {
440 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
441 * then "mov r15, r0"
442 */
443 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
444 &dscr);
445 if (retval != ERROR_OK)
446 return retval;
447 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
448 if (retval != ERROR_OK)
449 return retval;
450 } else {
451 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
452 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
453 */
454 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
455 &dscr);
456 if (retval != ERROR_OK)
457 return retval;
458 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
459 &dscr);
460 if (retval != ERROR_OK)
461 return retval;
462
463 /* "Prefetch flush" after modifying execution status in CPSR */
464 if (Rd == 16) {
465 retval = cortex_a_exec_opcode(target,
466 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
467 &dscr);
468 if (retval != ERROR_OK)
469 return retval;
470 }
471 }
472
473 return retval;
474 }
475
476 /* Write to memory mapped registers directly with no cache or mmu handling */
477 static int cortex_a_dap_write_memap_register_u32(struct target *target,
478 uint32_t address,
479 uint32_t value)
480 {
481 int retval;
482 struct armv7a_common *armv7a = target_to_armv7a(target);
483
484 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
485
486 return retval;
487 }
488
489 /*
490 * Cortex-A implementation of Debug Programmer's Model
491 *
492 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
493 * so there's no need to poll for it before executing an instruction.
494 *
495 * NOTE that in several of these cases the "stall" mode might be useful.
496 * It'd let us queue a few operations together... prepare/finish might
497 * be the places to enable/disable that mode.
498 */
499
500 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
501 {
502 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
503 }
504
505 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
506 {
507 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
508 return mem_ap_write_u32(a->armv7a_common.debug_ap,
509 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
510 }
511
512 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
513 uint32_t *dscr_p)
514 {
515 uint32_t dscr = DSCR_INSTR_COMP;
516 int retval;
517
518 if (dscr_p)
519 dscr = *dscr_p;
520
521 /* Wait for DTRRXfull */
522 int64_t then = timeval_ms();
523 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
524 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
525 a->armv7a_common.debug_base + CPUDBG_DSCR,
526 &dscr);
527 if (retval != ERROR_OK)
528 return retval;
529 if (timeval_ms() > then + 1000) {
530 LOG_ERROR("Timeout waiting for read dcc");
531 return ERROR_FAIL;
532 }
533 }
534
535 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
536 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
537 if (retval != ERROR_OK)
538 return retval;
539 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
540
541 if (dscr_p)
542 *dscr_p = dscr;
543
544 return retval;
545 }
546
547 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
548 {
549 struct cortex_a_common *a = dpm_to_a(dpm);
550 uint32_t dscr;
551 int retval;
552
553 /* set up invariant: INSTR_COMP is set after ever DPM operation */
554 int64_t then = timeval_ms();
555 for (;; ) {
556 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
557 a->armv7a_common.debug_base + CPUDBG_DSCR,
558 &dscr);
559 if (retval != ERROR_OK)
560 return retval;
561 if ((dscr & DSCR_INSTR_COMP) != 0)
562 break;
563 if (timeval_ms() > then + 1000) {
564 LOG_ERROR("Timeout waiting for dpm prepare");
565 return ERROR_FAIL;
566 }
567 }
568
569 /* this "should never happen" ... */
570 if (dscr & DSCR_DTR_RX_FULL) {
571 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
572 /* Clear DCCRX */
573 retval = cortex_a_exec_opcode(
574 a->armv7a_common.arm.target,
575 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
576 &dscr);
577 if (retval != ERROR_OK)
578 return retval;
579 }
580
581 return retval;
582 }
583
584 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
585 {
586 /* REVISIT what could be done here? */
587 return ERROR_OK;
588 }
589
590 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
591 uint32_t opcode, uint32_t data)
592 {
593 struct cortex_a_common *a = dpm_to_a(dpm);
594 int retval;
595 uint32_t dscr = DSCR_INSTR_COMP;
596
597 retval = cortex_a_write_dcc(a, data);
598 if (retval != ERROR_OK)
599 return retval;
600
601 return cortex_a_exec_opcode(
602 a->armv7a_common.arm.target,
603 opcode,
604 &dscr);
605 }
606
607 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
608 uint32_t opcode, uint32_t data)
609 {
610 struct cortex_a_common *a = dpm_to_a(dpm);
611 uint32_t dscr = DSCR_INSTR_COMP;
612 int retval;
613
614 retval = cortex_a_write_dcc(a, data);
615 if (retval != ERROR_OK)
616 return retval;
617
618 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
619 retval = cortex_a_exec_opcode(
620 a->armv7a_common.arm.target,
621 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
622 &dscr);
623 if (retval != ERROR_OK)
624 return retval;
625
626 /* then the opcode, taking data from R0 */
627 retval = cortex_a_exec_opcode(
628 a->armv7a_common.arm.target,
629 opcode,
630 &dscr);
631
632 return retval;
633 }
634
635 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
636 {
637 struct target *target = dpm->arm->target;
638 uint32_t dscr = DSCR_INSTR_COMP;
639
640 /* "Prefetch flush" after modifying execution status in CPSR */
641 return cortex_a_exec_opcode(target,
642 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
643 &dscr);
644 }
645
646 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
647 uint32_t opcode, uint32_t *data)
648 {
649 struct cortex_a_common *a = dpm_to_a(dpm);
650 int retval;
651 uint32_t dscr = DSCR_INSTR_COMP;
652
653 /* the opcode, writing data to DCC */
654 retval = cortex_a_exec_opcode(
655 a->armv7a_common.arm.target,
656 opcode,
657 &dscr);
658 if (retval != ERROR_OK)
659 return retval;
660
661 return cortex_a_read_dcc(a, data, &dscr);
662 }
663
664
665 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
666 uint32_t opcode, uint32_t *data)
667 {
668 struct cortex_a_common *a = dpm_to_a(dpm);
669 uint32_t dscr = DSCR_INSTR_COMP;
670 int retval;
671
672 /* the opcode, writing data to R0 */
673 retval = cortex_a_exec_opcode(
674 a->armv7a_common.arm.target,
675 opcode,
676 &dscr);
677 if (retval != ERROR_OK)
678 return retval;
679
680 /* write R0 to DCC */
681 retval = cortex_a_exec_opcode(
682 a->armv7a_common.arm.target,
683 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
684 &dscr);
685 if (retval != ERROR_OK)
686 return retval;
687
688 return cortex_a_read_dcc(a, data, &dscr);
689 }
690
691 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
692 uint32_t addr, uint32_t control)
693 {
694 struct cortex_a_common *a = dpm_to_a(dpm);
695 uint32_t vr = a->armv7a_common.debug_base;
696 uint32_t cr = a->armv7a_common.debug_base;
697 int retval;
698
699 switch (index_t) {
700 case 0 ... 15: /* breakpoints */
701 vr += CPUDBG_BVR_BASE;
702 cr += CPUDBG_BCR_BASE;
703 break;
704 case 16 ... 31: /* watchpoints */
705 vr += CPUDBG_WVR_BASE;
706 cr += CPUDBG_WCR_BASE;
707 index_t -= 16;
708 break;
709 default:
710 return ERROR_FAIL;
711 }
712 vr += 4 * index_t;
713 cr += 4 * index_t;
714
715 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
716 (unsigned) vr, (unsigned) cr);
717
718 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
719 vr, addr);
720 if (retval != ERROR_OK)
721 return retval;
722 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
723 cr, control);
724 return retval;
725 }
726
727 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
728 {
729 struct cortex_a_common *a = dpm_to_a(dpm);
730 uint32_t cr;
731
732 switch (index_t) {
733 case 0 ... 15:
734 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
735 break;
736 case 16 ... 31:
737 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
738 index_t -= 16;
739 break;
740 default:
741 return ERROR_FAIL;
742 }
743 cr += 4 * index_t;
744
745 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
746
747 /* clear control register */
748 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
749 }
750
751 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
752 {
753 struct arm_dpm *dpm = &a->armv7a_common.dpm;
754 int retval;
755
756 dpm->arm = &a->armv7a_common.arm;
757 dpm->didr = didr;
758
759 dpm->prepare = cortex_a_dpm_prepare;
760 dpm->finish = cortex_a_dpm_finish;
761
762 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
763 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
764 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
765
766 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
767 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
768
769 dpm->bpwp_enable = cortex_a_bpwp_enable;
770 dpm->bpwp_disable = cortex_a_bpwp_disable;
771
772 retval = arm_dpm_setup(dpm);
773 if (retval == ERROR_OK)
774 retval = arm_dpm_initialize(dpm);
775
776 return retval;
777 }
778 static struct target *get_cortex_a(struct target *target, int32_t coreid)
779 {
780 struct target_list *head;
781 struct target *curr;
782
783 head = target->head;
784 while (head != (struct target_list *)NULL) {
785 curr = head->target;
786 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
787 return curr;
788 head = head->next;
789 }
790 return target;
791 }
792 static int cortex_a_halt(struct target *target);
793
794 static int cortex_a_halt_smp(struct target *target)
795 {
796 int retval = 0;
797 struct target_list *head;
798 struct target *curr;
799 head = target->head;
800 while (head != (struct target_list *)NULL) {
801 curr = head->target;
802 if ((curr != target) && (curr->state != TARGET_HALTED)
803 && target_was_examined(curr))
804 retval += cortex_a_halt(curr);
805 head = head->next;
806 }
807 return retval;
808 }
809
810 static int update_halt_gdb(struct target *target)
811 {
812 struct target *gdb_target = NULL;
813 struct target_list *head;
814 struct target *curr;
815 int retval = 0;
816
817 if (target->gdb_service && target->gdb_service->core[0] == -1) {
818 target->gdb_service->target = target;
819 target->gdb_service->core[0] = target->coreid;
820 retval += cortex_a_halt_smp(target);
821 }
822
823 if (target->gdb_service)
824 gdb_target = target->gdb_service->target;
825
826 foreach_smp_target(head, target->head) {
827 curr = head->target;
828 /* skip calling context */
829 if (curr == target)
830 continue;
831 if (!target_was_examined(curr))
832 continue;
833 /* skip targets that were already halted */
834 if (curr->state == TARGET_HALTED)
835 continue;
836 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
837 if (curr == gdb_target)
838 continue;
839
840 /* avoid recursion in cortex_a_poll() */
841 curr->smp = 0;
842 cortex_a_poll(curr);
843 curr->smp = 1;
844 }
845
846 /* after all targets were updated, poll the gdb serving target */
847 if (gdb_target != NULL && gdb_target != target)
848 cortex_a_poll(gdb_target);
849 return retval;
850 }
851
852 /*
853 * Cortex-A Run control
854 */
855
856 static int cortex_a_poll(struct target *target)
857 {
858 int retval = ERROR_OK;
859 uint32_t dscr;
860 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
861 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
862 enum target_state prev_target_state = target->state;
863 /* toggle to another core is done by gdb as follow */
864 /* maint packet J core_id */
865 /* continue */
866 /* the next polling trigger an halt event sent to gdb */
867 if ((target->state == TARGET_HALTED) && (target->smp) &&
868 (target->gdb_service) &&
869 (target->gdb_service->target == NULL)) {
870 target->gdb_service->target =
871 get_cortex_a(target, target->gdb_service->core[1]);
872 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
873 return retval;
874 }
875 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
876 armv7a->debug_base + CPUDBG_DSCR, &dscr);
877 if (retval != ERROR_OK)
878 return retval;
879 cortex_a->cpudbg_dscr = dscr;
880
881 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
882 if (prev_target_state != TARGET_HALTED) {
883 /* We have a halting debug event */
884 LOG_DEBUG("Target halted");
885 target->state = TARGET_HALTED;
886 if ((prev_target_state == TARGET_RUNNING)
887 || (prev_target_state == TARGET_UNKNOWN)
888 || (prev_target_state == TARGET_RESET)) {
889 retval = cortex_a_debug_entry(target);
890 if (retval != ERROR_OK)
891 return retval;
892 if (target->smp) {
893 retval = update_halt_gdb(target);
894 if (retval != ERROR_OK)
895 return retval;
896 }
897
898 if (arm_semihosting(target, &retval) != 0)
899 return retval;
900
901 target_call_event_callbacks(target,
902 TARGET_EVENT_HALTED);
903 }
904 if (prev_target_state == TARGET_DEBUG_RUNNING) {
905 LOG_DEBUG(" ");
906
907 retval = cortex_a_debug_entry(target);
908 if (retval != ERROR_OK)
909 return retval;
910 if (target->smp) {
911 retval = update_halt_gdb(target);
912 if (retval != ERROR_OK)
913 return retval;
914 }
915
916 target_call_event_callbacks(target,
917 TARGET_EVENT_DEBUG_HALTED);
918 }
919 }
920 } else
921 target->state = TARGET_RUNNING;
922
923 return retval;
924 }
925
926 static int cortex_a_halt(struct target *target)
927 {
928 int retval = ERROR_OK;
929 uint32_t dscr;
930 struct armv7a_common *armv7a = target_to_armv7a(target);
931
932 /*
933 * Tell the core to be halted by writing DRCR with 0x1
934 * and then wait for the core to be halted.
935 */
936 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
937 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
938 if (retval != ERROR_OK)
939 return retval;
940
941 /*
942 * enter halting debug mode
943 */
944 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
945 armv7a->debug_base + CPUDBG_DSCR, &dscr);
946 if (retval != ERROR_OK)
947 return retval;
948
949 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
950 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
951 if (retval != ERROR_OK)
952 return retval;
953
954 int64_t then = timeval_ms();
955 for (;; ) {
956 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
957 armv7a->debug_base + CPUDBG_DSCR, &dscr);
958 if (retval != ERROR_OK)
959 return retval;
960 if ((dscr & DSCR_CORE_HALTED) != 0)
961 break;
962 if (timeval_ms() > then + 1000) {
963 LOG_ERROR("Timeout waiting for halt");
964 return ERROR_FAIL;
965 }
966 }
967
968 target->debug_reason = DBG_REASON_DBGRQ;
969
970 return ERROR_OK;
971 }
972
973 static int cortex_a_internal_restore(struct target *target, int current,
974 target_addr_t *address, int handle_breakpoints, int debug_execution)
975 {
976 struct armv7a_common *armv7a = target_to_armv7a(target);
977 struct arm *arm = &armv7a->arm;
978 int retval;
979 uint32_t resume_pc;
980
981 if (!debug_execution)
982 target_free_all_working_areas(target);
983
984 #if 0
985 if (debug_execution) {
986 /* Disable interrupts */
987 /* We disable interrupts in the PRIMASK register instead of
988 * masking with C_MASKINTS,
989 * This is probably the same issue as Cortex-M3 Errata 377493:
990 * C_MASKINTS in parallel with disabled interrupts can cause
991 * local faults to not be taken. */
992 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
993 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
994 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
995
996 /* Make sure we are in Thumb mode */
997 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
998 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
999 32) | (1 << 24));
1000 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
1001 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
1002 }
1003 #endif
1004
1005 /* current = 1: continue on current pc, otherwise continue at <address> */
1006 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
1007 if (!current)
1008 resume_pc = *address;
1009 else
1010 *address = resume_pc;
1011
1012 /* Make sure that the Armv7 gdb thumb fixups does not
1013 * kill the return address
1014 */
1015 switch (arm->core_state) {
1016 case ARM_STATE_ARM:
1017 resume_pc &= 0xFFFFFFFC;
1018 break;
1019 case ARM_STATE_THUMB:
1020 case ARM_STATE_THUMB_EE:
1021 /* When the return address is loaded into PC
1022 * bit 0 must be 1 to stay in Thumb state
1023 */
1024 resume_pc |= 0x1;
1025 break;
1026 case ARM_STATE_JAZELLE:
1027 LOG_ERROR("How do I resume into Jazelle state??");
1028 return ERROR_FAIL;
1029 case ARM_STATE_AARCH64:
1030 LOG_ERROR("Shoudn't be in AARCH64 state");
1031 return ERROR_FAIL;
1032 }
1033 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1034 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1035 arm->pc->dirty = 1;
1036 arm->pc->valid = 1;
1037
1038 /* restore dpm_mode at system halt */
1039 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1040 /* called it now before restoring context because it uses cpu
1041 * register r0 for restoring cp15 control register */
1042 retval = cortex_a_restore_cp15_control_reg(target);
1043 if (retval != ERROR_OK)
1044 return retval;
1045 retval = cortex_a_restore_context(target, handle_breakpoints);
1046 if (retval != ERROR_OK)
1047 return retval;
1048 target->debug_reason = DBG_REASON_NOTHALTED;
1049 target->state = TARGET_RUNNING;
1050
1051 /* registers are now invalid */
1052 register_cache_invalidate(arm->core_cache);
1053
1054 #if 0
1055 /* the front-end may request us not to handle breakpoints */
1056 if (handle_breakpoints) {
1057 /* Single step past breakpoint at current address */
1058 breakpoint = breakpoint_find(target, resume_pc);
1059 if (breakpoint) {
1060 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1061 cortex_m3_unset_breakpoint(target, breakpoint);
1062 cortex_m3_single_step_core(target);
1063 cortex_m3_set_breakpoint(target, breakpoint);
1064 }
1065 }
1066
1067 #endif
1068 return retval;
1069 }
1070
1071 static int cortex_a_internal_restart(struct target *target)
1072 {
1073 struct armv7a_common *armv7a = target_to_armv7a(target);
1074 struct arm *arm = &armv7a->arm;
1075 int retval;
1076 uint32_t dscr;
1077 /*
1078 * * Restart core and wait for it to be started. Clear ITRen and sticky
1079 * * exception flags: see ARMv7 ARM, C5.9.
1080 *
1081 * REVISIT: for single stepping, we probably want to
1082 * disable IRQs by default, with optional override...
1083 */
1084
1085 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1086 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1087 if (retval != ERROR_OK)
1088 return retval;
1089
1090 if ((dscr & DSCR_INSTR_COMP) == 0)
1091 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1092
1093 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1094 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1095 if (retval != ERROR_OK)
1096 return retval;
1097
1098 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1099 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1100 DRCR_CLEAR_EXCEPTIONS);
1101 if (retval != ERROR_OK)
1102 return retval;
1103
1104 int64_t then = timeval_ms();
1105 for (;; ) {
1106 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1107 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1108 if (retval != ERROR_OK)
1109 return retval;
1110 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1111 break;
1112 if (timeval_ms() > then + 1000) {
1113 LOG_ERROR("Timeout waiting for resume");
1114 return ERROR_FAIL;
1115 }
1116 }
1117
1118 target->debug_reason = DBG_REASON_NOTHALTED;
1119 target->state = TARGET_RUNNING;
1120
1121 /* registers are now invalid */
1122 register_cache_invalidate(arm->core_cache);
1123
1124 return ERROR_OK;
1125 }
1126
1127 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1128 {
1129 int retval = 0;
1130 struct target_list *head;
1131 struct target *curr;
1132 target_addr_t address;
1133 head = target->head;
1134 while (head != (struct target_list *)NULL) {
1135 curr = head->target;
1136 if ((curr != target) && (curr->state != TARGET_RUNNING)
1137 && target_was_examined(curr)) {
1138 /* resume current address , not in step mode */
1139 retval += cortex_a_internal_restore(curr, 1, &address,
1140 handle_breakpoints, 0);
1141 retval += cortex_a_internal_restart(curr);
1142 }
1143 head = head->next;
1144
1145 }
1146 return retval;
1147 }
1148
1149 static int cortex_a_resume(struct target *target, int current,
1150 target_addr_t address, int handle_breakpoints, int debug_execution)
1151 {
1152 int retval = 0;
1153 /* dummy resume for smp toggle in order to reduce gdb impact */
1154 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1155 /* simulate a start and halt of target */
1156 target->gdb_service->target = NULL;
1157 target->gdb_service->core[0] = target->gdb_service->core[1];
1158 /* fake resume at next poll we play the target core[1], see poll*/
1159 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1160 return 0;
1161 }
1162 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1163 if (target->smp) {
1164 target->gdb_service->core[0] = -1;
1165 retval = cortex_a_restore_smp(target, handle_breakpoints);
1166 if (retval != ERROR_OK)
1167 return retval;
1168 }
1169 cortex_a_internal_restart(target);
1170
1171 if (!debug_execution) {
1172 target->state = TARGET_RUNNING;
1173 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1174 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1175 } else {
1176 target->state = TARGET_DEBUG_RUNNING;
1177 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1178 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1179 }
1180
1181 return ERROR_OK;
1182 }
1183
1184 static int cortex_a_debug_entry(struct target *target)
1185 {
1186 int i;
1187 uint32_t regfile[16], cpsr, spsr, dscr;
1188 int retval = ERROR_OK;
1189 struct working_area *regfile_working_area = NULL;
1190 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1191 struct armv7a_common *armv7a = target_to_armv7a(target);
1192 struct arm *arm = &armv7a->arm;
1193 struct reg *reg;
1194
1195 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1196
1197 /* REVISIT surely we should not re-read DSCR !! */
1198 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1199 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1200 if (retval != ERROR_OK)
1201 return retval;
1202
1203 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1204 * imprecise data aborts get discarded by issuing a Data
1205 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1206 */
1207
1208 /* Enable the ITR execution once we are in debug mode */
1209 dscr |= DSCR_ITR_EN;
1210 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1211 armv7a->debug_base + CPUDBG_DSCR, dscr);
1212 if (retval != ERROR_OK)
1213 return retval;
1214
1215 /* Examine debug reason */
1216 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1217
1218 /* save address of instruction that triggered the watchpoint? */
1219 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1220 uint32_t wfar;
1221
1222 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1223 armv7a->debug_base + CPUDBG_WFAR,
1224 &wfar);
1225 if (retval != ERROR_OK)
1226 return retval;
1227 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1228 }
1229
1230 /* REVISIT fast_reg_read is never set ... */
1231
1232 /* Examine target state and mode */
1233 if (cortex_a->fast_reg_read)
1234 target_alloc_working_area(target, 64, &regfile_working_area);
1235
1236
1237 /* First load register acessible through core debug port*/
1238 if (!regfile_working_area)
1239 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1240 else {
1241 retval = cortex_a_read_regs_through_mem(target,
1242 regfile_working_area->address, regfile);
1243
1244 target_free_working_area(target, regfile_working_area);
1245 if (retval != ERROR_OK)
1246 return retval;
1247
1248 /* read Current PSR */
1249 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1250 /* store current cpsr */
1251 if (retval != ERROR_OK)
1252 return retval;
1253
1254 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1255
1256 arm_set_cpsr(arm, cpsr);
1257
1258 /* update cache */
1259 for (i = 0; i <= ARM_PC; i++) {
1260 reg = arm_reg_current(arm, i);
1261
1262 buf_set_u32(reg->value, 0, 32, regfile[i]);
1263 reg->valid = 1;
1264 reg->dirty = 0;
1265 }
1266
1267 /* Fixup PC Resume Address */
1268 if (cpsr & (1 << 5)) {
1269 /* T bit set for Thumb or ThumbEE state */
1270 regfile[ARM_PC] -= 4;
1271 } else {
1272 /* ARM state */
1273 regfile[ARM_PC] -= 8;
1274 }
1275
1276 reg = arm->pc;
1277 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1278 reg->dirty = reg->valid;
1279 }
1280
1281 if (arm->spsr) {
1282 /* read Saved PSR */
1283 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1284 /* store current spsr */
1285 if (retval != ERROR_OK)
1286 return retval;
1287
1288 reg = arm->spsr;
1289 buf_set_u32(reg->value, 0, 32, spsr);
1290 reg->valid = 1;
1291 reg->dirty = 0;
1292 }
1293
1294 #if 0
1295 /* TODO, Move this */
1296 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1297 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1298 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1299
1300 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1301 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1302
1303 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1304 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1305 #endif
1306
1307 /* Are we in an exception handler */
1308 /* armv4_5->exception_number = 0; */
1309 if (armv7a->post_debug_entry) {
1310 retval = armv7a->post_debug_entry(target);
1311 if (retval != ERROR_OK)
1312 return retval;
1313 }
1314
1315 return retval;
1316 }
1317
1318 static int cortex_a_post_debug_entry(struct target *target)
1319 {
1320 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1321 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1322 int retval;
1323
1324 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1325 retval = armv7a->arm.mrc(target, 15,
1326 0, 0, /* op1, op2 */
1327 1, 0, /* CRn, CRm */
1328 &cortex_a->cp15_control_reg);
1329 if (retval != ERROR_OK)
1330 return retval;
1331 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1332 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1333
1334 if (!armv7a->is_armv7r)
1335 armv7a_read_ttbcr(target);
1336
1337 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1338 armv7a_identify_cache(target);
1339
1340 if (armv7a->is_armv7r) {
1341 armv7a->armv7a_mmu.mmu_enabled = 0;
1342 } else {
1343 armv7a->armv7a_mmu.mmu_enabled =
1344 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1345 }
1346 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1347 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1348 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1349 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1350 cortex_a->curr_mode = armv7a->arm.core_mode;
1351
1352 /* switch to SVC mode to read DACR */
1353 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1354 armv7a->arm.mrc(target, 15,
1355 0, 0, 3, 0,
1356 &cortex_a->cp15_dacr_reg);
1357
1358 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1359 cortex_a->cp15_dacr_reg);
1360
1361 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1362 return ERROR_OK;
1363 }
1364
1365 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1366 {
1367 struct armv7a_common *armv7a = target_to_armv7a(target);
1368 uint32_t dscr;
1369
1370 /* Read DSCR */
1371 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1372 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1373 if (ERROR_OK != retval)
1374 return retval;
1375
1376 /* clear bitfield */
1377 dscr &= ~bit_mask;
1378 /* put new value */
1379 dscr |= value & bit_mask;
1380
1381 /* write new DSCR */
1382 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1383 armv7a->debug_base + CPUDBG_DSCR, dscr);
1384 return retval;
1385 }
1386
1387 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1388 int handle_breakpoints)
1389 {
1390 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1391 struct armv7a_common *armv7a = target_to_armv7a(target);
1392 struct arm *arm = &armv7a->arm;
1393 struct breakpoint *breakpoint = NULL;
1394 struct breakpoint stepbreakpoint;
1395 struct reg *r;
1396 int retval;
1397
1398 if (target->state != TARGET_HALTED) {
1399 LOG_WARNING("target not halted");
1400 return ERROR_TARGET_NOT_HALTED;
1401 }
1402
1403 /* current = 1: continue on current pc, otherwise continue at <address> */
1404 r = arm->pc;
1405 if (!current)
1406 buf_set_u32(r->value, 0, 32, address);
1407 else
1408 address = buf_get_u32(r->value, 0, 32);
1409
1410 /* The front-end may request us not to handle breakpoints.
1411 * But since Cortex-A uses breakpoint for single step,
1412 * we MUST handle breakpoints.
1413 */
1414 handle_breakpoints = 1;
1415 if (handle_breakpoints) {
1416 breakpoint = breakpoint_find(target, address);
1417 if (breakpoint)
1418 cortex_a_unset_breakpoint(target, breakpoint);
1419 }
1420
1421 /* Setup single step breakpoint */
1422 stepbreakpoint.address = address;
1423 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1424 ? 2 : 4;
1425 stepbreakpoint.type = BKPT_HARD;
1426 stepbreakpoint.set = 0;
1427
1428 /* Disable interrupts during single step if requested */
1429 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1430 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1431 if (ERROR_OK != retval)
1432 return retval;
1433 }
1434
1435 /* Break on IVA mismatch */
1436 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1437
1438 target->debug_reason = DBG_REASON_SINGLESTEP;
1439
1440 retval = cortex_a_resume(target, 1, address, 0, 0);
1441 if (retval != ERROR_OK)
1442 return retval;
1443
1444 int64_t then = timeval_ms();
1445 while (target->state != TARGET_HALTED) {
1446 retval = cortex_a_poll(target);
1447 if (retval != ERROR_OK)
1448 return retval;
1449 if (timeval_ms() > then + 1000) {
1450 LOG_ERROR("timeout waiting for target halt");
1451 return ERROR_FAIL;
1452 }
1453 }
1454
1455 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1456
1457 /* Re-enable interrupts if they were disabled */
1458 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1459 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1460 if (ERROR_OK != retval)
1461 return retval;
1462 }
1463
1464
1465 target->debug_reason = DBG_REASON_BREAKPOINT;
1466
1467 if (breakpoint)
1468 cortex_a_set_breakpoint(target, breakpoint, 0);
1469
1470 if (target->state != TARGET_HALTED)
1471 LOG_DEBUG("target stepped");
1472
1473 return ERROR_OK;
1474 }
1475
1476 static int cortex_a_restore_context(struct target *target, bool bpwp)
1477 {
1478 struct armv7a_common *armv7a = target_to_armv7a(target);
1479
1480 LOG_DEBUG(" ");
1481
1482 if (armv7a->pre_restore_context)
1483 armv7a->pre_restore_context(target);
1484
1485 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1486 }
1487
1488 /*
1489 * Cortex-A Breakpoint and watchpoint functions
1490 */
1491
1492 /* Setup hardware Breakpoint Register Pair */
1493 static int cortex_a_set_breakpoint(struct target *target,
1494 struct breakpoint *breakpoint, uint8_t matchmode)
1495 {
1496 int retval;
1497 int brp_i = 0;
1498 uint32_t control;
1499 uint8_t byte_addr_select = 0x0F;
1500 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1501 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1502 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1503
1504 if (breakpoint->set) {
1505 LOG_WARNING("breakpoint already set");
1506 return ERROR_OK;
1507 }
1508
1509 if (breakpoint->type == BKPT_HARD) {
1510 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1511 brp_i++;
1512 if (brp_i >= cortex_a->brp_num) {
1513 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1514 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1515 }
1516 breakpoint->set = brp_i + 1;
1517 if (breakpoint->length == 2)
1518 byte_addr_select = (3 << (breakpoint->address & 0x02));
1519 control = ((matchmode & 0x7) << 20)
1520 | (byte_addr_select << 5)
1521 | (3 << 1) | 1;
1522 brp_list[brp_i].used = 1;
1523 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1524 brp_list[brp_i].control = control;
1525 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1526 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1527 brp_list[brp_i].value);
1528 if (retval != ERROR_OK)
1529 return retval;
1530 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1531 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1532 brp_list[brp_i].control);
1533 if (retval != ERROR_OK)
1534 return retval;
1535 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1536 brp_list[brp_i].control,
1537 brp_list[brp_i].value);
1538 } else if (breakpoint->type == BKPT_SOFT) {
1539 uint8_t code[4];
1540 /* length == 2: Thumb breakpoint */
1541 if (breakpoint->length == 2)
1542 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1543 else
1544 /* length == 3: Thumb-2 breakpoint, actual encoding is
1545 * a regular Thumb BKPT instruction but we replace a
1546 * 32bit Thumb-2 instruction, so fix-up the breakpoint
1547 * length
1548 */
1549 if (breakpoint->length == 3) {
1550 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1551 breakpoint->length = 4;
1552 } else
1553 /* length == 4, normal ARM breakpoint */
1554 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1555
1556 retval = target_read_memory(target,
1557 breakpoint->address & 0xFFFFFFFE,
1558 breakpoint->length, 1,
1559 breakpoint->orig_instr);
1560 if (retval != ERROR_OK)
1561 return retval;
1562
1563 /* make sure data cache is cleaned & invalidated down to PoC */
1564 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1565 armv7a_cache_flush_virt(target, breakpoint->address,
1566 breakpoint->length);
1567 }
1568
1569 retval = target_write_memory(target,
1570 breakpoint->address & 0xFFFFFFFE,
1571 breakpoint->length, 1, code);
1572 if (retval != ERROR_OK)
1573 return retval;
1574
1575 /* update i-cache at breakpoint location */
1576 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1577 breakpoint->length);
1578 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1579 breakpoint->length);
1580
1581 breakpoint->set = 0x11; /* Any nice value but 0 */
1582 }
1583
1584 return ERROR_OK;
1585 }
1586
1587 static int cortex_a_set_context_breakpoint(struct target *target,
1588 struct breakpoint *breakpoint, uint8_t matchmode)
1589 {
1590 int retval = ERROR_FAIL;
1591 int brp_i = 0;
1592 uint32_t control;
1593 uint8_t byte_addr_select = 0x0F;
1594 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1595 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1596 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1597
1598 if (breakpoint->set) {
1599 LOG_WARNING("breakpoint already set");
1600 return retval;
1601 }
1602 /*check available context BRPs*/
1603 while ((brp_list[brp_i].used ||
1604 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1605 brp_i++;
1606
1607 if (brp_i >= cortex_a->brp_num) {
1608 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1609 return ERROR_FAIL;
1610 }
1611
1612 breakpoint->set = brp_i + 1;
1613 control = ((matchmode & 0x7) << 20)
1614 | (byte_addr_select << 5)
1615 | (3 << 1) | 1;
1616 brp_list[brp_i].used = 1;
1617 brp_list[brp_i].value = (breakpoint->asid);
1618 brp_list[brp_i].control = control;
1619 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1620 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1621 brp_list[brp_i].value);
1622 if (retval != ERROR_OK)
1623 return retval;
1624 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1625 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1626 brp_list[brp_i].control);
1627 if (retval != ERROR_OK)
1628 return retval;
1629 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1630 brp_list[brp_i].control,
1631 brp_list[brp_i].value);
1632 return ERROR_OK;
1633
1634 }
1635
1636 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1637 {
1638 int retval = ERROR_FAIL;
1639 int brp_1 = 0; /* holds the contextID pair */
1640 int brp_2 = 0; /* holds the IVA pair */
1641 uint32_t control_CTX, control_IVA;
1642 uint8_t CTX_byte_addr_select = 0x0F;
1643 uint8_t IVA_byte_addr_select = 0x0F;
1644 uint8_t CTX_machmode = 0x03;
1645 uint8_t IVA_machmode = 0x01;
1646 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1647 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1648 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1649
1650 if (breakpoint->set) {
1651 LOG_WARNING("breakpoint already set");
1652 return retval;
1653 }
1654 /*check available context BRPs*/
1655 while ((brp_list[brp_1].used ||
1656 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1657 brp_1++;
1658
1659 printf("brp(CTX) found num: %d\n", brp_1);
1660 if (brp_1 >= cortex_a->brp_num) {
1661 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1662 return ERROR_FAIL;
1663 }
1664
1665 while ((brp_list[brp_2].used ||
1666 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1667 brp_2++;
1668
1669 printf("brp(IVA) found num: %d\n", brp_2);
1670 if (brp_2 >= cortex_a->brp_num) {
1671 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1672 return ERROR_FAIL;
1673 }
1674
1675 breakpoint->set = brp_1 + 1;
1676 breakpoint->linked_BRP = brp_2;
1677 control_CTX = ((CTX_machmode & 0x7) << 20)
1678 | (brp_2 << 16)
1679 | (0 << 14)
1680 | (CTX_byte_addr_select << 5)
1681 | (3 << 1) | 1;
1682 brp_list[brp_1].used = 1;
1683 brp_list[brp_1].value = (breakpoint->asid);
1684 brp_list[brp_1].control = control_CTX;
1685 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1686 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1687 brp_list[brp_1].value);
1688 if (retval != ERROR_OK)
1689 return retval;
1690 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1691 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1692 brp_list[brp_1].control);
1693 if (retval != ERROR_OK)
1694 return retval;
1695
1696 control_IVA = ((IVA_machmode & 0x7) << 20)
1697 | (brp_1 << 16)
1698 | (IVA_byte_addr_select << 5)
1699 | (3 << 1) | 1;
1700 brp_list[brp_2].used = 1;
1701 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1702 brp_list[brp_2].control = control_IVA;
1703 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1704 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1705 brp_list[brp_2].value);
1706 if (retval != ERROR_OK)
1707 return retval;
1708 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1709 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1710 brp_list[brp_2].control);
1711 if (retval != ERROR_OK)
1712 return retval;
1713
1714 return ERROR_OK;
1715 }
1716
1717 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1718 {
1719 int retval;
1720 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1721 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1722 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1723
1724 if (!breakpoint->set) {
1725 LOG_WARNING("breakpoint not set");
1726 return ERROR_OK;
1727 }
1728
1729 if (breakpoint->type == BKPT_HARD) {
1730 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1731 int brp_i = breakpoint->set - 1;
1732 int brp_j = breakpoint->linked_BRP;
1733 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1734 LOG_DEBUG("Invalid BRP number in breakpoint");
1735 return ERROR_OK;
1736 }
1737 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1738 brp_list[brp_i].control, brp_list[brp_i].value);
1739 brp_list[brp_i].used = 0;
1740 brp_list[brp_i].value = 0;
1741 brp_list[brp_i].control = 0;
1742 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1743 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1744 brp_list[brp_i].control);
1745 if (retval != ERROR_OK)
1746 return retval;
1747 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1748 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1749 brp_list[brp_i].value);
1750 if (retval != ERROR_OK)
1751 return retval;
1752 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1753 LOG_DEBUG("Invalid BRP number in breakpoint");
1754 return ERROR_OK;
1755 }
1756 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1757 brp_list[brp_j].control, brp_list[brp_j].value);
1758 brp_list[brp_j].used = 0;
1759 brp_list[brp_j].value = 0;
1760 brp_list[brp_j].control = 0;
1761 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1762 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1763 brp_list[brp_j].control);
1764 if (retval != ERROR_OK)
1765 return retval;
1766 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1767 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1768 brp_list[brp_j].value);
1769 if (retval != ERROR_OK)
1770 return retval;
1771 breakpoint->linked_BRP = 0;
1772 breakpoint->set = 0;
1773 return ERROR_OK;
1774
1775 } else {
1776 int brp_i = breakpoint->set - 1;
1777 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1778 LOG_DEBUG("Invalid BRP number in breakpoint");
1779 return ERROR_OK;
1780 }
1781 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1782 brp_list[brp_i].control, brp_list[brp_i].value);
1783 brp_list[brp_i].used = 0;
1784 brp_list[brp_i].value = 0;
1785 brp_list[brp_i].control = 0;
1786 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1787 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1788 brp_list[brp_i].control);
1789 if (retval != ERROR_OK)
1790 return retval;
1791 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1792 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1793 brp_list[brp_i].value);
1794 if (retval != ERROR_OK)
1795 return retval;
1796 breakpoint->set = 0;
1797 return ERROR_OK;
1798 }
1799 } else {
1800
1801 /* make sure data cache is cleaned & invalidated down to PoC */
1802 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1803 armv7a_cache_flush_virt(target, breakpoint->address,
1804 breakpoint->length);
1805 }
1806
1807 /* restore original instruction (kept in target endianness) */
1808 if (breakpoint->length == 4) {
1809 retval = target_write_memory(target,
1810 breakpoint->address & 0xFFFFFFFE,
1811 4, 1, breakpoint->orig_instr);
1812 if (retval != ERROR_OK)
1813 return retval;
1814 } else {
1815 retval = target_write_memory(target,
1816 breakpoint->address & 0xFFFFFFFE,
1817 2, 1, breakpoint->orig_instr);
1818 if (retval != ERROR_OK)
1819 return retval;
1820 }
1821
1822 /* update i-cache at breakpoint location */
1823 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1824 breakpoint->length);
1825 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1826 breakpoint->length);
1827 }
1828 breakpoint->set = 0;
1829
1830 return ERROR_OK;
1831 }
1832
1833 static int cortex_a_add_breakpoint(struct target *target,
1834 struct breakpoint *breakpoint)
1835 {
1836 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1837
1838 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1839 LOG_INFO("no hardware breakpoint available");
1840 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1841 }
1842
1843 if (breakpoint->type == BKPT_HARD)
1844 cortex_a->brp_num_available--;
1845
1846 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1847 }
1848
1849 static int cortex_a_add_context_breakpoint(struct target *target,
1850 struct breakpoint *breakpoint)
1851 {
1852 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1853
1854 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1855 LOG_INFO("no hardware breakpoint available");
1856 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1857 }
1858
1859 if (breakpoint->type == BKPT_HARD)
1860 cortex_a->brp_num_available--;
1861
1862 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1863 }
1864
1865 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1866 struct breakpoint *breakpoint)
1867 {
1868 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1869
1870 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1871 LOG_INFO("no hardware breakpoint available");
1872 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1873 }
1874
1875 if (breakpoint->type == BKPT_HARD)
1876 cortex_a->brp_num_available--;
1877
1878 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1879 }
1880
1881
1882 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1883 {
1884 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1885
1886 #if 0
1887 /* It is perfectly possible to remove breakpoints while the target is running */
1888 if (target->state != TARGET_HALTED) {
1889 LOG_WARNING("target not halted");
1890 return ERROR_TARGET_NOT_HALTED;
1891 }
1892 #endif
1893
1894 if (breakpoint->set) {
1895 cortex_a_unset_breakpoint(target, breakpoint);
1896 if (breakpoint->type == BKPT_HARD)
1897 cortex_a->brp_num_available++;
1898 }
1899
1900
1901 return ERROR_OK;
1902 }
1903
1904 /*
1905 * Cortex-A Reset functions
1906 */
1907
1908 static int cortex_a_assert_reset(struct target *target)
1909 {
1910 struct armv7a_common *armv7a = target_to_armv7a(target);
1911
1912 LOG_DEBUG(" ");
1913
1914 /* FIXME when halt is requested, make it work somehow... */
1915
1916 /* This function can be called in "target not examined" state */
1917
1918 /* Issue some kind of warm reset. */
1919 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1920 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1921 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1922 /* REVISIT handle "pulls" cases, if there's
1923 * hardware that needs them to work.
1924 */
1925
1926 /*
1927 * FIXME: fix reset when transport is SWD. This is a temporary
1928 * work-around for release v0.10 that is not intended to stay!
1929 */
1930 if (transport_is_swd() ||
1931 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1932 jtag_add_reset(0, 1);
1933
1934 } else {
1935 LOG_ERROR("%s: how to reset?", target_name(target));
1936 return ERROR_FAIL;
1937 }
1938
1939 /* registers are now invalid */
1940 if (target_was_examined(target))
1941 register_cache_invalidate(armv7a->arm.core_cache);
1942
1943 target->state = TARGET_RESET;
1944
1945 return ERROR_OK;
1946 }
1947
1948 static int cortex_a_deassert_reset(struct target *target)
1949 {
1950 int retval;
1951
1952 LOG_DEBUG(" ");
1953
1954 /* be certain SRST is off */
1955 jtag_add_reset(0, 0);
1956
1957 if (target_was_examined(target)) {
1958 retval = cortex_a_poll(target);
1959 if (retval != ERROR_OK)
1960 return retval;
1961 }
1962
1963 if (target->reset_halt) {
1964 if (target->state != TARGET_HALTED) {
1965 LOG_WARNING("%s: ran after reset and before halt ...",
1966 target_name(target));
1967 if (target_was_examined(target)) {
1968 retval = target_halt(target);
1969 if (retval != ERROR_OK)
1970 return retval;
1971 } else
1972 target->state = TARGET_UNKNOWN;
1973 }
1974 }
1975
1976 return ERROR_OK;
1977 }
1978
1979 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1980 {
1981 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1982 * New desired mode must be in mode. Current value of DSCR must be in
1983 * *dscr, which is updated with new value.
1984 *
1985 * This function elides actually sending the mode-change over the debug
1986 * interface if the mode is already set as desired.
1987 */
1988 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1989 if (new_dscr != *dscr) {
1990 struct armv7a_common *armv7a = target_to_armv7a(target);
1991 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1992 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1993 if (retval == ERROR_OK)
1994 *dscr = new_dscr;
1995 return retval;
1996 } else {
1997 return ERROR_OK;
1998 }
1999 }
2000
2001 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
2002 uint32_t value, uint32_t *dscr)
2003 {
2004 /* Waits until the specified bit(s) of DSCR take on a specified value. */
2005 struct armv7a_common *armv7a = target_to_armv7a(target);
2006 int64_t then = timeval_ms();
2007 int retval;
2008
2009 while ((*dscr & mask) != value) {
2010 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2011 armv7a->debug_base + CPUDBG_DSCR, dscr);
2012 if (retval != ERROR_OK)
2013 return retval;
2014 if (timeval_ms() > then + 1000) {
2015 LOG_ERROR("timeout waiting for DSCR bit change");
2016 return ERROR_FAIL;
2017 }
2018 }
2019 return ERROR_OK;
2020 }
2021
2022 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
2023 uint32_t *data, uint32_t *dscr)
2024 {
2025 int retval;
2026 struct armv7a_common *armv7a = target_to_armv7a(target);
2027
2028 /* Move from coprocessor to R0. */
2029 retval = cortex_a_exec_opcode(target, opcode, dscr);
2030 if (retval != ERROR_OK)
2031 return retval;
2032
2033 /* Move from R0 to DTRTX. */
2034 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
2035 if (retval != ERROR_OK)
2036 return retval;
2037
2038 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2039 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2040 * must also check TXfull_l). Most of the time this will be free
2041 * because TXfull_l will be set immediately and cached in dscr. */
2042 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2043 DSCR_DTRTX_FULL_LATCHED, dscr);
2044 if (retval != ERROR_OK)
2045 return retval;
2046
2047 /* Read the value transferred to DTRTX. */
2048 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2049 armv7a->debug_base + CPUDBG_DTRTX, data);
2050 if (retval != ERROR_OK)
2051 return retval;
2052
2053 return ERROR_OK;
2054 }
2055
2056 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2057 uint32_t *dfsr, uint32_t *dscr)
2058 {
2059 int retval;
2060
2061 if (dfar) {
2062 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2063 if (retval != ERROR_OK)
2064 return retval;
2065 }
2066
2067 if (dfsr) {
2068 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2069 if (retval != ERROR_OK)
2070 return retval;
2071 }
2072
2073 return ERROR_OK;
2074 }
2075
2076 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2077 uint32_t data, uint32_t *dscr)
2078 {
2079 int retval;
2080 struct armv7a_common *armv7a = target_to_armv7a(target);
2081
2082 /* Write the value into DTRRX. */
2083 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2084 armv7a->debug_base + CPUDBG_DTRRX, data);
2085 if (retval != ERROR_OK)
2086 return retval;
2087
2088 /* Move from DTRRX to R0. */
2089 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2090 if (retval != ERROR_OK)
2091 return retval;
2092
2093 /* Move from R0 to coprocessor. */
2094 retval = cortex_a_exec_opcode(target, opcode, dscr);
2095 if (retval != ERROR_OK)
2096 return retval;
2097
2098 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2099 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2100 * check RXfull_l). Most of the time this will be free because RXfull_l
2101 * will be cleared immediately and cached in dscr. */
2102 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2103 if (retval != ERROR_OK)
2104 return retval;
2105
2106 return ERROR_OK;
2107 }
2108
2109 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2110 uint32_t dfsr, uint32_t *dscr)
2111 {
2112 int retval;
2113
2114 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2115 if (retval != ERROR_OK)
2116 return retval;
2117
2118 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2119 if (retval != ERROR_OK)
2120 return retval;
2121
2122 return ERROR_OK;
2123 }
2124
2125 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2126 {
2127 uint32_t status, upper4;
2128
2129 if (dfsr & (1 << 9)) {
2130 /* LPAE format. */
2131 status = dfsr & 0x3f;
2132 upper4 = status >> 2;
2133 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2134 return ERROR_TARGET_TRANSLATION_FAULT;
2135 else if (status == 33)
2136 return ERROR_TARGET_UNALIGNED_ACCESS;
2137 else
2138 return ERROR_TARGET_DATA_ABORT;
2139 } else {
2140 /* Normal format. */
2141 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2142 if (status == 1)
2143 return ERROR_TARGET_UNALIGNED_ACCESS;
2144 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2145 status == 9 || status == 11 || status == 13 || status == 15)
2146 return ERROR_TARGET_TRANSLATION_FAULT;
2147 else
2148 return ERROR_TARGET_DATA_ABORT;
2149 }
2150 }
2151
2152 static int cortex_a_write_cpu_memory_slow(struct target *target,
2153 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2154 {
2155 /* Writes count objects of size size from *buffer. Old value of DSCR must
2156 * be in *dscr; updated to new value. This is slow because it works for
2157 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2158 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2159 * preferred.
2160 * Preconditions:
2161 * - Address is in R0.
2162 * - R0 is marked dirty.
2163 */
2164 struct armv7a_common *armv7a = target_to_armv7a(target);
2165 struct arm *arm = &armv7a->arm;
2166 int retval;
2167
2168 /* Mark register R1 as dirty, to use for transferring data. */
2169 arm_reg_current(arm, 1)->dirty = true;
2170
2171 /* Switch to non-blocking mode if not already in that mode. */
2172 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2173 if (retval != ERROR_OK)
2174 return retval;
2175
2176 /* Go through the objects. */
2177 while (count) {
2178 /* Write the value to store into DTRRX. */
2179 uint32_t data, opcode;
2180 if (size == 1)
2181 data = *buffer;
2182 else if (size == 2)
2183 data = target_buffer_get_u16(target, buffer);
2184 else
2185 data = target_buffer_get_u32(target, buffer);
2186 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2187 armv7a->debug_base + CPUDBG_DTRRX, data);
2188 if (retval != ERROR_OK)
2189 return retval;
2190
2191 /* Transfer the value from DTRRX to R1. */
2192 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2193 if (retval != ERROR_OK)
2194 return retval;
2195
2196 /* Write the value transferred to R1 into memory. */
2197 if (size == 1)
2198 opcode = ARMV4_5_STRB_IP(1, 0);
2199 else if (size == 2)
2200 opcode = ARMV4_5_STRH_IP(1, 0);
2201 else
2202 opcode = ARMV4_5_STRW_IP(1, 0);
2203 retval = cortex_a_exec_opcode(target, opcode, dscr);
2204 if (retval != ERROR_OK)
2205 return retval;
2206
2207 /* Check for faults and return early. */
2208 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2209 return ERROR_OK; /* A data fault is not considered a system failure. */
2210
2211 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2212 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2213 * must also check RXfull_l). Most of the time this will be free
2214 * because RXfull_l will be cleared immediately and cached in dscr. */
2215 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2216 if (retval != ERROR_OK)
2217 return retval;
2218
2219 /* Advance. */
2220 buffer += size;
2221 --count;
2222 }
2223
2224 return ERROR_OK;
2225 }
2226
2227 static int cortex_a_write_cpu_memory_fast(struct target *target,
2228 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2229 {
2230 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2231 * in *dscr; updated to new value. This is fast but only works for
2232 * word-sized objects at aligned addresses.
2233 * Preconditions:
2234 * - Address is in R0 and must be a multiple of 4.
2235 * - R0 is marked dirty.
2236 */
2237 struct armv7a_common *armv7a = target_to_armv7a(target);
2238 int retval;
2239
2240 /* Switch to fast mode if not already in that mode. */
2241 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2242 if (retval != ERROR_OK)
2243 return retval;
2244
2245 /* Latch STC instruction. */
2246 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2247 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2248 if (retval != ERROR_OK)
2249 return retval;
2250
2251 /* Transfer all the data and issue all the instructions. */
2252 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2253 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2254 }
2255
2256 static int cortex_a_write_cpu_memory(struct target *target,
2257 uint32_t address, uint32_t size,
2258 uint32_t count, const uint8_t *buffer)
2259 {
2260 /* Write memory through the CPU. */
2261 int retval, final_retval;
2262 struct armv7a_common *armv7a = target_to_armv7a(target);
2263 struct arm *arm = &armv7a->arm;
2264 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2265
2266 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2267 address, size, count);
2268 if (target->state != TARGET_HALTED) {
2269 LOG_WARNING("target not halted");
2270 return ERROR_TARGET_NOT_HALTED;
2271 }
2272
2273 if (!count)
2274 return ERROR_OK;
2275
2276 /* Clear any abort. */
2277 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2278 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2279 if (retval != ERROR_OK)
2280 return retval;
2281
2282 /* Read DSCR. */
2283 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2284 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2285 if (retval != ERROR_OK)
2286 return retval;
2287
2288 /* Switch to non-blocking mode if not already in that mode. */
2289 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2290 if (retval != ERROR_OK)
2291 goto out;
2292
2293 /* Mark R0 as dirty. */
2294 arm_reg_current(arm, 0)->dirty = true;
2295
2296 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2297 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2298 if (retval != ERROR_OK)
2299 goto out;
2300
2301 /* Get the memory address into R0. */
2302 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2303 armv7a->debug_base + CPUDBG_DTRRX, address);
2304 if (retval != ERROR_OK)
2305 goto out;
2306 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2307 if (retval != ERROR_OK)
2308 goto out;
2309
2310 if (size == 4 && (address % 4) == 0) {
2311 /* We are doing a word-aligned transfer, so use fast mode. */
2312 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2313 } else {
2314 /* Use slow path. */
2315 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2316 }
2317
2318 out:
2319 final_retval = retval;
2320
2321 /* Switch to non-blocking mode if not already in that mode. */
2322 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2323 if (final_retval == ERROR_OK)
2324 final_retval = retval;
2325
2326 /* Wait for last issued instruction to complete. */
2327 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2328 if (final_retval == ERROR_OK)
2329 final_retval = retval;
2330
2331 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2332 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2333 * check RXfull_l). Most of the time this will be free because RXfull_l
2334 * will be cleared immediately and cached in dscr. However, don't do this
2335 * if there is fault, because then the instruction might not have completed
2336 * successfully. */
2337 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2338 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2339 if (retval != ERROR_OK)
2340 return retval;
2341 }
2342
2343 /* If there were any sticky abort flags, clear them. */
2344 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2345 fault_dscr = dscr;
2346 mem_ap_write_atomic_u32(armv7a->debug_ap,
2347 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2348 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2349 } else {
2350 fault_dscr = 0;
2351 }
2352
2353 /* Handle synchronous data faults. */
2354 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2355 if (final_retval == ERROR_OK) {
2356 /* Final return value will reflect cause of fault. */
2357 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2358 if (retval == ERROR_OK) {
2359 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2360 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2361 } else
2362 final_retval = retval;
2363 }
2364 /* Fault destroyed DFAR/DFSR; restore them. */
2365 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2366 if (retval != ERROR_OK)
2367 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2368 }
2369
2370 /* Handle asynchronous data faults. */
2371 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2372 if (final_retval == ERROR_OK)
2373 /* No other error has been recorded so far, so keep this one. */
2374 final_retval = ERROR_TARGET_DATA_ABORT;
2375 }
2376
2377 /* If the DCC is nonempty, clear it. */
2378 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2379 uint32_t dummy;
2380 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2381 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2382 if (final_retval == ERROR_OK)
2383 final_retval = retval;
2384 }
2385 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2386 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2387 if (final_retval == ERROR_OK)
2388 final_retval = retval;
2389 }
2390
2391 /* Done. */
2392 return final_retval;
2393 }
2394
2395 static int cortex_a_read_cpu_memory_slow(struct target *target,
2396 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2397 {
2398 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2399 * in *dscr; updated to new value. This is slow because it works for
2400 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2401 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2402 * preferred.
2403 * Preconditions:
2404 * - Address is in R0.
2405 * - R0 is marked dirty.
2406 */
2407 struct armv7a_common *armv7a = target_to_armv7a(target);
2408 struct arm *arm = &armv7a->arm;
2409 int retval;
2410
2411 /* Mark register R1 as dirty, to use for transferring data. */
2412 arm_reg_current(arm, 1)->dirty = true;
2413
2414 /* Switch to non-blocking mode if not already in that mode. */
2415 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2416 if (retval != ERROR_OK)
2417 return retval;
2418
2419 /* Go through the objects. */
2420 while (count) {
2421 /* Issue a load of the appropriate size to R1. */
2422 uint32_t opcode, data;
2423 if (size == 1)
2424 opcode = ARMV4_5_LDRB_IP(1, 0);
2425 else if (size == 2)
2426 opcode = ARMV4_5_LDRH_IP(1, 0);
2427 else
2428 opcode = ARMV4_5_LDRW_IP(1, 0);
2429 retval = cortex_a_exec_opcode(target, opcode, dscr);
2430 if (retval != ERROR_OK)
2431 return retval;
2432
2433 /* Issue a write of R1 to DTRTX. */
2434 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2435 if (retval != ERROR_OK)
2436 return retval;
2437
2438 /* Check for faults and return early. */
2439 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2440 return ERROR_OK; /* A data fault is not considered a system failure. */
2441
2442 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2443 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2444 * must also check TXfull_l). Most of the time this will be free
2445 * because TXfull_l will be set immediately and cached in dscr. */
2446 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2447 DSCR_DTRTX_FULL_LATCHED, dscr);
2448 if (retval != ERROR_OK)
2449 return retval;
2450
2451 /* Read the value transferred to DTRTX into the buffer. */
2452 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2453 armv7a->debug_base + CPUDBG_DTRTX, &data);
2454 if (retval != ERROR_OK)
2455 return retval;
2456 if (size == 1)
2457 *buffer = (uint8_t) data;
2458 else if (size == 2)
2459 target_buffer_set_u16(target, buffer, (uint16_t) data);
2460 else
2461 target_buffer_set_u32(target, buffer, data);
2462
2463 /* Advance. */
2464 buffer += size;
2465 --count;
2466 }
2467
2468 return ERROR_OK;
2469 }
2470
2471 static int cortex_a_read_cpu_memory_fast(struct target *target,
2472 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2473 {
2474 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2475 * *dscr; updated to new value. This is fast but only works for word-sized
2476 * objects at aligned addresses.
2477 * Preconditions:
2478 * - Address is in R0 and must be a multiple of 4.
2479 * - R0 is marked dirty.
2480 */
2481 struct armv7a_common *armv7a = target_to_armv7a(target);
2482 uint32_t u32;
2483 int retval;
2484
2485 /* Switch to non-blocking mode if not already in that mode. */
2486 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2487 if (retval != ERROR_OK)
2488 return retval;
2489
2490 /* Issue the LDC instruction via a write to ITR. */
2491 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2492 if (retval != ERROR_OK)
2493 return retval;
2494
2495 count--;
2496
2497 if (count > 0) {
2498 /* Switch to fast mode if not already in that mode. */
2499 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2500 if (retval != ERROR_OK)
2501 return retval;
2502
2503 /* Latch LDC instruction. */
2504 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2505 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2506 if (retval != ERROR_OK)
2507 return retval;
2508
2509 /* Read the value transferred to DTRTX into the buffer. Due to fast
2510 * mode rules, this blocks until the instruction finishes executing and
2511 * then reissues the read instruction to read the next word from
2512 * memory. The last read of DTRTX in this call reads the second-to-last
2513 * word from memory and issues the read instruction for the last word.
2514 */
2515 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2516 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2517 if (retval != ERROR_OK)
2518 return retval;
2519
2520 /* Advance. */
2521 buffer += count * 4;
2522 }
2523
2524 /* Wait for last issued instruction to complete. */
2525 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2526 if (retval != ERROR_OK)
2527 return retval;
2528
2529 /* Switch to non-blocking mode if not already in that mode. */
2530 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2531 if (retval != ERROR_OK)
2532 return retval;
2533
2534 /* Check for faults and return early. */
2535 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2536 return ERROR_OK; /* A data fault is not considered a system failure. */
2537
2538 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2539 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2540 * check TXfull_l). Most of the time this will be free because TXfull_l
2541 * will be set immediately and cached in dscr. */
2542 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2543 DSCR_DTRTX_FULL_LATCHED, dscr);
2544 if (retval != ERROR_OK)
2545 return retval;
2546
2547 /* Read the value transferred to DTRTX into the buffer. This is the last
2548 * word. */
2549 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2550 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2551 if (retval != ERROR_OK)
2552 return retval;
2553 target_buffer_set_u32(target, buffer, u32);
2554
2555 return ERROR_OK;
2556 }
2557
2558 static int cortex_a_read_cpu_memory(struct target *target,
2559 uint32_t address, uint32_t size,
2560 uint32_t count, uint8_t *buffer)
2561 {
2562 /* Read memory through the CPU. */
2563 int retval, final_retval;
2564 struct armv7a_common *armv7a = target_to_armv7a(target);
2565 struct arm *arm = &armv7a->arm;
2566 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2567
2568 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2569 address, size, count);
2570 if (target->state != TARGET_HALTED) {
2571 LOG_WARNING("target not halted");
2572 return ERROR_TARGET_NOT_HALTED;
2573 }
2574
2575 if (!count)
2576 return ERROR_OK;
2577
2578 /* Clear any abort. */
2579 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2580 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2581 if (retval != ERROR_OK)
2582 return retval;
2583
2584 /* Read DSCR */
2585 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2586 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2587 if (retval != ERROR_OK)
2588 return retval;
2589
2590 /* Switch to non-blocking mode if not already in that mode. */
2591 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2592 if (retval != ERROR_OK)
2593 goto out;
2594
2595 /* Mark R0 as dirty. */
2596 arm_reg_current(arm, 0)->dirty = true;
2597
2598 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2599 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2600 if (retval != ERROR_OK)
2601 goto out;
2602
2603 /* Get the memory address into R0. */
2604 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2605 armv7a->debug_base + CPUDBG_DTRRX, address);
2606 if (retval != ERROR_OK)
2607 goto out;
2608 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2609 if (retval != ERROR_OK)
2610 goto out;
2611
2612 if (size == 4 && (address % 4) == 0) {
2613 /* We are doing a word-aligned transfer, so use fast mode. */
2614 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2615 } else {
2616 /* Use slow path. */
2617 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2618 }
2619
2620 out:
2621 final_retval = retval;
2622
2623 /* Switch to non-blocking mode if not already in that mode. */
2624 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2625 if (final_retval == ERROR_OK)
2626 final_retval = retval;
2627
2628 /* Wait for last issued instruction to complete. */
2629 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2630 if (final_retval == ERROR_OK)
2631 final_retval = retval;
2632
2633 /* If there were any sticky abort flags, clear them. */
2634 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2635 fault_dscr = dscr;
2636 mem_ap_write_atomic_u32(armv7a->debug_ap,
2637 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2638 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2639 } else {
2640 fault_dscr = 0;
2641 }
2642
2643 /* Handle synchronous data faults. */
2644 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2645 if (final_retval == ERROR_OK) {
2646 /* Final return value will reflect cause of fault. */
2647 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2648 if (retval == ERROR_OK) {
2649 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2650 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2651 } else
2652 final_retval = retval;
2653 }
2654 /* Fault destroyed DFAR/DFSR; restore them. */
2655 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2656 if (retval != ERROR_OK)
2657 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2658 }
2659
2660 /* Handle asynchronous data faults. */
2661 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2662 if (final_retval == ERROR_OK)
2663 /* No other error has been recorded so far, so keep this one. */
2664 final_retval = ERROR_TARGET_DATA_ABORT;
2665 }
2666
2667 /* If the DCC is nonempty, clear it. */
2668 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2669 uint32_t dummy;
2670 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2671 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2672 if (final_retval == ERROR_OK)
2673 final_retval = retval;
2674 }
2675 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2676 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2677 if (final_retval == ERROR_OK)
2678 final_retval = retval;
2679 }
2680
2681 /* Done. */
2682 return final_retval;
2683 }
2684
2685
2686 /*
2687 * Cortex-A Memory access
2688 *
2689 * This is same Cortex-M3 but we must also use the correct
2690 * ap number for every access.
2691 */
2692
2693 static int cortex_a_read_phys_memory(struct target *target,
2694 target_addr_t address, uint32_t size,
2695 uint32_t count, uint8_t *buffer)
2696 {
2697 struct armv7a_common *armv7a = target_to_armv7a(target);
2698 struct adiv5_dap *swjdp = armv7a->arm.dap;
2699 uint8_t apsel = swjdp->apsel;
2700 int retval;
2701
2702 if (!count || !buffer)
2703 return ERROR_COMMAND_SYNTAX_ERROR;
2704
2705 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2706 address, size, count);
2707
2708 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2709 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2710
2711 /* read memory through the CPU */
2712 cortex_a_prep_memaccess(target, 1);
2713 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2714 cortex_a_post_memaccess(target, 1);
2715
2716 return retval;
2717 }
2718
2719 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2720 uint32_t size, uint32_t count, uint8_t *buffer)
2721 {
2722 int retval;
2723
2724 /* cortex_a handles unaligned memory access */
2725 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2726 address, size, count);
2727
2728 cortex_a_prep_memaccess(target, 0);
2729 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2730 cortex_a_post_memaccess(target, 0);
2731
2732 return retval;
2733 }
2734
2735 static int cortex_a_read_memory_ahb(struct target *target, target_addr_t address,
2736 uint32_t size, uint32_t count, uint8_t *buffer)
2737 {
2738 int mmu_enabled = 0;
2739 target_addr_t virt, phys;
2740 int retval;
2741 struct armv7a_common *armv7a = target_to_armv7a(target);
2742 struct adiv5_dap *swjdp = armv7a->arm.dap;
2743 uint8_t apsel = swjdp->apsel;
2744
2745 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2746 return target_read_memory(target, address, size, count, buffer);
2747
2748 /* cortex_a handles unaligned memory access */
2749 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2750 address, size, count);
2751
2752 /* determine if MMU was enabled on target stop */
2753 if (!armv7a->is_armv7r) {
2754 retval = cortex_a_mmu(target, &mmu_enabled);
2755 if (retval != ERROR_OK)
2756 return retval;
2757 }
2758
2759 if (mmu_enabled) {
2760 virt = address;
2761 retval = cortex_a_virt2phys(target, virt, &phys);
2762 if (retval != ERROR_OK)
2763 return retval;
2764
2765 LOG_DEBUG("Reading at virtual address. "
2766 "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2767 virt, phys);
2768 address = phys;
2769 }
2770
2771 if (!count || !buffer)
2772 return ERROR_COMMAND_SYNTAX_ERROR;
2773
2774 retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2775
2776 return retval;
2777 }
2778
2779 static int cortex_a_write_phys_memory(struct target *target,
2780 target_addr_t address, uint32_t size,
2781 uint32_t count, const uint8_t *buffer)
2782 {
2783 struct armv7a_common *armv7a = target_to_armv7a(target);
2784 struct adiv5_dap *swjdp = armv7a->arm.dap;
2785 uint8_t apsel = swjdp->apsel;
2786 int retval;
2787
2788 if (!count || !buffer)
2789 return ERROR_COMMAND_SYNTAX_ERROR;
2790
2791 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2792 address, size, count);
2793
2794 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2795 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2796
2797 /* write memory through the CPU */
2798 cortex_a_prep_memaccess(target, 1);
2799 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2800 cortex_a_post_memaccess(target, 1);
2801
2802 return retval;
2803 }
2804
2805 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2806 uint32_t size, uint32_t count, const uint8_t *buffer)
2807 {
2808 int retval;
2809
2810 /* cortex_a handles unaligned memory access */
2811 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2812 address, size, count);
2813
2814 /* memory writes bypass the caches, must flush before writing */
2815 armv7a_cache_auto_flush_on_write(target, address, size * count);
2816
2817 cortex_a_prep_memaccess(target, 0);
2818 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2819 cortex_a_post_memaccess(target, 0);
2820 return retval;
2821 }
2822
2823 static int cortex_a_write_memory_ahb(struct target *target, target_addr_t address,
2824 uint32_t size, uint32_t count, const uint8_t *buffer)
2825 {
2826 int mmu_enabled = 0;
2827 target_addr_t virt, phys;
2828 int retval;
2829 struct armv7a_common *armv7a = target_to_armv7a(target);
2830 struct adiv5_dap *swjdp = armv7a->arm.dap;
2831 uint8_t apsel = swjdp->apsel;
2832
2833 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2834 return target_write_memory(target, address, size, count, buffer);
2835
2836 /* cortex_a handles unaligned memory access */
2837 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2838 address, size, count);
2839
2840 /* determine if MMU was enabled on target stop */
2841 if (!armv7a->is_armv7r) {
2842 retval = cortex_a_mmu(target, &mmu_enabled);
2843 if (retval != ERROR_OK)
2844 return retval;
2845 }
2846
2847 if (mmu_enabled) {
2848 virt = address;
2849 retval = cortex_a_virt2phys(target, virt, &phys);
2850 if (retval != ERROR_OK)
2851 return retval;
2852
2853 LOG_DEBUG("Writing to virtual address. "
2854 "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2855 virt,
2856 phys);
2857 address = phys;
2858 }
2859
2860 if (!count || !buffer)
2861 return ERROR_COMMAND_SYNTAX_ERROR;
2862
2863 retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2864
2865 return retval;
2866 }
2867
2868 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2869 uint32_t count, uint8_t *buffer)
2870 {
2871 uint32_t size;
2872
2873 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2874 * will have something to do with the size we leave to it. */
2875 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2876 if (address & size) {
2877 int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2878 if (retval != ERROR_OK)
2879 return retval;
2880 address += size;
2881 count -= size;
2882 buffer += size;
2883 }
2884 }
2885
2886 /* Read the data with as large access size as possible. */
2887 for (; size > 0; size /= 2) {
2888 uint32_t aligned = count - count % size;
2889 if (aligned > 0) {
2890 int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2891 if (retval != ERROR_OK)
2892 return retval;
2893 address += aligned;
2894 count -= aligned;
2895 buffer += aligned;
2896 }
2897 }
2898
2899 return ERROR_OK;
2900 }
2901
2902 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2903 uint32_t count, const uint8_t *buffer)
2904 {
2905 uint32_t size;
2906
2907 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2908 * will have something to do with the size we leave to it. */
2909 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2910 if (address & size) {
2911 int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2912 if (retval != ERROR_OK)
2913 return retval;
2914 address += size;
2915 count -= size;
2916 buffer += size;
2917 }
2918 }
2919
2920 /* Write the data with as large access size as possible. */
2921 for (; size > 0; size /= 2) {
2922 uint32_t aligned = count - count % size;
2923 if (aligned > 0) {
2924 int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2925 if (retval != ERROR_OK)
2926 return retval;
2927 address += aligned;
2928 count -= aligned;
2929 buffer += aligned;
2930 }
2931 }
2932
2933 return ERROR_OK;
2934 }
2935
2936 static int cortex_a_handle_target_request(void *priv)
2937 {
2938 struct target *target = priv;
2939 struct armv7a_common *armv7a = target_to_armv7a(target);
2940 int retval;
2941
2942 if (!target_was_examined(target))
2943 return ERROR_OK;
2944 if (!target->dbg_msg_enabled)
2945 return ERROR_OK;
2946
2947 if (target->state == TARGET_RUNNING) {
2948 uint32_t request;
2949 uint32_t dscr;
2950 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2951 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2952
2953 /* check if we have data */
2954 int64_t then = timeval_ms();
2955 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2956 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2957 armv7a->debug_base + CPUDBG_DTRTX, &request);
2958 if (retval == ERROR_OK) {
2959 target_request(target, request);
2960 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2961 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2962 }
2963 if (timeval_ms() > then + 1000) {
2964 LOG_ERROR("Timeout waiting for dtr tx full");
2965 return ERROR_FAIL;
2966 }
2967 }
2968 }
2969
2970 return ERROR_OK;
2971 }
2972
2973 /*
2974 * Cortex-A target information and configuration
2975 */
2976
2977 static int cortex_a_examine_first(struct target *target)
2978 {
2979 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2980 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2981 struct adiv5_dap *swjdp = armv7a->arm.dap;
2982
2983 int i;
2984 int retval = ERROR_OK;
2985 uint32_t didr, cpuid, dbg_osreg;
2986
2987 /* Search for the APB-AP - it is needed for access to debug registers */
2988 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2989 if (retval != ERROR_OK) {
2990 LOG_ERROR("Could not find APB-AP for debug access");
2991 return retval;
2992 }
2993
2994 retval = mem_ap_init(armv7a->debug_ap);
2995 if (retval != ERROR_OK) {
2996 LOG_ERROR("Could not initialize the APB-AP");
2997 return retval;
2998 }
2999
3000 armv7a->debug_ap->memaccess_tck = 80;
3001
3002 /* Search for the AHB-AB.
3003 * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
3004 * can access system memory. */
3005 armv7a->memory_ap_available = false;
3006 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
3007 if (retval == ERROR_OK) {
3008 retval = mem_ap_init(armv7a->memory_ap);
3009 if (retval == ERROR_OK)
3010 armv7a->memory_ap_available = true;
3011 }
3012 if (retval != ERROR_OK) {
3013 /* AHB-AP not found or unavailable - use the CPU */
3014 LOG_DEBUG("No AHB-AP available for memory access");
3015 }
3016
3017 if (!target->dbgbase_set) {
3018 uint32_t dbgbase;
3019 /* Get ROM Table base */
3020 uint32_t apid;
3021 int32_t coreidx = target->coreid;
3022 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
3023 target->cmd_name);
3024 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
3025 if (retval != ERROR_OK)
3026 return retval;
3027 /* Lookup 0x15 -- Processor DAP */
3028 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
3029 &armv7a->debug_base, &coreidx);
3030 if (retval != ERROR_OK) {
3031 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
3032 target->cmd_name);
3033 return retval;
3034 }
3035 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
3036 target->coreid, armv7a->debug_base);
3037 } else
3038 armv7a->debug_base = target->dbgbase;
3039
3040 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3041 armv7a->debug_base + CPUDBG_DIDR, &didr);
3042 if (retval != ERROR_OK) {
3043 LOG_DEBUG("Examine %s failed", "DIDR");
3044 return retval;
3045 }
3046
3047 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3048 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3049 if (retval != ERROR_OK) {
3050 LOG_DEBUG("Examine %s failed", "CPUID");
3051 return retval;
3052 }
3053
3054 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3055 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3056
3057 cortex_a->didr = didr;
3058 cortex_a->cpuid = cpuid;
3059
3060 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3061 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3062 if (retval != ERROR_OK)
3063 return retval;
3064 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
3065
3066 if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3067 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3068 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3069 return ERROR_TARGET_INIT_FAILED;
3070 }
3071
3072 if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3073 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3074
3075 /* Read DBGOSLSR and check if OSLK is implemented */
3076 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3077 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3078 if (retval != ERROR_OK)
3079 return retval;
3080 LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3081
3082 /* check if OS Lock is implemented */
3083 if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3084 /* check if OS Lock is set */
3085 if (dbg_osreg & OSLSR_OSLK) {
3086 LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3087
3088 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3089 armv7a->debug_base + CPUDBG_OSLAR,
3090 0);
3091 if (retval == ERROR_OK)
3092 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3093 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3094
3095 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3096 if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3097 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3098 target->coreid);
3099 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3100 return ERROR_TARGET_INIT_FAILED;
3101 }
3102 }
3103 }
3104
3105 armv7a->arm.core_type = ARM_MODE_MON;
3106
3107 /* Avoid recreating the registers cache */
3108 if (!target_was_examined(target)) {
3109 retval = cortex_a_dpm_setup(cortex_a, didr);
3110 if (retval != ERROR_OK)
3111 return retval;
3112 }
3113
3114 /* Setup Breakpoint Register Pairs */
3115 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3116 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3117 cortex_a->brp_num_available = cortex_a->brp_num;
3118 free(cortex_a->brp_list);
3119 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3120 /* cortex_a->brb_enabled = ????; */
3121 for (i = 0; i < cortex_a->brp_num; i++) {
3122 cortex_a->brp_list[i].used = 0;
3123 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3124 cortex_a->brp_list[i].type = BRP_NORMAL;
3125 else
3126 cortex_a->brp_list[i].type = BRP_CONTEXT;
3127 cortex_a->brp_list[i].value = 0;
3128 cortex_a->brp_list[i].control = 0;
3129 cortex_a->brp_list[i].BRPn = i;
3130 }
3131
3132 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3133
3134 /* select debug_ap as default */
3135 swjdp->apsel = armv7a->debug_ap->ap_num;
3136
3137 target_set_examined(target);
3138 return ERROR_OK;
3139 }
3140
3141 static int cortex_a_examine(struct target *target)
3142 {
3143 int retval = ERROR_OK;
3144
3145 /* Reestablish communication after target reset */
3146 retval = cortex_a_examine_first(target);
3147
3148 /* Configure core debug access */
3149 if (retval == ERROR_OK)
3150 retval = cortex_a_init_debug_access(target);
3151
3152 return retval;
3153 }
3154
3155 /*
3156 * Cortex-A target creation and initialization
3157 */
3158
3159 static int cortex_a_init_target(struct command_context *cmd_ctx,
3160 struct target *target)
3161 {
3162 /* examine_first() does a bunch of this */
3163 arm_semihosting_init(target);
3164 return ERROR_OK;
3165 }
3166
3167 static int cortex_a_init_arch_info(struct target *target,
3168 struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
3169 {
3170 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3171
3172 /* Setup struct cortex_a_common */
3173 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3174 armv7a->arm.dap = dap;
3175
3176 cortex_a->fast_reg_read = 0;
3177
3178 /* register arch-specific functions */
3179 armv7a->examine_debug_reason = NULL;
3180
3181 armv7a->post_debug_entry = cortex_a_post_debug_entry;
3182
3183 armv7a->pre_restore_context = NULL;
3184
3185 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3186
3187
3188 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3189
3190 /* REVISIT v7a setup should be in a v7a-specific routine */
3191 armv7a_init_arch_info(target, armv7a);
3192 target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3193
3194 return ERROR_OK;
3195 }
3196
3197 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3198 {
3199 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3200 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3201 struct adiv5_private_config *pc;
3202
3203 if (target->private_config == NULL)
3204 return ERROR_FAIL;
3205
3206 pc = (struct adiv5_private_config *)target->private_config;
3207
3208 cortex_a->armv7a_common.is_armv7r = false;
3209
3210 cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
3211
3212 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3213 }
3214
3215 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3216 {
3217 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3218 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3219 struct adiv5_private_config *pc;
3220
3221 pc = (struct adiv5_private_config *)target->private_config;
3222 if (adiv5_verify_config(pc) != ERROR_OK)
3223 return ERROR_FAIL;
3224
3225 cortex_a->armv7a_common.is_armv7r = true;
3226
3227 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3228 }
3229
3230 static void cortex_a_deinit_target(struct target *target)
3231 {
3232 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3233 struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3234
3235 free(cortex_a->brp_list);
3236 free(dpm->dbp);
3237 free(dpm->dwp);
3238 free(target->private_config);
3239 free(cortex_a);
3240 }
3241
3242 static int cortex_a_mmu(struct target *target, int *enabled)
3243 {
3244 struct armv7a_common *armv7a = target_to_armv7a(target);
3245
3246 if (target->state != TARGET_HALTED) {
3247 LOG_ERROR("%s: target not halted", __func__);
3248 return ERROR_TARGET_INVALID;
3249 }
3250
3251 if (armv7a->is_armv7r)
3252 *enabled = 0;
3253 else
3254 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3255
3256 return ERROR_OK;
3257 }
3258
3259 static int cortex_a_virt2phys(struct target *target,
3260 target_addr_t virt, target_addr_t *phys)
3261 {
3262 int retval = ERROR_FAIL;
3263 struct armv7a_common *armv7a = target_to_armv7a(target);
3264 struct adiv5_dap *swjdp = armv7a->arm.dap;
3265 uint8_t apsel = swjdp->apsel;
3266 int mmu_enabled = 0;
3267
3268 /*
3269 * If the MMU was not enabled at debug entry, there is no
3270 * way of knowing if there was ever a valid configuration
3271 * for it and thus it's not safe to enable it. In this case,
3272 * just return the virtual address as physical.
3273 */
3274 cortex_a_mmu(target, &mmu_enabled);
3275 if (!mmu_enabled) {
3276 *phys = virt;
3277 return ERROR_OK;
3278 }
3279
3280 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3281 uint32_t ret;
3282 retval = armv7a_mmu_translate_va(target,
3283 virt, &ret);
3284 if (retval != ERROR_OK)
3285 goto done;
3286 *phys = ret;
3287 } else {/* use this method if armv7a->memory_ap not selected
3288 * mmu must be enable in order to get a correct translation */
3289 retval = cortex_a_mmu_modify(target, 1);
3290 if (retval != ERROR_OK)
3291 goto done;
3292 retval = armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3293 (uint32_t *)phys, 1);
3294 }
3295 done:
3296 return retval;
3297 }
3298
3299 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3300 {
3301 struct target *target = get_current_target(CMD_CTX);
3302 struct armv7a_common *armv7a = target_to_armv7a(target);
3303
3304 return armv7a_handle_cache_info_command(CMD_CTX,
3305 &armv7a->armv7a_mmu.armv7a_cache);
3306 }
3307
3308
3309 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3310 {
3311 struct target *target = get_current_target(CMD_CTX);
3312 if (!target_was_examined(target)) {
3313 LOG_ERROR("target not examined yet");
3314 return ERROR_FAIL;
3315 }
3316
3317 return cortex_a_init_debug_access(target);
3318 }
3319 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3320 {
3321 struct target *target = get_current_target(CMD_CTX);
3322 /* check target is an smp target */
3323 struct target_list *head;
3324 struct target *curr;
3325 head = target->head;
3326 target->smp = 0;
3327 if (head != (struct target_list *)NULL) {
3328 while (head != (struct target_list *)NULL) {
3329 curr = head->target;
3330 curr->smp = 0;
3331 head = head->next;
3332 }
3333 /* fixes the target display to the debugger */
3334 target->gdb_service->target = target;
3335 }
3336 return ERROR_OK;
3337 }
3338
3339 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3340 {
3341 struct target *target = get_current_target(CMD_CTX);
3342 struct target_list *head;
3343 struct target *curr;
3344 head = target->head;
3345 if (head != (struct target_list *)NULL) {
3346 target->smp = 1;
3347 while (head != (struct target_list *)NULL) {
3348 curr = head->target;
3349 curr->smp = 1;
3350 head = head->next;
3351 }
3352 }
3353 return ERROR_OK;
3354 }
3355
3356 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3357 {
3358 struct target *target = get_current_target(CMD_CTX);
3359 int retval = ERROR_OK;
3360 struct target_list *head;
3361 head = target->head;
3362 if (head != (struct target_list *)NULL) {
3363 if (CMD_ARGC == 1) {
3364 int coreid = 0;
3365 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3366 if (ERROR_OK != retval)
3367 return retval;
3368 target->gdb_service->core[1] = coreid;
3369
3370 }
3371 command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3372 , target->gdb_service->core[1]);
3373 }
3374 return ERROR_OK;
3375 }
3376
3377 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3378 {
3379 struct target *target = get_current_target(CMD_CTX);
3380 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3381
3382 static const Jim_Nvp nvp_maskisr_modes[] = {
3383 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3384 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3385 { .name = NULL, .value = -1 },
3386 };
3387 const Jim_Nvp *n;
3388
3389 if (CMD_ARGC > 0) {
3390 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3391 if (n->name == NULL) {
3392 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3393 return ERROR_COMMAND_SYNTAX_ERROR;
3394 }
3395
3396 cortex_a->isrmasking_mode = n->value;
3397 }
3398
3399 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3400 command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3401
3402 return ERROR_OK;
3403 }
3404
3405 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3406 {
3407 struct target *target = get_current_target(CMD_CTX);
3408 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3409
3410 static const Jim_Nvp nvp_dacrfixup_modes[] = {
3411 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3412 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3413 { .name = NULL, .value = -1 },
3414 };
3415 const Jim_Nvp *n;
3416
3417 if (CMD_ARGC > 0) {
3418 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3419 if (n->name == NULL)
3420 return ERROR_COMMAND_SYNTAX_ERROR;
3421 cortex_a->dacrfixup_mode = n->value;
3422
3423 }
3424
3425 n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3426 command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3427
3428 return ERROR_OK;
3429 }
3430
3431 static const struct command_registration cortex_a_exec_command_handlers[] = {
3432 {
3433 .name = "cache_info",
3434 .handler = cortex_a_handle_cache_info_command,
3435 .mode = COMMAND_EXEC,
3436 .help = "display information about target caches",
3437 .usage = "",
3438 },
3439 {
3440 .name = "dbginit",
3441 .handler = cortex_a_handle_dbginit_command,
3442 .mode = COMMAND_EXEC,
3443 .help = "Initialize core debug",
3444 .usage = "",
3445 },
3446 { .name = "smp_off",
3447 .handler = cortex_a_handle_smp_off_command,
3448 .mode = COMMAND_EXEC,
3449 .help = "Stop smp handling",
3450 .usage = "",},
3451 {
3452 .name = "smp_on",
3453 .handler = cortex_a_handle_smp_on_command,
3454 .mode = COMMAND_EXEC,
3455 .help = "Restart smp handling",
3456 .usage = "",
3457 },
3458 {
3459 .name = "smp_gdb",
3460 .handler = cortex_a_handle_smp_gdb_command,
3461 .mode = COMMAND_EXEC,
3462 .help = "display/fix current core played to gdb",
3463 .usage = "",
3464 },
3465 {
3466 .name = "maskisr",
3467 .handler = handle_cortex_a_mask_interrupts_command,
3468 .mode = COMMAND_ANY,
3469 .help = "mask cortex_a interrupts",
3470 .usage = "['on'|'off']",
3471 },
3472 {
3473 .name = "dacrfixup",
3474 .handler = handle_cortex_a_dacrfixup_command,
3475 .mode = COMMAND_ANY,
3476 .help = "set domain access control (DACR) to all-manager "
3477 "on memory access",
3478 .usage = "['on'|'off']",
3479 },
3480
3481 COMMAND_REGISTRATION_DONE
3482 };
3483 static const struct command_registration cortex_a_command_handlers[] = {
3484 {
3485 .chain = arm_command_handlers,
3486 },
3487 {
3488 .chain = armv7a_command_handlers,
3489 },
3490 {
3491 .name = "cortex_a",
3492 .mode = COMMAND_ANY,
3493 .help = "Cortex-A command group",
3494 .usage = "",
3495 .chain = cortex_a_exec_command_handlers,
3496 },
3497 COMMAND_REGISTRATION_DONE
3498 };
3499
3500 struct target_type cortexa_target = {
3501 .name = "cortex_a",
3502 .deprecated_name = "cortex_a8",
3503
3504 .poll = cortex_a_poll,
3505 .arch_state = armv7a_arch_state,
3506
3507 .halt = cortex_a_halt,
3508 .resume = cortex_a_resume,
3509 .step = cortex_a_step,
3510
3511 .assert_reset = cortex_a_assert_reset,
3512 .deassert_reset = cortex_a_deassert_reset,
3513
3514 /* REVISIT allow exporting VFP3 registers ... */
3515 .get_gdb_reg_list = arm_get_gdb_reg_list,
3516
3517 .read_memory = cortex_a_read_memory,
3518 .write_memory = cortex_a_write_memory,
3519
3520 .read_buffer = cortex_a_read_buffer,
3521 .write_buffer = cortex_a_write_buffer,
3522
3523 .checksum_memory = arm_checksum_memory,
3524 .blank_check_memory = arm_blank_check_memory,
3525
3526 .run_algorithm = armv4_5_run_algorithm,
3527
3528 .add_breakpoint = cortex_a_add_breakpoint,
3529 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3530 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3531 .remove_breakpoint = cortex_a_remove_breakpoint,
3532 .add_watchpoint = NULL,
3533 .remove_watchpoint = NULL,
3534
3535 .commands = cortex_a_command_handlers,
3536 .target_create = cortex_a_target_create,
3537 .target_jim_configure = adiv5_jim_configure,
3538 .init_target = cortex_a_init_target,
3539 .examine = cortex_a_examine,
3540 .deinit_target = cortex_a_deinit_target,
3541
3542 .read_phys_memory = cortex_a_read_phys_memory,
3543 .write_phys_memory = cortex_a_write_phys_memory,
3544 .mmu = cortex_a_mmu,
3545 .virt2phys = cortex_a_virt2phys,
3546 };
3547
3548 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3549 {
3550 .name = "dbginit",
3551 .handler = cortex_a_handle_dbginit_command,
3552 .mode = COMMAND_EXEC,
3553 .help = "Initialize core debug",
3554 .usage = "",
3555 },
3556 {
3557 .name = "maskisr",
3558 .handler = handle_cortex_a_mask_interrupts_command,
3559 .mode = COMMAND_EXEC,
3560 .help = "mask cortex_r4 interrupts",
3561 .usage = "['on'|'off']",
3562 },
3563
3564 COMMAND_REGISTRATION_DONE
3565 };
3566 static const struct command_registration cortex_r4_command_handlers[] = {
3567 {