target: Remove read_memory_imp
[openocd.git] / src / target / cortex_a.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 √ėyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * This program is free software; you can redistribute it and/or modify *
21 * it under the terms of the GNU General Public License as published by *
22 * the Free Software Foundation; either version 2 of the License, or *
23 * (at your option) any later version. *
24 * *
25 * This program is distributed in the hope that it will be useful, *
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
28 * GNU General Public License for more details. *
29 * *
30 * You should have received a copy of the GNU General Public License *
31 * along with this program; if not, write to the *
32 * Free Software Foundation, Inc., *
33 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
34 * *
35 * Cortex-A8(tm) TRM, ARM DDI 0344H *
36 * Cortex-A9(tm) TRM, ARM DDI 0407F *
37 * *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include "breakpoints.h"
45 #include "cortex_a.h"
46 #include "register.h"
47 #include "target_request.h"
48 #include "target_type.h"
49 #include "arm_opcodes.h"
50 #include <helper/time_support.h>
51
52 static int cortex_a8_poll(struct target *target);
53 static int cortex_a8_debug_entry(struct target *target);
54 static int cortex_a8_restore_context(struct target *target, bool bpwp);
55 static int cortex_a8_set_breakpoint(struct target *target,
56 struct breakpoint *breakpoint, uint8_t matchmode);
57 static int cortex_a8_set_context_breakpoint(struct target *target,
58 struct breakpoint *breakpoint, uint8_t matchmode);
59 static int cortex_a8_set_hybrid_breakpoint(struct target *target,
60 struct breakpoint *breakpoint);
61 static int cortex_a8_unset_breakpoint(struct target *target,
62 struct breakpoint *breakpoint);
63 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
64 uint32_t *value, int regnum);
65 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
66 uint32_t value, int regnum);
67 static int cortex_a8_mmu(struct target *target, int *enabled);
68 static int cortex_a8_virt2phys(struct target *target,
69 uint32_t virt, uint32_t *phys);
70
71 /*
72 * FIXME do topology discovery using the ROM; don't
73 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
74 * cores, with different AP numbering ... don't use a #define
75 * for these numbers, use per-core armv7a state.
76 */
77 #define swjdp_memoryap 0
78 #define swjdp_debugap 1
79
80 /* restore cp15_control_reg at resume */
81 static int cortex_a8_restore_cp15_control_reg(struct target *target)
82 {
83 int retval = ERROR_OK;
84 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
85 struct armv7a_common *armv7a = target_to_armv7a(target);
86
87 if (cortex_a8->cp15_control_reg != cortex_a8->cp15_control_reg_curr) {
88 cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
89 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg); */
90 retval = armv7a->arm.mcr(target, 15,
91 0, 0, /* op1, op2 */
92 1, 0, /* CRn, CRm */
93 cortex_a8->cp15_control_reg);
94 }
95 return retval;
96 }
97
98 /* check address before cortex_a8_apb read write access with mmu on
99 * remove apb predictible data abort */
100 static int cortex_a8_check_address(struct target *target, uint32_t address)
101 {
102 struct armv7a_common *armv7a = target_to_armv7a(target);
103 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
104 uint32_t os_border = armv7a->armv7a_mmu.os_border;
105 if ((address < os_border) &&
106 (armv7a->arm.core_mode == ARM_MODE_SVC)) {
107 LOG_ERROR("%x access in userspace and target in supervisor", address);
108 return ERROR_FAIL;
109 }
110 if ((address >= os_border) &&
111 (cortex_a8->curr_mode != ARM_MODE_SVC)) {
112 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
113 cortex_a8->curr_mode = ARM_MODE_SVC;
114 LOG_INFO("%x access in kernel space and target not in supervisor",
115 address);
116 return ERROR_OK;
117 }
118 if ((address < os_border) &&
119 (cortex_a8->curr_mode == ARM_MODE_SVC)) {
120 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
121 cortex_a8->curr_mode = ARM_MODE_ANY;
122 }
123 return ERROR_OK;
124 }
125 /* modify cp15_control_reg in order to enable or disable mmu for :
126 * - virt2phys address conversion
127 * - read or write memory in phys or virt address */
128 static int cortex_a8_mmu_modify(struct target *target, int enable)
129 {
130 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
131 struct armv7a_common *armv7a = target_to_armv7a(target);
132 int retval = ERROR_OK;
133 if (enable) {
134 /* if mmu enabled at target stop and mmu not enable */
135 if (!(cortex_a8->cp15_control_reg & 0x1U)) {
136 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
137 return ERROR_FAIL;
138 }
139 if (!(cortex_a8->cp15_control_reg_curr & 0x1U)) {
140 cortex_a8->cp15_control_reg_curr |= 0x1U;
141 retval = armv7a->arm.mcr(target, 15,
142 0, 0, /* op1, op2 */
143 1, 0, /* CRn, CRm */
144 cortex_a8->cp15_control_reg_curr);
145 }
146 } else {
147 if (cortex_a8->cp15_control_reg_curr & 0x4U) {
148 /* data cache is active */
149 cortex_a8->cp15_control_reg_curr &= ~0x4U;
150 /* flush data cache armv7 function to be called */
151 if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache)
152 armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache(target);
153 }
154 if ((cortex_a8->cp15_control_reg_curr & 0x1U)) {
155 cortex_a8->cp15_control_reg_curr &= ~0x1U;
156 retval = armv7a->arm.mcr(target, 15,
157 0, 0, /* op1, op2 */
158 1, 0, /* CRn, CRm */
159 cortex_a8->cp15_control_reg_curr);
160 }
161 }
162 return retval;
163 }
164
165 /*
166 * Cortex-A8 Basic debug access, very low level assumes state is saved
167 */
168 static int cortex_a8_init_debug_access(struct target *target)
169 {
170 struct armv7a_common *armv7a = target_to_armv7a(target);
171 struct adiv5_dap *swjdp = armv7a->arm.dap;
172 int retval;
173 uint32_t dummy;
174
175 LOG_DEBUG(" ");
176
177 /* Unlocking the debug registers for modification
178 * The debugport might be uninitialised so try twice */
179 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
180 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
181 if (retval != ERROR_OK) {
182 /* try again */
183 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
184 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
185 if (retval == ERROR_OK)
186 LOG_USER(
187 "Locking debug access failed on first, but succeeded on second try.");
188 }
189 if (retval != ERROR_OK)
190 return retval;
191 /* Clear Sticky Power Down status Bit in PRSR to enable access to
192 the registers in the Core Power Domain */
193 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
194 armv7a->debug_base + CPUDBG_PRSR, &dummy);
195 if (retval != ERROR_OK)
196 return retval;
197
198 /* Enabling of instruction execution in debug mode is done in debug_entry code */
199
200 /* Resync breakpoint registers */
201
202 /* Since this is likely called from init or reset, update target state information*/
203 return cortex_a8_poll(target);
204 }
205
206 /* To reduce needless round-trips, pass in a pointer to the current
207 * DSCR value. Initialize it to zero if you just need to know the
208 * value on return from this function; or DSCR_INSTR_COMP if you
209 * happen to know that no instruction is pending.
210 */
211 static int cortex_a8_exec_opcode(struct target *target,
212 uint32_t opcode, uint32_t *dscr_p)
213 {
214 uint32_t dscr;
215 int retval;
216 struct armv7a_common *armv7a = target_to_armv7a(target);
217 struct adiv5_dap *swjdp = armv7a->arm.dap;
218
219 dscr = dscr_p ? *dscr_p : 0;
220
221 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
222
223 /* Wait for InstrCompl bit to be set */
224 long long then = timeval_ms();
225 while ((dscr & DSCR_INSTR_COMP) == 0) {
226 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
227 armv7a->debug_base + CPUDBG_DSCR, &dscr);
228 if (retval != ERROR_OK) {
229 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
230 return retval;
231 }
232 if (timeval_ms() > then + 1000) {
233 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
234 return ERROR_FAIL;
235 }
236 }
237
238 retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
239 armv7a->debug_base + CPUDBG_ITR, opcode);
240 if (retval != ERROR_OK)
241 return retval;
242
243 then = timeval_ms();
244 do {
245 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
246 armv7a->debug_base + CPUDBG_DSCR, &dscr);
247 if (retval != ERROR_OK) {
248 LOG_ERROR("Could not read DSCR register");
249 return retval;
250 }
251 if (timeval_ms() > then + 1000) {
252 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
253 return ERROR_FAIL;
254 }
255 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
256
257 if (dscr_p)
258 *dscr_p = dscr;
259
260 return retval;
261 }
262
263 /**************************************************************************
264 Read core register with very few exec_opcode, fast but needs work_area.
265 This can cause problems with MMU active.
266 **************************************************************************/
267 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
268 uint32_t *regfile)
269 {
270 int retval = ERROR_OK;
271 struct armv7a_common *armv7a = target_to_armv7a(target);
272 struct adiv5_dap *swjdp = armv7a->arm.dap;
273
274 retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
275 if (retval != ERROR_OK)
276 return retval;
277 retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
278 if (retval != ERROR_OK)
279 return retval;
280 retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
281 if (retval != ERROR_OK)
282 return retval;
283
284 retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
285 (uint8_t *)(&regfile[1]), 4*15, address);
286
287 return retval;
288 }
289
290 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
291 uint32_t *value, int regnum)
292 {
293 int retval = ERROR_OK;
294 uint8_t reg = regnum&0xFF;
295 uint32_t dscr = 0;
296 struct armv7a_common *armv7a = target_to_armv7a(target);
297 struct adiv5_dap *swjdp = armv7a->arm.dap;
298
299 if (reg > 17)
300 return retval;
301
302 if (reg < 15) {
303 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
304 retval = cortex_a8_exec_opcode(target,
305 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
306 &dscr);
307 if (retval != ERROR_OK)
308 return retval;
309 } else if (reg == 15) {
310 /* "MOV r0, r15"; then move r0 to DCCTX */
311 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
312 if (retval != ERROR_OK)
313 return retval;
314 retval = cortex_a8_exec_opcode(target,
315 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
316 &dscr);
317 if (retval != ERROR_OK)
318 return retval;
319 } else {
320 /* "MRS r0, CPSR" or "MRS r0, SPSR"
321 * then move r0 to DCCTX
322 */
323 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
324 if (retval != ERROR_OK)
325 return retval;
326 retval = cortex_a8_exec_opcode(target,
327 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
328 &dscr);
329 if (retval != ERROR_OK)
330 return retval;
331 }
332
333 /* Wait for DTRRXfull then read DTRRTX */
334 long long then = timeval_ms();
335 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
336 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
337 armv7a->debug_base + CPUDBG_DSCR, &dscr);
338 if (retval != ERROR_OK)
339 return retval;
340 if (timeval_ms() > then + 1000) {
341 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
342 return ERROR_FAIL;
343 }
344 }
345
346 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
347 armv7a->debug_base + CPUDBG_DTRTX, value);
348 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
349
350 return retval;
351 }
352
353 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
354 uint32_t value, int regnum)
355 {
356 int retval = ERROR_OK;
357 uint8_t Rd = regnum&0xFF;
358 uint32_t dscr;
359 struct armv7a_common *armv7a = target_to_armv7a(target);
360 struct adiv5_dap *swjdp = armv7a->arm.dap;
361
362 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
363
364 /* Check that DCCRX is not full */
365 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
366 armv7a->debug_base + CPUDBG_DSCR, &dscr);
367 if (retval != ERROR_OK)
368 return retval;
369 if (dscr & DSCR_DTR_RX_FULL) {
370 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
371 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
372 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
373 &dscr);
374 if (retval != ERROR_OK)
375 return retval;
376 }
377
378 if (Rd > 17)
379 return retval;
380
381 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
382 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
383 retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
384 armv7a->debug_base + CPUDBG_DTRRX, value);
385 if (retval != ERROR_OK)
386 return retval;
387
388 if (Rd < 15) {
389 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
390 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
391 &dscr);
392
393 if (retval != ERROR_OK)
394 return retval;
395 } else if (Rd == 15) {
396 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
397 * then "mov r15, r0"
398 */
399 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
400 &dscr);
401 if (retval != ERROR_OK)
402 return retval;
403 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
404 if (retval != ERROR_OK)
405 return retval;
406 } else {
407 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
408 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
409 */
410 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
411 &dscr);
412 if (retval != ERROR_OK)
413 return retval;
414 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
415 &dscr);
416 if (retval != ERROR_OK)
417 return retval;
418
419 /* "Prefetch flush" after modifying execution status in CPSR */
420 if (Rd == 16) {
421 retval = cortex_a8_exec_opcode(target,
422 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
423 &dscr);
424 if (retval != ERROR_OK)
425 return retval;
426 }
427 }
428
429 return retval;
430 }
431
432 /* Write to memory mapped registers directly with no cache or mmu handling */
433 static int cortex_a8_dap_write_memap_register_u32(struct target *target,
434 uint32_t address,
435 uint32_t value)
436 {
437 int retval;
438 struct armv7a_common *armv7a = target_to_armv7a(target);
439 struct adiv5_dap *swjdp = armv7a->arm.dap;
440
441 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap, address, value);
442
443 return retval;
444 }
445
446 /*
447 * Cortex-A8 implementation of Debug Programmer's Model
448 *
449 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
450 * so there's no need to poll for it before executing an instruction.
451 *
452 * NOTE that in several of these cases the "stall" mode might be useful.
453 * It'd let us queue a few operations together... prepare/finish might
454 * be the places to enable/disable that mode.
455 */
456
457 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
458 {
459 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
460 }
461
462 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
463 {
464 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
465 return mem_ap_sel_write_u32(a8->armv7a_common.arm.dap,
466 swjdp_debugap, a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
467 }
468
469 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
470 uint32_t *dscr_p)
471 {
472 struct adiv5_dap *swjdp = a8->armv7a_common.arm.dap;
473 uint32_t dscr = DSCR_INSTR_COMP;
474 int retval;
475
476 if (dscr_p)
477 dscr = *dscr_p;
478
479 /* Wait for DTRRXfull */
480 long long then = timeval_ms();
481 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
482 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
483 a8->armv7a_common.debug_base + CPUDBG_DSCR,
484 &dscr);
485 if (retval != ERROR_OK)
486 return retval;
487 if (timeval_ms() > then + 1000) {
488 LOG_ERROR("Timeout waiting for read dcc");
489 return ERROR_FAIL;
490 }
491 }
492
493 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
494 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
495 if (retval != ERROR_OK)
496 return retval;
497 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
498
499 if (dscr_p)
500 *dscr_p = dscr;
501
502 return retval;
503 }
504
505 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
506 {
507 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
508 struct adiv5_dap *swjdp = a8->armv7a_common.arm.dap;
509 uint32_t dscr;
510 int retval;
511
512 /* set up invariant: INSTR_COMP is set after ever DPM operation */
513 long long then = timeval_ms();
514 for (;; ) {
515 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
516 a8->armv7a_common.debug_base + CPUDBG_DSCR,
517 &dscr);
518 if (retval != ERROR_OK)
519 return retval;
520 if ((dscr & DSCR_INSTR_COMP) != 0)
521 break;
522 if (timeval_ms() > then + 1000) {
523 LOG_ERROR("Timeout waiting for dpm prepare");
524 return ERROR_FAIL;
525 }
526 }
527
528 /* this "should never happen" ... */
529 if (dscr & DSCR_DTR_RX_FULL) {
530 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
531 /* Clear DCCRX */
532 retval = cortex_a8_exec_opcode(
533 a8->armv7a_common.arm.target,
534 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
535 &dscr);
536 if (retval != ERROR_OK)
537 return retval;
538 }
539
540 return retval;
541 }
542
543 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
544 {
545 /* REVISIT what could be done here? */
546 return ERROR_OK;
547 }
548
549 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
550 uint32_t opcode, uint32_t data)
551 {
552 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
553 int retval;
554 uint32_t dscr = DSCR_INSTR_COMP;
555
556 retval = cortex_a8_write_dcc(a8, data);
557 if (retval != ERROR_OK)
558 return retval;
559
560 return cortex_a8_exec_opcode(
561 a8->armv7a_common.arm.target,
562 opcode,
563 &dscr);
564 }
565
566 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
567 uint32_t opcode, uint32_t data)
568 {
569 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
570 uint32_t dscr = DSCR_INSTR_COMP;
571 int retval;
572
573 retval = cortex_a8_write_dcc(a8, data);
574 if (retval != ERROR_OK)
575 return retval;
576
577 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
578 retval = cortex_a8_exec_opcode(
579 a8->armv7a_common.arm.target,
580 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
581 &dscr);
582 if (retval != ERROR_OK)
583 return retval;
584
585 /* then the opcode, taking data from R0 */
586 retval = cortex_a8_exec_opcode(
587 a8->armv7a_common.arm.target,
588 opcode,
589 &dscr);
590
591 return retval;
592 }
593
594 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
595 {
596 struct target *target = dpm->arm->target;
597 uint32_t dscr = DSCR_INSTR_COMP;
598
599 /* "Prefetch flush" after modifying execution status in CPSR */
600 return cortex_a8_exec_opcode(target,
601 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
602 &dscr);
603 }
604
605 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
606 uint32_t opcode, uint32_t *data)
607 {
608 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
609 int retval;
610 uint32_t dscr = DSCR_INSTR_COMP;
611
612 /* the opcode, writing data to DCC */
613 retval = cortex_a8_exec_opcode(
614 a8->armv7a_common.arm.target,
615 opcode,
616 &dscr);
617 if (retval != ERROR_OK)
618 return retval;
619
620 return cortex_a8_read_dcc(a8, data, &dscr);
621 }
622
623
624 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
625 uint32_t opcode, uint32_t *data)
626 {
627 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
628 uint32_t dscr = DSCR_INSTR_COMP;
629 int retval;
630
631 /* the opcode, writing data to R0 */
632 retval = cortex_a8_exec_opcode(
633 a8->armv7a_common.arm.target,
634 opcode,
635 &dscr);
636 if (retval != ERROR_OK)
637 return retval;
638
639 /* write R0 to DCC */
640 retval = cortex_a8_exec_opcode(
641 a8->armv7a_common.arm.target,
642 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
643 &dscr);
644 if (retval != ERROR_OK)
645 return retval;
646
647 return cortex_a8_read_dcc(a8, data, &dscr);
648 }
649
650 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
651 uint32_t addr, uint32_t control)
652 {
653 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
654 uint32_t vr = a8->armv7a_common.debug_base;
655 uint32_t cr = a8->armv7a_common.debug_base;
656 int retval;
657
658 switch (index_t) {
659 case 0 ... 15: /* breakpoints */
660 vr += CPUDBG_BVR_BASE;
661 cr += CPUDBG_BCR_BASE;
662 break;
663 case 16 ... 31: /* watchpoints */
664 vr += CPUDBG_WVR_BASE;
665 cr += CPUDBG_WCR_BASE;
666 index_t -= 16;
667 break;
668 default:
669 return ERROR_FAIL;
670 }
671 vr += 4 * index_t;
672 cr += 4 * index_t;
673
674 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
675 (unsigned) vr, (unsigned) cr);
676
677 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
678 vr, addr);
679 if (retval != ERROR_OK)
680 return retval;
681 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
682 cr, control);
683 return retval;
684 }
685
686 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
687 {
688 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
689 uint32_t cr;
690
691 switch (index_t) {
692 case 0 ... 15:
693 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
694 break;
695 case 16 ... 31:
696 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
697 index_t -= 16;
698 break;
699 default:
700 return ERROR_FAIL;
701 }
702 cr += 4 * index_t;
703
704 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
705
706 /* clear control register */
707 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
708 }
709
710 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
711 {
712 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
713 int retval;
714
715 dpm->arm = &a8->armv7a_common.arm;
716 dpm->didr = didr;
717
718 dpm->prepare = cortex_a8_dpm_prepare;
719 dpm->finish = cortex_a8_dpm_finish;
720
721 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
722 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
723 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
724
725 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
726 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
727
728 dpm->bpwp_enable = cortex_a8_bpwp_enable;
729 dpm->bpwp_disable = cortex_a8_bpwp_disable;
730
731 retval = arm_dpm_setup(dpm);
732 if (retval == ERROR_OK)
733 retval = arm_dpm_initialize(dpm);
734
735 return retval;
736 }
737 static struct target *get_cortex_a8(struct target *target, int32_t coreid)
738 {
739 struct target_list *head;
740 struct target *curr;
741
742 head = target->head;
743 while (head != (struct target_list *)NULL) {
744 curr = head->target;
745 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
746 return curr;
747 head = head->next;
748 }
749 return target;
750 }
751 static int cortex_a8_halt(struct target *target);
752
753 static int cortex_a8_halt_smp(struct target *target)
754 {
755 int retval = 0;
756 struct target_list *head;
757 struct target *curr;
758 head = target->head;
759 while (head != (struct target_list *)NULL) {
760 curr = head->target;
761 if ((curr != target) && (curr->state != TARGET_HALTED))
762 retval += cortex_a8_halt(curr);
763 head = head->next;
764 }
765 return retval;
766 }
767
768 static int update_halt_gdb(struct target *target)
769 {
770 int retval = 0;
771 if (target->gdb_service->core[0] == -1) {
772 target->gdb_service->target = target;
773 target->gdb_service->core[0] = target->coreid;
774 retval += cortex_a8_halt_smp(target);
775 }
776 return retval;
777 }
778
779 /*
780 * Cortex-A8 Run control
781 */
782
783 static int cortex_a8_poll(struct target *target)
784 {
785 int retval = ERROR_OK;
786 uint32_t dscr;
787 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
788 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
789 struct adiv5_dap *swjdp = armv7a->arm.dap;
790 enum target_state prev_target_state = target->state;
791 /* toggle to another core is done by gdb as follow */
792 /* maint packet J core_id */
793 /* continue */
794 /* the next polling trigger an halt event sent to gdb */
795 if ((target->state == TARGET_HALTED) && (target->smp) &&
796 (target->gdb_service) &&
797 (target->gdb_service->target == NULL)) {
798 target->gdb_service->target =
799 get_cortex_a8(target, target->gdb_service->core[1]);
800 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
801 return retval;
802 }
803 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
804 armv7a->debug_base + CPUDBG_DSCR, &dscr);
805 if (retval != ERROR_OK)
806 return retval;
807 cortex_a8->cpudbg_dscr = dscr;
808
809 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
810 if (prev_target_state != TARGET_HALTED) {
811 /* We have a halting debug event */
812 LOG_DEBUG("Target halted");
813 target->state = TARGET_HALTED;
814 if ((prev_target_state == TARGET_RUNNING)
815 || (prev_target_state == TARGET_UNKNOWN)
816 || (prev_target_state == TARGET_RESET)) {
817 retval = cortex_a8_debug_entry(target);
818 if (retval != ERROR_OK)
819 return retval;
820 if (target->smp) {
821 retval = update_halt_gdb(target);
822 if (retval != ERROR_OK)
823 return retval;
824 }
825 target_call_event_callbacks(target,
826 TARGET_EVENT_HALTED);
827 }
828 if (prev_target_state == TARGET_DEBUG_RUNNING) {
829 LOG_DEBUG(" ");
830
831 retval = cortex_a8_debug_entry(target);
832 if (retval != ERROR_OK)
833 return retval;
834 if (target->smp) {
835 retval = update_halt_gdb(target);
836 if (retval != ERROR_OK)
837 return retval;
838 }
839
840 target_call_event_callbacks(target,
841 TARGET_EVENT_DEBUG_HALTED);
842 }
843 }
844 } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
845 target->state = TARGET_RUNNING;
846 else {
847 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
848 target->state = TARGET_UNKNOWN;
849 }
850
851 return retval;
852 }
853
854 static int cortex_a8_halt(struct target *target)
855 {
856 int retval = ERROR_OK;
857 uint32_t dscr;
858 struct armv7a_common *armv7a = target_to_armv7a(target);
859 struct adiv5_dap *swjdp = armv7a->arm.dap;
860
861 /*
862 * Tell the core to be halted by writing DRCR with 0x1
863 * and then wait for the core to be halted.
864 */
865 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
866 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
867 if (retval != ERROR_OK)
868 return retval;
869
870 /*
871 * enter halting debug mode
872 */
873 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
874 armv7a->debug_base + CPUDBG_DSCR, &dscr);
875 if (retval != ERROR_OK)
876 return retval;
877
878 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
879 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
880 if (retval != ERROR_OK)
881 return retval;
882
883 long long then = timeval_ms();
884 for (;; ) {
885 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
886 armv7a->debug_base + CPUDBG_DSCR, &dscr);
887 if (retval != ERROR_OK)
888 return retval;
889 if ((dscr & DSCR_CORE_HALTED) != 0)
890 break;
891 if (timeval_ms() > then + 1000) {
892 LOG_ERROR("Timeout waiting for halt");
893 return ERROR_FAIL;
894 }
895 }
896
897 target->debug_reason = DBG_REASON_DBGRQ;
898
899 return ERROR_OK;
900 }
901
902 static int cortex_a8_internal_restore(struct target *target, int current,
903 uint32_t *address, int handle_breakpoints, int debug_execution)
904 {
905 struct armv7a_common *armv7a = target_to_armv7a(target);
906 struct arm *arm = &armv7a->arm;
907 int retval;
908 uint32_t resume_pc;
909
910 if (!debug_execution)
911 target_free_all_working_areas(target);
912
913 #if 0
914 if (debug_execution) {
915 /* Disable interrupts */
916 /* We disable interrupts in the PRIMASK register instead of
917 * masking with C_MASKINTS,
918 * This is probably the same issue as Cortex-M3 Errata 377493:
919 * C_MASKINTS in parallel with disabled interrupts can cause
920 * local faults to not be taken. */
921 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
922 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
923 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
924
925 /* Make sure we are in Thumb mode */
926 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
927 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
928 32) | (1 << 24));
929 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
930 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
931 }
932 #endif
933
934 /* current = 1: continue on current pc, otherwise continue at <address> */
935 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
936 if (!current)
937 resume_pc = *address;
938 else
939 *address = resume_pc;
940
941 /* Make sure that the Armv7 gdb thumb fixups does not
942 * kill the return address
943 */
944 switch (arm->core_state) {
945 case ARM_STATE_ARM:
946 resume_pc &= 0xFFFFFFFC;
947 break;
948 case ARM_STATE_THUMB:
949 case ARM_STATE_THUMB_EE:
950 /* When the return address is loaded into PC
951 * bit 0 must be 1 to stay in Thumb state
952 */
953 resume_pc |= 0x1;
954 break;
955 case ARM_STATE_JAZELLE:
956 LOG_ERROR("How do I resume into Jazelle state??");
957 return ERROR_FAIL;
958 }
959 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
960 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
961 arm->pc->dirty = 1;
962 arm->pc->valid = 1;
963 /* restore dpm_mode at system halt */
964 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
965 /* called it now before restoring context because it uses cpu
966 * register r0 for restoring cp15 control register */
967 retval = cortex_a8_restore_cp15_control_reg(target);
968 if (retval != ERROR_OK)
969 return retval;
970 retval = cortex_a8_restore_context(target, handle_breakpoints);
971 if (retval != ERROR_OK)
972 return retval;
973 target->debug_reason = DBG_REASON_NOTHALTED;
974 target->state = TARGET_RUNNING;
975
976 /* registers are now invalid */
977 register_cache_invalidate(arm->core_cache);
978
979 #if 0
980 /* the front-end may request us not to handle breakpoints */
981 if (handle_breakpoints) {
982 /* Single step past breakpoint at current address */
983 breakpoint = breakpoint_find(target, resume_pc);
984 if (breakpoint) {
985 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
986 cortex_m3_unset_breakpoint(target, breakpoint);
987 cortex_m3_single_step_core(target);
988 cortex_m3_set_breakpoint(target, breakpoint);
989 }
990 }
991
992 #endif
993 return retval;
994 }
995
996 static int cortex_a8_internal_restart(struct target *target)
997 {
998 struct armv7a_common *armv7a = target_to_armv7a(target);
999 struct arm *arm = &armv7a->arm;
1000 struct adiv5_dap *swjdp = arm->dap;
1001 int retval;
1002 uint32_t dscr;
1003 /*
1004 * * Restart core and wait for it to be started. Clear ITRen and sticky
1005 * * exception flags: see ARMv7 ARM, C5.9.
1006 *
1007 * REVISIT: for single stepping, we probably want to
1008 * disable IRQs by default, with optional override...
1009 */
1010
1011 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1012 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1013 if (retval != ERROR_OK)
1014 return retval;
1015
1016 if ((dscr & DSCR_INSTR_COMP) == 0)
1017 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1018
1019 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1020 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1021 if (retval != ERROR_OK)
1022 return retval;
1023
1024 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1025 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1026 DRCR_CLEAR_EXCEPTIONS);
1027 if (retval != ERROR_OK)
1028 return retval;
1029
1030 long long then = timeval_ms();
1031 for (;; ) {
1032 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1033 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1034 if (retval != ERROR_OK)
1035 return retval;
1036 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1037 break;
1038 if (timeval_ms() > then + 1000) {
1039 LOG_ERROR("Timeout waiting for resume");
1040 return ERROR_FAIL;
1041 }
1042 }
1043
1044 target->debug_reason = DBG_REASON_NOTHALTED;
1045 target->state = TARGET_RUNNING;
1046
1047 /* registers are now invalid */
1048 register_cache_invalidate(arm->core_cache);
1049
1050 return ERROR_OK;
1051 }
1052
1053 static int cortex_a8_restore_smp(struct target *target, int handle_breakpoints)
1054 {
1055 int retval = 0;
1056 struct target_list *head;
1057 struct target *curr;
1058 uint32_t address;
1059 head = target->head;
1060 while (head != (struct target_list *)NULL) {
1061 curr = head->target;
1062 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1063 /* resume current address , not in step mode */
1064 retval += cortex_a8_internal_restore(curr, 1, &address,
1065 handle_breakpoints, 0);
1066 retval += cortex_a8_internal_restart(curr);
1067 }
1068 head = head->next;
1069
1070 }
1071 return retval;
1072 }
1073
1074 static int cortex_a8_resume(struct target *target, int current,
1075 uint32_t address, int handle_breakpoints, int debug_execution)
1076 {
1077 int retval = 0;
1078 /* dummy resume for smp toggle in order to reduce gdb impact */
1079 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1080 /* simulate a start and halt of target */
1081 target->gdb_service->target = NULL;
1082 target->gdb_service->core[0] = target->gdb_service->core[1];
1083 /* fake resume at next poll we play the target core[1], see poll*/
1084 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1085 return 0;
1086 }
1087 cortex_a8_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1088 if (target->smp) {
1089 target->gdb_service->core[0] = -1;
1090 retval = cortex_a8_restore_smp(target, handle_breakpoints);
1091 if (retval != ERROR_OK)
1092 return retval;
1093 }
1094 cortex_a8_internal_restart(target);
1095
1096 if (!debug_execution) {
1097 target->state = TARGET_RUNNING;
1098 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1099 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1100 } else {
1101 target->state = TARGET_DEBUG_RUNNING;
1102 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1103 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1104 }
1105
1106 return ERROR_OK;
1107 }
1108
1109 static int cortex_a8_debug_entry(struct target *target)
1110 {
1111 int i;
1112 uint32_t regfile[16], cpsr, dscr;
1113 int retval = ERROR_OK;
1114 struct working_area *regfile_working_area = NULL;
1115 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1116 struct armv7a_common *armv7a = target_to_armv7a(target);
1117 struct arm *arm = &armv7a->arm;
1118 struct adiv5_dap *swjdp = armv7a->arm.dap;
1119 struct reg *reg;
1120
1121 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
1122
1123 /* REVISIT surely we should not re-read DSCR !! */
1124 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1125 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1126 if (retval != ERROR_OK)
1127 return retval;
1128
1129 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
1130 * imprecise data aborts get discarded by issuing a Data
1131 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1132 */
1133
1134 /* Enable the ITR execution once we are in debug mode */
1135 dscr |= DSCR_ITR_EN;
1136 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
1137 armv7a->debug_base + CPUDBG_DSCR, dscr);
1138 if (retval != ERROR_OK)
1139 return retval;
1140
1141 /* Examine debug reason */
1142 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
1143
1144 /* save address of instruction that triggered the watchpoint? */
1145 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1146 uint32_t wfar;
1147
1148 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1149 armv7a->debug_base + CPUDBG_WFAR,
1150 &wfar);
1151 if (retval != ERROR_OK)
1152 return retval;
1153 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1154 }
1155
1156 /* REVISIT fast_reg_read is never set ... */
1157
1158 /* Examine target state and mode */
1159 if (cortex_a8->fast_reg_read)
1160 target_alloc_working_area(target, 64, &regfile_working_area);
1161
1162 /* First load register acessible through core debug port*/
1163 if (!regfile_working_area)
1164 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1165 else {
1166 retval = cortex_a8_read_regs_through_mem(target,
1167 regfile_working_area->address, regfile);
1168
1169 target_free_working_area(target, regfile_working_area);
1170 if (retval != ERROR_OK)
1171 return retval;
1172
1173 /* read Current PSR */
1174 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
1175 /* store current cpsr */
1176 if (retval != ERROR_OK)
1177 return retval;
1178
1179 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1180
1181 arm_set_cpsr(arm, cpsr);
1182
1183 /* update cache */
1184 for (i = 0; i <= ARM_PC; i++) {
1185 reg = arm_reg_current(arm, i);
1186
1187 buf_set_u32(reg->value, 0, 32, regfile[i]);
1188 reg->valid = 1;
1189 reg->dirty = 0;
1190 }
1191
1192 /* Fixup PC Resume Address */
1193 if (cpsr & (1 << 5)) {
1194 /* T bit set for Thumb or ThumbEE state */
1195 regfile[ARM_PC] -= 4;
1196 } else {
1197 /* ARM state */
1198 regfile[ARM_PC] -= 8;
1199 }
1200
1201 reg = arm->pc;
1202 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1203 reg->dirty = reg->valid;
1204 }
1205
1206 #if 0
1207 /* TODO, Move this */
1208 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1209 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1210 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1211
1212 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1213 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1214
1215 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1216 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1217 #endif
1218
1219 /* Are we in an exception handler */
1220 /* armv4_5->exception_number = 0; */
1221 if (armv7a->post_debug_entry) {
1222 retval = armv7a->post_debug_entry(target);
1223 if (retval != ERROR_OK)
1224 return retval;
1225 }
1226
1227 return retval;
1228 }
1229
1230 static int cortex_a8_post_debug_entry(struct target *target)
1231 {
1232 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1233 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1234 int retval;
1235
1236 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1237 retval = armv7a->arm.mrc(target, 15,
1238 0, 0, /* op1, op2 */
1239 1, 0, /* CRn, CRm */
1240 &cortex_a8->cp15_control_reg);
1241 if (retval != ERROR_OK)
1242 return retval;
1243 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1244 cortex_a8->cp15_control_reg_curr = cortex_a8->cp15_control_reg;
1245
1246 if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
1247 armv7a_identify_cache(target);
1248
1249 armv7a->armv7a_mmu.mmu_enabled =
1250 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1251 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1252 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1253 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1254 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1255 cortex_a8->curr_mode = armv7a->arm.core_mode;
1256
1257 return ERROR_OK;
1258 }
1259
1260 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1261 int handle_breakpoints)
1262 {
1263 struct armv7a_common *armv7a = target_to_armv7a(target);
1264 struct arm *arm = &armv7a->arm;
1265 struct breakpoint *breakpoint = NULL;
1266 struct breakpoint stepbreakpoint;
1267 struct reg *r;
1268 int retval;
1269
1270 if (target->state != TARGET_HALTED) {
1271 LOG_WARNING("target not halted");
1272 return ERROR_TARGET_NOT_HALTED;
1273 }
1274
1275 /* current = 1: continue on current pc, otherwise continue at <address> */
1276 r = arm->pc;
1277 if (!current)
1278 buf_set_u32(r->value, 0, 32, address);
1279 else
1280 address = buf_get_u32(r->value, 0, 32);
1281
1282 /* The front-end may request us not to handle breakpoints.
1283 * But since Cortex-A8 uses breakpoint for single step,
1284 * we MUST handle breakpoints.
1285 */
1286 handle_breakpoints = 1;
1287 if (handle_breakpoints) {
1288 breakpoint = breakpoint_find(target, address);
1289 if (breakpoint)
1290 cortex_a8_unset_breakpoint(target, breakpoint);
1291 }
1292
1293 /* Setup single step breakpoint */
1294 stepbreakpoint.address = address;
1295 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1296 ? 2 : 4;
1297 stepbreakpoint.type = BKPT_HARD;
1298 stepbreakpoint.set = 0;
1299
1300 /* Break on IVA mismatch */
1301 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1302
1303 target->debug_reason = DBG_REASON_SINGLESTEP;
1304
1305 retval = cortex_a8_resume(target, 1, address, 0, 0);
1306 if (retval != ERROR_OK)
1307 return retval;
1308
1309 long long then = timeval_ms();
1310 while (target->state != TARGET_HALTED) {
1311 retval = cortex_a8_poll(target);
1312 if (retval != ERROR_OK)
1313 return retval;
1314 if (timeval_ms() > then + 1000) {
1315 LOG_ERROR("timeout waiting for target halt");
1316 return ERROR_FAIL;
1317 }
1318 }
1319
1320 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1321
1322 target->debug_reason = DBG_REASON_BREAKPOINT;
1323
1324 if (breakpoint)
1325 cortex_a8_set_breakpoint(target, breakpoint, 0);
1326
1327 if (target->state != TARGET_HALTED)
1328 LOG_DEBUG("target stepped");
1329
1330 return ERROR_OK;
1331 }
1332
1333 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1334 {
1335 struct armv7a_common *armv7a = target_to_armv7a(target);
1336
1337 LOG_DEBUG(" ");
1338
1339 if (armv7a->pre_restore_context)
1340 armv7a->pre_restore_context(target);
1341
1342 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1343 }
1344
1345 /*
1346 * Cortex-A8 Breakpoint and watchpoint functions
1347 */
1348
1349 /* Setup hardware Breakpoint Register Pair */
1350 static int cortex_a8_set_breakpoint(struct target *target,
1351 struct breakpoint *breakpoint, uint8_t matchmode)
1352 {
1353 int retval;
1354 int brp_i = 0;
1355 uint32_t control;
1356 uint8_t byte_addr_select = 0x0F;
1357 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1358 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1359 struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1360
1361 if (breakpoint->set) {
1362 LOG_WARNING("breakpoint already set");
1363 return ERROR_OK;
1364 }
1365
1366 if (breakpoint->type == BKPT_HARD) {
1367 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1368 brp_i++;
1369 if (brp_i >= cortex_a8->brp_num) {
1370 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1371 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1372 }
1373 breakpoint->set = brp_i + 1;
1374 if (breakpoint->length == 2)
1375 byte_addr_select = (3 << (breakpoint->address & 0x02));
1376 control = ((matchmode & 0x7) << 20)
1377 | (byte_addr_select << 5)
1378 | (3 << 1) | 1;
1379 brp_list[brp_i].used = 1;
1380 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1381 brp_list[brp_i].control = control;
1382 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1383 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1384 brp_list[brp_i].value);
1385 if (retval != ERROR_OK)
1386 return retval;
1387 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1388 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1389 brp_list[brp_i].control);
1390 if (retval != ERROR_OK)
1391 return retval;
1392 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1393 brp_list[brp_i].control,
1394 brp_list[brp_i].value);
1395 } else if (breakpoint->type == BKPT_SOFT) {
1396 uint8_t code[4];
1397 if (breakpoint->length == 2)
1398 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1399 else
1400 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1401 retval = target_read_memory(target,
1402 breakpoint->address & 0xFFFFFFFE,
1403 breakpoint->length, 1,
1404 breakpoint->orig_instr);
1405 if (retval != ERROR_OK)
1406 return retval;
1407 retval = target_write_memory(target,
1408 breakpoint->address & 0xFFFFFFFE,
1409 breakpoint->length, 1, code);
1410 if (retval != ERROR_OK)
1411 return retval;
1412 breakpoint->set = 0x11; /* Any nice value but 0 */
1413 }
1414
1415 return ERROR_OK;
1416 }
1417
1418 static int cortex_a8_set_context_breakpoint(struct target *target,
1419 struct breakpoint *breakpoint, uint8_t matchmode)
1420 {
1421 int retval = ERROR_FAIL;
1422 int brp_i = 0;
1423 uint32_t control;
1424 uint8_t byte_addr_select = 0x0F;
1425 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1426 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1427 struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1428
1429 if (breakpoint->set) {
1430 LOG_WARNING("breakpoint already set");
1431 return retval;
1432 }
1433 /*check available context BRPs*/
1434 while ((brp_list[brp_i].used ||
1435 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a8->brp_num))
1436 brp_i++;
1437
1438 if (brp_i >= cortex_a8->brp_num) {
1439 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1440 return ERROR_FAIL;
1441 }
1442
1443 breakpoint->set = brp_i + 1;
1444 control = ((matchmode & 0x7) << 20)
1445 | (byte_addr_select << 5)
1446 | (3 << 1) | 1;
1447 brp_list[brp_i].used = 1;
1448 brp_list[brp_i].value = (breakpoint->asid);
1449 brp_list[brp_i].control = control;
1450 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1451 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1452 brp_list[brp_i].value);
1453 if (retval != ERROR_OK)
1454 return retval;
1455 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1456 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1457 brp_list[brp_i].control);
1458 if (retval != ERROR_OK)
1459 return retval;
1460 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1461 brp_list[brp_i].control,
1462 brp_list[brp_i].value);
1463 return ERROR_OK;
1464
1465 }
1466
1467 static int cortex_a8_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1468 {
1469 int retval = ERROR_FAIL;
1470 int brp_1 = 0; /* holds the contextID pair */
1471 int brp_2 = 0; /* holds the IVA pair */
1472 uint32_t control_CTX, control_IVA;
1473 uint8_t CTX_byte_addr_select = 0x0F;
1474 uint8_t IVA_byte_addr_select = 0x0F;
1475 uint8_t CTX_machmode = 0x03;
1476 uint8_t IVA_machmode = 0x01;
1477 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1478 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1479 struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1480
1481 if (breakpoint->set) {
1482 LOG_WARNING("breakpoint already set");
1483 return retval;
1484 }
1485 /*check available context BRPs*/
1486 while ((brp_list[brp_1].used ||
1487 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a8->brp_num))
1488 brp_1++;
1489
1490 printf("brp(CTX) found num: %d\n", brp_1);
1491 if (brp_1 >= cortex_a8->brp_num) {
1492 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1493 return ERROR_FAIL;
1494 }
1495
1496 while ((brp_list[brp_2].used ||
1497 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a8->brp_num))
1498 brp_2++;
1499
1500 printf("brp(IVA) found num: %d\n", brp_2);
1501 if (brp_2 >= cortex_a8->brp_num) {
1502 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1503 return ERROR_FAIL;
1504 }
1505
1506 breakpoint->set = brp_1 + 1;
1507 breakpoint->linked_BRP = brp_2;
1508 control_CTX = ((CTX_machmode & 0x7) << 20)
1509 | (brp_2 << 16)
1510 | (0 << 14)
1511 | (CTX_byte_addr_select << 5)
1512 | (3 << 1) | 1;
1513 brp_list[brp_1].used = 1;
1514 brp_list[brp_1].value = (breakpoint->asid);
1515 brp_list[brp_1].control = control_CTX;
1516 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1517 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1518 brp_list[brp_1].value);
1519 if (retval != ERROR_OK)
1520 return retval;
1521 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1522 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1523 brp_list[brp_1].control);
1524 if (retval != ERROR_OK)
1525 return retval;
1526
1527 control_IVA = ((IVA_machmode & 0x7) << 20)
1528 | (brp_1 << 16)
1529 | (IVA_byte_addr_select << 5)
1530 | (3 << 1) | 1;
1531 brp_list[brp_2].used = 1;
1532 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1533 brp_list[brp_2].control = control_IVA;
1534 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1535 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1536 brp_list[brp_2].value);
1537 if (retval != ERROR_OK)
1538 return retval;
1539 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1540 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1541 brp_list[brp_2].control);
1542 if (retval != ERROR_OK)
1543 return retval;
1544
1545 return ERROR_OK;
1546 }
1547
1548 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1549 {
1550 int retval;
1551 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1552 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1553 struct cortex_a8_brp *brp_list = cortex_a8->brp_list;
1554
1555 if (!breakpoint->set) {
1556 LOG_WARNING("breakpoint not set");
1557 return ERROR_OK;
1558 }
1559
1560 if (breakpoint->type == BKPT_HARD) {
1561 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1562 int brp_i = breakpoint->set - 1;
1563 int brp_j = breakpoint->linked_BRP;
1564 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) {
1565 LOG_DEBUG("Invalid BRP number in breakpoint");
1566 return ERROR_OK;
1567 }
1568 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1569 brp_list[brp_i].control, brp_list[brp_i].value);
1570 brp_list[brp_i].used = 0;
1571 brp_list[brp_i].value = 0;
1572 brp_list[brp_i].control = 0;
1573 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1574 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1575 brp_list[brp_i].control);
1576 if (retval != ERROR_OK)
1577 return retval;
1578 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1579 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1580 brp_list[brp_i].value);
1581 if (retval != ERROR_OK)
1582 return retval;
1583 if ((brp_j < 0) || (brp_j >= cortex_a8->brp_num)) {
1584 LOG_DEBUG("Invalid BRP number in breakpoint");
1585 return ERROR_OK;
1586 }
1587 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1588 brp_list[brp_j].control, brp_list[brp_j].value);
1589 brp_list[brp_j].used = 0;
1590 brp_list[brp_j].value = 0;
1591 brp_list[brp_j].control = 0;
1592 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1593 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1594 brp_list[brp_j].control);
1595 if (retval != ERROR_OK)
1596 return retval;
1597 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1598 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1599 brp_list[brp_j].value);
1600 if (retval != ERROR_OK)
1601 return retval;
1602 breakpoint->linked_BRP = 0;
1603 breakpoint->set = 0;
1604 return ERROR_OK;
1605
1606 } else {
1607 int brp_i = breakpoint->set - 1;
1608 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num)) {
1609 LOG_DEBUG("Invalid BRP number in breakpoint");
1610 return ERROR_OK;
1611 }
1612 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1613 brp_list[brp_i].control, brp_list[brp_i].value);
1614 brp_list[brp_i].used = 0;
1615 brp_list[brp_i].value = 0;
1616 brp_list[brp_i].control = 0;
1617 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1618 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1619 brp_list[brp_i].control);
1620 if (retval != ERROR_OK)
1621 return retval;
1622 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1623 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1624 brp_list[brp_i].value);
1625 if (retval != ERROR_OK)
1626 return retval;
1627 breakpoint->set = 0;
1628 return ERROR_OK;
1629 }
1630 } else {
1631 /* restore original instruction (kept in target endianness) */
1632 if (breakpoint->length == 4) {
1633 retval = target_write_memory(target,
1634 breakpoint->address & 0xFFFFFFFE,
1635 4, 1, breakpoint->orig_instr);
1636 if (retval != ERROR_OK)
1637 return retval;
1638 } else {
1639 retval = target_write_memory(target,
1640 breakpoint->address & 0xFFFFFFFE,
1641 2, 1, breakpoint->orig_instr);
1642 if (retval != ERROR_OK)
1643 return retval;
1644 }
1645 }
1646 breakpoint->set = 0;
1647
1648 return ERROR_OK;
1649 }
1650
1651 static int cortex_a8_add_breakpoint(struct target *target,
1652 struct breakpoint *breakpoint)
1653 {
1654 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1655
1656 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1657 LOG_INFO("no hardware breakpoint available");
1658 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1659 }
1660
1661 if (breakpoint->type == BKPT_HARD)
1662 cortex_a8->brp_num_available--;
1663
1664 return cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1665 }
1666
1667 static int cortex_a8_add_context_breakpoint(struct target *target,
1668 struct breakpoint *breakpoint)
1669 {
1670 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1671
1672 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1673 LOG_INFO("no hardware breakpoint available");
1674 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1675 }
1676
1677 if (breakpoint->type == BKPT_HARD)
1678 cortex_a8->brp_num_available--;
1679
1680 return cortex_a8_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1681 }
1682
1683 static int cortex_a8_add_hybrid_breakpoint(struct target *target,
1684 struct breakpoint *breakpoint)
1685 {
1686 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1687
1688 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1)) {
1689 LOG_INFO("no hardware breakpoint available");
1690 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1691 }
1692
1693 if (breakpoint->type == BKPT_HARD)
1694 cortex_a8->brp_num_available--;
1695
1696 return cortex_a8_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1697 }
1698
1699
1700 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1701 {
1702 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1703
1704 #if 0
1705 /* It is perfectly possible to remove breakpoints while the target is running */
1706 if (target->state != TARGET_HALTED) {
1707 LOG_WARNING("target not halted");
1708 return ERROR_TARGET_NOT_HALTED;
1709 }
1710 #endif
1711
1712 if (breakpoint->set) {
1713 cortex_a8_unset_breakpoint(target, breakpoint);
1714 if (breakpoint->type == BKPT_HARD)
1715 cortex_a8->brp_num_available++;
1716 }
1717
1718
1719 return ERROR_OK;
1720 }
1721
1722 /*
1723 * Cortex-A8 Reset functions
1724 */
1725
1726 static int cortex_a8_assert_reset(struct target *target)
1727 {
1728 struct armv7a_common *armv7a = target_to_armv7a(target);
1729
1730 LOG_DEBUG(" ");
1731
1732 /* FIXME when halt is requested, make it work somehow... */
1733
1734 /* Issue some kind of warm reset. */
1735 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1736 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1737 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1738 /* REVISIT handle "pulls" cases, if there's
1739 * hardware that needs them to work.
1740 */
1741 jtag_add_reset(0, 1);
1742 } else {
1743 LOG_ERROR("%s: how to reset?", target_name(target));
1744 return ERROR_FAIL;
1745 }
1746
1747 /* registers are now invalid */
1748 register_cache_invalidate(armv7a->arm.core_cache);
1749
1750 target->state = TARGET_RESET;
1751
1752 return ERROR_OK;
1753 }
1754
1755 static int cortex_a8_deassert_reset(struct target *target)
1756 {
1757 int retval;
1758
1759 LOG_DEBUG(" ");
1760
1761 /* be certain SRST is off */
1762 jtag_add_reset(0, 0);
1763
1764 retval = cortex_a8_poll(target);
1765 if (retval != ERROR_OK)
1766 return retval;
1767
1768 if (target->reset_halt) {
1769 if (target->state != TARGET_HALTED) {
1770 LOG_WARNING("%s: ran after reset and before halt ...",
1771 target_name(target));
1772 retval = target_halt(target);
1773 if (retval != ERROR_OK)
1774 return retval;
1775 }
1776 }
1777
1778 return ERROR_OK;
1779 }
1780
1781 static int cortex_a8_write_apb_ab_memory(struct target *target,
1782 uint32_t address, uint32_t size,
1783 uint32_t count, const uint8_t *buffer)
1784 {
1785 /* write memory through APB-AP */
1786
1787 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1788 struct armv7a_common *armv7a = target_to_armv7a(target);
1789 struct arm *arm = &armv7a->arm;
1790 int total_bytes = count * size;
1791 int start_byte, nbytes_to_write, i;
1792 struct reg *reg;
1793 union _data {
1794 uint8_t uc_a[4];
1795 uint32_t ui;
1796 } data;
1797
1798 if (target->state != TARGET_HALTED) {
1799 LOG_WARNING("target not halted");
1800 return ERROR_TARGET_NOT_HALTED;
1801 }
1802
1803 reg = arm_reg_current(arm, 0);
1804 reg->dirty = 1;
1805 reg = arm_reg_current(arm, 1);
1806 reg->dirty = 1;
1807
1808 retval = cortex_a8_dap_write_coreregister_u32(target, address & 0xFFFFFFFC, 0);
1809 if (retval != ERROR_OK)
1810 return retval;
1811
1812 start_byte = address & 0x3;
1813
1814 while (total_bytes > 0) {
1815
1816 nbytes_to_write = 4 - start_byte;
1817 if (total_bytes < nbytes_to_write)
1818 nbytes_to_write = total_bytes;
1819
1820 if (nbytes_to_write != 4) {
1821
1822 /* execute instruction LDR r1, [r0] */
1823 retval = cortex_a8_exec_opcode(target, ARMV4_5_LDR(1, 0), NULL);
1824 if (retval != ERROR_OK)
1825 return retval;
1826
1827 retval = cortex_a8_dap_read_coreregister_u32(target, &data.ui, 1);
1828 if (retval != ERROR_OK)
1829 return retval;
1830 }
1831
1832 for (i = 0; i < nbytes_to_write; ++i)
1833 data.uc_a[i + start_byte] = *buffer++;
1834
1835 retval = cortex_a8_dap_write_coreregister_u32(target, data.ui, 1);
1836 if (retval != ERROR_OK)
1837 return retval;
1838
1839 /* execute instruction STRW r1, [r0], 1 (0xe4801004) */
1840 retval = cortex_a8_exec_opcode(target, ARMV4_5_STRW_IP(1, 0), NULL);
1841 if (retval != ERROR_OK)
1842 return retval;
1843
1844 total_bytes -= nbytes_to_write;
1845 start_byte = 0;
1846 }
1847
1848 return retval;
1849 }
1850
1851
1852 static int cortex_a8_read_apb_ab_memory(struct target *target,
1853 uint32_t address, uint32_t size,
1854 uint32_t count, uint8_t *buffer)
1855 {
1856
1857 /* read memory through APB-AP */
1858
1859 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1860 struct armv7a_common *armv7a = target_to_armv7a(target);
1861 struct arm *arm = &armv7a->arm;
1862 int total_bytes = count * size;
1863 int start_byte, nbytes_to_read, i;
1864 struct reg *reg;
1865 union _data {
1866 uint8_t uc_a[4];
1867 uint32_t ui;
1868 } data;
1869
1870 if (target->state != TARGET_HALTED) {
1871 LOG_WARNING("target not halted");
1872 return ERROR_TARGET_NOT_HALTED;
1873 }
1874
1875 reg = arm_reg_current(arm, 0);
1876 reg->dirty = 1;
1877 reg = arm_reg_current(arm, 1);
1878 reg->dirty = 1;
1879
1880 retval = cortex_a8_dap_write_coreregister_u32(target, address & 0xFFFFFFFC, 0);
1881 if (retval != ERROR_OK)
1882 return retval;
1883
1884 start_byte = address & 0x3;
1885
1886 while (total_bytes > 0) {
1887
1888 /* execute instruction LDRW r1, [r0], 4 (0xe4901004) */
1889 retval = cortex_a8_exec_opcode(target, ARMV4_5_LDRW_IP(1, 0), NULL);
1890 if (retval != ERROR_OK)
1891 return retval;
1892
1893 retval = cortex_a8_dap_read_coreregister_u32(target, &data.ui, 1);
1894 if (retval != ERROR_OK)
1895 return retval;
1896
1897 nbytes_to_read = 4 - start_byte;
1898 if (total_bytes < nbytes_to_read)
1899 nbytes_to_read = total_bytes;
1900
1901 for (i = 0; i < nbytes_to_read; ++i)
1902 *buffer++ = data.uc_a[i + start_byte];
1903
1904 total_bytes -= nbytes_to_read;
1905 start_byte = 0;
1906 }
1907
1908 return retval;
1909 }
1910
1911
1912
1913 /*
1914 * Cortex-A8 Memory access
1915 *
1916 * This is same Cortex M3 but we must also use the correct
1917 * ap number for every access.
1918 */
1919
1920 static int cortex_a8_read_phys_memory(struct target *target,
1921 uint32_t address, uint32_t size,
1922 uint32_t count, uint8_t *buffer)
1923 {
1924 struct armv7a_common *armv7a = target_to_armv7a(target);
1925 struct adiv5_dap *swjdp = armv7a->arm.dap;
1926 int retval = ERROR_COMMAND_SYNTAX_ERROR;
1927 uint8_t apsel = swjdp->apsel;
1928 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d",
1929 address, size, count);
1930
1931 if (count && buffer) {
1932
1933 if (apsel == swjdp_memoryap) {
1934
1935 /* read memory through AHB-AP */
1936
1937 switch (size) {
1938 case 4:
1939 retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
1940 buffer, 4 * count, address);
1941 break;
1942 case 2:
1943 retval = mem_ap_sel_read_buf_u16(swjdp, swjdp_memoryap,
1944 buffer, 2 * count, address);
1945 break;
1946 case 1:
1947 retval = mem_ap_sel_read_buf_u8(swjdp, swjdp_memoryap,
1948 buffer, count, address);
1949 break;
1950 }
1951 } else {
1952
1953 /* read memory through APB-AP
1954 * disable mmu */
1955 retval = cortex_a8_mmu_modify(target, 0);
1956 if (retval != ERROR_OK)
1957 return retval;
1958 retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
1959 }
1960 }
1961 return retval;
1962 }
1963
1964 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1965 uint32_t size, uint32_t count, uint8_t *buffer)
1966 {
1967 int enabled = 0;
1968 uint32_t virt, phys;
1969 int retval;
1970 struct armv7a_common *armv7a = target_to_armv7a(target);
1971 struct adiv5_dap *swjdp = armv7a->arm.dap;
1972 uint8_t apsel = swjdp->apsel;
1973
1974 /* cortex_a8 handles unaligned memory access */
1975 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
1976 size, count);
1977 if (apsel == swjdp_memoryap) {
1978 retval = cortex_a8_mmu(target, &enabled);
1979 if (retval != ERROR_OK)
1980 return retval;
1981
1982
1983 if (enabled) {
1984 virt = address;
1985 retval = cortex_a8_virt2phys(target, virt, &phys);
1986 if (retval != ERROR_OK)
1987 return retval;
1988
1989 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x",
1990 virt, phys);
1991 address = phys;
1992 }
1993 retval = cortex_a8_read_phys_memory(target, address, size, count, buffer);
1994 } else {
1995 retval = cortex_a8_check_address(target, address);
1996 if (retval != ERROR_OK)
1997 return retval;
1998 /* enable mmu */
1999 retval = cortex_a8_mmu_modify(target, 1);
2000 if (retval != ERROR_OK)
2001 return retval;
2002 retval = cortex_a8_read_apb_ab_memory(target, address, size, count, buffer);
2003 }
2004 return retval;
2005 }
2006
2007 static int cortex_a8_write_phys_memory(struct target *target,
2008 uint32_t address, uint32_t size,
2009 uint32_t count, const uint8_t *buffer)
2010 {
2011 struct armv7a_common *armv7a = target_to_armv7a(target);
2012 struct adiv5_dap *swjdp = armv7a->arm.dap;
2013 int retval = ERROR_COMMAND_SYNTAX_ERROR;
2014 uint8_t apsel = swjdp->apsel;
2015
2016 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address,
2017 size, count);
2018
2019 if (count && buffer) {
2020
2021 if (apsel == swjdp_memoryap) {
2022
2023 /* write memory through AHB-AP */
2024
2025 switch (size) {
2026 case 4:
2027 retval = mem_ap_sel_write_buf_u32(swjdp, swjdp_memoryap,
2028 buffer, 4 * count, address);
2029 break;
2030 case 2:
2031 retval = mem_ap_sel_write_buf_u16(swjdp, swjdp_memoryap,
2032 buffer, 2 * count, address);
2033 break;
2034 case 1:
2035 retval = mem_ap_sel_write_buf_u8(swjdp, swjdp_memoryap,
2036 buffer, count, address);
2037 break;
2038 }
2039
2040 } else {
2041
2042 /* write memory through APB-AP */
2043 retval = cortex_a8_mmu_modify(target, 0);
2044 if (retval != ERROR_OK)
2045 return retval;
2046 return cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
2047 }
2048 }
2049
2050
2051 /* REVISIT this op is generic ARMv7-A/R stuff */
2052 if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2053 struct arm_dpm *dpm = armv7a->arm.dpm;
2054
2055 retval = dpm->prepare(dpm);
2056 if (retval != ERROR_OK)
2057 return retval;
2058
2059 /* The Cache handling will NOT work with MMU active, the
2060 * wrong addresses will be invalidated!
2061 *
2062 * For both ICache and DCache, walk all cache lines in the
2063 * address range. Cortex-A8 has fixed 64 byte line length.
2064 *
2065 * REVISIT per ARMv7, these may trigger watchpoints ...
2066 */
2067
2068 /* invalidate I-Cache */
2069 if (armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled) {
2070 /* ICIMVAU - Invalidate Cache single entry
2071 * with MVA to PoU
2072 * MCR p15, 0, r0, c7, c5, 1
2073 */
2074 for (uint32_t cacheline = address;
2075 cacheline < address + size * count;
2076 cacheline += 64) {
2077 retval = dpm->instr_write_data_r0(dpm,
2078 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2079 cacheline);
2080 if (retval != ERROR_OK)
2081 return retval;
2082 }
2083 }
2084
2085 /* invalidate D-Cache */
2086 if (armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled) {
2087 /* DCIMVAC - Invalidate data Cache line
2088 * with MVA to PoC
2089 * MCR p15, 0, r0, c7, c6, 1
2090 */
2091 for (uint32_t cacheline = address;
2092 cacheline < address + size * count;
2093 cacheline += 64) {
2094 retval = dpm->instr_write_data_r0(dpm,
2095 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2096 cacheline);
2097 if (retval != ERROR_OK)
2098 return retval;
2099 }
2100 }
2101
2102 /* (void) */ dpm->finish(dpm);
2103 }
2104
2105 return retval;
2106 }
2107
2108 static int cortex_a8_write_memory(struct target *target, uint32_t address,
2109 uint32_t size, uint32_t count, const uint8_t *buffer)
2110 {
2111 int enabled = 0;
2112 uint32_t virt, phys;
2113 int retval;
2114 struct armv7a_common *armv7a = target_to_armv7a(target);
2115 struct adiv5_dap *swjdp = armv7a->arm.dap;
2116 uint8_t apsel = swjdp->apsel;
2117 /* cortex_a8 handles unaligned memory access */
2118 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address,
2119 size, count);
2120 if (apsel == swjdp_memoryap) {
2121
2122 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size,
2123 count);
2124 retval = cortex_a8_mmu(target, &enabled);
2125 if (retval != ERROR_OK)
2126 return retval;
2127
2128 if (enabled) {
2129 virt = address;
2130 retval = cortex_a8_virt2phys(target, virt, &phys);
2131 if (retval != ERROR_OK)
2132 return retval;
2133 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x",
2134 virt,
2135 phys);
2136 address = phys;
2137 }
2138
2139 retval = cortex_a8_write_phys_memory(target, address, size,
2140 count, buffer);
2141 } else {
2142 retval = cortex_a8_check_address(target, address);
2143 if (retval != ERROR_OK)
2144 return retval;
2145 /* enable mmu */
2146 retval = cortex_a8_mmu_modify(target, 1);
2147 if (retval != ERROR_OK)
2148 return retval;
2149 retval = cortex_a8_write_apb_ab_memory(target, address, size, count, buffer);
2150 }
2151 return retval;
2152 }
2153
2154 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
2155 uint32_t count, const uint8_t *buffer)
2156 {
2157 return cortex_a8_write_memory(target, address, 4, count, buffer);
2158 }
2159
2160 static int cortex_a8_handle_target_request(void *priv)
2161 {
2162 struct target *target = priv;
2163 struct armv7a_common *armv7a = target_to_armv7a(target);
2164 struct adiv5_dap *swjdp = armv7a->arm.dap;
2165 int retval;
2166
2167 if (!target_was_examined(target))
2168 return ERROR_OK;
2169 if (!target->dbg_msg_enabled)
2170 return ERROR_OK;
2171
2172 if (target->state == TARGET_RUNNING) {
2173 uint32_t request;
2174 uint32_t dscr;
2175 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2176 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2177
2178 /* check if we have data */
2179 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2180 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2181 armv7a->debug_base + CPUDBG_DTRTX, &request);
2182 if (retval == ERROR_OK) {
2183 target_request(target, request);
2184 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2185 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2186 }
2187 }
2188 }
2189
2190 return ERROR_OK;
2191 }
2192
2193 /*
2194 * Cortex-A8 target information and configuration
2195 */
2196
2197 static int cortex_a8_examine_first(struct target *target)
2198 {
2199 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2200 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2201 struct adiv5_dap *swjdp = armv7a->arm.dap;
2202 int i;
2203 int retval = ERROR_OK;
2204 uint32_t didr, ctypr, ttypr, cpuid;
2205
2206 /* We do one extra read to ensure DAP is configured,
2207 * we call ahbap_debugport_init(swjdp) instead
2208 */
2209 retval = ahbap_debugport_init(swjdp);
2210 if (retval != ERROR_OK)
2211 return retval;
2212
2213 if (!target->dbgbase_set) {
2214 uint32_t dbgbase;
2215 /* Get ROM Table base */
2216 uint32_t apid;
2217 retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
2218 if (retval != ERROR_OK)
2219 return retval;
2220 /* Lookup 0x15 -- Processor DAP */
2221 retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
2222 &armv7a->debug_base);
2223 if (retval != ERROR_OK)
2224 return retval;
2225 } else
2226 armv7a->debug_base = target->dbgbase;
2227
2228 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2229 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2230 if (retval != ERROR_OK)
2231 return retval;
2232
2233 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2234 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2235 if (retval != ERROR_OK) {
2236 LOG_DEBUG("Examine %s failed", "CPUID");
2237 return retval;
2238 }
2239
2240 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2241 armv7a->debug_base + CPUDBG_CTYPR, &ctypr);
2242 if (retval != ERROR_OK) {
2243 LOG_DEBUG("Examine %s failed", "CTYPR");
2244 return retval;
2245 }
2246
2247 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2248 armv7a->debug_base + CPUDBG_TTYPR, &ttypr);
2249 if (retval != ERROR_OK) {
2250 LOG_DEBUG("Examine %s failed", "TTYPR");
2251 return retval;
2252 }
2253
2254 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
2255 armv7a->debug_base + CPUDBG_DIDR, &didr);
2256 if (retval != ERROR_OK) {
2257 LOG_DEBUG("Examine %s failed", "DIDR");
2258 return retval;
2259 }
2260
2261 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2262 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2263 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2264 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2265
2266 armv7a->arm.core_type = ARM_MODE_MON;
2267 retval = cortex_a8_dpm_setup(cortex_a8, didr);
2268 if (retval != ERROR_OK)
2269 return retval;
2270
2271 /* Setup Breakpoint Register Pairs */
2272 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
2273 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2274 cortex_a8->brp_num_available = cortex_a8->brp_num;
2275 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
2276 /* cortex_a8->brb_enabled = ????; */
2277 for (i = 0; i < cortex_a8->brp_num; i++) {
2278 cortex_a8->brp_list[i].used = 0;
2279 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
2280 cortex_a8->brp_list[i].type = BRP_NORMAL;
2281 else
2282 cortex_a8->brp_list[i].type = BRP_CONTEXT;
2283 cortex_a8->brp_list[i].value = 0;
2284 cortex_a8->brp_list[i].control = 0;
2285 cortex_a8->brp_list[i].BRPn = i;
2286 }
2287
2288 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
2289
2290 target_set_examined(target);
2291 return ERROR_OK;
2292 }
2293
2294 static int cortex_a8_examine(struct target *target)
2295 {
2296 int retval = ERROR_OK;
2297
2298 /* don't re-probe hardware after each reset */
2299 if (!target_was_examined(target))
2300 retval = cortex_a8_examine_first(target);
2301
2302 /* Configure core debug access */
2303 if (retval == ERROR_OK)
2304 retval = cortex_a8_init_debug_access(target);
2305
2306 return retval;
2307 }
2308
2309 /*
2310 * Cortex-A8 target creation and initialization
2311 */
2312
2313 static int cortex_a8_init_target(struct command_context *cmd_ctx,
2314 struct target *target)
2315 {
2316 /* examine_first() does a bunch of this */
2317 return ERROR_OK;
2318 }
2319
2320 static int cortex_a8_init_arch_info(struct target *target,
2321 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
2322 {
2323 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2324 struct adiv5_dap *dap = &armv7a->dap;
2325
2326 armv7a->arm.dap = dap;
2327
2328 /* Setup struct cortex_a8_common */
2329 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
2330 /* tap has no dap initialized */
2331 if (!tap->dap) {
2332 armv7a->arm.dap = dap;
2333 /* Setup struct cortex_a8_common */
2334
2335 /* prepare JTAG information for the new target */
2336 cortex_a8->jtag_info.tap = tap;
2337 cortex_a8->jtag_info.scann_size = 4;
2338
2339 /* Leave (only) generic DAP stuff for debugport_init() */
2340 dap->jtag_info = &cortex_a8->jtag_info;
2341
2342 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
2343 dap->tar_autoincr_block = (1 << 10);
2344 dap->memaccess_tck = 80;
2345 tap->dap = dap;
2346 } else
2347 armv7a->arm.dap = tap->dap;
2348
2349 cortex_a8->fast_reg_read = 0;
2350
2351 /* register arch-specific functions */
2352 armv7a->examine_debug_reason = NULL;
2353
2354 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
2355
2356 armv7a->pre_restore_context = NULL;
2357
2358 armv7a->armv7a_mmu.read_physical_memory = cortex_a8_read_phys_memory;
2359
2360
2361 /* arm7_9->handle_target_request = cortex_a8_handle_target_request; */
2362
2363 /* REVISIT v7a setup should be in a v7a-specific routine */
2364 armv7a_init_arch_info(target, armv7a);
2365 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
2366
2367 return ERROR_OK;
2368 }
2369
2370 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
2371 {
2372 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
2373
2374 return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
2375 }
2376
2377
2378
2379 static int cortex_a8_mmu(struct target *target, int *enabled)
2380 {
2381 if (target->state != TARGET_HALTED) {
2382 LOG_ERROR("%s: target not halted", __func__);
2383 return ERROR_TARGET_INVALID;
2384 }
2385
2386 *enabled = target_to_cortex_a8(target)->armv7a_common.armv7a_mmu.mmu_enabled;
2387 return ERROR_OK;
2388 }
2389
2390 static int cortex_a8_virt2phys(struct target *target,
2391 uint32_t virt, uint32_t *phys)
2392 {
2393 int retval = ERROR_FAIL;
2394 struct armv7a_common *armv7a = target_to_armv7a(target);
2395 struct adiv5_dap *swjdp = armv7a->arm.dap;
2396 uint8_t apsel = swjdp->apsel;
2397 if (apsel == swjdp_memoryap) {
2398 uint32_t ret;
2399 retval = armv7a_mmu_translate_va(target,
2400 virt, &ret);
2401 if (retval != ERROR_OK)
2402 goto done;
2403 *phys = ret;
2404 } else {/* use this method if swjdp_memoryap not selected
2405 * mmu must be enable in order to get a correct translation */
2406 retval = cortex_a8_mmu_modify(target, 1);
2407 if (retval != ERROR_OK)
2408 goto done;
2409 retval = armv7a_mmu_translate_va_pa(target, virt, phys, 1);
2410 }
2411 done:
2412 return retval;
2413 }
2414
2415 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2416 {
2417 struct target *target = get_current_target(CMD_CTX);
2418 struct armv7a_common *armv7a = target_to_armv7a(target);
2419
2420 return armv7a_handle_cache_info_command(CMD_CTX,
2421 &armv7a->armv7a_mmu.armv7a_cache);
2422 }
2423
2424
2425 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2426 {
2427 struct target *target = get_current_target(CMD_CTX);
2428 if (!target_was_examined(target)) {
2429 LOG_ERROR("target not examined yet");
2430 return ERROR_FAIL;
2431 }
2432
2433 return cortex_a8_init_debug_access(target);
2434 }
2435 COMMAND_HANDLER(cortex_a8_handle_smp_off_command)
2436 {
2437 struct target *target = get_current_target(CMD_CTX);
2438 /* check target is an smp target */
2439 struct target_list *head;
2440 struct target *curr;
2441 head = target->head;
2442 target->smp = 0;
2443 if (head != (struct target_list *)NULL) {
2444 while (head != (struct target_list *)NULL) {
2445 curr = head->target;
2446 curr->smp = 0;
2447 head = head->next;
2448 }
2449 /* fixes the target display to the debugger */
2450 target->gdb_service->target = target;
2451 }
2452 return ERROR_OK;
2453 }
2454
2455 COMMAND_HANDLER(cortex_a8_handle_smp_on_command)
2456 {
2457 struct target *target = get_current_target(CMD_CTX);
2458 struct target_list *head;
2459 struct target *curr;
2460 head = target->head;
2461 if (head != (struct target_list *)NULL) {
2462 target->smp = 1;
2463 while (head != (struct target_list *)NULL) {
2464 curr = head->target;
2465 curr->smp = 1;
2466 head = head->next;
2467 }
2468 }
2469 return ERROR_OK;
2470 }
2471
2472 COMMAND_HANDLER(cortex_a8_handle_smp_gdb_command)
2473 {
2474 struct target *target = get_current_target(CMD_CTX);
2475 int retval = ERROR_OK;
2476 struct target_list *head;
2477 head = target->head;
2478 if (head != (struct target_list *)NULL) {
2479 if (CMD_ARGC == 1) {
2480 int coreid = 0;
2481 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2482 if (ERROR_OK != retval)
2483 return retval;
2484 target->gdb_service->core[1] = coreid;
2485
2486 }
2487 command_print(CMD_CTX, "gdb coreid %d -> %d", target->gdb_service->core[0]
2488 , target->gdb_service->core[1]);
2489 }
2490 return ERROR_OK;
2491 }
2492
2493 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2494 {
2495 .name = "cache_info",
2496 .handler = cortex_a8_handle_cache_info_command,
2497 .mode = COMMAND_EXEC,
2498 .help = "display information about target caches",
2499 .usage = "",
2500 },
2501 {
2502 .name = "dbginit",
2503 .handler = cortex_a8_handle_dbginit_command,
2504 .mode = COMMAND_EXEC,
2505 .help = "Initialize core debug",
2506 .usage = "",
2507 },
2508 { .name = "smp_off",
2509 .handler = cortex_a8_handle_smp_off_command,
2510 .mode = COMMAND_EXEC,
2511 .help = "Stop smp handling",
2512 .usage = "",},
2513 {
2514 .name = "smp_on",
2515 .handler = cortex_a8_handle_smp_on_command,
2516 .mode = COMMAND_EXEC,
2517 .help = "Restart smp handling",
2518 .usage = "",
2519 },
2520 {
2521 .name = "smp_gdb",
2522 .handler = cortex_a8_handle_smp_gdb_command,
2523 .mode = COMMAND_EXEC,
2524 .help = "display/fix current core played to gdb",
2525 .usage = "",
2526 },
2527
2528
2529 COMMAND_REGISTRATION_DONE
2530 };
2531 static const struct command_registration cortex_a8_command_handlers[] = {
2532 {
2533 .chain = arm_command_handlers,
2534 },
2535 {
2536 .chain = armv7a_command_handlers,
2537 },
2538 {
2539 .name = "cortex_a8",
2540 .mode = COMMAND_ANY,
2541 .help = "Cortex-A8 command group",
2542 .usage = "",
2543 .chain = cortex_a8_exec_command_handlers,
2544 },
2545 COMMAND_REGISTRATION_DONE
2546 };
2547
2548 struct target_type cortexa8_target = {
2549 .name = "cortex_a8",
2550
2551 .poll = cortex_a8_poll,
2552 .arch_state = armv7a_arch_state,
2553
2554 .target_request_data = NULL,
2555
2556 .halt = cortex_a8_halt,
2557 .resume = cortex_a8_resume,
2558 .step = cortex_a8_step,
2559
2560 .assert_reset = cortex_a8_assert_reset,
2561 .deassert_reset = cortex_a8_deassert_reset,
2562 .soft_reset_halt = NULL,
2563
2564 /* REVISIT allow exporting VFP3 registers ... */
2565 .get_gdb_reg_list = arm_get_gdb_reg_list,
2566
2567 .read_memory = cortex_a8_read_memory,
2568 .write_memory = cortex_a8_write_memory,
2569 .bulk_write_memory = cortex_a8_bulk_write_memory,
2570
2571 .checksum_memory = arm_checksum_memory,
2572 .blank_check_memory = arm_blank_check_memory,
2573
2574 .run_algorithm = armv4_5_run_algorithm,
2575
2576 .add_breakpoint = cortex_a8_add_breakpoint,
2577 .add_context_breakpoint = cortex_a8_add_context_breakpoint,
2578 .add_hybrid_breakpoint = cortex_a8_add_hybrid_breakpoint,
2579 .remove_breakpoint = cortex_a8_remove_breakpoint,
2580 .add_watchpoint = NULL,
2581 .remove_watchpoint = NULL,
2582
2583 .commands = cortex_a8_command_handlers,
2584 .target_create = cortex_a8_target_create,
2585 .init_target = cortex_a8_init_target,
2586 .examine = cortex_a8_examine,
2587
2588 .read_phys_memory = cortex_a8_read_phys_memory,
2589 .write_phys_memory = cortex_a8_write_phys_memory,
2590 .mmu = cortex_a8_mmu,
2591 .virt2phys = cortex_a8_virt2phys,
2592 };