cleanup: rename armv4_5 to arm for readability
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "arm.h"
31 #include "armv4_5.h"
32 #include "arm_jtag.h"
33 #include "breakpoints.h"
34 #include "arm_disassembler.h"
35 #include <helper/binarybuffer.h>
36 #include "algorithm.h"
37 #include "register.h"
38
39
40 /* offsets into armv4_5 core register cache */
41 enum {
42 // ARMV4_5_CPSR = 31,
43 ARMV4_5_SPSR_FIQ = 32,
44 ARMV4_5_SPSR_IRQ = 33,
45 ARMV4_5_SPSR_SVC = 34,
46 ARMV4_5_SPSR_ABT = 35,
47 ARMV4_5_SPSR_UND = 36,
48 ARM_SPSR_MON = 39,
49 };
50
51 static const uint8_t arm_usr_indices[17] = {
52 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
53 };
54
55 static const uint8_t arm_fiq_indices[8] = {
56 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
57 };
58
59 static const uint8_t arm_irq_indices[3] = {
60 23, 24, ARMV4_5_SPSR_IRQ,
61 };
62
63 static const uint8_t arm_svc_indices[3] = {
64 25, 26, ARMV4_5_SPSR_SVC,
65 };
66
67 static const uint8_t arm_abt_indices[3] = {
68 27, 28, ARMV4_5_SPSR_ABT,
69 };
70
71 static const uint8_t arm_und_indices[3] = {
72 29, 30, ARMV4_5_SPSR_UND,
73 };
74
75 static const uint8_t arm_mon_indices[3] = {
76 37, 38, ARM_SPSR_MON,
77 };
78
79 static const struct {
80 const char *name;
81 unsigned short psr;
82 /* For user and system modes, these list indices for all registers.
83 * otherwise they're just indices for the shadow registers and SPSR.
84 */
85 unsigned short n_indices;
86 const uint8_t *indices;
87 } arm_mode_data[] = {
88 /* Seven modes are standard from ARM7 on. "System" and "User" share
89 * the same registers; other modes shadow from 3 to 8 registers.
90 */
91 {
92 .name = "User",
93 .psr = ARM_MODE_USR,
94 .n_indices = ARRAY_SIZE(arm_usr_indices),
95 .indices = arm_usr_indices,
96 },
97 {
98 .name = "FIQ",
99 .psr = ARM_MODE_FIQ,
100 .n_indices = ARRAY_SIZE(arm_fiq_indices),
101 .indices = arm_fiq_indices,
102 },
103 {
104 .name = "Supervisor",
105 .psr = ARM_MODE_SVC,
106 .n_indices = ARRAY_SIZE(arm_svc_indices),
107 .indices = arm_svc_indices,
108 },
109 {
110 .name = "Abort",
111 .psr = ARM_MODE_ABT,
112 .n_indices = ARRAY_SIZE(arm_abt_indices),
113 .indices = arm_abt_indices,
114 },
115 {
116 .name = "IRQ",
117 .psr = ARM_MODE_IRQ,
118 .n_indices = ARRAY_SIZE(arm_irq_indices),
119 .indices = arm_irq_indices,
120 },
121 {
122 .name = "Undefined instruction",
123 .psr = ARM_MODE_UND,
124 .n_indices = ARRAY_SIZE(arm_und_indices),
125 .indices = arm_und_indices,
126 },
127 {
128 .name = "System",
129 .psr = ARM_MODE_SYS,
130 .n_indices = ARRAY_SIZE(arm_usr_indices),
131 .indices = arm_usr_indices,
132 },
133 /* TrustZone "Security Extensions" add a secure monitor mode.
134 * This is distinct from a "debug monitor" which can support
135 * non-halting debug, in conjunction with some debuggers.
136 */
137 {
138 .name = "Secure Monitor",
139 .psr = ARM_MODE_MON,
140 .n_indices = ARRAY_SIZE(arm_mon_indices),
141 .indices = arm_mon_indices,
142 },
143 };
144
145 /** Map PSR mode bits to the name of an ARM processor operating mode. */
146 const char *arm_mode_name(unsigned psr_mode)
147 {
148 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
149 if (arm_mode_data[i].psr == psr_mode)
150 return arm_mode_data[i].name;
151 }
152 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
153 return "UNRECOGNIZED";
154 }
155
156 /** Return true iff the parameter denotes a valid ARM processor mode. */
157 bool is_arm_mode(unsigned psr_mode)
158 {
159 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
160 if (arm_mode_data[i].psr == psr_mode)
161 return true;
162 }
163 return false;
164 }
165
166 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
167 int arm_mode_to_number(enum arm_mode mode)
168 {
169 switch (mode) {
170 case ARM_MODE_ANY:
171 /* map MODE_ANY to user mode */
172 case ARM_MODE_USR:
173 return 0;
174 case ARM_MODE_FIQ:
175 return 1;
176 case ARM_MODE_IRQ:
177 return 2;
178 case ARM_MODE_SVC:
179 return 3;
180 case ARM_MODE_ABT:
181 return 4;
182 case ARM_MODE_UND:
183 return 5;
184 case ARM_MODE_SYS:
185 return 6;
186 case ARM_MODE_MON:
187 return 7;
188 default:
189 LOG_ERROR("invalid mode value encountered %d", mode);
190 return -1;
191 }
192 }
193
194 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
195 enum arm_mode armv4_5_number_to_mode(int number)
196 {
197 switch (number) {
198 case 0:
199 return ARM_MODE_USR;
200 case 1:
201 return ARM_MODE_FIQ;
202 case 2:
203 return ARM_MODE_IRQ;
204 case 3:
205 return ARM_MODE_SVC;
206 case 4:
207 return ARM_MODE_ABT;
208 case 5:
209 return ARM_MODE_UND;
210 case 6:
211 return ARM_MODE_SYS;
212 case 7:
213 return ARM_MODE_MON;
214 default:
215 LOG_ERROR("mode index out of bounds %d", number);
216 return ARM_MODE_ANY;
217 }
218 }
219
220 static const char *arm_state_strings[] =
221 {
222 "ARM", "Thumb", "Jazelle", "ThumbEE",
223 };
224
225 /* Templates for ARM core registers.
226 *
227 * NOTE: offsets in this table are coupled to the arm_mode_data
228 * table above, the armv4_5_core_reg_map array below, and also to
229 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
230 */
231 static const struct {
232 /* The name is used for e.g. the "regs" command. */
233 const char *name;
234
235 /* The {cookie, mode} tuple uniquely identifies one register.
236 * In a given mode, cookies 0..15 map to registers R0..R15,
237 * with R13..R15 usually called SP, LR, PC.
238 *
239 * MODE_ANY is used as *input* to the mapping, and indicates
240 * various special cases (sigh) and errors.
241 *
242 * Cookie 16 is (currently) confusing, since it indicates
243 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
244 * (Exception modes have both CPSR and SPSR registers ...)
245 */
246 unsigned cookie;
247 enum arm_mode mode;
248 } arm_core_regs[] = {
249 /* IMPORTANT: we guarantee that the first eight cached registers
250 * correspond to r0..r7, and the fifteenth to PC, so that callers
251 * don't need to map them.
252 */
253 { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, },
254 { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, },
255 { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, },
256 { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, },
257 { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, },
258 { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, },
259 { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, },
260 { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, },
261
262 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
263 * them as MODE_ANY creates special cases. (ANY means
264 * "not mapped" elsewhere; here it's "everything but FIQ".)
265 */
266 { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, },
267 { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, },
268 { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, },
269 { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, },
270 { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, },
271
272 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
273 { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, },
274 { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, },
275
276 /* guaranteed to be at index 15 */
277 { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, },
278
279 { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, },
280 { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, },
281 { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, },
282 { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, },
283 { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, },
284
285 { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, },
286 { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, },
287
288 { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, },
289 { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, },
290
291 { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, },
292 { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, },
293
294 { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, },
295 { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, },
296
297 { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, },
298 { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, },
299
300 { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, },
301 { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, },
302 { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, },
303 { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, },
304 { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, },
305 { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, },
306
307 { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, },
308 { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, },
309 { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, },
310 };
311
312 /* map core mode (USR, FIQ, ...) and register number to
313 * indices into the register cache
314 */
315 const int armv4_5_core_reg_map[8][17] =
316 {
317 { /* USR */
318 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
319 },
320 { /* FIQ (8 shadows of USR, vs normal 3) */
321 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
322 },
323 { /* IRQ */
324 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
325 },
326 { /* SVC */
327 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
328 },
329 { /* ABT */
330 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
331 },
332 { /* UND */
333 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
334 },
335 { /* SYS (same registers as USR) */
336 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
337 },
338 { /* MON */
339 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
340 }
341 };
342
343 /**
344 * Configures host-side ARM records to reflect the specified CPSR.
345 * Later, code can use arm_reg_current() to map register numbers
346 * according to how they are exposed by this mode.
347 */
348 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
349 {
350 enum arm_mode mode = cpsr & 0x1f;
351 int num;
352
353 /* NOTE: this may be called very early, before the register
354 * cache is set up. We can't defend against many errors, in
355 * particular against CPSRs that aren't valid *here* ...
356 */
357 if (arm->cpsr) {
358 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
359 arm->cpsr->valid = 1;
360 arm->cpsr->dirty = 0;
361 }
362
363 arm->core_mode = mode;
364
365 /* mode_to_number() warned; set up a somewhat-sane mapping */
366 num = arm_mode_to_number(mode);
367 if (num < 0) {
368 mode = ARM_MODE_USR;
369 num = 0;
370 }
371
372 arm->map = &armv4_5_core_reg_map[num][0];
373 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
374 ? NULL
375 : arm->core_cache->reg_list + arm->map[16];
376
377 /* Older ARMs won't have the J bit */
378 enum arm_state state;
379
380 if (cpsr & (1 << 5)) { /* T */
381 if (cpsr & (1 << 24)) { /* J */
382 LOG_WARNING("ThumbEE -- incomplete support");
383 state = ARM_STATE_THUMB_EE;
384 } else
385 state = ARM_STATE_THUMB;
386 } else {
387 if (cpsr & (1 << 24)) { /* J */
388 LOG_ERROR("Jazelle state handling is BROKEN!");
389 state = ARM_STATE_JAZELLE;
390 } else
391 state = ARM_STATE_ARM;
392 }
393 arm->core_state = state;
394
395 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
396 arm_mode_name(mode),
397 arm_state_strings[arm->core_state]);
398 }
399
400 /**
401 * Returns handle to the register currently mapped to a given number.
402 * Someone must have called arm_set_cpsr() before.
403 *
404 * \param arm This core's state and registers are used.
405 * \param regnum From 0..15 corresponding to R0..R14 and PC.
406 * Note that R0..R7 don't require mapping; you may access those
407 * as the first eight entries in the register cache. Likewise
408 * R15 (PC) doesn't need mapping; you may also access it directly.
409 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
410 * CPSR (arm->cpsr) is also not mapped.
411 */
412 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
413 {
414 struct reg *r;
415
416 if (regnum > 16)
417 return NULL;
418
419 r = arm->core_cache->reg_list + arm->map[regnum];
420
421 /* e.g. invalid CPSR said "secure monitor" mode on a core
422 * that doesn't support it...
423 */
424 if (!r) {
425 LOG_ERROR("Invalid CPSR mode");
426 r = arm->core_cache->reg_list + regnum;
427 }
428
429 return r;
430 }
431
432 static const uint8_t arm_gdb_dummy_fp_value[12];
433
434 /**
435 * Dummy FPA registers are required to support GDB on ARM.
436 * Register packets require eight obsolete FPA register values.
437 * Modern ARM cores use Vector Floating Point (VFP), if they
438 * have any floating point support. VFP is not FPA-compatible.
439 */
440 struct reg arm_gdb_dummy_fp_reg =
441 {
442 .name = "GDB dummy FPA register",
443 .value = (uint8_t *) arm_gdb_dummy_fp_value,
444 .valid = 1,
445 .size = 96,
446 };
447
448 static const uint8_t arm_gdb_dummy_fps_value[4];
449
450 /**
451 * Dummy FPA status registers are required to support GDB on ARM.
452 * Register packets require an obsolete FPA status register.
453 */
454 struct reg arm_gdb_dummy_fps_reg =
455 {
456 .name = "GDB dummy FPA status register",
457 .value = (uint8_t *) arm_gdb_dummy_fps_value,
458 .valid = 1,
459 .size = 32,
460 };
461
462 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
463
464 static void arm_gdb_dummy_init(void)
465 {
466 register_init_dummy(&arm_gdb_dummy_fp_reg);
467 register_init_dummy(&arm_gdb_dummy_fps_reg);
468 }
469
470 static int armv4_5_get_core_reg(struct reg *reg)
471 {
472 int retval;
473 struct arm_reg *reg_arch_info = reg->arch_info;
474 struct target *target = reg_arch_info->target;
475
476 if (target->state != TARGET_HALTED)
477 {
478 LOG_ERROR("Target not halted");
479 return ERROR_TARGET_NOT_HALTED;
480 }
481
482 retval = reg_arch_info->arm->read_core_reg(target, reg,
483 reg_arch_info->num, reg_arch_info->mode);
484 if (retval == ERROR_OK) {
485 reg->valid = 1;
486 reg->dirty = 0;
487 }
488
489 return retval;
490 }
491
492 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
493 {
494 struct arm_reg *reg_arch_info = reg->arch_info;
495 struct target *target = reg_arch_info->target;
496 struct arm *armv4_5_target = target_to_arm(target);
497 uint32_t value = buf_get_u32(buf, 0, 32);
498
499 if (target->state != TARGET_HALTED)
500 {
501 LOG_ERROR("Target not halted");
502 return ERROR_TARGET_NOT_HALTED;
503 }
504
505 /* Except for CPSR, the "reg" command exposes a writeback model
506 * for the register cache.
507 */
508 if (reg == armv4_5_target->cpsr) {
509 arm_set_cpsr(armv4_5_target, value);
510
511 /* Older cores need help to be in ARM mode during halt
512 * mode debug, so we clear the J and T bits if we flush.
513 * For newer cores (v6/v7a/v7r) we don't need that, but
514 * it won't hurt since CPSR is always flushed anyway.
515 */
516 if (armv4_5_target->core_mode !=
517 (enum arm_mode)(value & 0x1f)) {
518 LOG_DEBUG("changing ARM core mode to '%s'",
519 arm_mode_name(value & 0x1f));
520 value &= ~((1 << 24) | (1 << 5));
521 armv4_5_target->write_core_reg(target, reg,
522 16, ARM_MODE_ANY, value);
523 }
524 } else {
525 buf_set_u32(reg->value, 0, 32, value);
526 reg->valid = 1;
527 }
528 reg->dirty = 1;
529
530 return ERROR_OK;
531 }
532
533 static const struct reg_arch_type arm_reg_type = {
534 .get = armv4_5_get_core_reg,
535 .set = armv4_5_set_core_reg,
536 };
537
538 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
539 {
540 int num_regs = ARRAY_SIZE(arm_core_regs);
541 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
542 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
543 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
544 int i;
545
546 if (!cache || !reg_list || !reg_arch_info) {
547 free(cache);
548 free(reg_list);
549 free(reg_arch_info);
550 return NULL;
551 }
552
553 cache->name = "ARM registers";
554 cache->next = NULL;
555 cache->reg_list = reg_list;
556 cache->num_regs = 0;
557
558 for (i = 0; i < num_regs; i++)
559 {
560 /* Skip registers this core doesn't expose */
561 if (arm_core_regs[i].mode == ARM_MODE_MON
562 && arm->core_type != ARM_MODE_MON)
563 continue;
564
565 /* REVISIT handle Cortex-M, which only shadows R13/SP */
566
567 reg_arch_info[i].num = arm_core_regs[i].cookie;
568 reg_arch_info[i].mode = arm_core_regs[i].mode;
569 reg_arch_info[i].target = target;
570 reg_arch_info[i].arm = arm;
571
572 reg_list[i].name = (char *) arm_core_regs[i].name;
573 reg_list[i].size = 32;
574 reg_list[i].value = &reg_arch_info[i].value;
575 reg_list[i].type = &arm_reg_type;
576 reg_list[i].arch_info = &reg_arch_info[i];
577
578 cache->num_regs++;
579 }
580
581 arm->pc = reg_list + 15;
582 arm->cpsr = reg_list + ARMV4_5_CPSR;
583 arm->core_cache = cache;
584 return cache;
585 }
586
587 int arm_arch_state(struct target *target)
588 {
589 struct arm *arm = target_to_arm(target);
590
591 if (arm->common_magic != ARM_COMMON_MAGIC)
592 {
593 LOG_ERROR("BUG: called for a non-ARM target");
594 return ERROR_FAIL;
595 }
596
597 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
598 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s",
599 arm_state_strings[arm->core_state],
600 debug_reason_name(target),
601 arm_mode_name(arm->core_mode),
602 buf_get_u32(arm->cpsr->value, 0, 32),
603 buf_get_u32(arm->pc->value, 0, 32),
604 arm->is_semihosting ? ", semihosting" : "");
605
606 return ERROR_OK;
607 }
608
609 #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
610 cache->reg_list[armv4_5_core_reg_map[mode][num]]
611
612 COMMAND_HANDLER(handle_armv4_5_reg_command)
613 {
614 struct target *target = get_current_target(CMD_CTX);
615 struct arm *arm = target_to_arm(target);
616 struct reg *regs;
617
618 if (!is_arm(arm))
619 {
620 command_print(CMD_CTX, "current target isn't an ARM");
621 return ERROR_FAIL;
622 }
623
624 if (target->state != TARGET_HALTED)
625 {
626 command_print(CMD_CTX, "error: target must be halted for register accesses");
627 return ERROR_FAIL;
628 }
629
630 if (arm->core_type != ARM_MODE_ANY)
631 {
632 command_print(CMD_CTX, "Microcontroller Profile not supported - use standard reg cmd");
633 return ERROR_OK;
634 }
635
636 if (!is_arm_mode(arm->core_mode))
637 {
638 LOG_ERROR("not a valid arm core mode - communication failure?");
639 return ERROR_FAIL;
640 }
641
642 if (!arm->full_context) {
643 command_print(CMD_CTX, "error: target doesn't support %s",
644 CMD_NAME);
645 return ERROR_FAIL;
646 }
647
648 regs = arm->core_cache->reg_list;
649
650 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
651 const char *name;
652 char *sep = "\n";
653 char *shadow = "";
654
655 /* label this bank of registers (or shadows) */
656 switch (arm_mode_data[mode].psr) {
657 case ARM_MODE_SYS:
658 continue;
659 case ARM_MODE_USR:
660 name = "System and User";
661 sep = "";
662 break;
663 case ARM_MODE_MON:
664 if (arm->core_type != ARM_MODE_MON)
665 continue;
666 /* FALLTHROUGH */
667 default:
668 name = arm_mode_data[mode].name;
669 shadow = "shadow ";
670 break;
671 }
672 command_print(CMD_CTX, "%s%s mode %sregisters",
673 sep, name, shadow);
674
675 /* display N rows of up to 4 registers each */
676 for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) {
677 char output[80];
678 int output_len = 0;
679
680 for (unsigned j = 0; j < 4; j++, i++) {
681 uint32_t value;
682 struct reg *reg = regs;
683
684 if (i >= arm_mode_data[mode].n_indices)
685 break;
686
687 reg += arm_mode_data[mode].indices[i];
688
689 /* REVISIT be smarter about faults... */
690 if (!reg->valid)
691 arm->full_context(target);
692
693 value = buf_get_u32(reg->value, 0, 32);
694 output_len += snprintf(output + output_len,
695 sizeof(output) - output_len,
696 "%8s: %8.8" PRIx32 " ",
697 reg->name, value);
698 }
699 command_print(CMD_CTX, "%s", output);
700 }
701 }
702
703 return ERROR_OK;
704 }
705
706 COMMAND_HANDLER(handle_armv4_5_core_state_command)
707 {
708 struct target *target = get_current_target(CMD_CTX);
709 struct arm *arm = target_to_arm(target);
710
711 if (!is_arm(arm))
712 {
713 command_print(CMD_CTX, "current target isn't an ARM");
714 return ERROR_FAIL;
715 }
716
717 if (arm->core_type == ARM_MODE_THREAD)
718 {
719 /* armv7m not supported */
720 command_print(CMD_CTX, "Unsupported Command");
721 return ERROR_OK;
722 }
723
724 if (CMD_ARGC > 0)
725 {
726 if (strcmp(CMD_ARGV[0], "arm") == 0)
727 {
728 arm->core_state = ARM_STATE_ARM;
729 }
730 if (strcmp(CMD_ARGV[0], "thumb") == 0)
731 {
732 arm->core_state = ARM_STATE_THUMB;
733 }
734 }
735
736 command_print(CMD_CTX, "core state: %s", arm_state_strings[arm->core_state]);
737
738 return ERROR_OK;
739 }
740
741 COMMAND_HANDLER(handle_arm_disassemble_command)
742 {
743 int retval = ERROR_OK;
744 struct target *target = get_current_target(CMD_CTX);
745
746 if (target == NULL) {
747 LOG_ERROR("No target selected");
748 return ERROR_FAIL;
749 }
750
751 struct arm *arm = target_to_arm(target);
752 uint32_t address;
753 int count = 1;
754 int thumb = 0;
755
756 if (!is_arm(arm)) {
757 command_print(CMD_CTX, "current target isn't an ARM");
758 return ERROR_FAIL;
759 }
760
761 if (arm->core_type == ARM_MODE_THREAD)
762 {
763 /* armv7m is always thumb mode */
764 thumb = 1;
765 }
766
767 switch (CMD_ARGC) {
768 case 3:
769 if (strcmp(CMD_ARGV[2], "thumb") != 0)
770 goto usage;
771 thumb = 1;
772 /* FALL THROUGH */
773 case 2:
774 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
775 /* FALL THROUGH */
776 case 1:
777 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
778 if (address & 0x01) {
779 if (!thumb) {
780 command_print(CMD_CTX, "Disassemble as Thumb");
781 thumb = 1;
782 }
783 address &= ~1;
784 }
785 break;
786 default:
787 usage:
788 count = 0;
789 retval = ERROR_COMMAND_SYNTAX_ERROR;
790 }
791
792 while (count-- > 0) {
793 struct arm_instruction cur_instruction;
794
795 if (thumb) {
796 /* Always use Thumb2 disassembly for best handling
797 * of 32-bit BL/BLX, and to work with newer cores
798 * (some ARMv6, all ARMv7) that use Thumb2.
799 */
800 retval = thumb2_opcode(target, address,
801 &cur_instruction);
802 if (retval != ERROR_OK)
803 break;
804 } else {
805 uint32_t opcode;
806
807 retval = target_read_u32(target, address, &opcode);
808 if (retval != ERROR_OK)
809 break;
810 retval = arm_evaluate_opcode(opcode, address,
811 &cur_instruction) != ERROR_OK;
812 if (retval != ERROR_OK)
813 break;
814 }
815 command_print(CMD_CTX, "%s", cur_instruction.text);
816 address += cur_instruction.instruction_size;
817 }
818
819 return retval;
820 }
821
822 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
823 {
824 struct command_context *context;
825 struct target *target;
826 struct arm *arm;
827 int retval;
828
829 context = current_command_context(interp);
830 assert( context != NULL);
831
832 target = get_current_target(context);
833 if (target == NULL) {
834 LOG_ERROR("%s: no current target", __func__);
835 return JIM_ERR;
836 }
837 if (!target_was_examined(target)) {
838 LOG_ERROR("%s: not yet examined", target_name(target));
839 return JIM_ERR;
840 }
841 arm = target_to_arm(target);
842 if (!is_arm(arm)) {
843 LOG_ERROR("%s: not an ARM", target_name(target));
844 return JIM_ERR;
845 }
846
847 if ((argc < 6) || (argc > 7)) {
848 /* FIXME use the command name to verify # params... */
849 LOG_ERROR("%s: wrong number of arguments", __func__);
850 return JIM_ERR;
851 }
852
853 int cpnum;
854 uint32_t op1;
855 uint32_t op2;
856 uint32_t CRn;
857 uint32_t CRm;
858 uint32_t value;
859 long l;
860
861 /* NOTE: parameter sequence matches ARM instruction set usage:
862 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
863 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
864 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
865 */
866 retval = Jim_GetLong(interp, argv[1], &l);
867 if (retval != JIM_OK)
868 return retval;
869 if (l & ~0xf) {
870 LOG_ERROR("%s: %s %d out of range", __func__,
871 "coprocessor", (int) l);
872 return JIM_ERR;
873 }
874 cpnum = l;
875
876 retval = Jim_GetLong(interp, argv[2], &l);
877 if (retval != JIM_OK)
878 return retval;
879 if (l & ~0x7) {
880 LOG_ERROR("%s: %s %d out of range", __func__,
881 "op1", (int) l);
882 return JIM_ERR;
883 }
884 op1 = l;
885
886 retval = Jim_GetLong(interp, argv[3], &l);
887 if (retval != JIM_OK)
888 return retval;
889 if (l & ~0xf) {
890 LOG_ERROR("%s: %s %d out of range", __func__,
891 "CRn", (int) l);
892 return JIM_ERR;
893 }
894 CRn = l;
895
896 retval = Jim_GetLong(interp, argv[4], &l);
897 if (retval != JIM_OK)
898 return retval;
899 if (l & ~0xf) {
900 LOG_ERROR("%s: %s %d out of range", __func__,
901 "CRm", (int) l);
902 return JIM_ERR;
903 }
904 CRm = l;
905
906 retval = Jim_GetLong(interp, argv[5], &l);
907 if (retval != JIM_OK)
908 return retval;
909 if (l & ~0x7) {
910 LOG_ERROR("%s: %s %d out of range", __func__,
911 "op2", (int) l);
912 return JIM_ERR;
913 }
914 op2 = l;
915
916 value = 0;
917
918 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
919 * that could easily be a typo! Check both...
920 *
921 * FIXME change the call syntax here ... simplest to just pass
922 * the MRC() or MCR() instruction to be executed. That will also
923 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
924 * if that's ever needed.
925 */
926 if (argc == 7) {
927 retval = Jim_GetLong(interp, argv[6], &l);
928 if (retval != JIM_OK) {
929 return retval;
930 }
931 value = l;
932
933 /* NOTE: parameters reordered! */
934 // ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2)
935 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
936 if (retval != ERROR_OK)
937 return JIM_ERR;
938 } else {
939 /* NOTE: parameters reordered! */
940 // ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2)
941 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
942 if (retval != ERROR_OK)
943 return JIM_ERR;
944
945 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
946 }
947
948 return JIM_OK;
949 }
950
951 COMMAND_HANDLER(handle_arm_semihosting_command)
952 {
953 struct target *target = get_current_target(CMD_CTX);
954
955 if (target == NULL) {
956 LOG_ERROR("No target selected");
957 return ERROR_FAIL;
958 }
959
960 struct arm *arm = target_to_arm(target);
961
962 if (!is_arm(arm)) {
963 command_print(CMD_CTX, "current target isn't an ARM");
964 return ERROR_FAIL;
965 }
966
967 if (!arm->setup_semihosting)
968 {
969 command_print(CMD_CTX, "semihosting not supported for current target");
970 return ERROR_FAIL;
971 }
972
973 if (CMD_ARGC > 0)
974 {
975 int semihosting;
976
977 COMMAND_PARSE_ENABLE(CMD_ARGV[0], semihosting);
978
979 if (!target_was_examined(target))
980 {
981 LOG_ERROR("Target not examined yet");
982 return ERROR_FAIL;
983 }
984
985 if (arm->setup_semihosting(target, semihosting) != ERROR_OK) {
986 LOG_ERROR("Failed to Configure semihosting");
987 return ERROR_FAIL;
988 }
989
990 /* FIXME never let that "catch" be dropped! */
991 arm->is_semihosting = semihosting;
992 }
993
994 command_print(CMD_CTX, "semihosting is %s",
995 arm->is_semihosting
996 ? "enabled" : "disabled");
997
998 return ERROR_OK;
999 }
1000
1001 static const struct command_registration arm_exec_command_handlers[] = {
1002 {
1003 .name = "reg",
1004 .handler = handle_armv4_5_reg_command,
1005 .mode = COMMAND_EXEC,
1006 .help = "display ARM core registers",
1007 .usage = "",
1008 },
1009 {
1010 .name = "core_state",
1011 .handler = handle_armv4_5_core_state_command,
1012 .mode = COMMAND_EXEC,
1013 .usage = "['arm'|'thumb']",
1014 .help = "display/change ARM core state",
1015 },
1016 {
1017 .name = "disassemble",
1018 .handler = handle_arm_disassemble_command,
1019 .mode = COMMAND_EXEC,
1020 .usage = "address [count ['thumb']]",
1021 .help = "disassemble instructions ",
1022 },
1023 {
1024 .name = "mcr",
1025 .mode = COMMAND_EXEC,
1026 .jim_handler = &jim_mcrmrc,
1027 .help = "write coprocessor register",
1028 .usage = "cpnum op1 CRn op2 CRm value",
1029 },
1030 {
1031 .name = "mrc",
1032 .jim_handler = &jim_mcrmrc,
1033 .help = "read coprocessor register",
1034 .usage = "cpnum op1 CRn op2 CRm",
1035 },
1036 {
1037 "semihosting",
1038 .handler = handle_arm_semihosting_command,
1039 .mode = COMMAND_EXEC,
1040 .usage = "['enable'|'disable']",
1041 .help = "activate support for semihosting operations",
1042 },
1043
1044 COMMAND_REGISTRATION_DONE
1045 };
1046 const struct command_registration arm_command_handlers[] = {
1047 {
1048 .name = "arm",
1049 .mode = COMMAND_ANY,
1050 .help = "ARM command group",
1051 .usage = "",
1052 .chain = arm_exec_command_handlers,
1053 },
1054 COMMAND_REGISTRATION_DONE
1055 };
1056
1057 int arm_get_gdb_reg_list(struct target *target,
1058 struct reg **reg_list[], int *reg_list_size)
1059 {
1060 struct arm *arm = target_to_arm(target);
1061 int i;
1062
1063 if (!is_arm_mode(arm->core_mode))
1064 {
1065 LOG_ERROR("not a valid arm core mode - communication failure?");
1066 return ERROR_FAIL;
1067 }
1068
1069 *reg_list_size = 26;
1070 *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
1071
1072 for (i = 0; i < 16; i++)
1073 (*reg_list)[i] = arm_reg_current(arm, i);
1074
1075 for (i = 16; i < 24; i++)
1076 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1077
1078 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1079 (*reg_list)[25] = arm->cpsr;
1080
1081 return ERROR_OK;
1082 }
1083
1084 /* wait for execution to complete and check exit point */
1085 static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
1086 {
1087 int retval;
1088 struct arm *arm = target_to_arm(target);
1089
1090 if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK)
1091 {
1092 return retval;
1093 }
1094 if (target->state != TARGET_HALTED)
1095 {
1096 if ((retval = target_halt(target)) != ERROR_OK)
1097 return retval;
1098 if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
1099 {
1100 return retval;
1101 }
1102 return ERROR_TARGET_TIMEOUT;
1103 }
1104
1105 /* fast exit: ARMv5+ code can use BKPT */
1106 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point)
1107 {
1108 LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1109 buf_get_u32(arm->pc->value, 0, 32));
1110 return ERROR_TARGET_TIMEOUT;
1111 }
1112
1113 return ERROR_OK;
1114 }
1115
1116 int armv4_5_run_algorithm_inner(struct target *target,
1117 int num_mem_params, struct mem_param *mem_params,
1118 int num_reg_params, struct reg_param *reg_params,
1119 uint32_t entry_point, uint32_t exit_point,
1120 int timeout_ms, void *arch_info,
1121 int (*run_it)(struct target *target, uint32_t exit_point,
1122 int timeout_ms, void *arch_info))
1123 {
1124 struct arm *arm = target_to_arm(target);
1125 struct arm_algorithm *arm_algorithm_info = arch_info;
1126 enum arm_state core_state = arm->core_state;
1127 uint32_t context[17];
1128 uint32_t cpsr;
1129 int exit_breakpoint_size = 0;
1130 int i;
1131 int retval = ERROR_OK;
1132
1133 LOG_DEBUG("Running algorithm");
1134
1135 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC)
1136 {
1137 LOG_ERROR("current target isn't an ARMV4/5 target");
1138 return ERROR_TARGET_INVALID;
1139 }
1140
1141 if (target->state != TARGET_HALTED)
1142 {
1143 LOG_WARNING("target not halted");
1144 return ERROR_TARGET_NOT_HALTED;
1145 }
1146
1147 if (!is_arm_mode(arm->core_mode))
1148 {
1149 LOG_ERROR("not a valid arm core mode - communication failure?");
1150 return ERROR_FAIL;
1151 }
1152
1153 /* armv5 and later can terminate with BKPT instruction; less overhead */
1154 if (!exit_point && arm->is_armv4)
1155 {
1156 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1157 return ERROR_FAIL;
1158 }
1159
1160 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1161 * they'll be restored later.
1162 */
1163 for (i = 0; i <= 16; i++)
1164 {
1165 struct reg *r;
1166
1167 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1168 arm_algorithm_info->core_mode, i);
1169 if (!r->valid)
1170 arm->read_core_reg(target, r, i,
1171 arm_algorithm_info->core_mode);
1172 context[i] = buf_get_u32(r->value, 0, 32);
1173 }
1174 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1175
1176 for (i = 0; i < num_mem_params; i++)
1177 {
1178 if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1179 {
1180 return retval;
1181 }
1182 }
1183
1184 for (i = 0; i < num_reg_params; i++)
1185 {
1186 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, 0);
1187 if (!reg)
1188 {
1189 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1190 return ERROR_COMMAND_SYNTAX_ERROR;
1191 }
1192
1193 if (reg->size != reg_params[i].size)
1194 {
1195 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1196 return ERROR_COMMAND_SYNTAX_ERROR;
1197 }
1198
1199 if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK)
1200 {
1201 return retval;
1202 }
1203 }
1204
1205 arm->core_state = arm_algorithm_info->core_state;
1206 if (arm->core_state == ARM_STATE_ARM)
1207 exit_breakpoint_size = 4;
1208 else if (arm->core_state == ARM_STATE_THUMB)
1209 exit_breakpoint_size = 2;
1210 else
1211 {
1212 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1213 return ERROR_COMMAND_SYNTAX_ERROR;
1214 }
1215
1216 if (arm_algorithm_info->core_mode != ARM_MODE_ANY)
1217 {
1218 LOG_DEBUG("setting core_mode: 0x%2.2x",
1219 arm_algorithm_info->core_mode);
1220 buf_set_u32(arm->cpsr->value, 0, 5,
1221 arm_algorithm_info->core_mode);
1222 arm->cpsr->dirty = 1;
1223 arm->cpsr->valid = 1;
1224 }
1225
1226 /* terminate using a hardware or (ARMv5+) software breakpoint */
1227 if (exit_point && (retval = breakpoint_add(target, exit_point,
1228 exit_breakpoint_size, BKPT_HARD)) != ERROR_OK)
1229 {
1230 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1231 return ERROR_TARGET_FAILURE;
1232 }
1233
1234 if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
1235 {
1236 return retval;
1237 }
1238 int retvaltemp;
1239 retval = run_it(target, exit_point, timeout_ms, arch_info);
1240
1241 if (exit_point)
1242 breakpoint_remove(target, exit_point);
1243
1244 if (retval != ERROR_OK)
1245 return retval;
1246
1247 for (i = 0; i < num_mem_params; i++)
1248 {
1249 if (mem_params[i].direction != PARAM_OUT)
1250 if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1251 {
1252 retval = retvaltemp;
1253 }
1254 }
1255
1256 for (i = 0; i < num_reg_params; i++)
1257 {
1258 if (reg_params[i].direction != PARAM_OUT)
1259 {
1260
1261 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, 0);
1262 if (!reg)
1263 {
1264 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1265 retval = ERROR_COMMAND_SYNTAX_ERROR;
1266 continue;
1267 }
1268
1269 if (reg->size != reg_params[i].size)
1270 {
1271 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1272 retval = ERROR_COMMAND_SYNTAX_ERROR;
1273 continue;
1274 }
1275
1276 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1277 }
1278 }
1279
1280 /* restore everything we saved before (17 or 18 registers) */
1281 for (i = 0; i <= 16; i++)
1282 {
1283 uint32_t regvalue;
1284 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1285 arm_algorithm_info->core_mode, i).value, 0, 32);
1286 if (regvalue != context[i])
1287 {
1288 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1289 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1290 arm_algorithm_info->core_mode, i).name, context[i]);
1291 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1292 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1293 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode, i).valid = 1;
1294 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode, i).dirty = 1;
1295 }
1296 }
1297
1298 arm_set_cpsr(arm, cpsr);
1299 arm->cpsr->dirty = 1;
1300
1301 arm->core_state = core_state;
1302
1303 return retval;
1304 }
1305
1306 int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
1307 {
1308 return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion);
1309 }
1310
1311 /**
1312 * Runs ARM code in the target to calculate a CRC32 checksum.
1313 *
1314 */
1315 int arm_checksum_memory(struct target *target,
1316 uint32_t address, uint32_t count, uint32_t *checksum)
1317 {
1318 struct working_area *crc_algorithm;
1319 struct arm_algorithm armv4_5_info;
1320 struct arm *arm = target_to_arm(target);
1321 struct reg_param reg_params[2];
1322 int retval;
1323 uint32_t i;
1324 uint32_t exit_var = 0;
1325
1326 /* see contib/loaders/checksum/armv4_5_crc.s for src */
1327
1328 static const uint32_t arm_crc_code[] = {
1329 0xE1A02000, /* mov r2, r0 */
1330 0xE3E00000, /* mov r0, #0xffffffff */
1331 0xE1A03001, /* mov r3, r1 */
1332 0xE3A04000, /* mov r4, #0 */
1333 0xEA00000B, /* b ncomp */
1334 /* nbyte: */
1335 0xE7D21004, /* ldrb r1, [r2, r4] */
1336 0xE59F7030, /* ldr r7, CRC32XOR */
1337 0xE0200C01, /* eor r0, r0, r1, asl 24 */
1338 0xE3A05000, /* mov r5, #0 */
1339 /* loop: */
1340 0xE3500000, /* cmp r0, #0 */
1341 0xE1A06080, /* mov r6, r0, asl #1 */
1342 0xE2855001, /* add r5, r5, #1 */
1343 0xE1A00006, /* mov r0, r6 */
1344 0xB0260007, /* eorlt r0, r6, r7 */
1345 0xE3550008, /* cmp r5, #8 */
1346 0x1AFFFFF8, /* bne loop */
1347 0xE2844001, /* add r4, r4, #1 */
1348 /* ncomp: */
1349 0xE1540003, /* cmp r4, r3 */
1350 0x1AFFFFF1, /* bne nbyte */
1351 /* end: */
1352 0xe1200070, /* bkpt #0 */
1353 /* CRC32XOR: */
1354 0x04C11DB7 /* .word 0x04C11DB7 */
1355 };
1356
1357 retval = target_alloc_working_area(target,
1358 sizeof(arm_crc_code), &crc_algorithm);
1359 if (retval != ERROR_OK)
1360 return retval;
1361
1362 /* convert code into a buffer in target endianness */
1363 for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) {
1364 retval = target_write_u32(target,
1365 crc_algorithm->address + i * sizeof(uint32_t),
1366 arm_crc_code[i]);
1367 if (retval != ERROR_OK)
1368 return retval;
1369 }
1370
1371 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1372 armv4_5_info.core_mode = ARM_MODE_SVC;
1373 armv4_5_info.core_state = ARM_STATE_ARM;
1374
1375 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1376 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1377
1378 buf_set_u32(reg_params[0].value, 0, 32, address);
1379 buf_set_u32(reg_params[1].value, 0, 32, count);
1380
1381 /* 20 second timeout/megabyte */
1382 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1383
1384 /* armv4 must exit using a hardware breakpoint */
1385 if (arm->is_armv4)
1386 exit_var = crc_algorithm->address + sizeof(arm_crc_code) - 8;
1387
1388 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1389 crc_algorithm->address,
1390 exit_var,
1391 timeout, &armv4_5_info);
1392 if (retval != ERROR_OK) {
1393 LOG_ERROR("error executing ARM crc algorithm");
1394 destroy_reg_param(&reg_params[0]);
1395 destroy_reg_param(&reg_params[1]);
1396 target_free_working_area(target, crc_algorithm);
1397 return retval;
1398 }
1399
1400 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1401
1402 destroy_reg_param(&reg_params[0]);
1403 destroy_reg_param(&reg_params[1]);
1404
1405 target_free_working_area(target, crc_algorithm);
1406
1407 return ERROR_OK;
1408 }
1409
1410 /**
1411 * Runs ARM code in the target to check whether a memory block holds
1412 * all ones. NOR flash which has been erased, and thus may be written,
1413 * holds all ones.
1414 *
1415 */
1416 int arm_blank_check_memory(struct target *target,
1417 uint32_t address, uint32_t count, uint32_t *blank)
1418 {
1419 struct working_area *check_algorithm;
1420 struct reg_param reg_params[3];
1421 struct arm_algorithm armv4_5_info;
1422 struct arm *arm = target_to_arm(target);
1423 int retval;
1424 uint32_t i;
1425 uint32_t exit_var = 0;
1426
1427 static const uint32_t check_code[] = {
1428 /* loop: */
1429 0xe4d03001, /* ldrb r3, [r0], #1 */
1430 0xe0022003, /* and r2, r2, r3 */
1431 0xe2511001, /* subs r1, r1, #1 */
1432 0x1afffffb, /* bne loop */
1433 /* end: */
1434 0xe1200070, /* bkpt #0 */
1435 };
1436
1437 /* make sure we have a working area */
1438 retval = target_alloc_working_area(target,
1439 sizeof(check_code), &check_algorithm);
1440 if (retval != ERROR_OK)
1441 return retval;
1442
1443 /* convert code into a buffer in target endianness */
1444 for (i = 0; i < ARRAY_SIZE(check_code); i++) {
1445 retval = target_write_u32(target,
1446 check_algorithm->address
1447 + i * sizeof(uint32_t),
1448 check_code[i]);
1449 if (retval != ERROR_OK)
1450 return retval;
1451 }
1452
1453 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1454 armv4_5_info.core_mode = ARM_MODE_SVC;
1455 armv4_5_info.core_state = ARM_STATE_ARM;
1456
1457 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1458 buf_set_u32(reg_params[0].value, 0, 32, address);
1459
1460 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1461 buf_set_u32(reg_params[1].value, 0, 32, count);
1462
1463 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1464 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
1465
1466 /* armv4 must exit using a hardware breakpoint */
1467 if (arm->is_armv4)
1468 exit_var = check_algorithm->address + sizeof(check_code) - 4;
1469
1470 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1471 check_algorithm->address,
1472 exit_var,
1473 10000, &armv4_5_info);
1474 if (retval != ERROR_OK) {
1475 destroy_reg_param(&reg_params[0]);
1476 destroy_reg_param(&reg_params[1]);
1477 destroy_reg_param(&reg_params[2]);
1478 target_free_working_area(target, check_algorithm);
1479 return retval;
1480 }
1481
1482 *blank = buf_get_u32(reg_params[2].value, 0, 32);
1483
1484 destroy_reg_param(&reg_params[0]);
1485 destroy_reg_param(&reg_params[1]);
1486 destroy_reg_param(&reg_params[2]);
1487
1488 target_free_working_area(target, check_algorithm);
1489
1490 return ERROR_OK;
1491 }
1492
1493 static int arm_full_context(struct target *target)
1494 {
1495 struct arm *arm = target_to_arm(target);
1496 unsigned num_regs = arm->core_cache->num_regs;
1497 struct reg *reg = arm->core_cache->reg_list;
1498 int retval = ERROR_OK;
1499
1500 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1501 if (reg->valid)
1502 continue;
1503 retval = armv4_5_get_core_reg(reg);
1504 }
1505 return retval;
1506 }
1507
1508 static int arm_default_mrc(struct target *target, int cpnum,
1509 uint32_t op1, uint32_t op2,
1510 uint32_t CRn, uint32_t CRm,
1511 uint32_t *value)
1512 {
1513 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1514 return ERROR_FAIL;
1515 }
1516
1517 static int arm_default_mcr(struct target *target, int cpnum,
1518 uint32_t op1, uint32_t op2,
1519 uint32_t CRn, uint32_t CRm,
1520 uint32_t value)
1521 {
1522 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1523 return ERROR_FAIL;
1524 }
1525
1526 int arm_init_arch_info(struct target *target, struct arm *arm)
1527 {
1528 target->arch_info = arm;
1529 arm->target = target;
1530
1531 arm->common_magic = ARM_COMMON_MAGIC;
1532
1533 /* core_type may be overridden by subtype logic */
1534 if (arm->core_type != ARM_MODE_THREAD) {
1535 arm->core_type = ARM_MODE_ANY;
1536 arm_set_cpsr(arm, ARM_MODE_USR);
1537 }
1538
1539 /* default full_context() has no core-specific optimizations */
1540 if (!arm->full_context && arm->read_core_reg)
1541 arm->full_context = arm_full_context;
1542
1543 if (!arm->mrc)
1544 arm->mrc = arm_default_mrc;
1545 if (!arm->mcr)
1546 arm->mcr = arm_default_mcr;
1547
1548 return ERROR_OK;
1549 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)