ARMV4_5: review scope of data
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "arm.h"
31 #include "armv4_5.h"
32 #include "arm_jtag.h"
33 #include "breakpoints.h"
34 #include "arm_disassembler.h"
35 #include <helper/binarybuffer.h>
36 #include "algorithm.h"
37 #include "register.h"
38
39
40 /* offsets into armv4_5 core register cache */
41 enum {
42 // ARMV4_5_CPSR = 31,
43 ARMV4_5_SPSR_FIQ = 32,
44 ARMV4_5_SPSR_IRQ = 33,
45 ARMV4_5_SPSR_SVC = 34,
46 ARMV4_5_SPSR_ABT = 35,
47 ARMV4_5_SPSR_UND = 36,
48 ARM_SPSR_MON = 39,
49 };
50
51 static const uint8_t arm_usr_indices[17] = {
52 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
53 };
54
55 static const uint8_t arm_fiq_indices[8] = {
56 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
57 };
58
59 static const uint8_t arm_irq_indices[3] = {
60 23, 24, ARMV4_5_SPSR_IRQ,
61 };
62
63 static const uint8_t arm_svc_indices[3] = {
64 25, 26, ARMV4_5_SPSR_SVC,
65 };
66
67 static const uint8_t arm_abt_indices[3] = {
68 27, 28, ARMV4_5_SPSR_ABT,
69 };
70
71 static const uint8_t arm_und_indices[3] = {
72 29, 30, ARMV4_5_SPSR_UND,
73 };
74
75 static const uint8_t arm_mon_indices[3] = {
76 37, 38, ARM_SPSR_MON,
77 };
78
79 static const struct {
80 const char *name;
81 unsigned short psr;
82 /* For user and system modes, these list indices for all registers.
83 * otherwise they're just indices for the shadow registers and SPSR.
84 */
85 unsigned short n_indices;
86 const uint8_t *indices;
87 } arm_mode_data[] = {
88 /* Seven modes are standard from ARM7 on. "System" and "User" share
89 * the same registers; other modes shadow from 3 to 8 registers.
90 */
91 {
92 .name = "User",
93 .psr = ARM_MODE_USR,
94 .n_indices = ARRAY_SIZE(arm_usr_indices),
95 .indices = arm_usr_indices,
96 },
97 {
98 .name = "FIQ",
99 .psr = ARM_MODE_FIQ,
100 .n_indices = ARRAY_SIZE(arm_fiq_indices),
101 .indices = arm_fiq_indices,
102 },
103 {
104 .name = "Supervisor",
105 .psr = ARM_MODE_SVC,
106 .n_indices = ARRAY_SIZE(arm_svc_indices),
107 .indices = arm_svc_indices,
108 },
109 {
110 .name = "Abort",
111 .psr = ARM_MODE_ABT,
112 .n_indices = ARRAY_SIZE(arm_abt_indices),
113 .indices = arm_abt_indices,
114 },
115 {
116 .name = "IRQ",
117 .psr = ARM_MODE_IRQ,
118 .n_indices = ARRAY_SIZE(arm_irq_indices),
119 .indices = arm_irq_indices,
120 },
121 {
122 .name = "Undefined instruction",
123 .psr = ARM_MODE_UND,
124 .n_indices = ARRAY_SIZE(arm_und_indices),
125 .indices = arm_und_indices,
126 },
127 {
128 .name = "System",
129 .psr = ARM_MODE_SYS,
130 .n_indices = ARRAY_SIZE(arm_usr_indices),
131 .indices = arm_usr_indices,
132 },
133 /* TrustZone "Security Extensions" add a secure monitor mode.
134 * This is distinct from a "debug monitor" which can support
135 * non-halting debug, in conjunction with some debuggers.
136 */
137 {
138 .name = "Secure Monitor",
139 .psr = ARM_MODE_MON,
140 .n_indices = ARRAY_SIZE(arm_mon_indices),
141 .indices = arm_mon_indices,
142 },
143 };
144
145 /** Map PSR mode bits to the name of an ARM processor operating mode. */
146 const char *arm_mode_name(unsigned psr_mode)
147 {
148 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
149 if (arm_mode_data[i].psr == psr_mode)
150 return arm_mode_data[i].name;
151 }
152 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
153 return "UNRECOGNIZED";
154 }
155
156 /** Return true iff the parameter denotes a valid ARM processor mode. */
157 bool is_arm_mode(unsigned psr_mode)
158 {
159 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
160 if (arm_mode_data[i].psr == psr_mode)
161 return true;
162 }
163 return false;
164 }
165
166 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
167 int arm_mode_to_number(enum arm_mode mode)
168 {
169 switch (mode) {
170 case ARM_MODE_ANY:
171 /* map MODE_ANY to user mode */
172 case ARM_MODE_USR:
173 return 0;
174 case ARM_MODE_FIQ:
175 return 1;
176 case ARM_MODE_IRQ:
177 return 2;
178 case ARM_MODE_SVC:
179 return 3;
180 case ARM_MODE_ABT:
181 return 4;
182 case ARM_MODE_UND:
183 return 5;
184 case ARM_MODE_SYS:
185 return 6;
186 case ARM_MODE_MON:
187 return 7;
188 default:
189 LOG_ERROR("invalid mode value encountered %d", mode);
190 return -1;
191 }
192 }
193
194 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
195 enum arm_mode armv4_5_number_to_mode(int number)
196 {
197 switch (number) {
198 case 0:
199 return ARM_MODE_USR;
200 case 1:
201 return ARM_MODE_FIQ;
202 case 2:
203 return ARM_MODE_IRQ;
204 case 3:
205 return ARM_MODE_SVC;
206 case 4:
207 return ARM_MODE_ABT;
208 case 5:
209 return ARM_MODE_UND;
210 case 6:
211 return ARM_MODE_SYS;
212 case 7:
213 return ARM_MODE_MON;
214 default:
215 LOG_ERROR("mode index out of bounds %d", number);
216 return ARM_MODE_ANY;
217 }
218 }
219
220 static const char *arm_state_strings[] =
221 {
222 "ARM", "Thumb", "Jazelle", "ThumbEE",
223 };
224
225 /* Templates for ARM core registers.
226 *
227 * NOTE: offsets in this table are coupled to the arm_mode_data
228 * table above, the armv4_5_core_reg_map array below, and also to
229 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
230 */
231 static const struct {
232 /* The name is used for e.g. the "regs" command. */
233 const char *name;
234
235 /* The {cookie, mode} tuple uniquely identifies one register.
236 * In a given mode, cookies 0..15 map to registers R0..R15,
237 * with R13..R15 usually called SP, LR, PC.
238 *
239 * MODE_ANY is used as *input* to the mapping, and indicates
240 * various special cases (sigh) and errors.
241 *
242 * Cookie 16 is (currently) confusing, since it indicates
243 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
244 * (Exception modes have both CPSR and SPSR registers ...)
245 */
246 unsigned cookie;
247 enum arm_mode mode;
248 } arm_core_regs[] = {
249 /* IMPORTANT: we guarantee that the first eight cached registers
250 * correspond to r0..r7, and the fifteenth to PC, so that callers
251 * don't need to map them.
252 */
253 { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, },
254 { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, },
255 { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, },
256 { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, },
257 { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, },
258 { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, },
259 { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, },
260 { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, },
261
262 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
263 * them as MODE_ANY creates special cases. (ANY means
264 * "not mapped" elsewhere; here it's "everything but FIQ".)
265 */
266 { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, },
267 { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, },
268 { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, },
269 { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, },
270 { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, },
271
272 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
273 { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, },
274 { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, },
275
276 /* guaranteed to be at index 15 */
277 { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, },
278
279 { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, },
280 { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, },
281 { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, },
282 { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, },
283 { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, },
284
285 { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, },
286 { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, },
287
288 { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, },
289 { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, },
290
291 { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, },
292 { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, },
293
294 { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, },
295 { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, },
296
297 { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, },
298 { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, },
299
300 { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, },
301 { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, },
302 { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, },
303 { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, },
304 { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, },
305 { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, },
306
307 { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, },
308 { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, },
309 { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, },
310 };
311
312 /* map core mode (USR, FIQ, ...) and register number to
313 * indices into the register cache
314 */
315 const int armv4_5_core_reg_map[8][17] =
316 {
317 { /* USR */
318 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
319 },
320 { /* FIQ (8 shadows of USR, vs normal 3) */
321 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
322 },
323 { /* IRQ */
324 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
325 },
326 { /* SVC */
327 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
328 },
329 { /* ABT */
330 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
331 },
332 { /* UND */
333 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
334 },
335 { /* SYS (same registers as USR) */
336 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
337 },
338 { /* MON */
339 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
340 }
341 };
342
343 /**
344 * Configures host-side ARM records to reflect the specified CPSR.
345 * Later, code can use arm_reg_current() to map register numbers
346 * according to how they are exposed by this mode.
347 */
348 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
349 {
350 enum arm_mode mode = cpsr & 0x1f;
351 int num;
352
353 /* NOTE: this may be called very early, before the register
354 * cache is set up. We can't defend against many errors, in
355 * particular against CPSRs that aren't valid *here* ...
356 */
357 if (arm->cpsr) {
358 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
359 arm->cpsr->valid = 1;
360 arm->cpsr->dirty = 0;
361 }
362
363 arm->core_mode = mode;
364
365 /* mode_to_number() warned; set up a somewhat-sane mapping */
366 num = arm_mode_to_number(mode);
367 if (num < 0) {
368 mode = ARM_MODE_USR;
369 num = 0;
370 }
371
372 arm->map = &armv4_5_core_reg_map[num][0];
373 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
374 ? NULL
375 : arm->core_cache->reg_list + arm->map[16];
376
377 /* Older ARMs won't have the J bit */
378 enum arm_state state;
379
380 if (cpsr & (1 << 5)) { /* T */
381 if (cpsr & (1 << 24)) { /* J */
382 LOG_WARNING("ThumbEE -- incomplete support");
383 state = ARM_STATE_THUMB_EE;
384 } else
385 state = ARM_STATE_THUMB;
386 } else {
387 if (cpsr & (1 << 24)) { /* J */
388 LOG_ERROR("Jazelle state handling is BROKEN!");
389 state = ARM_STATE_JAZELLE;
390 } else
391 state = ARM_STATE_ARM;
392 }
393 arm->core_state = state;
394
395 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
396 arm_mode_name(mode),
397 arm_state_strings[arm->core_state]);
398 }
399
400 /**
401 * Returns handle to the register currently mapped to a given number.
402 * Someone must have called arm_set_cpsr() before.
403 *
404 * \param arm This core's state and registers are used.
405 * \param regnum From 0..15 corresponding to R0..R14 and PC.
406 * Note that R0..R7 don't require mapping; you may access those
407 * as the first eight entries in the register cache. Likewise
408 * R15 (PC) doesn't need mapping; you may also access it directly.
409 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
410 * CPSR (arm->cpsr) is also not mapped.
411 */
412 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
413 {
414 struct reg *r;
415
416 if (regnum > 16)
417 return NULL;
418
419 r = arm->core_cache->reg_list + arm->map[regnum];
420
421 /* e.g. invalid CPSR said "secure monitor" mode on a core
422 * that doesn't support it...
423 */
424 if (!r) {
425 LOG_ERROR("Invalid CPSR mode");
426 r = arm->core_cache->reg_list + regnum;
427 }
428
429 return r;
430 }
431
432 static const uint8_t arm_gdb_dummy_fp_value[12];
433
434 /**
435 * Dummy FPA registers are required to support GDB on ARM.
436 * Register packets require eight obsolete FPA register values.
437 * Modern ARM cores use Vector Floating Point (VFP), if they
438 * have any floating point support. VFP is not FPA-compatible.
439 */
440 struct reg arm_gdb_dummy_fp_reg =
441 {
442 .name = "GDB dummy FPA register",
443 .value = (uint8_t *) arm_gdb_dummy_fp_value,
444 .valid = 1,
445 .size = 96,
446 };
447
448 static const uint8_t arm_gdb_dummy_fps_value[4];
449
450 /**
451 * Dummy FPA status registers are required to support GDB on ARM.
452 * Register packets require an obsolete FPA status register.
453 */
454 struct reg arm_gdb_dummy_fps_reg =
455 {
456 .name = "GDB dummy FPA status register",
457 .value = (uint8_t *) arm_gdb_dummy_fps_value,
458 .valid = 1,
459 .size = 32,
460 };
461
462 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
463
464 static void arm_gdb_dummy_init(void)
465 {
466 register_init_dummy(&arm_gdb_dummy_fp_reg);
467 register_init_dummy(&arm_gdb_dummy_fps_reg);
468 }
469
470 static int armv4_5_get_core_reg(struct reg *reg)
471 {
472 int retval;
473 struct arm_reg *armv4_5 = reg->arch_info;
474 struct target *target = armv4_5->target;
475
476 if (target->state != TARGET_HALTED)
477 {
478 LOG_ERROR("Target not halted");
479 return ERROR_TARGET_NOT_HALTED;
480 }
481
482 retval = armv4_5->armv4_5_common->read_core_reg(target, reg, armv4_5->num, armv4_5->mode);
483 if (retval == ERROR_OK) {
484 reg->valid = 1;
485 reg->dirty = 0;
486 }
487
488 return retval;
489 }
490
491 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
492 {
493 struct arm_reg *armv4_5 = reg->arch_info;
494 struct target *target = armv4_5->target;
495 struct arm *armv4_5_target = target_to_arm(target);
496 uint32_t value = buf_get_u32(buf, 0, 32);
497
498 if (target->state != TARGET_HALTED)
499 {
500 LOG_ERROR("Target not halted");
501 return ERROR_TARGET_NOT_HALTED;
502 }
503
504 /* Except for CPSR, the "reg" command exposes a writeback model
505 * for the register cache.
506 */
507 if (reg == armv4_5_target->cpsr) {
508 arm_set_cpsr(armv4_5_target, value);
509
510 /* Older cores need help to be in ARM mode during halt
511 * mode debug, so we clear the J and T bits if we flush.
512 * For newer cores (v6/v7a/v7r) we don't need that, but
513 * it won't hurt since CPSR is always flushed anyway.
514 */
515 if (armv4_5_target->core_mode !=
516 (enum arm_mode)(value & 0x1f)) {
517 LOG_DEBUG("changing ARM core mode to '%s'",
518 arm_mode_name(value & 0x1f));
519 value &= ~((1 << 24) | (1 << 5));
520 armv4_5_target->write_core_reg(target, reg,
521 16, ARM_MODE_ANY, value);
522 }
523 } else {
524 buf_set_u32(reg->value, 0, 32, value);
525 reg->valid = 1;
526 }
527 reg->dirty = 1;
528
529 return ERROR_OK;
530 }
531
532 static const struct reg_arch_type arm_reg_type = {
533 .get = armv4_5_get_core_reg,
534 .set = armv4_5_set_core_reg,
535 };
536
537 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
538 {
539 int num_regs = ARRAY_SIZE(arm_core_regs);
540 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
541 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
542 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
543 int i;
544
545 if (!cache || !reg_list || !arch_info) {
546 free(cache);
547 free(reg_list);
548 free(arch_info);
549 return NULL;
550 }
551
552 cache->name = "ARM registers";
553 cache->next = NULL;
554 cache->reg_list = reg_list;
555 cache->num_regs = 0;
556
557 for (i = 0; i < num_regs; i++)
558 {
559 /* Skip registers this core doesn't expose */
560 if (arm_core_regs[i].mode == ARM_MODE_MON
561 && arm->core_type != ARM_MODE_MON)
562 continue;
563
564 /* REVISIT handle Cortex-M, which only shadows R13/SP */
565
566 arch_info[i].num = arm_core_regs[i].cookie;
567 arch_info[i].mode = arm_core_regs[i].mode;
568 arch_info[i].target = target;
569 arch_info[i].armv4_5_common = arm;
570
571 reg_list[i].name = (char *) arm_core_regs[i].name;
572 reg_list[i].size = 32;
573 reg_list[i].value = &arch_info[i].value;
574 reg_list[i].type = &arm_reg_type;
575 reg_list[i].arch_info = &arch_info[i];
576
577 cache->num_regs++;
578 }
579
580 arm->pc = reg_list + 15;
581 arm->cpsr = reg_list + ARMV4_5_CPSR;
582 arm->core_cache = cache;
583 return cache;
584 }
585
586 int arm_arch_state(struct target *target)
587 {
588 struct arm *armv4_5 = target_to_arm(target);
589
590 if (armv4_5->common_magic != ARM_COMMON_MAGIC)
591 {
592 LOG_ERROR("BUG: called for a non-ARM target");
593 return ERROR_FAIL;
594 }
595
596 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
597 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s",
598 arm_state_strings[armv4_5->core_state],
599 debug_reason_name(target),
600 arm_mode_name(armv4_5->core_mode),
601 buf_get_u32(armv4_5->cpsr->value, 0, 32),
602 buf_get_u32(armv4_5->pc->value, 0, 32),
603 armv4_5->is_semihosting ? ", semihosting" : "");
604
605 return ERROR_OK;
606 }
607
608 #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
609 cache->reg_list[armv4_5_core_reg_map[mode][num]]
610
611 COMMAND_HANDLER(handle_armv4_5_reg_command)
612 {
613 struct target *target = get_current_target(CMD_CTX);
614 struct arm *armv4_5 = target_to_arm(target);
615 unsigned num_regs;
616 struct reg *regs;
617
618 if (!is_arm(armv4_5))
619 {
620 command_print(CMD_CTX, "current target isn't an ARM");
621 return ERROR_FAIL;
622 }
623
624 if (target->state != TARGET_HALTED)
625 {
626 command_print(CMD_CTX, "error: target must be halted for register accesses");
627 return ERROR_FAIL;
628 }
629
630 if (armv4_5->core_type != ARM_MODE_ANY)
631 {
632 command_print(CMD_CTX, "Microcontroller Profile not supported - use standard reg cmd");
633 return ERROR_OK;
634 }
635
636 if (!is_arm_mode(armv4_5->core_mode))
637 return ERROR_FAIL;
638
639 if (!armv4_5->full_context) {
640 command_print(CMD_CTX, "error: target doesn't support %s",
641 CMD_NAME);
642 return ERROR_FAIL;
643 }
644
645 num_regs = armv4_5->core_cache->num_regs;
646 regs = armv4_5->core_cache->reg_list;
647
648 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
649 const char *name;
650 char *sep = "\n";
651 char *shadow = "";
652
653 /* label this bank of registers (or shadows) */
654 switch (arm_mode_data[mode].psr) {
655 case ARM_MODE_SYS:
656 continue;
657 case ARM_MODE_USR:
658 name = "System and User";
659 sep = "";
660 break;
661 case ARM_MODE_MON:
662 if (armv4_5->core_type != ARM_MODE_MON)
663 continue;
664 /* FALLTHROUGH */
665 default:
666 name = arm_mode_data[mode].name;
667 shadow = "shadow ";
668 break;
669 }
670 command_print(CMD_CTX, "%s%s mode %sregisters",
671 sep, name, shadow);
672
673 /* display N rows of up to 4 registers each */
674 for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) {
675 char output[80];
676 int output_len = 0;
677
678 for (unsigned j = 0; j < 4; j++, i++) {
679 uint32_t value;
680 struct reg *reg = regs;
681
682 if (i >= arm_mode_data[mode].n_indices)
683 break;
684
685 reg += arm_mode_data[mode].indices[i];
686
687 /* REVISIT be smarter about faults... */
688 if (!reg->valid)
689 armv4_5->full_context(target);
690
691 value = buf_get_u32(reg->value, 0, 32);
692 output_len += snprintf(output + output_len,
693 sizeof(output) - output_len,
694 "%8s: %8.8" PRIx32 " ",
695 reg->name, value);
696 }
697 command_print(CMD_CTX, "%s", output);
698 }
699 }
700
701 return ERROR_OK;
702 }
703
704 COMMAND_HANDLER(handle_armv4_5_core_state_command)
705 {
706 struct target *target = get_current_target(CMD_CTX);
707 struct arm *armv4_5 = target_to_arm(target);
708
709 if (!is_arm(armv4_5))
710 {
711 command_print(CMD_CTX, "current target isn't an ARM");
712 return ERROR_FAIL;
713 }
714
715 if (armv4_5->core_type == ARM_MODE_THREAD)
716 {
717 /* armv7m not supported */
718 command_print(CMD_CTX, "Unsupported Command");
719 return ERROR_OK;
720 }
721
722 if (CMD_ARGC > 0)
723 {
724 if (strcmp(CMD_ARGV[0], "arm") == 0)
725 {
726 armv4_5->core_state = ARM_STATE_ARM;
727 }
728 if (strcmp(CMD_ARGV[0], "thumb") == 0)
729 {
730 armv4_5->core_state = ARM_STATE_THUMB;
731 }
732 }
733
734 command_print(CMD_CTX, "core state: %s", arm_state_strings[armv4_5->core_state]);
735
736 return ERROR_OK;
737 }
738
739 COMMAND_HANDLER(handle_arm_disassemble_command)
740 {
741 int retval = ERROR_OK;
742 struct target *target = get_current_target(CMD_CTX);
743 struct arm *arm = target ? target_to_arm(target) : NULL;
744 uint32_t address;
745 int count = 1;
746 int thumb = 0;
747
748 if (!is_arm(arm)) {
749 command_print(CMD_CTX, "current target isn't an ARM");
750 return ERROR_FAIL;
751 }
752
753 if (arm->core_type == ARM_MODE_THREAD)
754 {
755 /* armv7m is always thumb mode */
756 thumb = 1;
757 }
758
759 switch (CMD_ARGC) {
760 case 3:
761 if (strcmp(CMD_ARGV[2], "thumb") != 0)
762 goto usage;
763 thumb = 1;
764 /* FALL THROUGH */
765 case 2:
766 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
767 /* FALL THROUGH */
768 case 1:
769 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
770 if (address & 0x01) {
771 if (!thumb) {
772 command_print(CMD_CTX, "Disassemble as Thumb");
773 thumb = 1;
774 }
775 address &= ~1;
776 }
777 break;
778 default:
779 usage:
780 command_print(CMD_CTX,
781 "usage: arm disassemble <address> [<count> ['thumb']]");
782 count = 0;
783 retval = ERROR_FAIL;
784 }
785
786 while (count-- > 0) {
787 struct arm_instruction cur_instruction;
788
789 if (thumb) {
790 /* Always use Thumb2 disassembly for best handling
791 * of 32-bit BL/BLX, and to work with newer cores
792 * (some ARMv6, all ARMv7) that use Thumb2.
793 */
794 retval = thumb2_opcode(target, address,
795 &cur_instruction);
796 if (retval != ERROR_OK)
797 break;
798 } else {
799 uint32_t opcode;
800
801 retval = target_read_u32(target, address, &opcode);
802 if (retval != ERROR_OK)
803 break;
804 retval = arm_evaluate_opcode(opcode, address,
805 &cur_instruction) != ERROR_OK;
806 if (retval != ERROR_OK)
807 break;
808 }
809 command_print(CMD_CTX, "%s", cur_instruction.text);
810 address += cur_instruction.instruction_size;
811 }
812
813 return retval;
814 }
815
816 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
817 {
818 struct command_context *context;
819 struct target *target;
820 struct arm *arm;
821 int retval;
822
823 context = Jim_GetAssocData(interp, "context");
824 if (context == NULL) {
825 LOG_ERROR("%s: no command context", __func__);
826 return JIM_ERR;
827 }
828 target = get_current_target(context);
829 if (target == NULL) {
830 LOG_ERROR("%s: no current target", __func__);
831 return JIM_ERR;
832 }
833 if (!target_was_examined(target)) {
834 LOG_ERROR("%s: not yet examined", target_name(target));
835 return JIM_ERR;
836 }
837 arm = target_to_arm(target);
838 if (!is_arm(arm)) {
839 LOG_ERROR("%s: not an ARM", target_name(target));
840 return JIM_ERR;
841 }
842
843 if ((argc < 6) || (argc > 7)) {
844 /* FIXME use the command name to verify # params... */
845 LOG_ERROR("%s: wrong number of arguments", __func__);
846 return JIM_ERR;
847 }
848
849 int cpnum;
850 uint32_t op1;
851 uint32_t op2;
852 uint32_t CRn;
853 uint32_t CRm;
854 uint32_t value;
855 long l;
856
857 /* NOTE: parameter sequence matches ARM instruction set usage:
858 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
859 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
860 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
861 */
862 retval = Jim_GetLong(interp, argv[1], &l);
863 if (retval != JIM_OK)
864 return retval;
865 if (l & ~0xf) {
866 LOG_ERROR("%s: %s %d out of range", __func__,
867 "coprocessor", (int) l);
868 return JIM_ERR;
869 }
870 cpnum = l;
871
872 retval = Jim_GetLong(interp, argv[2], &l);
873 if (retval != JIM_OK)
874 return retval;
875 if (l & ~0x7) {
876 LOG_ERROR("%s: %s %d out of range", __func__,
877 "op1", (int) l);
878 return JIM_ERR;
879 }
880 op1 = l;
881
882 retval = Jim_GetLong(interp, argv[3], &l);
883 if (retval != JIM_OK)
884 return retval;
885 if (l & ~0xf) {
886 LOG_ERROR("%s: %s %d out of range", __func__,
887 "CRn", (int) l);
888 return JIM_ERR;
889 }
890 CRn = l;
891
892 retval = Jim_GetLong(interp, argv[4], &l);
893 if (retval != JIM_OK)
894 return retval;
895 if (l & ~0xf) {
896 LOG_ERROR("%s: %s %d out of range", __func__,
897 "CRm", (int) l);
898 return JIM_ERR;
899 }
900 CRm = l;
901
902 retval = Jim_GetLong(interp, argv[5], &l);
903 if (retval != JIM_OK)
904 return retval;
905 if (l & ~0x7) {
906 LOG_ERROR("%s: %s %d out of range", __func__,
907 "op2", (int) l);
908 return JIM_ERR;
909 }
910 op2 = l;
911
912 value = 0;
913
914 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
915 * that could easily be a typo! Check both...
916 *
917 * FIXME change the call syntax here ... simplest to just pass
918 * the MRC() or MCR() instruction to be executed. That will also
919 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
920 * if that's ever needed.
921 */
922 if (argc == 7) {
923 retval = Jim_GetLong(interp, argv[6], &l);
924 if (retval != JIM_OK) {
925 return retval;
926 }
927 value = l;
928
929 /* NOTE: parameters reordered! */
930 // ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2)
931 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
932 if (retval != ERROR_OK)
933 return JIM_ERR;
934 } else {
935 /* NOTE: parameters reordered! */
936 // ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2)
937 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
938 if (retval != ERROR_OK)
939 return JIM_ERR;
940
941 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
942 }
943
944 return JIM_OK;
945 }
946
947 COMMAND_HANDLER(handle_arm_semihosting_command)
948 {
949 struct target *target = get_current_target(CMD_CTX);
950 struct arm *arm = target ? target_to_arm(target) : NULL;
951
952 if (!is_arm(arm)) {
953 command_print(CMD_CTX, "current target isn't an ARM");
954 return ERROR_FAIL;
955 }
956
957 if (!arm->setup_semihosting)
958 {
959 command_print(CMD_CTX, "semihosting not supported for current target");
960 }
961
962 if (CMD_ARGC > 0)
963 {
964 int semihosting;
965
966 COMMAND_PARSE_ENABLE(CMD_ARGV[0], semihosting);
967
968 if (!target_was_examined(target))
969 {
970 LOG_ERROR("Target not examined yet");
971 return ERROR_FAIL;
972 }
973
974 if (arm->setup_semihosting(target, semihosting) != ERROR_OK) {
975 LOG_ERROR("Failed to Configure semihosting");
976 return ERROR_FAIL;
977 }
978
979 /* FIXME never let that "catch" be dropped! */
980 arm->is_semihosting = semihosting;
981 }
982
983 command_print(CMD_CTX, "semihosting is %s",
984 arm->is_semihosting
985 ? "enabled" : "disabled");
986
987 return ERROR_OK;
988 }
989
990 static const struct command_registration arm_exec_command_handlers[] = {
991 {
992 .name = "reg",
993 .handler = handle_armv4_5_reg_command,
994 .mode = COMMAND_EXEC,
995 .help = "display ARM core registers",
996 },
997 {
998 .name = "core_state",
999 .handler = handle_armv4_5_core_state_command,
1000 .mode = COMMAND_EXEC,
1001 .usage = "['arm'|'thumb']",
1002 .help = "display/change ARM core state",
1003 },
1004 {
1005 .name = "disassemble",
1006 .handler = handle_arm_disassemble_command,
1007 .mode = COMMAND_EXEC,
1008 .usage = "address [count ['thumb']]",
1009 .help = "disassemble instructions ",
1010 },
1011 {
1012 .name = "mcr",
1013 .mode = COMMAND_EXEC,
1014 .jim_handler = &jim_mcrmrc,
1015 .help = "write coprocessor register",
1016 .usage = "cpnum op1 CRn op2 CRm value",
1017 },
1018 {
1019 .name = "mrc",
1020 .jim_handler = &jim_mcrmrc,
1021 .help = "read coprocessor register",
1022 .usage = "cpnum op1 CRn op2 CRm",
1023 },
1024 {
1025 "semihosting",
1026 .handler = handle_arm_semihosting_command,
1027 .mode = COMMAND_EXEC,
1028 .usage = "['enable'|'disable']",
1029 .help = "activate support for semihosting operations",
1030 },
1031
1032 COMMAND_REGISTRATION_DONE
1033 };
1034 const struct command_registration arm_command_handlers[] = {
1035 {
1036 .name = "arm",
1037 .mode = COMMAND_ANY,
1038 .help = "ARM command group",
1039 .chain = arm_exec_command_handlers,
1040 },
1041 COMMAND_REGISTRATION_DONE
1042 };
1043
1044 int arm_get_gdb_reg_list(struct target *target,
1045 struct reg **reg_list[], int *reg_list_size)
1046 {
1047 struct arm *armv4_5 = target_to_arm(target);
1048 int i;
1049
1050 if (!is_arm_mode(armv4_5->core_mode))
1051 return ERROR_FAIL;
1052
1053 *reg_list_size = 26;
1054 *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
1055
1056 for (i = 0; i < 16; i++)
1057 (*reg_list)[i] = arm_reg_current(armv4_5, i);
1058
1059 for (i = 16; i < 24; i++)
1060 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1061
1062 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1063 (*reg_list)[25] = armv4_5->cpsr;
1064
1065 return ERROR_OK;
1066 }
1067
1068 /* wait for execution to complete and check exit point */
1069 static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
1070 {
1071 int retval;
1072 struct arm *armv4_5 = target_to_arm(target);
1073
1074 if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK)
1075 {
1076 return retval;
1077 }
1078 if (target->state != TARGET_HALTED)
1079 {
1080 if ((retval = target_halt(target)) != ERROR_OK)
1081 return retval;
1082 if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
1083 {
1084 return retval;
1085 }
1086 return ERROR_TARGET_TIMEOUT;
1087 }
1088
1089 /* fast exit: ARMv5+ code can use BKPT */
1090 if (exit_point && buf_get_u32(armv4_5->pc->value, 0, 32) != exit_point)
1091 {
1092 LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1093 buf_get_u32(armv4_5->pc->value, 0, 32));
1094 return ERROR_TARGET_TIMEOUT;
1095 }
1096
1097 return ERROR_OK;
1098 }
1099
1100 int armv4_5_run_algorithm_inner(struct target *target,
1101 int num_mem_params, struct mem_param *mem_params,
1102 int num_reg_params, struct reg_param *reg_params,
1103 uint32_t entry_point, uint32_t exit_point,
1104 int timeout_ms, void *arch_info,
1105 int (*run_it)(struct target *target, uint32_t exit_point,
1106 int timeout_ms, void *arch_info))
1107 {
1108 struct arm *armv4_5 = target_to_arm(target);
1109 struct arm_algorithm *arm_algorithm_info = arch_info;
1110 enum arm_state core_state = armv4_5->core_state;
1111 uint32_t context[17];
1112 uint32_t cpsr;
1113 int exit_breakpoint_size = 0;
1114 int i;
1115 int retval = ERROR_OK;
1116
1117 LOG_DEBUG("Running algorithm");
1118
1119 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC)
1120 {
1121 LOG_ERROR("current target isn't an ARMV4/5 target");
1122 return ERROR_TARGET_INVALID;
1123 }
1124
1125 if (target->state != TARGET_HALTED)
1126 {
1127 LOG_WARNING("target not halted");
1128 return ERROR_TARGET_NOT_HALTED;
1129 }
1130
1131 if (!is_arm_mode(armv4_5->core_mode))
1132 return ERROR_FAIL;
1133
1134 /* armv5 and later can terminate with BKPT instruction; less overhead */
1135 if (!exit_point && armv4_5->is_armv4)
1136 {
1137 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1138 return ERROR_FAIL;
1139 }
1140
1141 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1142 * they'll be restored later.
1143 */
1144 for (i = 0; i <= 16; i++)
1145 {
1146 struct reg *r;
1147
1148 r = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
1149 arm_algorithm_info->core_mode, i);
1150 if (!r->valid)
1151 armv4_5->read_core_reg(target, r, i,
1152 arm_algorithm_info->core_mode);
1153 context[i] = buf_get_u32(r->value, 0, 32);
1154 }
1155 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1156
1157 for (i = 0; i < num_mem_params; i++)
1158 {
1159 if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1160 {
1161 return retval;
1162 }
1163 }
1164
1165 for (i = 0; i < num_reg_params; i++)
1166 {
1167 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1168 if (!reg)
1169 {
1170 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1171 return ERROR_INVALID_ARGUMENTS;
1172 }
1173
1174 if (reg->size != reg_params[i].size)
1175 {
1176 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1177 return ERROR_INVALID_ARGUMENTS;
1178 }
1179
1180 if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK)
1181 {
1182 return retval;
1183 }
1184 }
1185
1186 armv4_5->core_state = arm_algorithm_info->core_state;
1187 if (armv4_5->core_state == ARM_STATE_ARM)
1188 exit_breakpoint_size = 4;
1189 else if (armv4_5->core_state == ARM_STATE_THUMB)
1190 exit_breakpoint_size = 2;
1191 else
1192 {
1193 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1194 return ERROR_INVALID_ARGUMENTS;
1195 }
1196
1197 if (arm_algorithm_info->core_mode != ARM_MODE_ANY)
1198 {
1199 LOG_DEBUG("setting core_mode: 0x%2.2x",
1200 arm_algorithm_info->core_mode);
1201 buf_set_u32(armv4_5->cpsr->value, 0, 5,
1202 arm_algorithm_info->core_mode);
1203 armv4_5->cpsr->dirty = 1;
1204 armv4_5->cpsr->valid = 1;
1205 }
1206
1207 /* terminate using a hardware or (ARMv5+) software breakpoint */
1208 if (exit_point && (retval = breakpoint_add(target, exit_point,
1209 exit_breakpoint_size, BKPT_HARD)) != ERROR_OK)
1210 {
1211 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1212 return ERROR_TARGET_FAILURE;
1213 }
1214
1215 if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
1216 {
1217 return retval;
1218 }
1219 int retvaltemp;
1220 retval = run_it(target, exit_point, timeout_ms, arch_info);
1221
1222 if (exit_point)
1223 breakpoint_remove(target, exit_point);
1224
1225 if (retval != ERROR_OK)
1226 return retval;
1227
1228 for (i = 0; i < num_mem_params; i++)
1229 {
1230 if (mem_params[i].direction != PARAM_OUT)
1231 if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1232 {
1233 retval = retvaltemp;
1234 }
1235 }
1236
1237 for (i = 0; i < num_reg_params; i++)
1238 {
1239 if (reg_params[i].direction != PARAM_OUT)
1240 {
1241
1242 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1243 if (!reg)
1244 {
1245 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1246 retval = ERROR_INVALID_ARGUMENTS;
1247 continue;
1248 }
1249
1250 if (reg->size != reg_params[i].size)
1251 {
1252 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1253 retval = ERROR_INVALID_ARGUMENTS;
1254 continue;
1255 }
1256
1257 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1258 }
1259 }
1260
1261 /* restore everything we saved before (17 or 18 registers) */
1262 for (i = 0; i <= 16; i++)
1263 {
1264 uint32_t regvalue;
1265 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32);
1266 if (regvalue != context[i])
1267 {
1268 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).name, context[i]);
1269 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1270 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).valid = 1;
1271 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).dirty = 1;
1272 }
1273 }
1274
1275 arm_set_cpsr(armv4_5, cpsr);
1276 armv4_5->cpsr->dirty = 1;
1277
1278 armv4_5->core_state = core_state;
1279
1280 return retval;
1281 }
1282
1283 int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
1284 {
1285 return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion);
1286 }
1287
1288 /**
1289 * Runs ARM code in the target to calculate a CRC32 checksum.
1290 *
1291 * \todo On ARMv5+, rely on BKPT termination for reduced overhead.
1292 */
1293 int arm_checksum_memory(struct target *target,
1294 uint32_t address, uint32_t count, uint32_t *checksum)
1295 {
1296 struct working_area *crc_algorithm;
1297 struct arm_algorithm armv4_5_info;
1298 struct reg_param reg_params[2];
1299 int retval;
1300 uint32_t i;
1301
1302 static const uint32_t arm_crc_code[] = {
1303 0xE1A02000, /* mov r2, r0 */
1304 0xE3E00000, /* mov r0, #0xffffffff */
1305 0xE1A03001, /* mov r3, r1 */
1306 0xE3A04000, /* mov r4, #0 */
1307 0xEA00000B, /* b ncomp */
1308 /* nbyte: */
1309 0xE7D21004, /* ldrb r1, [r2, r4] */
1310 0xE59F7030, /* ldr r7, CRC32XOR */
1311 0xE0200C01, /* eor r0, r0, r1, asl 24 */
1312 0xE3A05000, /* mov r5, #0 */
1313 /* loop: */
1314 0xE3500000, /* cmp r0, #0 */
1315 0xE1A06080, /* mov r6, r0, asl #1 */
1316 0xE2855001, /* add r5, r5, #1 */
1317 0xE1A00006, /* mov r0, r6 */
1318 0xB0260007, /* eorlt r0, r6, r7 */
1319 0xE3550008, /* cmp r5, #8 */
1320 0x1AFFFFF8, /* bne loop */
1321 0xE2844001, /* add r4, r4, #1 */
1322 /* ncomp: */
1323 0xE1540003, /* cmp r4, r3 */
1324 0x1AFFFFF1, /* bne nbyte */
1325 /* end: */
1326 0xEAFFFFFE, /* b end */
1327 /* CRC32XOR: */
1328 0x04C11DB7 /* .word 0x04C11DB7 */
1329 };
1330
1331 retval = target_alloc_working_area(target,
1332 sizeof(arm_crc_code), &crc_algorithm);
1333 if (retval != ERROR_OK)
1334 return retval;
1335
1336 /* convert code into a buffer in target endianness */
1337 for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) {
1338 retval = target_write_u32(target,
1339 crc_algorithm->address + i * sizeof(uint32_t),
1340 arm_crc_code[i]);
1341 if (retval != ERROR_OK)
1342 return retval;
1343 }
1344
1345 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1346 armv4_5_info.core_mode = ARM_MODE_SVC;
1347 armv4_5_info.core_state = ARM_STATE_ARM;
1348
1349 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1350 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1351
1352 buf_set_u32(reg_params[0].value, 0, 32, address);
1353 buf_set_u32(reg_params[1].value, 0, 32, count);
1354
1355 /* 20 second timeout/megabyte */
1356 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1357
1358 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1359 crc_algorithm->address,
1360 crc_algorithm->address + sizeof(arm_crc_code) - 8,
1361 timeout, &armv4_5_info);
1362 if (retval != ERROR_OK) {
1363 LOG_ERROR("error executing ARM crc algorithm");
1364 destroy_reg_param(&reg_params[0]);
1365 destroy_reg_param(&reg_params[1]);
1366 target_free_working_area(target, crc_algorithm);
1367 return retval;
1368 }
1369
1370 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1371
1372 destroy_reg_param(&reg_params[0]);
1373 destroy_reg_param(&reg_params[1]);
1374
1375 target_free_working_area(target, crc_algorithm);
1376
1377 return ERROR_OK;
1378 }
1379
1380 /**
1381 * Runs ARM code in the target to check whether a memory block holds
1382 * all ones. NOR flash which has been erased, and thus may be written,
1383 * holds all ones.
1384 *
1385 * \todo On ARMv5+, rely on BKPT termination for reduced overhead.
1386 */
1387 int arm_blank_check_memory(struct target *target,
1388 uint32_t address, uint32_t count, uint32_t *blank)
1389 {
1390 struct working_area *check_algorithm;
1391 struct reg_param reg_params[3];
1392 struct arm_algorithm armv4_5_info;
1393 int retval;
1394 uint32_t i;
1395
1396 static const uint32_t check_code[] = {
1397 /* loop: */
1398 0xe4d03001, /* ldrb r3, [r0], #1 */
1399 0xe0022003, /* and r2, r2, r3 */
1400 0xe2511001, /* subs r1, r1, #1 */
1401 0x1afffffb, /* bne loop */
1402 /* end: */
1403 0xeafffffe /* b end */
1404 };
1405
1406 /* make sure we have a working area */
1407 retval = target_alloc_working_area(target,
1408 sizeof(check_code), &check_algorithm);
1409 if (retval != ERROR_OK)
1410 return retval;
1411
1412 /* convert code into a buffer in target endianness */
1413 for (i = 0; i < ARRAY_SIZE(check_code); i++) {
1414 retval = target_write_u32(target,
1415 check_algorithm->address
1416 + i * sizeof(uint32_t),
1417 check_code[i]);
1418 if (retval != ERROR_OK)
1419 return retval;
1420 }
1421
1422 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1423 armv4_5_info.core_mode = ARM_MODE_SVC;
1424 armv4_5_info.core_state = ARM_STATE_ARM;
1425
1426 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1427 buf_set_u32(reg_params[0].value, 0, 32, address);
1428
1429 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1430 buf_set_u32(reg_params[1].value, 0, 32, count);
1431
1432 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1433 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
1434
1435 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1436 check_algorithm->address,
1437 check_algorithm->address + sizeof(check_code) - 4,
1438 10000, &armv4_5_info);
1439 if (retval != ERROR_OK) {
1440 destroy_reg_param(&reg_params[0]);
1441 destroy_reg_param(&reg_params[1]);
1442 destroy_reg_param(&reg_params[2]);
1443 target_free_working_area(target, check_algorithm);
1444 return retval;
1445 }
1446
1447 *blank = buf_get_u32(reg_params[2].value, 0, 32);
1448
1449 destroy_reg_param(&reg_params[0]);
1450 destroy_reg_param(&reg_params[1]);
1451 destroy_reg_param(&reg_params[2]);
1452
1453 target_free_working_area(target, check_algorithm);
1454
1455 return ERROR_OK;
1456 }
1457
1458 static int arm_full_context(struct target *target)
1459 {
1460 struct arm *armv4_5 = target_to_arm(target);
1461 unsigned num_regs = armv4_5->core_cache->num_regs;
1462 struct reg *reg = armv4_5->core_cache->reg_list;
1463 int retval = ERROR_OK;
1464
1465 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1466 if (reg->valid)
1467 continue;
1468 retval = armv4_5_get_core_reg(reg);
1469 }
1470 return retval;
1471 }
1472
1473 static int arm_default_mrc(struct target *target, int cpnum,
1474 uint32_t op1, uint32_t op2,
1475 uint32_t CRn, uint32_t CRm,
1476 uint32_t *value)
1477 {
1478 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1479 return ERROR_FAIL;
1480 }
1481
1482 static int arm_default_mcr(struct target *target, int cpnum,
1483 uint32_t op1, uint32_t op2,
1484 uint32_t CRn, uint32_t CRm,
1485 uint32_t value)
1486 {
1487 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1488 return ERROR_FAIL;
1489 }
1490
1491 int arm_init_arch_info(struct target *target, struct arm *armv4_5)
1492 {
1493 target->arch_info = armv4_5;
1494 armv4_5->target = target;
1495
1496 armv4_5->common_magic = ARM_COMMON_MAGIC;
1497
1498 /* core_type may be overridden by subtype logic */
1499 if (armv4_5->core_type != ARM_MODE_THREAD) {
1500 armv4_5->core_type = ARM_MODE_ANY;
1501 arm_set_cpsr(armv4_5, ARM_MODE_USR);
1502 }
1503
1504 /* default full_context() has no core-specific optimizations */
1505 if (!armv4_5->full_context && armv4_5->read_core_reg)
1506 armv4_5->full_context = arm_full_context;
1507
1508 if (!armv4_5->mrc)
1509 armv4_5->mrc = arm_default_mrc;
1510 if (!armv4_5->mcr)
1511 armv4_5->mcr = arm_default_mcr;
1512
1513 return ERROR_OK;
1514 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)