jtag: linuxgpiod: drop extra parenthesis
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2018 by Liviu Ionescu *
12 * <ilg@livius.net> *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
26 ***************************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "arm.h"
33 #include "armv4_5.h"
34 #include "arm_jtag.h"
35 #include "breakpoints.h"
36 #include "arm_disassembler.h"
37 #include <helper/binarybuffer.h>
38 #include "algorithm.h"
39 #include "register.h"
40 #include "semihosting_common.h"
41
42 /* offsets into armv4_5 core register cache */
43 enum {
44 /* ARMV4_5_CPSR = 31, */
45 ARMV4_5_SPSR_FIQ = 32,
46 ARMV4_5_SPSR_IRQ = 33,
47 ARMV4_5_SPSR_SVC = 34,
48 ARMV4_5_SPSR_ABT = 35,
49 ARMV4_5_SPSR_UND = 36,
50 ARM_SPSR_MON = 41,
51 ARM_SPSR_HYP = 43,
52 };
53
54 static const uint8_t arm_usr_indices[17] = {
55 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
56 };
57
58 static const uint8_t arm_fiq_indices[8] = {
59 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
60 };
61
62 static const uint8_t arm_irq_indices[3] = {
63 23, 24, ARMV4_5_SPSR_IRQ,
64 };
65
66 static const uint8_t arm_svc_indices[3] = {
67 25, 26, ARMV4_5_SPSR_SVC,
68 };
69
70 static const uint8_t arm_abt_indices[3] = {
71 27, 28, ARMV4_5_SPSR_ABT,
72 };
73
74 static const uint8_t arm_und_indices[3] = {
75 29, 30, ARMV4_5_SPSR_UND,
76 };
77
78 static const uint8_t arm_mon_indices[3] = {
79 39, 40, ARM_SPSR_MON,
80 };
81
82 static const uint8_t arm_hyp_indices[2] = {
83 42, ARM_SPSR_HYP,
84 };
85
86 static const struct {
87 const char *name;
88 unsigned short psr;
89 /* For user and system modes, these list indices for all registers.
90 * otherwise they're just indices for the shadow registers and SPSR.
91 */
92 unsigned short n_indices;
93 const uint8_t *indices;
94 } arm_mode_data[] = {
95 /* Seven modes are standard from ARM7 on. "System" and "User" share
96 * the same registers; other modes shadow from 3 to 8 registers.
97 */
98 {
99 .name = "User",
100 .psr = ARM_MODE_USR,
101 .n_indices = ARRAY_SIZE(arm_usr_indices),
102 .indices = arm_usr_indices,
103 },
104 {
105 .name = "FIQ",
106 .psr = ARM_MODE_FIQ,
107 .n_indices = ARRAY_SIZE(arm_fiq_indices),
108 .indices = arm_fiq_indices,
109 },
110 {
111 .name = "Supervisor",
112 .psr = ARM_MODE_SVC,
113 .n_indices = ARRAY_SIZE(arm_svc_indices),
114 .indices = arm_svc_indices,
115 },
116 {
117 .name = "Abort",
118 .psr = ARM_MODE_ABT,
119 .n_indices = ARRAY_SIZE(arm_abt_indices),
120 .indices = arm_abt_indices,
121 },
122 {
123 .name = "IRQ",
124 .psr = ARM_MODE_IRQ,
125 .n_indices = ARRAY_SIZE(arm_irq_indices),
126 .indices = arm_irq_indices,
127 },
128 {
129 .name = "Undefined instruction",
130 .psr = ARM_MODE_UND,
131 .n_indices = ARRAY_SIZE(arm_und_indices),
132 .indices = arm_und_indices,
133 },
134 {
135 .name = "System",
136 .psr = ARM_MODE_SYS,
137 .n_indices = ARRAY_SIZE(arm_usr_indices),
138 .indices = arm_usr_indices,
139 },
140 /* TrustZone "Security Extensions" add a secure monitor mode.
141 * This is distinct from a "debug monitor" which can support
142 * non-halting debug, in conjunction with some debuggers.
143 */
144 {
145 .name = "Secure Monitor",
146 .psr = ARM_MODE_MON,
147 .n_indices = ARRAY_SIZE(arm_mon_indices),
148 .indices = arm_mon_indices,
149 },
150 {
151 .name = "Secure Monitor ARM1176JZF-S",
152 .psr = ARM_MODE_1176_MON,
153 .n_indices = ARRAY_SIZE(arm_mon_indices),
154 .indices = arm_mon_indices,
155 },
156
157 /* These special modes are currently only supported
158 * by ARMv6M and ARMv7M profiles */
159 {
160 .name = "Thread",
161 .psr = ARM_MODE_THREAD,
162 },
163 {
164 .name = "Thread (User)",
165 .psr = ARM_MODE_USER_THREAD,
166 },
167 {
168 .name = "Handler",
169 .psr = ARM_MODE_HANDLER,
170 },
171
172 /* armv7-a with virtualization extension */
173 {
174 .name = "Hypervisor",
175 .psr = ARM_MODE_HYP,
176 .n_indices = ARRAY_SIZE(arm_hyp_indices),
177 .indices = arm_hyp_indices,
178 },
179 };
180
181 /** Map PSR mode bits to the name of an ARM processor operating mode. */
182 const char *arm_mode_name(unsigned psr_mode)
183 {
184 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 if (arm_mode_data[i].psr == psr_mode)
186 return arm_mode_data[i].name;
187 }
188 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
189 return "UNRECOGNIZED";
190 }
191
192 /** Return true iff the parameter denotes a valid ARM processor mode. */
193 bool is_arm_mode(unsigned psr_mode)
194 {
195 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
196 if (arm_mode_data[i].psr == psr_mode)
197 return true;
198 }
199 return false;
200 }
201
202 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
203 int arm_mode_to_number(enum arm_mode mode)
204 {
205 switch (mode) {
206 case ARM_MODE_ANY:
207 /* map MODE_ANY to user mode */
208 case ARM_MODE_USR:
209 return 0;
210 case ARM_MODE_FIQ:
211 return 1;
212 case ARM_MODE_IRQ:
213 return 2;
214 case ARM_MODE_SVC:
215 return 3;
216 case ARM_MODE_ABT:
217 return 4;
218 case ARM_MODE_UND:
219 return 5;
220 case ARM_MODE_SYS:
221 return 6;
222 case ARM_MODE_MON:
223 case ARM_MODE_1176_MON:
224 return 7;
225 case ARM_MODE_HYP:
226 return 8;
227 default:
228 LOG_ERROR("invalid mode value encountered %d", mode);
229 return -1;
230 }
231 }
232
233 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
234 enum arm_mode armv4_5_number_to_mode(int number)
235 {
236 switch (number) {
237 case 0:
238 return ARM_MODE_USR;
239 case 1:
240 return ARM_MODE_FIQ;
241 case 2:
242 return ARM_MODE_IRQ;
243 case 3:
244 return ARM_MODE_SVC;
245 case 4:
246 return ARM_MODE_ABT;
247 case 5:
248 return ARM_MODE_UND;
249 case 6:
250 return ARM_MODE_SYS;
251 case 7:
252 return ARM_MODE_MON;
253 case 8:
254 return ARM_MODE_HYP;
255 default:
256 LOG_ERROR("mode index out of bounds %d", number);
257 return ARM_MODE_ANY;
258 }
259 }
260
261 static const char *arm_state_strings[] = {
262 "ARM", "Thumb", "Jazelle", "ThumbEE",
263 };
264
265 /* Templates for ARM core registers.
266 *
267 * NOTE: offsets in this table are coupled to the arm_mode_data
268 * table above, the armv4_5_core_reg_map array below, and also to
269 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
270 */
271 static const struct {
272 /* The name is used for e.g. the "regs" command. */
273 const char *name;
274
275 /* The {cookie, mode} tuple uniquely identifies one register.
276 * In a given mode, cookies 0..15 map to registers R0..R15,
277 * with R13..R15 usually called SP, LR, PC.
278 *
279 * MODE_ANY is used as *input* to the mapping, and indicates
280 * various special cases (sigh) and errors.
281 *
282 * Cookie 16 is (currently) confusing, since it indicates
283 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
284 * (Exception modes have both CPSR and SPSR registers ...)
285 */
286 unsigned cookie;
287 unsigned gdb_index;
288 enum arm_mode mode;
289 } arm_core_regs[] = {
290 /* IMPORTANT: we guarantee that the first eight cached registers
291 * correspond to r0..r7, and the fifteenth to PC, so that callers
292 * don't need to map them.
293 */
294 [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
295 [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
296 [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
297 [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
298 [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
299 [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
300 [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
301 [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
302
303 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
304 * them as MODE_ANY creates special cases. (ANY means
305 * "not mapped" elsewhere; here it's "everything but FIQ".)
306 */
307 [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
308 [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
309 [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
310 [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
311 [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
312
313 /* Historical GDB mapping of indices:
314 * - 13-14 are sp and lr, but banked counterparts are used
315 * - 16-24 are left for deprecated 8 FPA + 1 FPS
316 * - 25 is the cpsr
317 */
318
319 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
320 [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
321 [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
322
323 /* guaranteed to be at index 15 */
324 [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
325 [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
326 [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
327 [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
328 [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
329 [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
330
331 [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
332 [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
333
334 [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
335 [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
336
337 [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
338 [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
339
340 [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
341 [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
342
343 [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
344 [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
345
346 [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
347 [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
348 [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
349 [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
350 [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
351 [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
352
353 /* These are only used for GDB target description, banked registers are accessed instead */
354 [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
355 [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
356
357 /* These exist only when the Security Extension (TrustZone) is present */
358 [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
359 [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
360 [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
361
362 /* These exist only when the Virtualization Extensions is present */
363 [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
364 [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
365 };
366
367 static const struct {
368 unsigned int id;
369 const char *name;
370 uint32_t bits;
371 enum arm_mode mode;
372 enum reg_type type;
373 const char *group;
374 const char *feature;
375 } arm_vfp_v3_regs[] = {
376 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
398 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
399 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
400 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
401 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
402 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
403 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
404 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
405 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
406 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
407 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
408 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
409 };
410
411 /* map core mode (USR, FIQ, ...) and register number to
412 * indices into the register cache
413 */
414 const int armv4_5_core_reg_map[9][17] = {
415 { /* USR */
416 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
417 },
418 { /* FIQ (8 shadows of USR, vs normal 3) */
419 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
420 },
421 { /* IRQ */
422 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
423 },
424 { /* SVC */
425 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
426 },
427 { /* ABT */
428 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
429 },
430 { /* UND */
431 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
432 },
433 { /* SYS (same registers as USR) */
434 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
435 },
436 { /* MON */
437 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
438 },
439 { /* HYP */
440 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
441 }
442 };
443
444 /**
445 * Configures host-side ARM records to reflect the specified CPSR.
446 * Later, code can use arm_reg_current() to map register numbers
447 * according to how they are exposed by this mode.
448 */
449 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
450 {
451 enum arm_mode mode = cpsr & 0x1f;
452 int num;
453
454 /* NOTE: this may be called very early, before the register
455 * cache is set up. We can't defend against many errors, in
456 * particular against CPSRs that aren't valid *here* ...
457 */
458 if (arm->cpsr) {
459 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
460 arm->cpsr->valid = true;
461 arm->cpsr->dirty = false;
462 }
463
464 arm->core_mode = mode;
465
466 /* mode_to_number() warned; set up a somewhat-sane mapping */
467 num = arm_mode_to_number(mode);
468 if (num < 0) {
469 mode = ARM_MODE_USR;
470 num = 0;
471 }
472
473 arm->map = &armv4_5_core_reg_map[num][0];
474 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
475 ? NULL
476 : arm->core_cache->reg_list + arm->map[16];
477
478 /* Older ARMs won't have the J bit */
479 enum arm_state state;
480
481 if (cpsr & (1 << 5)) { /* T */
482 if (cpsr & (1 << 24)) { /* J */
483 LOG_WARNING("ThumbEE -- incomplete support");
484 state = ARM_STATE_THUMB_EE;
485 } else
486 state = ARM_STATE_THUMB;
487 } else {
488 if (cpsr & (1 << 24)) { /* J */
489 LOG_ERROR("Jazelle state handling is BROKEN!");
490 state = ARM_STATE_JAZELLE;
491 } else
492 state = ARM_STATE_ARM;
493 }
494 arm->core_state = state;
495
496 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
497 arm_mode_name(mode),
498 arm_state_strings[arm->core_state]);
499 }
500
501 /**
502 * Returns handle to the register currently mapped to a given number.
503 * Someone must have called arm_set_cpsr() before.
504 *
505 * \param arm This core's state and registers are used.
506 * \param regnum From 0..15 corresponding to R0..R14 and PC.
507 * Note that R0..R7 don't require mapping; you may access those
508 * as the first eight entries in the register cache. Likewise
509 * R15 (PC) doesn't need mapping; you may also access it directly.
510 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
511 * CPSR (arm->cpsr) is also not mapped.
512 */
513 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
514 {
515 struct reg *r;
516
517 if (regnum > 16)
518 return NULL;
519
520 if (!arm->map) {
521 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
522 r = arm->core_cache->reg_list + regnum;
523 } else
524 r = arm->core_cache->reg_list + arm->map[regnum];
525
526 /* e.g. invalid CPSR said "secure monitor" mode on a core
527 * that doesn't support it...
528 */
529 if (!r) {
530 LOG_ERROR("Invalid CPSR mode");
531 r = arm->core_cache->reg_list + regnum;
532 }
533
534 return r;
535 }
536
537 static const uint8_t arm_gdb_dummy_fp_value[12];
538
539 static struct reg_feature arm_gdb_dummy_fp_features = {
540 .name = "net.sourceforge.openocd.fake_fpa"
541 };
542
543 /**
544 * Dummy FPA registers are required to support GDB on ARM.
545 * Register packets require eight obsolete FPA register values.
546 * Modern ARM cores use Vector Floating Point (VFP), if they
547 * have any floating point support. VFP is not FPA-compatible.
548 */
549 struct reg arm_gdb_dummy_fp_reg = {
550 .name = "GDB dummy FPA register",
551 .value = (uint8_t *) arm_gdb_dummy_fp_value,
552 .valid = true,
553 .size = 96,
554 .exist = false,
555 .number = 16,
556 .feature = &arm_gdb_dummy_fp_features,
557 .group = "fake_fpa",
558 };
559
560 static const uint8_t arm_gdb_dummy_fps_value[4];
561
562 /**
563 * Dummy FPA status registers are required to support GDB on ARM.
564 * Register packets require an obsolete FPA status register.
565 */
566 struct reg arm_gdb_dummy_fps_reg = {
567 .name = "GDB dummy FPA status register",
568 .value = (uint8_t *) arm_gdb_dummy_fps_value,
569 .valid = true,
570 .size = 32,
571 .exist = false,
572 .number = 24,
573 .feature = &arm_gdb_dummy_fp_features,
574 .group = "fake_fpa",
575 };
576
577 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
578
579 static void arm_gdb_dummy_init(void)
580 {
581 register_init_dummy(&arm_gdb_dummy_fp_reg);
582 register_init_dummy(&arm_gdb_dummy_fps_reg);
583 }
584
585 static int armv4_5_get_core_reg(struct reg *reg)
586 {
587 int retval;
588 struct arm_reg *reg_arch_info = reg->arch_info;
589 struct target *target = reg_arch_info->target;
590
591 if (target->state != TARGET_HALTED) {
592 LOG_ERROR("Target not halted");
593 return ERROR_TARGET_NOT_HALTED;
594 }
595
596 retval = reg_arch_info->arm->read_core_reg(target, reg,
597 reg_arch_info->num, reg_arch_info->mode);
598 if (retval == ERROR_OK) {
599 reg->valid = true;
600 reg->dirty = false;
601 }
602
603 return retval;
604 }
605
606 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
607 {
608 struct arm_reg *reg_arch_info = reg->arch_info;
609 struct target *target = reg_arch_info->target;
610 struct arm *armv4_5_target = target_to_arm(target);
611 uint32_t value = buf_get_u32(buf, 0, 32);
612
613 if (target->state != TARGET_HALTED) {
614 LOG_ERROR("Target not halted");
615 return ERROR_TARGET_NOT_HALTED;
616 }
617
618 /* Except for CPSR, the "reg" command exposes a writeback model
619 * for the register cache.
620 */
621 if (reg == armv4_5_target->cpsr) {
622 arm_set_cpsr(armv4_5_target, value);
623
624 /* Older cores need help to be in ARM mode during halt
625 * mode debug, so we clear the J and T bits if we flush.
626 * For newer cores (v6/v7a/v7r) we don't need that, but
627 * it won't hurt since CPSR is always flushed anyway.
628 */
629 if (armv4_5_target->core_mode !=
630 (enum arm_mode)(value & 0x1f)) {
631 LOG_DEBUG("changing ARM core mode to '%s'",
632 arm_mode_name(value & 0x1f));
633 value &= ~((1 << 24) | (1 << 5));
634 uint8_t t[4];
635 buf_set_u32(t, 0, 32, value);
636 armv4_5_target->write_core_reg(target, reg,
637 16, ARM_MODE_ANY, t);
638 }
639 } else {
640 buf_set_u32(reg->value, 0, 32, value);
641 if (reg->size == 64) {
642 value = buf_get_u32(buf + 4, 0, 32);
643 buf_set_u32(reg->value + 4, 0, 32, value);
644 }
645 reg->valid = true;
646 }
647 reg->dirty = true;
648
649 return ERROR_OK;
650 }
651
652 static const struct reg_arch_type arm_reg_type = {
653 .get = armv4_5_get_core_reg,
654 .set = armv4_5_set_core_reg,
655 };
656
657 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
658 {
659 int num_regs = ARRAY_SIZE(arm_core_regs);
660 int num_core_regs = num_regs;
661 if (arm->arm_vfp_version == ARM_VFP_V3)
662 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
663
664 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
665 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
666 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
667 int i;
668
669 if (!cache || !reg_list || !reg_arch_info) {
670 free(cache);
671 free(reg_list);
672 free(reg_arch_info);
673 return NULL;
674 }
675
676 cache->name = "ARM registers";
677 cache->next = NULL;
678 cache->reg_list = reg_list;
679 cache->num_regs = 0;
680
681 for (i = 0; i < num_core_regs; i++) {
682 /* Skip registers this core doesn't expose */
683 if (arm_core_regs[i].mode == ARM_MODE_MON
684 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
685 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
686 continue;
687 if (arm_core_regs[i].mode == ARM_MODE_HYP
688 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
689 continue;
690
691 /* REVISIT handle Cortex-M, which only shadows R13/SP */
692
693 reg_arch_info[i].num = arm_core_regs[i].cookie;
694 reg_arch_info[i].mode = arm_core_regs[i].mode;
695 reg_arch_info[i].target = target;
696 reg_arch_info[i].arm = arm;
697
698 reg_list[i].name = arm_core_regs[i].name;
699 reg_list[i].number = arm_core_regs[i].gdb_index;
700 reg_list[i].size = 32;
701 reg_list[i].value = reg_arch_info[i].value;
702 reg_list[i].type = &arm_reg_type;
703 reg_list[i].arch_info = &reg_arch_info[i];
704 reg_list[i].exist = true;
705
706 /* This really depends on the calling convention in use */
707 reg_list[i].caller_save = false;
708
709 /* Registers data type, as used by GDB target description */
710 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
711 switch (arm_core_regs[i].cookie) {
712 case 13:
713 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
714 break;
715 case 14:
716 case 15:
717 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
718 break;
719 default:
720 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
721 break;
722 }
723
724 /* let GDB shows banked registers only in "info all-reg" */
725 reg_list[i].feature = malloc(sizeof(struct reg_feature));
726 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
727 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
728 reg_list[i].group = "general";
729 } else {
730 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
731 reg_list[i].group = "banked";
732 }
733
734 cache->num_regs++;
735 }
736
737 int j;
738 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
739 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
740 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
741 reg_arch_info[i].target = target;
742 reg_arch_info[i].arm = arm;
743
744 reg_list[i].name = arm_vfp_v3_regs[j].name;
745 reg_list[i].number = arm_vfp_v3_regs[j].id;
746 reg_list[i].size = arm_vfp_v3_regs[j].bits;
747 reg_list[i].value = reg_arch_info[i].value;
748 reg_list[i].type = &arm_reg_type;
749 reg_list[i].arch_info = &reg_arch_info[i];
750 reg_list[i].exist = true;
751
752 reg_list[i].caller_save = false;
753
754 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
755 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
756
757 reg_list[i].feature = malloc(sizeof(struct reg_feature));
758 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
759
760 reg_list[i].group = arm_vfp_v3_regs[j].group;
761
762 cache->num_regs++;
763 }
764
765 arm->pc = reg_list + 15;
766 arm->cpsr = reg_list + ARMV4_5_CPSR;
767 arm->core_cache = cache;
768
769 return cache;
770 }
771
772 void arm_free_reg_cache(struct arm *arm)
773 {
774 if (!arm || !arm->core_cache)
775 return;
776
777 struct reg_cache *cache = arm->core_cache;
778
779 for (unsigned int i = 0; i < cache->num_regs; i++) {
780 struct reg *reg = &cache->reg_list[i];
781
782 free(reg->feature);
783 free(reg->reg_data_type);
784 }
785
786 free(cache->reg_list[0].arch_info);
787 free(cache->reg_list);
788 free(cache);
789
790 arm->core_cache = NULL;
791 }
792
793 int arm_arch_state(struct target *target)
794 {
795 struct arm *arm = target_to_arm(target);
796
797 if (arm->common_magic != ARM_COMMON_MAGIC) {
798 LOG_ERROR("BUG: called for a non-ARM target");
799 return ERROR_FAIL;
800 }
801
802 /* avoid filling log waiting for fileio reply */
803 if (target->semihosting && target->semihosting->hit_fileio)
804 return ERROR_OK;
805
806 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
807 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
808 arm_state_strings[arm->core_state],
809 debug_reason_name(target),
810 arm_mode_name(arm->core_mode),
811 buf_get_u32(arm->cpsr->value, 0, 32),
812 buf_get_u32(arm->pc->value, 0, 32),
813 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
814 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
815
816 return ERROR_OK;
817 }
818
819 COMMAND_HANDLER(handle_armv4_5_reg_command)
820 {
821 struct target *target = get_current_target(CMD_CTX);
822 struct arm *arm = target_to_arm(target);
823 struct reg *regs;
824
825 if (!is_arm(arm)) {
826 command_print(CMD, "current target isn't an ARM");
827 return ERROR_FAIL;
828 }
829
830 if (target->state != TARGET_HALTED) {
831 command_print(CMD, "error: target must be halted for register accesses");
832 return ERROR_FAIL;
833 }
834
835 if (arm->core_type != ARM_CORE_TYPE_STD) {
836 command_print(CMD,
837 "Microcontroller Profile not supported - use standard reg cmd");
838 return ERROR_OK;
839 }
840
841 if (!is_arm_mode(arm->core_mode)) {
842 LOG_ERROR("not a valid arm core mode - communication failure?");
843 return ERROR_FAIL;
844 }
845
846 if (!arm->full_context) {
847 command_print(CMD, "error: target doesn't support %s",
848 CMD_NAME);
849 return ERROR_FAIL;
850 }
851
852 regs = arm->core_cache->reg_list;
853
854 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
855 const char *name;
856 char *sep = "\n";
857 char *shadow = "";
858
859 /* label this bank of registers (or shadows) */
860 switch (arm_mode_data[mode].psr) {
861 case ARM_MODE_SYS:
862 continue;
863 case ARM_MODE_USR:
864 name = "System and User";
865 sep = "";
866 break;
867 case ARM_MODE_HYP:
868 if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
869 continue;
870 /* FALLTHROUGH */
871 case ARM_MODE_MON:
872 if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
873 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
874 continue;
875 /* FALLTHROUGH */
876 default:
877 name = arm_mode_data[mode].name;
878 shadow = "shadow ";
879 break;
880 }
881 command_print(CMD, "%s%s mode %sregisters",
882 sep, name, shadow);
883
884 /* display N rows of up to 4 registers each */
885 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
886 char output[80];
887 int output_len = 0;
888
889 for (unsigned j = 0; j < 4; j++, i++) {
890 uint32_t value;
891 struct reg *reg = regs;
892
893 if (i >= arm_mode_data[mode].n_indices)
894 break;
895
896 reg += arm_mode_data[mode].indices[i];
897
898 /* REVISIT be smarter about faults... */
899 if (!reg->valid)
900 arm->full_context(target);
901
902 value = buf_get_u32(reg->value, 0, 32);
903 output_len += snprintf(output + output_len,
904 sizeof(output) - output_len,
905 "%8s: %8.8" PRIx32 " ",
906 reg->name, value);
907 }
908 command_print(CMD, "%s", output);
909 }
910 }
911
912 return ERROR_OK;
913 }
914
915 COMMAND_HANDLER(handle_armv4_5_core_state_command)
916 {
917 struct target *target = get_current_target(CMD_CTX);
918 struct arm *arm = target_to_arm(target);
919
920 if (!is_arm(arm)) {
921 command_print(CMD, "current target isn't an ARM");
922 return ERROR_FAIL;
923 }
924
925 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
926 /* armv7m not supported */
927 command_print(CMD, "Unsupported Command");
928 return ERROR_OK;
929 }
930
931 if (CMD_ARGC > 0) {
932 if (strcmp(CMD_ARGV[0], "arm") == 0)
933 arm->core_state = ARM_STATE_ARM;
934 if (strcmp(CMD_ARGV[0], "thumb") == 0)
935 arm->core_state = ARM_STATE_THUMB;
936 }
937
938 command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
939
940 return ERROR_OK;
941 }
942
943 COMMAND_HANDLER(handle_arm_disassemble_command)
944 {
945 #if HAVE_CAPSTONE
946 struct target *target = get_current_target(CMD_CTX);
947
948 if (target == NULL) {
949 LOG_ERROR("No target selected");
950 return ERROR_FAIL;
951 }
952
953 struct arm *arm = target_to_arm(target);
954 target_addr_t address;
955 unsigned int count = 1;
956 bool thumb = false;
957
958 if (!is_arm(arm)) {
959 command_print(CMD, "current target isn't an ARM");
960 return ERROR_FAIL;
961 }
962
963 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
964 /* armv7m is always thumb mode */
965 thumb = true;
966 }
967
968 switch (CMD_ARGC) {
969 case 3:
970 if (strcmp(CMD_ARGV[2], "thumb") != 0)
971 return ERROR_COMMAND_SYNTAX_ERROR;
972 thumb = true;
973 /* FALL THROUGH */
974 case 2:
975 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
976 /* FALL THROUGH */
977 case 1:
978 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
979 if (address & 0x01) {
980 if (!thumb) {
981 command_print(CMD, "Disassemble as Thumb");
982 thumb = true;
983 }
984 address &= ~1;
985 }
986 break;
987 default:
988 return ERROR_COMMAND_SYNTAX_ERROR;
989 }
990
991 return arm_disassemble(CMD, target, address, count, thumb);
992 #else
993 command_print(CMD, "capstone disassembly framework required");
994 return ERROR_FAIL;
995 #endif
996 }
997
998 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
999 {
1000 struct command_context *context;
1001 struct target *target;
1002 struct arm *arm;
1003 int retval;
1004
1005 context = current_command_context(interp);
1006 assert(context != NULL);
1007
1008 target = get_current_target(context);
1009 if (target == NULL) {
1010 LOG_ERROR("%s: no current target", __func__);
1011 return JIM_ERR;
1012 }
1013 if (!target_was_examined(target)) {
1014 LOG_ERROR("%s: not yet examined", target_name(target));
1015 return JIM_ERR;
1016 }
1017 arm = target_to_arm(target);
1018 if (!is_arm(arm)) {
1019 LOG_ERROR("%s: not an ARM", target_name(target));
1020 return JIM_ERR;
1021 }
1022
1023 if ((argc < 6) || (argc > 7)) {
1024 /* FIXME use the command name to verify # params... */
1025 LOG_ERROR("%s: wrong number of arguments", __func__);
1026 return JIM_ERR;
1027 }
1028
1029 int cpnum;
1030 uint32_t op1;
1031 uint32_t op2;
1032 uint32_t CRn;
1033 uint32_t CRm;
1034 uint32_t value;
1035 long l;
1036
1037 /* NOTE: parameter sequence matches ARM instruction set usage:
1038 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1039 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1040 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1041 */
1042 retval = Jim_GetLong(interp, argv[1], &l);
1043 if (retval != JIM_OK)
1044 return retval;
1045 if (l & ~0xf) {
1046 LOG_ERROR("%s: %s %d out of range", __func__,
1047 "coprocessor", (int) l);
1048 return JIM_ERR;
1049 }
1050 cpnum = l;
1051
1052 retval = Jim_GetLong(interp, argv[2], &l);
1053 if (retval != JIM_OK)
1054 return retval;
1055 if (l & ~0x7) {
1056 LOG_ERROR("%s: %s %d out of range", __func__,
1057 "op1", (int) l);
1058 return JIM_ERR;
1059 }
1060 op1 = l;
1061
1062 retval = Jim_GetLong(interp, argv[3], &l);
1063 if (retval != JIM_OK)
1064 return retval;
1065 if (l & ~0xf) {
1066 LOG_ERROR("%s: %s %d out of range", __func__,
1067 "CRn", (int) l);
1068 return JIM_ERR;
1069 }
1070 CRn = l;
1071
1072 retval = Jim_GetLong(interp, argv[4], &l);
1073 if (retval != JIM_OK)
1074 return retval;
1075 if (l & ~0xf) {
1076 LOG_ERROR("%s: %s %d out of range", __func__,
1077 "CRm", (int) l);
1078 return JIM_ERR;
1079 }
1080 CRm = l;
1081
1082 retval = Jim_GetLong(interp, argv[5], &l);
1083 if (retval != JIM_OK)
1084 return retval;
1085 if (l & ~0x7) {
1086 LOG_ERROR("%s: %s %d out of range", __func__,
1087 "op2", (int) l);
1088 return JIM_ERR;
1089 }
1090 op2 = l;
1091
1092 value = 0;
1093
1094 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
1095 * that could easily be a typo! Check both...
1096 *
1097 * FIXME change the call syntax here ... simplest to just pass
1098 * the MRC() or MCR() instruction to be executed. That will also
1099 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1100 * if that's ever needed.
1101 */
1102 if (argc == 7) {
1103 retval = Jim_GetLong(interp, argv[6], &l);
1104 if (retval != JIM_OK)
1105 return retval;
1106 value = l;
1107
1108 /* NOTE: parameters reordered! */
1109 /* ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2) */
1110 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
1111 if (retval != ERROR_OK)
1112 return JIM_ERR;
1113 } else {
1114 /* NOTE: parameters reordered! */
1115 /* ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2) */
1116 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
1117 if (retval != ERROR_OK)
1118 return JIM_ERR;
1119
1120 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
1121 }
1122
1123 return JIM_OK;
1124 }
1125
1126 extern const struct command_registration semihosting_common_handlers[];
1127
1128 static const struct command_registration arm_exec_command_handlers[] = {
1129 {
1130 .name = "reg",
1131 .handler = handle_armv4_5_reg_command,
1132 .mode = COMMAND_EXEC,
1133 .help = "display ARM core registers",
1134 .usage = "",
1135 },
1136 {
1137 .name = "core_state",
1138 .handler = handle_armv4_5_core_state_command,
1139 .mode = COMMAND_EXEC,
1140 .usage = "['arm'|'thumb']",
1141 .help = "display/change ARM core state",
1142 },
1143 {
1144 .name = "disassemble",
1145 .handler = handle_arm_disassemble_command,
1146 .mode = COMMAND_EXEC,
1147 .usage = "address [count ['thumb']]",
1148 .help = "disassemble instructions ",
1149 },
1150 {
1151 .name = "mcr",
1152 .mode = COMMAND_EXEC,
1153 .jim_handler = &jim_mcrmrc,
1154 .help = "write coprocessor register",
1155 .usage = "cpnum op1 CRn CRm op2 value",
1156 },
1157 {
1158 .name = "mrc",
1159 .mode = COMMAND_EXEC,
1160 .jim_handler = &jim_mcrmrc,
1161 .help = "read coprocessor register",
1162 .usage = "cpnum op1 CRn CRm op2",
1163 },
1164 {
1165 .chain = semihosting_common_handlers,
1166 },
1167 COMMAND_REGISTRATION_DONE
1168 };
1169 const struct command_registration arm_command_handlers[] = {
1170 {
1171 .name = "arm",
1172 .mode = COMMAND_ANY,
1173 .help = "ARM command group",
1174 .usage = "",
1175 .chain = arm_exec_command_handlers,
1176 },
1177 COMMAND_REGISTRATION_DONE
1178 };
1179
1180 /*
1181 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1182 * of arm architecture. You can list them using the autocompletion of gdb
1183 * command prompt by typing "set architecture " and then press TAB key.
1184 * The default, selected automatically, is "arm".
1185 * Let's use the default value, here, to make gdb-multiarch behave in the
1186 * same way as a gdb for arm. This can be changed later on. User can still
1187 * set the specific architecture variant with the gdb command.
1188 */
1189 const char *arm_get_gdb_arch(struct target *target)
1190 {
1191 return "arm";
1192 }
1193
1194 int arm_get_gdb_reg_list(struct target *target,
1195 struct reg **reg_list[], int *reg_list_size,
1196 enum target_register_class reg_class)
1197 {
1198 struct arm *arm = target_to_arm(target);
1199 unsigned int i;
1200
1201 if (!is_arm_mode(arm->core_mode)) {
1202 LOG_ERROR("not a valid arm core mode - communication failure?");
1203 return ERROR_FAIL;
1204 }
1205
1206 switch (reg_class) {
1207 case REG_CLASS_GENERAL:
1208 *reg_list_size = 26;
1209 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1210
1211 for (i = 0; i < 16; i++)
1212 (*reg_list)[i] = arm_reg_current(arm, i);
1213
1214 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1215 for (i = 16; i < 24; i++)
1216 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1217 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1218
1219 (*reg_list)[25] = arm->cpsr;
1220
1221 return ERROR_OK;
1222
1223 case REG_CLASS_ALL:
1224 switch (arm->core_type) {
1225 case ARM_CORE_TYPE_SEC_EXT:
1226 *reg_list_size = 51;
1227 break;
1228 case ARM_CORE_TYPE_VIRT_EXT:
1229 *reg_list_size = 53;
1230 break;
1231 default:
1232 *reg_list_size = 48;
1233 }
1234 unsigned int list_size_core = *reg_list_size;
1235 if (arm->arm_vfp_version == ARM_VFP_V3)
1236 *reg_list_size += 33;
1237
1238 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1239
1240 for (i = 0; i < 16; i++)
1241 (*reg_list)[i] = arm_reg_current(arm, i);
1242
1243 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1244 int reg_index = arm->core_cache->reg_list[i].number;
1245
1246 if (arm_core_regs[i].mode == ARM_MODE_MON
1247 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
1248 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1249 continue;
1250 if (arm_core_regs[i].mode == ARM_MODE_HYP
1251 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1252 continue;
1253 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1254 }
1255
1256 /* When we supply the target description, there is no need for fake FPA */
1257 for (i = 16; i < 24; i++) {
1258 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1259 (*reg_list)[i]->size = 0;
1260 }
1261 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1262 (*reg_list)[24]->size = 0;
1263
1264 if (arm->arm_vfp_version == ARM_VFP_V3) {
1265 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1266 for (i = 0; i < 33; i++)
1267 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1268 }
1269
1270 return ERROR_OK;
1271
1272 default:
1273 LOG_ERROR("not a valid register class type in query.");
1274 return ERROR_FAIL;
1275 }
1276 }
1277
1278 /* wait for execution to complete and check exit point */
1279 static int armv4_5_run_algorithm_completion(struct target *target,
1280 uint32_t exit_point,
1281 int timeout_ms,
1282 void *arch_info)
1283 {
1284 int retval;
1285 struct arm *arm = target_to_arm(target);
1286
1287 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1288 if (retval != ERROR_OK)
1289 return retval;
1290 if (target->state != TARGET_HALTED) {
1291 retval = target_halt(target);
1292 if (retval != ERROR_OK)
1293 return retval;
1294 retval = target_wait_state(target, TARGET_HALTED, 500);
1295 if (retval != ERROR_OK)
1296 return retval;
1297 return ERROR_TARGET_TIMEOUT;
1298 }
1299
1300 /* fast exit: ARMv5+ code can use BKPT */
1301 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1302 LOG_WARNING(
1303 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1304 buf_get_u32(arm->pc->value, 0, 32));
1305 return ERROR_TARGET_TIMEOUT;
1306 }
1307
1308 return ERROR_OK;
1309 }
1310
1311 int armv4_5_run_algorithm_inner(struct target *target,
1312 int num_mem_params, struct mem_param *mem_params,
1313 int num_reg_params, struct reg_param *reg_params,
1314 uint32_t entry_point, uint32_t exit_point,
1315 int timeout_ms, void *arch_info,
1316 int (*run_it)(struct target *target, uint32_t exit_point,
1317 int timeout_ms, void *arch_info))
1318 {
1319 struct arm *arm = target_to_arm(target);
1320 struct arm_algorithm *arm_algorithm_info = arch_info;
1321 enum arm_state core_state = arm->core_state;
1322 uint32_t context[17];
1323 uint32_t cpsr;
1324 int exit_breakpoint_size = 0;
1325 int i;
1326 int retval = ERROR_OK;
1327
1328 LOG_DEBUG("Running algorithm");
1329
1330 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1331 LOG_ERROR("current target isn't an ARMV4/5 target");
1332 return ERROR_TARGET_INVALID;
1333 }
1334
1335 if (target->state != TARGET_HALTED) {
1336 LOG_WARNING("target not halted");
1337 return ERROR_TARGET_NOT_HALTED;
1338 }
1339
1340 if (!is_arm_mode(arm->core_mode)) {
1341 LOG_ERROR("not a valid arm core mode - communication failure?");
1342 return ERROR_FAIL;
1343 }
1344
1345 /* armv5 and later can terminate with BKPT instruction; less overhead */
1346 if (!exit_point && arm->is_armv4) {
1347 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1348 return ERROR_FAIL;
1349 }
1350
1351 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1352 * they'll be restored later.
1353 */
1354 for (i = 0; i <= 16; i++) {
1355 struct reg *r;
1356
1357 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1358 arm_algorithm_info->core_mode, i);
1359 if (!r->valid)
1360 arm->read_core_reg(target, r, i,
1361 arm_algorithm_info->core_mode);
1362 context[i] = buf_get_u32(r->value, 0, 32);
1363 }
1364 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1365
1366 for (i = 0; i < num_mem_params; i++) {
1367 if (mem_params[i].direction == PARAM_IN)
1368 continue;
1369 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1370 mem_params[i].value);
1371 if (retval != ERROR_OK)
1372 return retval;
1373 }
1374
1375 for (i = 0; i < num_reg_params; i++) {
1376 if (reg_params[i].direction == PARAM_IN)
1377 continue;
1378
1379 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, 0);
1380 if (!reg) {
1381 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1382 return ERROR_COMMAND_SYNTAX_ERROR;
1383 }
1384
1385 if (reg->size != reg_params[i].size) {
1386 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1387 reg_params[i].reg_name);
1388 return ERROR_COMMAND_SYNTAX_ERROR;
1389 }
1390
1391 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1392 if (retval != ERROR_OK)
1393 return retval;
1394 }
1395
1396 arm->core_state = arm_algorithm_info->core_state;
1397 if (arm->core_state == ARM_STATE_ARM)
1398 exit_breakpoint_size = 4;
1399 else if (arm->core_state == ARM_STATE_THUMB)
1400 exit_breakpoint_size = 2;
1401 else {
1402 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404 }
1405
1406 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1407 LOG_DEBUG("setting core_mode: 0x%2.2x",
1408 arm_algorithm_info->core_mode);
1409 buf_set_u32(arm->cpsr->value, 0, 5,
1410 arm_algorithm_info->core_mode);
1411 arm->cpsr->dirty = true;
1412 arm->cpsr->valid = true;
1413 }
1414
1415 /* terminate using a hardware or (ARMv5+) software breakpoint */
1416 if (exit_point) {
1417 retval = breakpoint_add(target, exit_point,
1418 exit_breakpoint_size, BKPT_HARD);
1419 if (retval != ERROR_OK) {
1420 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1421 return ERROR_TARGET_FAILURE;
1422 }
1423 }
1424
1425 retval = target_resume(target, 0, entry_point, 1, 1);
1426 if (retval != ERROR_OK)
1427 return retval;
1428 retval = run_it(target, exit_point, timeout_ms, arch_info);
1429
1430 if (exit_point)
1431 breakpoint_remove(target, exit_point);
1432
1433 if (retval != ERROR_OK)
1434 return retval;
1435
1436 for (i = 0; i < num_mem_params; i++) {
1437 if (mem_params[i].direction != PARAM_OUT) {
1438 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1439 mem_params[i].size,
1440 mem_params[i].value);
1441 if (retvaltemp != ERROR_OK)
1442 retval = retvaltemp;
1443 }
1444 }
1445
1446 for (i = 0; i < num_reg_params; i++) {
1447 if (reg_params[i].direction != PARAM_OUT) {
1448
1449 struct reg *reg = register_get_by_name(arm->core_cache,
1450 reg_params[i].reg_name,
1451 0);
1452 if (!reg) {
1453 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1454 retval = ERROR_COMMAND_SYNTAX_ERROR;
1455 continue;
1456 }
1457
1458 if (reg->size != reg_params[i].size) {
1459 LOG_ERROR(
1460 "BUG: register '%s' size doesn't match reg_params[i].size",
1461 reg_params[i].reg_name);
1462 retval = ERROR_COMMAND_SYNTAX_ERROR;
1463 continue;
1464 }
1465
1466 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1467 }
1468 }
1469
1470 /* restore everything we saved before (17 or 18 registers) */
1471 for (i = 0; i <= 16; i++) {
1472 uint32_t regvalue;
1473 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1474 arm_algorithm_info->core_mode, i).value, 0, 32);
1475 if (regvalue != context[i]) {
1476 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1477 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1478 arm_algorithm_info->core_mode, i).name, context[i]);
1479 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1480 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1481 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1482 i).valid = true;
1483 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1484 i).dirty = true;
1485 }
1486 }
1487
1488 arm_set_cpsr(arm, cpsr);
1489 arm->cpsr->dirty = true;
1490
1491 arm->core_state = core_state;
1492
1493 return retval;
1494 }
1495
1496 int armv4_5_run_algorithm(struct target *target,
1497 int num_mem_params,
1498 struct mem_param *mem_params,
1499 int num_reg_params,
1500 struct reg_param *reg_params,
1501 target_addr_t entry_point,
1502 target_addr_t exit_point,
1503 int timeout_ms,
1504 void *arch_info)
1505 {
1506 return armv4_5_run_algorithm_inner(target,
1507 num_mem_params,
1508 mem_params,
1509 num_reg_params,
1510 reg_params,
1511 (uint32_t)entry_point,
1512 (uint32_t)exit_point,
1513 timeout_ms,
1514 arch_info,
1515 armv4_5_run_algorithm_completion);
1516 }
1517
1518 /**
1519 * Runs ARM code in the target to calculate a CRC32 checksum.
1520 *
1521 */
1522 int arm_checksum_memory(struct target *target,
1523 target_addr_t address, uint32_t count, uint32_t *checksum)
1524 {
1525 struct working_area *crc_algorithm;
1526 struct arm_algorithm arm_algo;
1527 struct arm *arm = target_to_arm(target);
1528 struct reg_param reg_params[2];
1529 int retval;
1530 uint32_t i;
1531 uint32_t exit_var = 0;
1532
1533 static const uint8_t arm_crc_code_le[] = {
1534 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1535 };
1536
1537 assert(sizeof(arm_crc_code_le) % 4 == 0);
1538
1539 retval = target_alloc_working_area(target,
1540 sizeof(arm_crc_code_le), &crc_algorithm);
1541 if (retval != ERROR_OK)
1542 return retval;
1543
1544 /* convert code into a buffer in target endianness */
1545 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1546 retval = target_write_u32(target,
1547 crc_algorithm->address + i * sizeof(uint32_t),
1548 le_to_h_u32(&arm_crc_code_le[i * 4]));
1549 if (retval != ERROR_OK)
1550 goto cleanup;
1551 }
1552
1553 arm_algo.common_magic = ARM_COMMON_MAGIC;
1554 arm_algo.core_mode = ARM_MODE_SVC;
1555 arm_algo.core_state = ARM_STATE_ARM;
1556
1557 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1558 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1559
1560 buf_set_u32(reg_params[0].value, 0, 32, address);
1561 buf_set_u32(reg_params[1].value, 0, 32, count);
1562
1563 /* 20 second timeout/megabyte */
1564 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1565
1566 /* armv4 must exit using a hardware breakpoint */
1567 if (arm->is_armv4)
1568 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1569
1570 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1571 crc_algorithm->address,
1572 exit_var,
1573 timeout, &arm_algo);
1574
1575 if (retval == ERROR_OK)
1576 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1577 else
1578 LOG_ERROR("error executing ARM crc algorithm");
1579
1580 destroy_reg_param(&reg_params[0]);
1581 destroy_reg_param(&reg_params[1]);
1582
1583 cleanup:
1584 target_free_working_area(target, crc_algorithm);
1585
1586 return retval;
1587 }
1588
1589 /**
1590 * Runs ARM code in the target to check whether a memory block holds
1591 * all ones. NOR flash which has been erased, and thus may be written,
1592 * holds all ones.
1593 *
1594 */
1595 int arm_blank_check_memory(struct target *target,
1596 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1597 {
1598 struct working_area *check_algorithm;
1599 struct reg_param reg_params[3];
1600 struct arm_algorithm arm_algo;
1601 struct arm *arm = target_to_arm(target);
1602 int retval;
1603 uint32_t i;
1604 uint32_t exit_var = 0;
1605
1606 static const uint8_t check_code_le[] = {
1607 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1608 };
1609
1610 assert(sizeof(check_code_le) % 4 == 0);
1611
1612 if (erased_value != 0xff) {
1613 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1614 erased_value);
1615 return ERROR_FAIL;
1616 }
1617
1618 /* make sure we have a working area */
1619 retval = target_alloc_working_area(target,
1620 sizeof(check_code_le), &check_algorithm);
1621 if (retval != ERROR_OK)
1622 return retval;
1623
1624 /* convert code into a buffer in target endianness */
1625 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1626 retval = target_write_u32(target,
1627 check_algorithm->address
1628 + i * sizeof(uint32_t),
1629 le_to_h_u32(&check_code_le[i * 4]));
1630 if (retval != ERROR_OK)
1631 goto cleanup;
1632 }
1633
1634 arm_algo.common_magic = ARM_COMMON_MAGIC;
1635 arm_algo.core_mode = ARM_MODE_SVC;
1636 arm_algo.core_state = ARM_STATE_ARM;
1637
1638 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1639 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1640
1641 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1642 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1643
1644 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1645 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1646
1647 /* armv4 must exit using a hardware breakpoint */
1648 if (arm->is_armv4)
1649 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1650
1651 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1652 check_algorithm->address,
1653 exit_var,
1654 10000, &arm_algo);
1655
1656 if (retval == ERROR_OK)
1657 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1658
1659 destroy_reg_param(&reg_params[0]);
1660 destroy_reg_param(&reg_params[1]);
1661 destroy_reg_param(&reg_params[2]);
1662
1663 cleanup:
1664 target_free_working_area(target, check_algorithm);
1665
1666 if (retval != ERROR_OK)
1667 return retval;
1668
1669 return 1; /* only one block has been checked */
1670 }
1671
1672 static int arm_full_context(struct target *target)
1673 {
1674 struct arm *arm = target_to_arm(target);
1675 unsigned num_regs = arm->core_cache->num_regs;
1676 struct reg *reg = arm->core_cache->reg_list;
1677 int retval = ERROR_OK;
1678
1679 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1680 if (reg->valid)
1681 continue;
1682 retval = armv4_5_get_core_reg(reg);
1683 }
1684 return retval;
1685 }
1686
1687 static int arm_default_mrc(struct target *target, int cpnum,
1688 uint32_t op1, uint32_t op2,
1689 uint32_t CRn, uint32_t CRm,
1690 uint32_t *value)
1691 {
1692 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1693 return ERROR_FAIL;
1694 }
1695
1696 static int arm_default_mcr(struct target *target, int cpnum,
1697 uint32_t op1, uint32_t op2,
1698 uint32_t CRn, uint32_t CRm,
1699 uint32_t value)
1700 {
1701 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1702 return ERROR_FAIL;
1703 }
1704
1705 int arm_init_arch_info(struct target *target, struct arm *arm)
1706 {
1707 target->arch_info = arm;
1708 arm->target = target;
1709
1710 arm->common_magic = ARM_COMMON_MAGIC;
1711
1712 /* core_type may be overridden by subtype logic */
1713 if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1714 arm->core_type = ARM_CORE_TYPE_STD;
1715 arm_set_cpsr(arm, ARM_MODE_USR);
1716 }
1717
1718 /* default full_context() has no core-specific optimizations */
1719 if (!arm->full_context && arm->read_core_reg)
1720 arm->full_context = arm_full_context;
1721
1722 if (!arm->mrc)
1723 arm->mrc = arm_default_mrc;
1724 if (!arm->mcr)
1725 arm->mcr = arm_default_mcr;
1726
1727 return ERROR_OK;
1728 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)