3e3fea03ccc56d867c885e0d401c0fd90c411975
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "arm.h"
31 #include "armv4_5.h"
32 #include "arm_jtag.h"
33 #include "breakpoints.h"
34 #include "arm_disassembler.h"
35 #include <helper/binarybuffer.h>
36 #include "algorithm.h"
37 #include "register.h"
38
39
40 /* offsets into armv4_5 core register cache */
41 enum {
42 // ARMV4_5_CPSR = 31,
43 ARMV4_5_SPSR_FIQ = 32,
44 ARMV4_5_SPSR_IRQ = 33,
45 ARMV4_5_SPSR_SVC = 34,
46 ARMV4_5_SPSR_ABT = 35,
47 ARMV4_5_SPSR_UND = 36,
48 ARM_SPSR_MON = 39,
49 };
50
51 static const uint8_t arm_usr_indices[17] = {
52 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
53 };
54
55 static const uint8_t arm_fiq_indices[8] = {
56 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
57 };
58
59 static const uint8_t arm_irq_indices[3] = {
60 23, 24, ARMV4_5_SPSR_IRQ,
61 };
62
63 static const uint8_t arm_svc_indices[3] = {
64 25, 26, ARMV4_5_SPSR_SVC,
65 };
66
67 static const uint8_t arm_abt_indices[3] = {
68 27, 28, ARMV4_5_SPSR_ABT,
69 };
70
71 static const uint8_t arm_und_indices[3] = {
72 29, 30, ARMV4_5_SPSR_UND,
73 };
74
75 static const uint8_t arm_mon_indices[3] = {
76 37, 38, ARM_SPSR_MON,
77 };
78
79 static const struct {
80 const char *name;
81 unsigned short psr;
82 /* For user and system modes, these list indices for all registers.
83 * otherwise they're just indices for the shadow registers and SPSR.
84 */
85 unsigned short n_indices;
86 const uint8_t *indices;
87 } arm_mode_data[] = {
88 /* Seven modes are standard from ARM7 on. "System" and "User" share
89 * the same registers; other modes shadow from 3 to 8 registers.
90 */
91 {
92 .name = "User",
93 .psr = ARM_MODE_USR,
94 .n_indices = ARRAY_SIZE(arm_usr_indices),
95 .indices = arm_usr_indices,
96 },
97 {
98 .name = "FIQ",
99 .psr = ARM_MODE_FIQ,
100 .n_indices = ARRAY_SIZE(arm_fiq_indices),
101 .indices = arm_fiq_indices,
102 },
103 {
104 .name = "Supervisor",
105 .psr = ARM_MODE_SVC,
106 .n_indices = ARRAY_SIZE(arm_svc_indices),
107 .indices = arm_svc_indices,
108 },
109 {
110 .name = "Abort",
111 .psr = ARM_MODE_ABT,
112 .n_indices = ARRAY_SIZE(arm_abt_indices),
113 .indices = arm_abt_indices,
114 },
115 {
116 .name = "IRQ",
117 .psr = ARM_MODE_IRQ,
118 .n_indices = ARRAY_SIZE(arm_irq_indices),
119 .indices = arm_irq_indices,
120 },
121 {
122 .name = "Undefined instruction",
123 .psr = ARM_MODE_UND,
124 .n_indices = ARRAY_SIZE(arm_und_indices),
125 .indices = arm_und_indices,
126 },
127 {
128 .name = "System",
129 .psr = ARM_MODE_SYS,
130 .n_indices = ARRAY_SIZE(arm_usr_indices),
131 .indices = arm_usr_indices,
132 },
133 /* TrustZone "Security Extensions" add a secure monitor mode.
134 * This is distinct from a "debug monitor" which can support
135 * non-halting debug, in conjunction with some debuggers.
136 */
137 {
138 .name = "Secure Monitor",
139 .psr = ARM_MODE_MON,
140 .n_indices = ARRAY_SIZE(arm_mon_indices),
141 .indices = arm_mon_indices,
142 },
143 };
144
145 /** Map PSR mode bits to the name of an ARM processor operating mode. */
146 const char *arm_mode_name(unsigned psr_mode)
147 {
148 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
149 if (arm_mode_data[i].psr == psr_mode)
150 return arm_mode_data[i].name;
151 }
152 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
153 return "UNRECOGNIZED";
154 }
155
156 /** Return true iff the parameter denotes a valid ARM processor mode. */
157 bool is_arm_mode(unsigned psr_mode)
158 {
159 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
160 if (arm_mode_data[i].psr == psr_mode)
161 return true;
162 }
163 return false;
164 }
165
166 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
167 int arm_mode_to_number(enum arm_mode mode)
168 {
169 switch (mode) {
170 case ARM_MODE_ANY:
171 /* map MODE_ANY to user mode */
172 case ARM_MODE_USR:
173 return 0;
174 case ARM_MODE_FIQ:
175 return 1;
176 case ARM_MODE_IRQ:
177 return 2;
178 case ARM_MODE_SVC:
179 return 3;
180 case ARM_MODE_ABT:
181 return 4;
182 case ARM_MODE_UND:
183 return 5;
184 case ARM_MODE_SYS:
185 return 6;
186 case ARM_MODE_MON:
187 return 7;
188 default:
189 LOG_ERROR("invalid mode value encountered %d", mode);
190 return -1;
191 }
192 }
193
194 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
195 enum arm_mode armv4_5_number_to_mode(int number)
196 {
197 switch (number) {
198 case 0:
199 return ARM_MODE_USR;
200 case 1:
201 return ARM_MODE_FIQ;
202 case 2:
203 return ARM_MODE_IRQ;
204 case 3:
205 return ARM_MODE_SVC;
206 case 4:
207 return ARM_MODE_ABT;
208 case 5:
209 return ARM_MODE_UND;
210 case 6:
211 return ARM_MODE_SYS;
212 case 7:
213 return ARM_MODE_MON;
214 default:
215 LOG_ERROR("mode index out of bounds %d", number);
216 return ARM_MODE_ANY;
217 }
218 }
219
220 static const char *arm_state_strings[] =
221 {
222 "ARM", "Thumb", "Jazelle", "ThumbEE",
223 };
224
225 /* Templates for ARM core registers.
226 *
227 * NOTE: offsets in this table are coupled to the arm_mode_data
228 * table above, the armv4_5_core_reg_map array below, and also to
229 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
230 */
231 static const struct {
232 /* The name is used for e.g. the "regs" command. */
233 const char *name;
234
235 /* The {cookie, mode} tuple uniquely identifies one register.
236 * In a given mode, cookies 0..15 map to registers R0..R15,
237 * with R13..R15 usually called SP, LR, PC.
238 *
239 * MODE_ANY is used as *input* to the mapping, and indicates
240 * various special cases (sigh) and errors.
241 *
242 * Cookie 16 is (currently) confusing, since it indicates
243 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
244 * (Exception modes have both CPSR and SPSR registers ...)
245 */
246 unsigned cookie;
247 enum arm_mode mode;
248 } arm_core_regs[] = {
249 /* IMPORTANT: we guarantee that the first eight cached registers
250 * correspond to r0..r7, and the fifteenth to PC, so that callers
251 * don't need to map them.
252 */
253 { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, },
254 { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, },
255 { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, },
256 { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, },
257 { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, },
258 { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, },
259 { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, },
260 { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, },
261
262 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
263 * them as MODE_ANY creates special cases. (ANY means
264 * "not mapped" elsewhere; here it's "everything but FIQ".)
265 */
266 { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, },
267 { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, },
268 { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, },
269 { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, },
270 { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, },
271
272 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
273 { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, },
274 { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, },
275
276 /* guaranteed to be at index 15 */
277 { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, },
278
279 { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, },
280 { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, },
281 { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, },
282 { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, },
283 { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, },
284
285 { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, },
286 { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, },
287
288 { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, },
289 { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, },
290
291 { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, },
292 { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, },
293
294 { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, },
295 { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, },
296
297 { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, },
298 { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, },
299
300 { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, },
301 { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, },
302 { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, },
303 { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, },
304 { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, },
305 { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, },
306
307 { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, },
308 { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, },
309 { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, },
310 };
311
312 /* map core mode (USR, FIQ, ...) and register number to
313 * indices into the register cache
314 */
315 const int armv4_5_core_reg_map[8][17] =
316 {
317 { /* USR */
318 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
319 },
320 { /* FIQ (8 shadows of USR, vs normal 3) */
321 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
322 },
323 { /* IRQ */
324 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
325 },
326 { /* SVC */
327 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
328 },
329 { /* ABT */
330 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
331 },
332 { /* UND */
333 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
334 },
335 { /* SYS (same registers as USR) */
336 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
337 },
338 { /* MON */
339 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
340 }
341 };
342
343 /**
344 * Configures host-side ARM records to reflect the specified CPSR.
345 * Later, code can use arm_reg_current() to map register numbers
346 * according to how they are exposed by this mode.
347 */
348 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
349 {
350 enum arm_mode mode = cpsr & 0x1f;
351 int num;
352
353 /* NOTE: this may be called very early, before the register
354 * cache is set up. We can't defend against many errors, in
355 * particular against CPSRs that aren't valid *here* ...
356 */
357 if (arm->cpsr) {
358 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
359 arm->cpsr->valid = 1;
360 arm->cpsr->dirty = 0;
361 }
362
363 arm->core_mode = mode;
364
365 /* mode_to_number() warned; set up a somewhat-sane mapping */
366 num = arm_mode_to_number(mode);
367 if (num < 0) {
368 mode = ARM_MODE_USR;
369 num = 0;
370 }
371
372 arm->map = &armv4_5_core_reg_map[num][0];
373 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
374 ? NULL
375 : arm->core_cache->reg_list + arm->map[16];
376
377 /* Older ARMs won't have the J bit */
378 enum arm_state state;
379
380 if (cpsr & (1 << 5)) { /* T */
381 if (cpsr & (1 << 24)) { /* J */
382 LOG_WARNING("ThumbEE -- incomplete support");
383 state = ARM_STATE_THUMB_EE;
384 } else
385 state = ARM_STATE_THUMB;
386 } else {
387 if (cpsr & (1 << 24)) { /* J */
388 LOG_ERROR("Jazelle state handling is BROKEN!");
389 state = ARM_STATE_JAZELLE;
390 } else
391 state = ARM_STATE_ARM;
392 }
393 arm->core_state = state;
394
395 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
396 arm_mode_name(mode),
397 arm_state_strings[arm->core_state]);
398 }
399
400 /**
401 * Returns handle to the register currently mapped to a given number.
402 * Someone must have called arm_set_cpsr() before.
403 *
404 * \param arm This core's state and registers are used.
405 * \param regnum From 0..15 corresponding to R0..R14 and PC.
406 * Note that R0..R7 don't require mapping; you may access those
407 * as the first eight entries in the register cache. Likewise
408 * R15 (PC) doesn't need mapping; you may also access it directly.
409 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
410 * CPSR (arm->cpsr) is also not mapped.
411 */
412 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
413 {
414 struct reg *r;
415
416 if (regnum > 16)
417 return NULL;
418
419 r = arm->core_cache->reg_list + arm->map[regnum];
420
421 /* e.g. invalid CPSR said "secure monitor" mode on a core
422 * that doesn't support it...
423 */
424 if (!r) {
425 LOG_ERROR("Invalid CPSR mode");
426 r = arm->core_cache->reg_list + regnum;
427 }
428
429 return r;
430 }
431
432 static const uint8_t arm_gdb_dummy_fp_value[12];
433
434 /**
435 * Dummy FPA registers are required to support GDB on ARM.
436 * Register packets require eight obsolete FPA register values.
437 * Modern ARM cores use Vector Floating Point (VFP), if they
438 * have any floating point support. VFP is not FPA-compatible.
439 */
440 struct reg arm_gdb_dummy_fp_reg =
441 {
442 .name = "GDB dummy FPA register",
443 .value = (uint8_t *) arm_gdb_dummy_fp_value,
444 .valid = 1,
445 .size = 96,
446 };
447
448 static const uint8_t arm_gdb_dummy_fps_value[4];
449
450 /**
451 * Dummy FPA status registers are required to support GDB on ARM.
452 * Register packets require an obsolete FPA status register.
453 */
454 struct reg arm_gdb_dummy_fps_reg =
455 {
456 .name = "GDB dummy FPA status register",
457 .value = (uint8_t *) arm_gdb_dummy_fps_value,
458 .valid = 1,
459 .size = 32,
460 };
461
462 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
463
464 static void arm_gdb_dummy_init(void)
465 {
466 register_init_dummy(&arm_gdb_dummy_fp_reg);
467 register_init_dummy(&arm_gdb_dummy_fps_reg);
468 }
469
470 static int armv4_5_get_core_reg(struct reg *reg)
471 {
472 int retval;
473 struct arm_reg *armv4_5 = reg->arch_info;
474 struct target *target = armv4_5->target;
475
476 if (target->state != TARGET_HALTED)
477 {
478 LOG_ERROR("Target not halted");
479 return ERROR_TARGET_NOT_HALTED;
480 }
481
482 retval = armv4_5->armv4_5_common->read_core_reg(target, reg, armv4_5->num, armv4_5->mode);
483 if (retval == ERROR_OK) {
484 reg->valid = 1;
485 reg->dirty = 0;
486 }
487
488 return retval;
489 }
490
491 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
492 {
493 struct arm_reg *armv4_5 = reg->arch_info;
494 struct target *target = armv4_5->target;
495 struct arm *armv4_5_target = target_to_arm(target);
496 uint32_t value = buf_get_u32(buf, 0, 32);
497
498 if (target->state != TARGET_HALTED)
499 {
500 LOG_ERROR("Target not halted");
501 return ERROR_TARGET_NOT_HALTED;
502 }
503
504 /* Except for CPSR, the "reg" command exposes a writeback model
505 * for the register cache.
506 */
507 if (reg == armv4_5_target->cpsr) {
508 arm_set_cpsr(armv4_5_target, value);
509
510 /* Older cores need help to be in ARM mode during halt
511 * mode debug, so we clear the J and T bits if we flush.
512 * For newer cores (v6/v7a/v7r) we don't need that, but
513 * it won't hurt since CPSR is always flushed anyway.
514 */
515 if (armv4_5_target->core_mode !=
516 (enum arm_mode)(value & 0x1f)) {
517 LOG_DEBUG("changing ARM core mode to '%s'",
518 arm_mode_name(value & 0x1f));
519 value &= ~((1 << 24) | (1 << 5));
520 armv4_5_target->write_core_reg(target, reg,
521 16, ARM_MODE_ANY, value);
522 }
523 } else {
524 buf_set_u32(reg->value, 0, 32, value);
525 reg->valid = 1;
526 }
527 reg->dirty = 1;
528
529 return ERROR_OK;
530 }
531
532 static const struct reg_arch_type arm_reg_type = {
533 .get = armv4_5_get_core_reg,
534 .set = armv4_5_set_core_reg,
535 };
536
537 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
538 {
539 int num_regs = ARRAY_SIZE(arm_core_regs);
540 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
541 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
542 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
543 int i;
544
545 if (!cache || !reg_list || !arch_info) {
546 free(cache);
547 free(reg_list);
548 free(arch_info);
549 return NULL;
550 }
551
552 cache->name = "ARM registers";
553 cache->next = NULL;
554 cache->reg_list = reg_list;
555 cache->num_regs = 0;
556
557 for (i = 0; i < num_regs; i++)
558 {
559 /* Skip registers this core doesn't expose */
560 if (arm_core_regs[i].mode == ARM_MODE_MON
561 && arm->core_type != ARM_MODE_MON)
562 continue;
563
564 /* REVISIT handle Cortex-M, which only shadows R13/SP */
565
566 arch_info[i].num = arm_core_regs[i].cookie;
567 arch_info[i].mode = arm_core_regs[i].mode;
568 arch_info[i].target = target;
569 arch_info[i].armv4_5_common = arm;
570
571 reg_list[i].name = (char *) arm_core_regs[i].name;
572 reg_list[i].size = 32;
573 reg_list[i].value = &arch_info[i].value;
574 reg_list[i].type = &arm_reg_type;
575 reg_list[i].arch_info = &arch_info[i];
576
577 cache->num_regs++;
578 }
579
580 arm->pc = reg_list + 15;
581 arm->cpsr = reg_list + ARMV4_5_CPSR;
582 arm->core_cache = cache;
583 return cache;
584 }
585
586 int arm_arch_state(struct target *target)
587 {
588 struct arm *armv4_5 = target_to_arm(target);
589
590 if (armv4_5->common_magic != ARM_COMMON_MAGIC)
591 {
592 LOG_ERROR("BUG: called for a non-ARM target");
593 return ERROR_FAIL;
594 }
595
596 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
597 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s",
598 arm_state_strings[armv4_5->core_state],
599 debug_reason_name(target),
600 arm_mode_name(armv4_5->core_mode),
601 buf_get_u32(armv4_5->cpsr->value, 0, 32),
602 buf_get_u32(armv4_5->pc->value, 0, 32),
603 armv4_5->is_semihosting ? ", semihosting" : "");
604
605 return ERROR_OK;
606 }
607
608 #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
609 cache->reg_list[armv4_5_core_reg_map[mode][num]]
610
611 COMMAND_HANDLER(handle_armv4_5_reg_command)
612 {
613 struct target *target = get_current_target(CMD_CTX);
614 struct arm *armv4_5 = target_to_arm(target);
615 struct reg *regs;
616
617 if (!is_arm(armv4_5))
618 {
619 command_print(CMD_CTX, "current target isn't an ARM");
620 return ERROR_FAIL;
621 }
622
623 if (target->state != TARGET_HALTED)
624 {
625 command_print(CMD_CTX, "error: target must be halted for register accesses");
626 return ERROR_FAIL;
627 }
628
629 if (armv4_5->core_type != ARM_MODE_ANY)
630 {
631 command_print(CMD_CTX, "Microcontroller Profile not supported - use standard reg cmd");
632 return ERROR_OK;
633 }
634
635 if (!is_arm_mode(armv4_5->core_mode))
636 {
637 LOG_ERROR("not a valid arm core mode - communication failure?");
638 return ERROR_FAIL;
639 }
640
641 if (!armv4_5->full_context) {
642 command_print(CMD_CTX, "error: target doesn't support %s",
643 CMD_NAME);
644 return ERROR_FAIL;
645 }
646
647 regs = armv4_5->core_cache->reg_list;
648
649 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
650 const char *name;
651 char *sep = "\n";
652 char *shadow = "";
653
654 /* label this bank of registers (or shadows) */
655 switch (arm_mode_data[mode].psr) {
656 case ARM_MODE_SYS:
657 continue;
658 case ARM_MODE_USR:
659 name = "System and User";
660 sep = "";
661 break;
662 case ARM_MODE_MON:
663 if (armv4_5->core_type != ARM_MODE_MON)
664 continue;
665 /* FALLTHROUGH */
666 default:
667 name = arm_mode_data[mode].name;
668 shadow = "shadow ";
669 break;
670 }
671 command_print(CMD_CTX, "%s%s mode %sregisters",
672 sep, name, shadow);
673
674 /* display N rows of up to 4 registers each */
675 for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) {
676 char output[80];
677 int output_len = 0;
678
679 for (unsigned j = 0; j < 4; j++, i++) {
680 uint32_t value;
681 struct reg *reg = regs;
682
683 if (i >= arm_mode_data[mode].n_indices)
684 break;
685
686 reg += arm_mode_data[mode].indices[i];
687
688 /* REVISIT be smarter about faults... */
689 if (!reg->valid)
690 armv4_5->full_context(target);
691
692 value = buf_get_u32(reg->value, 0, 32);
693 output_len += snprintf(output + output_len,
694 sizeof(output) - output_len,
695 "%8s: %8.8" PRIx32 " ",
696 reg->name, value);
697 }
698 command_print(CMD_CTX, "%s", output);
699 }
700 }
701
702 return ERROR_OK;
703 }
704
705 COMMAND_HANDLER(handle_armv4_5_core_state_command)
706 {
707 struct target *target = get_current_target(CMD_CTX);
708 struct arm *armv4_5 = target_to_arm(target);
709
710 if (!is_arm(armv4_5))
711 {
712 command_print(CMD_CTX, "current target isn't an ARM");
713 return ERROR_FAIL;
714 }
715
716 if (armv4_5->core_type == ARM_MODE_THREAD)
717 {
718 /* armv7m not supported */
719 command_print(CMD_CTX, "Unsupported Command");
720 return ERROR_OK;
721 }
722
723 if (CMD_ARGC > 0)
724 {
725 if (strcmp(CMD_ARGV[0], "arm") == 0)
726 {
727 armv4_5->core_state = ARM_STATE_ARM;
728 }
729 if (strcmp(CMD_ARGV[0], "thumb") == 0)
730 {
731 armv4_5->core_state = ARM_STATE_THUMB;
732 }
733 }
734
735 command_print(CMD_CTX, "core state: %s", arm_state_strings[armv4_5->core_state]);
736
737 return ERROR_OK;
738 }
739
740 COMMAND_HANDLER(handle_arm_disassemble_command)
741 {
742 int retval = ERROR_OK;
743 struct target *target = get_current_target(CMD_CTX);
744
745 if (target == NULL) {
746 LOG_ERROR("No target selected");
747 return ERROR_FAIL;
748 }
749
750 struct arm *arm = target_to_arm(target);
751 uint32_t address;
752 int count = 1;
753 int thumb = 0;
754
755 if (!is_arm(arm)) {
756 command_print(CMD_CTX, "current target isn't an ARM");
757 return ERROR_FAIL;
758 }
759
760 if (arm->core_type == ARM_MODE_THREAD)
761 {
762 /* armv7m is always thumb mode */
763 thumb = 1;
764 }
765
766 switch (CMD_ARGC) {
767 case 3:
768 if (strcmp(CMD_ARGV[2], "thumb") != 0)
769 goto usage;
770 thumb = 1;
771 /* FALL THROUGH */
772 case 2:
773 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
774 /* FALL THROUGH */
775 case 1:
776 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
777 if (address & 0x01) {
778 if (!thumb) {
779 command_print(CMD_CTX, "Disassemble as Thumb");
780 thumb = 1;
781 }
782 address &= ~1;
783 }
784 break;
785 default:
786 usage:
787 count = 0;
788 retval = ERROR_COMMAND_SYNTAX_ERROR;
789 }
790
791 while (count-- > 0) {
792 struct arm_instruction cur_instruction;
793
794 if (thumb) {
795 /* Always use Thumb2 disassembly for best handling
796 * of 32-bit BL/BLX, and to work with newer cores
797 * (some ARMv6, all ARMv7) that use Thumb2.
798 */
799 retval = thumb2_opcode(target, address,
800 &cur_instruction);
801 if (retval != ERROR_OK)
802 break;
803 } else {
804 uint32_t opcode;
805
806 retval = target_read_u32(target, address, &opcode);
807 if (retval != ERROR_OK)
808 break;
809 retval = arm_evaluate_opcode(opcode, address,
810 &cur_instruction) != ERROR_OK;
811 if (retval != ERROR_OK)
812 break;
813 }
814 command_print(CMD_CTX, "%s", cur_instruction.text);
815 address += cur_instruction.instruction_size;
816 }
817
818 return retval;
819 }
820
821 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
822 {
823 struct command_context *context;
824 struct target *target;
825 struct arm *arm;
826 int retval;
827
828 context = current_command_context(interp);
829 assert( context != NULL);
830
831 target = get_current_target(context);
832 if (target == NULL) {
833 LOG_ERROR("%s: no current target", __func__);
834 return JIM_ERR;
835 }
836 if (!target_was_examined(target)) {
837 LOG_ERROR("%s: not yet examined", target_name(target));
838 return JIM_ERR;
839 }
840 arm = target_to_arm(target);
841 if (!is_arm(arm)) {
842 LOG_ERROR("%s: not an ARM", target_name(target));
843 return JIM_ERR;
844 }
845
846 if ((argc < 6) || (argc > 7)) {
847 /* FIXME use the command name to verify # params... */
848 LOG_ERROR("%s: wrong number of arguments", __func__);
849 return JIM_ERR;
850 }
851
852 int cpnum;
853 uint32_t op1;
854 uint32_t op2;
855 uint32_t CRn;
856 uint32_t CRm;
857 uint32_t value;
858 long l;
859
860 /* NOTE: parameter sequence matches ARM instruction set usage:
861 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
862 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
863 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
864 */
865 retval = Jim_GetLong(interp, argv[1], &l);
866 if (retval != JIM_OK)
867 return retval;
868 if (l & ~0xf) {
869 LOG_ERROR("%s: %s %d out of range", __func__,
870 "coprocessor", (int) l);
871 return JIM_ERR;
872 }
873 cpnum = l;
874
875 retval = Jim_GetLong(interp, argv[2], &l);
876 if (retval != JIM_OK)
877 return retval;
878 if (l & ~0x7) {
879 LOG_ERROR("%s: %s %d out of range", __func__,
880 "op1", (int) l);
881 return JIM_ERR;
882 }
883 op1 = l;
884
885 retval = Jim_GetLong(interp, argv[3], &l);
886 if (retval != JIM_OK)
887 return retval;
888 if (l & ~0xf) {
889 LOG_ERROR("%s: %s %d out of range", __func__,
890 "CRn", (int) l);
891 return JIM_ERR;
892 }
893 CRn = l;
894
895 retval = Jim_GetLong(interp, argv[4], &l);
896 if (retval != JIM_OK)
897 return retval;
898 if (l & ~0xf) {
899 LOG_ERROR("%s: %s %d out of range", __func__,
900 "CRm", (int) l);
901 return JIM_ERR;
902 }
903 CRm = l;
904
905 retval = Jim_GetLong(interp, argv[5], &l);
906 if (retval != JIM_OK)
907 return retval;
908 if (l & ~0x7) {
909 LOG_ERROR("%s: %s %d out of range", __func__,
910 "op2", (int) l);
911 return JIM_ERR;
912 }
913 op2 = l;
914
915 value = 0;
916
917 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
918 * that could easily be a typo! Check both...
919 *
920 * FIXME change the call syntax here ... simplest to just pass
921 * the MRC() or MCR() instruction to be executed. That will also
922 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
923 * if that's ever needed.
924 */
925 if (argc == 7) {
926 retval = Jim_GetLong(interp, argv[6], &l);
927 if (retval != JIM_OK) {
928 return retval;
929 }
930 value = l;
931
932 /* NOTE: parameters reordered! */
933 // ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2)
934 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
935 if (retval != ERROR_OK)
936 return JIM_ERR;
937 } else {
938 /* NOTE: parameters reordered! */
939 // ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2)
940 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
941 if (retval != ERROR_OK)
942 return JIM_ERR;
943
944 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
945 }
946
947 return JIM_OK;
948 }
949
950 COMMAND_HANDLER(handle_arm_semihosting_command)
951 {
952 struct target *target = get_current_target(CMD_CTX);
953
954 if (target == NULL) {
955 LOG_ERROR("No target selected");
956 return ERROR_FAIL;
957 }
958
959 struct arm *arm = target_to_arm(target);
960
961 if (!is_arm(arm)) {
962 command_print(CMD_CTX, "current target isn't an ARM");
963 return ERROR_FAIL;
964 }
965
966 if (!arm->setup_semihosting)
967 {
968 command_print(CMD_CTX, "semihosting not supported for current target");
969 return ERROR_FAIL;
970 }
971
972 if (CMD_ARGC > 0)
973 {
974 int semihosting;
975
976 COMMAND_PARSE_ENABLE(CMD_ARGV[0], semihosting);
977
978 if (!target_was_examined(target))
979 {
980 LOG_ERROR("Target not examined yet");
981 return ERROR_FAIL;
982 }
983
984 if (arm->setup_semihosting(target, semihosting) != ERROR_OK) {
985 LOG_ERROR("Failed to Configure semihosting");
986 return ERROR_FAIL;
987 }
988
989 /* FIXME never let that "catch" be dropped! */
990 arm->is_semihosting = semihosting;
991 }
992
993 command_print(CMD_CTX, "semihosting is %s",
994 arm->is_semihosting
995 ? "enabled" : "disabled");
996
997 return ERROR_OK;
998 }
999
1000 static const struct command_registration arm_exec_command_handlers[] = {
1001 {
1002 .name = "reg",
1003 .handler = handle_armv4_5_reg_command,
1004 .mode = COMMAND_EXEC,
1005 .help = "display ARM core registers",
1006 .usage = "",
1007 },
1008 {
1009 .name = "core_state",
1010 .handler = handle_armv4_5_core_state_command,
1011 .mode = COMMAND_EXEC,
1012 .usage = "['arm'|'thumb']",
1013 .help = "display/change ARM core state",
1014 },
1015 {
1016 .name = "disassemble",
1017 .handler = handle_arm_disassemble_command,
1018 .mode = COMMAND_EXEC,
1019 .usage = "address [count ['thumb']]",
1020 .help = "disassemble instructions ",
1021 },
1022 {
1023 .name = "mcr",
1024 .mode = COMMAND_EXEC,
1025 .jim_handler = &jim_mcrmrc,
1026 .help = "write coprocessor register",
1027 .usage = "cpnum op1 CRn op2 CRm value",
1028 },
1029 {
1030 .name = "mrc",
1031 .jim_handler = &jim_mcrmrc,
1032 .help = "read coprocessor register",
1033 .usage = "cpnum op1 CRn op2 CRm",
1034 },
1035 {
1036 "semihosting",
1037 .handler = handle_arm_semihosting_command,
1038 .mode = COMMAND_EXEC,
1039 .usage = "['enable'|'disable']",
1040 .help = "activate support for semihosting operations",
1041 },
1042
1043 COMMAND_REGISTRATION_DONE
1044 };
1045 const struct command_registration arm_command_handlers[] = {
1046 {
1047 .name = "arm",
1048 .mode = COMMAND_ANY,
1049 .help = "ARM command group",
1050 .usage = "",
1051 .chain = arm_exec_command_handlers,
1052 },
1053 COMMAND_REGISTRATION_DONE
1054 };
1055
1056 int arm_get_gdb_reg_list(struct target *target,
1057 struct reg **reg_list[], int *reg_list_size)
1058 {
1059 struct arm *armv4_5 = target_to_arm(target);
1060 int i;
1061
1062 if (!is_arm_mode(armv4_5->core_mode))
1063 {
1064 LOG_ERROR("not a valid arm core mode - communication failure?");
1065 return ERROR_FAIL;
1066 }
1067
1068 *reg_list_size = 26;
1069 *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
1070
1071 for (i = 0; i < 16; i++)
1072 (*reg_list)[i] = arm_reg_current(armv4_5, i);
1073
1074 for (i = 16; i < 24; i++)
1075 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1076
1077 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1078 (*reg_list)[25] = armv4_5->cpsr;
1079
1080 return ERROR_OK;
1081 }
1082
1083 /* wait for execution to complete and check exit point */
1084 static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
1085 {
1086 int retval;
1087 struct arm *armv4_5 = target_to_arm(target);
1088
1089 if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK)
1090 {
1091 return retval;
1092 }
1093 if (target->state != TARGET_HALTED)
1094 {
1095 if ((retval = target_halt(target)) != ERROR_OK)
1096 return retval;
1097 if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
1098 {
1099 return retval;
1100 }
1101 return ERROR_TARGET_TIMEOUT;
1102 }
1103
1104 /* fast exit: ARMv5+ code can use BKPT */
1105 if (exit_point && buf_get_u32(armv4_5->pc->value, 0, 32) != exit_point)
1106 {
1107 LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1108 buf_get_u32(armv4_5->pc->value, 0, 32));
1109 return ERROR_TARGET_TIMEOUT;
1110 }
1111
1112 return ERROR_OK;
1113 }
1114
1115 int armv4_5_run_algorithm_inner(struct target *target,
1116 int num_mem_params, struct mem_param *mem_params,
1117 int num_reg_params, struct reg_param *reg_params,
1118 uint32_t entry_point, uint32_t exit_point,
1119 int timeout_ms, void *arch_info,
1120 int (*run_it)(struct target *target, uint32_t exit_point,
1121 int timeout_ms, void *arch_info))
1122 {
1123 struct arm *armv4_5 = target_to_arm(target);
1124 struct arm_algorithm *arm_algorithm_info = arch_info;
1125 enum arm_state core_state = armv4_5->core_state;
1126 uint32_t context[17];
1127 uint32_t cpsr;
1128 int exit_breakpoint_size = 0;
1129 int i;
1130 int retval = ERROR_OK;
1131
1132 LOG_DEBUG("Running algorithm");
1133
1134 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC)
1135 {
1136 LOG_ERROR("current target isn't an ARMV4/5 target");
1137 return ERROR_TARGET_INVALID;
1138 }
1139
1140 if (target->state != TARGET_HALTED)
1141 {
1142 LOG_WARNING("target not halted");
1143 return ERROR_TARGET_NOT_HALTED;
1144 }
1145
1146 if (!is_arm_mode(armv4_5->core_mode))
1147 {
1148 LOG_ERROR("not a valid arm core mode - communication failure?");
1149 return ERROR_FAIL;
1150 }
1151
1152 /* armv5 and later can terminate with BKPT instruction; less overhead */
1153 if (!exit_point && armv4_5->is_armv4)
1154 {
1155 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1156 return ERROR_FAIL;
1157 }
1158
1159 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1160 * they'll be restored later.
1161 */
1162 for (i = 0; i <= 16; i++)
1163 {
1164 struct reg *r;
1165
1166 r = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
1167 arm_algorithm_info->core_mode, i);
1168 if (!r->valid)
1169 armv4_5->read_core_reg(target, r, i,
1170 arm_algorithm_info->core_mode);
1171 context[i] = buf_get_u32(r->value, 0, 32);
1172 }
1173 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1174
1175 for (i = 0; i < num_mem_params; i++)
1176 {
1177 if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1178 {
1179 return retval;
1180 }
1181 }
1182
1183 for (i = 0; i < num_reg_params; i++)
1184 {
1185 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1186 if (!reg)
1187 {
1188 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1189 return ERROR_COMMAND_SYNTAX_ERROR;
1190 }
1191
1192 if (reg->size != reg_params[i].size)
1193 {
1194 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1195 return ERROR_COMMAND_SYNTAX_ERROR;
1196 }
1197
1198 if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK)
1199 {
1200 return retval;
1201 }
1202 }
1203
1204 armv4_5->core_state = arm_algorithm_info->core_state;
1205 if (armv4_5->core_state == ARM_STATE_ARM)
1206 exit_breakpoint_size = 4;
1207 else if (armv4_5->core_state == ARM_STATE_THUMB)
1208 exit_breakpoint_size = 2;
1209 else
1210 {
1211 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1212 return ERROR_COMMAND_SYNTAX_ERROR;
1213 }
1214
1215 if (arm_algorithm_info->core_mode != ARM_MODE_ANY)
1216 {
1217 LOG_DEBUG("setting core_mode: 0x%2.2x",
1218 arm_algorithm_info->core_mode);
1219 buf_set_u32(armv4_5->cpsr->value, 0, 5,
1220 arm_algorithm_info->core_mode);
1221 armv4_5->cpsr->dirty = 1;
1222 armv4_5->cpsr->valid = 1;
1223 }
1224
1225 /* terminate using a hardware or (ARMv5+) software breakpoint */
1226 if (exit_point && (retval = breakpoint_add(target, exit_point,
1227 exit_breakpoint_size, BKPT_HARD)) != ERROR_OK)
1228 {
1229 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1230 return ERROR_TARGET_FAILURE;
1231 }
1232
1233 if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
1234 {
1235 return retval;
1236 }
1237 int retvaltemp;
1238 retval = run_it(target, exit_point, timeout_ms, arch_info);
1239
1240 if (exit_point)
1241 breakpoint_remove(target, exit_point);
1242
1243 if (retval != ERROR_OK)
1244 return retval;
1245
1246 for (i = 0; i < num_mem_params; i++)
1247 {
1248 if (mem_params[i].direction != PARAM_OUT)
1249 if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1250 {
1251 retval = retvaltemp;
1252 }
1253 }
1254
1255 for (i = 0; i < num_reg_params; i++)
1256 {
1257 if (reg_params[i].direction != PARAM_OUT)
1258 {
1259
1260 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1261 if (!reg)
1262 {
1263 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1264 retval = ERROR_COMMAND_SYNTAX_ERROR;
1265 continue;
1266 }
1267
1268 if (reg->size != reg_params[i].size)
1269 {
1270 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1271 retval = ERROR_COMMAND_SYNTAX_ERROR;
1272 continue;
1273 }
1274
1275 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1276 }
1277 }
1278
1279 /* restore everything we saved before (17 or 18 registers) */
1280 for (i = 0; i <= 16; i++)
1281 {
1282 uint32_t regvalue;
1283 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32);
1284 if (regvalue != context[i])
1285 {
1286 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).name, context[i]);
1287 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1288 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).valid = 1;
1289 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).dirty = 1;
1290 }
1291 }
1292
1293 arm_set_cpsr(armv4_5, cpsr);
1294 armv4_5->cpsr->dirty = 1;
1295
1296 armv4_5->core_state = core_state;
1297
1298 return retval;
1299 }
1300
1301 int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
1302 {
1303 return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion);
1304 }
1305
1306 /**
1307 * Runs ARM code in the target to calculate a CRC32 checksum.
1308 *
1309 */
1310 int arm_checksum_memory(struct target *target,
1311 uint32_t address, uint32_t count, uint32_t *checksum)
1312 {
1313 struct working_area *crc_algorithm;
1314 struct arm_algorithm armv4_5_info;
1315 struct arm *armv4_5 = target_to_arm(target);
1316 struct reg_param reg_params[2];
1317 int retval;
1318 uint32_t i;
1319 uint32_t exit_var = 0;
1320
1321 /* see contib/loaders/checksum/armv4_5_crc.s for src */
1322
1323 static const uint32_t arm_crc_code[] = {
1324 0xE1A02000, /* mov r2, r0 */
1325 0xE3E00000, /* mov r0, #0xffffffff */
1326 0xE1A03001, /* mov r3, r1 */
1327 0xE3A04000, /* mov r4, #0 */
1328 0xEA00000B, /* b ncomp */
1329 /* nbyte: */
1330 0xE7D21004, /* ldrb r1, [r2, r4] */
1331 0xE59F7030, /* ldr r7, CRC32XOR */
1332 0xE0200C01, /* eor r0, r0, r1, asl 24 */
1333 0xE3A05000, /* mov r5, #0 */
1334 /* loop: */
1335 0xE3500000, /* cmp r0, #0 */
1336 0xE1A06080, /* mov r6, r0, asl #1 */
1337 0xE2855001, /* add r5, r5, #1 */
1338 0xE1A00006, /* mov r0, r6 */
1339 0xB0260007, /* eorlt r0, r6, r7 */
1340 0xE3550008, /* cmp r5, #8 */
1341 0x1AFFFFF8, /* bne loop */
1342 0xE2844001, /* add r4, r4, #1 */
1343 /* ncomp: */
1344 0xE1540003, /* cmp r4, r3 */
1345 0x1AFFFFF1, /* bne nbyte */
1346 /* end: */
1347 0xe1200070, /* bkpt #0 */
1348 /* CRC32XOR: */
1349 0x04C11DB7 /* .word 0x04C11DB7 */
1350 };
1351
1352 retval = target_alloc_working_area(target,
1353 sizeof(arm_crc_code), &crc_algorithm);
1354 if (retval != ERROR_OK)
1355 return retval;
1356
1357 /* convert code into a buffer in target endianness */
1358 for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) {
1359 retval = target_write_u32(target,
1360 crc_algorithm->address + i * sizeof(uint32_t),
1361 arm_crc_code[i]);
1362 if (retval != ERROR_OK)
1363 return retval;
1364 }
1365
1366 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1367 armv4_5_info.core_mode = ARM_MODE_SVC;
1368 armv4_5_info.core_state = ARM_STATE_ARM;
1369
1370 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1371 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1372
1373 buf_set_u32(reg_params[0].value, 0, 32, address);
1374 buf_set_u32(reg_params[1].value, 0, 32, count);
1375
1376 /* 20 second timeout/megabyte */
1377 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1378
1379 /* armv4 must exit using a hardware breakpoint */
1380 if (armv4_5->is_armv4)
1381 exit_var = crc_algorithm->address + sizeof(arm_crc_code) - 8;
1382
1383 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1384 crc_algorithm->address,
1385 exit_var,
1386 timeout, &armv4_5_info);
1387 if (retval != ERROR_OK) {
1388 LOG_ERROR("error executing ARM crc algorithm");
1389 destroy_reg_param(&reg_params[0]);
1390 destroy_reg_param(&reg_params[1]);
1391 target_free_working_area(target, crc_algorithm);
1392 return retval;
1393 }
1394
1395 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1396
1397 destroy_reg_param(&reg_params[0]);
1398 destroy_reg_param(&reg_params[1]);
1399
1400 target_free_working_area(target, crc_algorithm);
1401
1402 return ERROR_OK;
1403 }
1404
1405 /**
1406 * Runs ARM code in the target to check whether a memory block holds
1407 * all ones. NOR flash which has been erased, and thus may be written,
1408 * holds all ones.
1409 *
1410 */
1411 int arm_blank_check_memory(struct target *target,
1412 uint32_t address, uint32_t count, uint32_t *blank)
1413 {
1414 struct working_area *check_algorithm;
1415 struct reg_param reg_params[3];
1416 struct arm_algorithm armv4_5_info;
1417 struct arm *armv4_5 = target_to_arm(target);
1418 int retval;
1419 uint32_t i;
1420 uint32_t exit_var = 0;
1421
1422 static const uint32_t check_code[] = {
1423 /* loop: */
1424 0xe4d03001, /* ldrb r3, [r0], #1 */
1425 0xe0022003, /* and r2, r2, r3 */
1426 0xe2511001, /* subs r1, r1, #1 */
1427 0x1afffffb, /* bne loop */
1428 /* end: */
1429 0xe1200070, /* bkpt #0 */
1430 };
1431
1432 /* make sure we have a working area */
1433 retval = target_alloc_working_area(target,
1434 sizeof(check_code), &check_algorithm);
1435 if (retval != ERROR_OK)
1436 return retval;
1437
1438 /* convert code into a buffer in target endianness */
1439 for (i = 0; i < ARRAY_SIZE(check_code); i++) {
1440 retval = target_write_u32(target,
1441 check_algorithm->address
1442 + i * sizeof(uint32_t),
1443 check_code[i]);
1444 if (retval != ERROR_OK)
1445 return retval;
1446 }
1447
1448 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1449 armv4_5_info.core_mode = ARM_MODE_SVC;
1450 armv4_5_info.core_state = ARM_STATE_ARM;
1451
1452 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1453 buf_set_u32(reg_params[0].value, 0, 32, address);
1454
1455 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1456 buf_set_u32(reg_params[1].value, 0, 32, count);
1457
1458 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1459 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
1460
1461 /* armv4 must exit using a hardware breakpoint */
1462 if (armv4_5->is_armv4)
1463 exit_var = check_algorithm->address + sizeof(check_code) - 4;
1464
1465 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1466 check_algorithm->address,
1467 exit_var,
1468 10000, &armv4_5_info);
1469 if (retval != ERROR_OK) {
1470 destroy_reg_param(&reg_params[0]);
1471 destroy_reg_param(&reg_params[1]);
1472 destroy_reg_param(&reg_params[2]);
1473 target_free_working_area(target, check_algorithm);
1474 return retval;
1475 }
1476
1477 *blank = buf_get_u32(reg_params[2].value, 0, 32);
1478
1479 destroy_reg_param(&reg_params[0]);
1480 destroy_reg_param(&reg_params[1]);
1481 destroy_reg_param(&reg_params[2]);
1482
1483 target_free_working_area(target, check_algorithm);
1484
1485 return ERROR_OK;
1486 }
1487
1488 static int arm_full_context(struct target *target)
1489 {
1490 struct arm *armv4_5 = target_to_arm(target);
1491 unsigned num_regs = armv4_5->core_cache->num_regs;
1492 struct reg *reg = armv4_5->core_cache->reg_list;
1493 int retval = ERROR_OK;
1494
1495 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1496 if (reg->valid)
1497 continue;
1498 retval = armv4_5_get_core_reg(reg);
1499 }
1500 return retval;
1501 }
1502
1503 static int arm_default_mrc(struct target *target, int cpnum,
1504 uint32_t op1, uint32_t op2,
1505 uint32_t CRn, uint32_t CRm,
1506 uint32_t *value)
1507 {
1508 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1509 return ERROR_FAIL;
1510 }
1511
1512 static int arm_default_mcr(struct target *target, int cpnum,
1513 uint32_t op1, uint32_t op2,
1514 uint32_t CRn, uint32_t CRm,
1515 uint32_t value)
1516 {
1517 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1518 return ERROR_FAIL;
1519 }
1520
1521 int arm_init_arch_info(struct target *target, struct arm *armv4_5)
1522 {
1523 target->arch_info = armv4_5;
1524 armv4_5->target = target;
1525
1526 armv4_5->common_magic = ARM_COMMON_MAGIC;
1527
1528 /* core_type may be overridden by subtype logic */
1529 if (armv4_5->core_type != ARM_MODE_THREAD) {
1530 armv4_5->core_type = ARM_MODE_ANY;
1531 arm_set_cpsr(armv4_5, ARM_MODE_USR);
1532 }
1533
1534 /* default full_context() has no core-specific optimizations */
1535 if (!armv4_5->full_context && armv4_5->read_core_reg)
1536 armv4_5->full_context = arm_full_context;
1537
1538 if (!armv4_5->mrc)
1539 armv4_5->mrc = arm_default_mrc;
1540 if (!armv4_5->mcr)
1541 armv4_5->mcr = arm_default_mcr;
1542
1543 return ERROR_OK;
1544 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)