07c8c6ebc9becedbad81fc5f62a3081f1fe38bba
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "arm.h"
31 #include "armv4_5.h"
32 #include "arm_jtag.h"
33 #include "breakpoints.h"
34 #include "arm_disassembler.h"
35 #include <helper/binarybuffer.h>
36 #include "algorithm.h"
37 #include "register.h"
38
39
40 /* offsets into armv4_5 core register cache */
41 enum {
42 // ARMV4_5_CPSR = 31,
43 ARMV4_5_SPSR_FIQ = 32,
44 ARMV4_5_SPSR_IRQ = 33,
45 ARMV4_5_SPSR_SVC = 34,
46 ARMV4_5_SPSR_ABT = 35,
47 ARMV4_5_SPSR_UND = 36,
48 ARM_SPSR_MON = 39,
49 };
50
51 static const uint8_t arm_usr_indices[17] = {
52 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
53 };
54
55 static const uint8_t arm_fiq_indices[8] = {
56 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
57 };
58
59 static const uint8_t arm_irq_indices[3] = {
60 23, 24, ARMV4_5_SPSR_IRQ,
61 };
62
63 static const uint8_t arm_svc_indices[3] = {
64 25, 26, ARMV4_5_SPSR_SVC,
65 };
66
67 static const uint8_t arm_abt_indices[3] = {
68 27, 28, ARMV4_5_SPSR_ABT,
69 };
70
71 static const uint8_t arm_und_indices[3] = {
72 29, 30, ARMV4_5_SPSR_UND,
73 };
74
75 static const uint8_t arm_mon_indices[3] = {
76 37, 38, ARM_SPSR_MON,
77 };
78
79 static const struct {
80 const char *name;
81 unsigned short psr;
82 /* For user and system modes, these list indices for all registers.
83 * otherwise they're just indices for the shadow registers and SPSR.
84 */
85 unsigned short n_indices;
86 const uint8_t *indices;
87 } arm_mode_data[] = {
88 /* Seven modes are standard from ARM7 on. "System" and "User" share
89 * the same registers; other modes shadow from 3 to 8 registers.
90 */
91 {
92 .name = "User",
93 .psr = ARM_MODE_USR,
94 .n_indices = ARRAY_SIZE(arm_usr_indices),
95 .indices = arm_usr_indices,
96 },
97 {
98 .name = "FIQ",
99 .psr = ARM_MODE_FIQ,
100 .n_indices = ARRAY_SIZE(arm_fiq_indices),
101 .indices = arm_fiq_indices,
102 },
103 {
104 .name = "Supervisor",
105 .psr = ARM_MODE_SVC,
106 .n_indices = ARRAY_SIZE(arm_svc_indices),
107 .indices = arm_svc_indices,
108 },
109 {
110 .name = "Abort",
111 .psr = ARM_MODE_ABT,
112 .n_indices = ARRAY_SIZE(arm_abt_indices),
113 .indices = arm_abt_indices,
114 },
115 {
116 .name = "IRQ",
117 .psr = ARM_MODE_IRQ,
118 .n_indices = ARRAY_SIZE(arm_irq_indices),
119 .indices = arm_irq_indices,
120 },
121 {
122 .name = "Undefined instruction",
123 .psr = ARM_MODE_UND,
124 .n_indices = ARRAY_SIZE(arm_und_indices),
125 .indices = arm_und_indices,
126 },
127 {
128 .name = "System",
129 .psr = ARM_MODE_SYS,
130 .n_indices = ARRAY_SIZE(arm_usr_indices),
131 .indices = arm_usr_indices,
132 },
133 /* TrustZone "Security Extensions" add a secure monitor mode.
134 * This is distinct from a "debug monitor" which can support
135 * non-halting debug, in conjunction with some debuggers.
136 */
137 {
138 .name = "Secure Monitor",
139 .psr = ARM_MODE_MON,
140 .n_indices = ARRAY_SIZE(arm_mon_indices),
141 .indices = arm_mon_indices,
142 },
143 };
144
145 /** Map PSR mode bits to the name of an ARM processor operating mode. */
146 const char *arm_mode_name(unsigned psr_mode)
147 {
148 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
149 if (arm_mode_data[i].psr == psr_mode)
150 return arm_mode_data[i].name;
151 }
152 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
153 return "UNRECOGNIZED";
154 }
155
156 /** Return true iff the parameter denotes a valid ARM processor mode. */
157 bool is_arm_mode(unsigned psr_mode)
158 {
159 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
160 if (arm_mode_data[i].psr == psr_mode)
161 return true;
162 }
163 return false;
164 }
165
166 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
167 int arm_mode_to_number(enum arm_mode mode)
168 {
169 switch (mode) {
170 case ARM_MODE_ANY:
171 /* map MODE_ANY to user mode */
172 case ARM_MODE_USR:
173 return 0;
174 case ARM_MODE_FIQ:
175 return 1;
176 case ARM_MODE_IRQ:
177 return 2;
178 case ARM_MODE_SVC:
179 return 3;
180 case ARM_MODE_ABT:
181 return 4;
182 case ARM_MODE_UND:
183 return 5;
184 case ARM_MODE_SYS:
185 return 6;
186 case ARM_MODE_MON:
187 return 7;
188 default:
189 LOG_ERROR("invalid mode value encountered %d", mode);
190 return -1;
191 }
192 }
193
194 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
195 enum arm_mode armv4_5_number_to_mode(int number)
196 {
197 switch (number) {
198 case 0:
199 return ARM_MODE_USR;
200 case 1:
201 return ARM_MODE_FIQ;
202 case 2:
203 return ARM_MODE_IRQ;
204 case 3:
205 return ARM_MODE_SVC;
206 case 4:
207 return ARM_MODE_ABT;
208 case 5:
209 return ARM_MODE_UND;
210 case 6:
211 return ARM_MODE_SYS;
212 case 7:
213 return ARM_MODE_MON;
214 default:
215 LOG_ERROR("mode index out of bounds %d", number);
216 return ARM_MODE_ANY;
217 }
218 }
219
220 static const char *arm_state_strings[] =
221 {
222 "ARM", "Thumb", "Jazelle", "ThumbEE",
223 };
224
225 /* Templates for ARM core registers.
226 *
227 * NOTE: offsets in this table are coupled to the arm_mode_data
228 * table above, the armv4_5_core_reg_map array below, and also to
229 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
230 */
231 static const struct {
232 /* The name is used for e.g. the "regs" command. */
233 const char *name;
234
235 /* The {cookie, mode} tuple uniquely identifies one register.
236 * In a given mode, cookies 0..15 map to registers R0..R15,
237 * with R13..R15 usually called SP, LR, PC.
238 *
239 * MODE_ANY is used as *input* to the mapping, and indicates
240 * various special cases (sigh) and errors.
241 *
242 * Cookie 16 is (currently) confusing, since it indicates
243 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
244 * (Exception modes have both CPSR and SPSR registers ...)
245 */
246 unsigned cookie;
247 enum arm_mode mode;
248 } arm_core_regs[] = {
249 /* IMPORTANT: we guarantee that the first eight cached registers
250 * correspond to r0..r7, and the fifteenth to PC, so that callers
251 * don't need to map them.
252 */
253 { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, },
254 { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, },
255 { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, },
256 { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, },
257 { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, },
258 { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, },
259 { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, },
260 { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, },
261
262 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
263 * them as MODE_ANY creates special cases. (ANY means
264 * "not mapped" elsewhere; here it's "everything but FIQ".)
265 */
266 { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, },
267 { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, },
268 { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, },
269 { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, },
270 { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, },
271
272 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
273 { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, },
274 { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, },
275
276 /* guaranteed to be at index 15 */
277 { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, },
278
279 { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, },
280 { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, },
281 { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, },
282 { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, },
283 { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, },
284
285 { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, },
286 { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, },
287
288 { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, },
289 { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, },
290
291 { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, },
292 { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, },
293
294 { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, },
295 { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, },
296
297 { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, },
298 { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, },
299
300 { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, },
301 { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, },
302 { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, },
303 { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, },
304 { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, },
305 { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, },
306
307 { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, },
308 { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, },
309 { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, },
310 };
311
312 /* map core mode (USR, FIQ, ...) and register number to
313 * indices into the register cache
314 */
315 const int armv4_5_core_reg_map[8][17] =
316 {
317 { /* USR */
318 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
319 },
320 { /* FIQ (8 shadows of USR, vs normal 3) */
321 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
322 },
323 { /* IRQ */
324 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
325 },
326 { /* SVC */
327 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
328 },
329 { /* ABT */
330 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
331 },
332 { /* UND */
333 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
334 },
335 { /* SYS (same registers as USR) */
336 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
337 },
338 { /* MON */
339 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
340 }
341 };
342
343 /**
344 * Configures host-side ARM records to reflect the specified CPSR.
345 * Later, code can use arm_reg_current() to map register numbers
346 * according to how they are exposed by this mode.
347 */
348 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
349 {
350 enum arm_mode mode = cpsr & 0x1f;
351 int num;
352
353 /* NOTE: this may be called very early, before the register
354 * cache is set up. We can't defend against many errors, in
355 * particular against CPSRs that aren't valid *here* ...
356 */
357 if (arm->cpsr) {
358 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
359 arm->cpsr->valid = 1;
360 arm->cpsr->dirty = 0;
361 }
362
363 arm->core_mode = mode;
364
365 /* mode_to_number() warned; set up a somewhat-sane mapping */
366 num = arm_mode_to_number(mode);
367 if (num < 0) {
368 mode = ARM_MODE_USR;
369 num = 0;
370 }
371
372 arm->map = &armv4_5_core_reg_map[num][0];
373 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
374 ? NULL
375 : arm->core_cache->reg_list + arm->map[16];
376
377 /* Older ARMs won't have the J bit */
378 enum arm_state state;
379
380 if (cpsr & (1 << 5)) { /* T */
381 if (cpsr & (1 << 24)) { /* J */
382 LOG_WARNING("ThumbEE -- incomplete support");
383 state = ARM_STATE_THUMB_EE;
384 } else
385 state = ARM_STATE_THUMB;
386 } else {
387 if (cpsr & (1 << 24)) { /* J */
388 LOG_ERROR("Jazelle state handling is BROKEN!");
389 state = ARM_STATE_JAZELLE;
390 } else
391 state = ARM_STATE_ARM;
392 }
393 arm->core_state = state;
394
395 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
396 arm_mode_name(mode),
397 arm_state_strings[arm->core_state]);
398 }
399
400 /**
401 * Returns handle to the register currently mapped to a given number.
402 * Someone must have called arm_set_cpsr() before.
403 *
404 * \param arm This core's state and registers are used.
405 * \param regnum From 0..15 corresponding to R0..R14 and PC.
406 * Note that R0..R7 don't require mapping; you may access those
407 * as the first eight entries in the register cache. Likewise
408 * R15 (PC) doesn't need mapping; you may also access it directly.
409 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
410 * CPSR (arm->cpsr) is also not mapped.
411 */
412 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
413 {
414 struct reg *r;
415
416 if (regnum > 16)
417 return NULL;
418
419 r = arm->core_cache->reg_list + arm->map[regnum];
420
421 /* e.g. invalid CPSR said "secure monitor" mode on a core
422 * that doesn't support it...
423 */
424 if (!r) {
425 LOG_ERROR("Invalid CPSR mode");
426 r = arm->core_cache->reg_list + regnum;
427 }
428
429 return r;
430 }
431
432 static const uint8_t arm_gdb_dummy_fp_value[12];
433
434 /**
435 * Dummy FPA registers are required to support GDB on ARM.
436 * Register packets require eight obsolete FPA register values.
437 * Modern ARM cores use Vector Floating Point (VFP), if they
438 * have any floating point support. VFP is not FPA-compatible.
439 */
440 struct reg arm_gdb_dummy_fp_reg =
441 {
442 .name = "GDB dummy FPA register",
443 .value = (uint8_t *) arm_gdb_dummy_fp_value,
444 .valid = 1,
445 .size = 96,
446 };
447
448 static const uint8_t arm_gdb_dummy_fps_value[4];
449
450 /**
451 * Dummy FPA status registers are required to support GDB on ARM.
452 * Register packets require an obsolete FPA status register.
453 */
454 struct reg arm_gdb_dummy_fps_reg =
455 {
456 .name = "GDB dummy FPA status register",
457 .value = (uint8_t *) arm_gdb_dummy_fps_value,
458 .valid = 1,
459 .size = 32,
460 };
461
462 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
463
464 static void arm_gdb_dummy_init(void)
465 {
466 register_init_dummy(&arm_gdb_dummy_fp_reg);
467 register_init_dummy(&arm_gdb_dummy_fps_reg);
468 }
469
470 static int armv4_5_get_core_reg(struct reg *reg)
471 {
472 int retval;
473 struct arm_reg *armv4_5 = reg->arch_info;
474 struct target *target = armv4_5->target;
475
476 if (target->state != TARGET_HALTED)
477 {
478 LOG_ERROR("Target not halted");
479 return ERROR_TARGET_NOT_HALTED;
480 }
481
482 retval = armv4_5->armv4_5_common->read_core_reg(target, reg, armv4_5->num, armv4_5->mode);
483 if (retval == ERROR_OK) {
484 reg->valid = 1;
485 reg->dirty = 0;
486 }
487
488 return retval;
489 }
490
491 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
492 {
493 struct arm_reg *armv4_5 = reg->arch_info;
494 struct target *target = armv4_5->target;
495 struct arm *armv4_5_target = target_to_arm(target);
496 uint32_t value = buf_get_u32(buf, 0, 32);
497
498 if (target->state != TARGET_HALTED)
499 {
500 LOG_ERROR("Target not halted");
501 return ERROR_TARGET_NOT_HALTED;
502 }
503
504 /* Except for CPSR, the "reg" command exposes a writeback model
505 * for the register cache.
506 */
507 if (reg == armv4_5_target->cpsr) {
508 arm_set_cpsr(armv4_5_target, value);
509
510 /* Older cores need help to be in ARM mode during halt
511 * mode debug, so we clear the J and T bits if we flush.
512 * For newer cores (v6/v7a/v7r) we don't need that, but
513 * it won't hurt since CPSR is always flushed anyway.
514 */
515 if (armv4_5_target->core_mode !=
516 (enum arm_mode)(value & 0x1f)) {
517 LOG_DEBUG("changing ARM core mode to '%s'",
518 arm_mode_name(value & 0x1f));
519 value &= ~((1 << 24) | (1 << 5));
520 armv4_5_target->write_core_reg(target, reg,
521 16, ARM_MODE_ANY, value);
522 }
523 } else {
524 buf_set_u32(reg->value, 0, 32, value);
525 reg->valid = 1;
526 }
527 reg->dirty = 1;
528
529 return ERROR_OK;
530 }
531
532 static const struct reg_arch_type arm_reg_type = {
533 .get = armv4_5_get_core_reg,
534 .set = armv4_5_set_core_reg,
535 };
536
537 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
538 {
539 int num_regs = ARRAY_SIZE(arm_core_regs);
540 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
541 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
542 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
543 int i;
544
545 if (!cache || !reg_list || !arch_info) {
546 free(cache);
547 free(reg_list);
548 free(arch_info);
549 return NULL;
550 }
551
552 cache->name = "ARM registers";
553 cache->next = NULL;
554 cache->reg_list = reg_list;
555 cache->num_regs = 0;
556
557 for (i = 0; i < num_regs; i++)
558 {
559 /* Skip registers this core doesn't expose */
560 if (arm_core_regs[i].mode == ARM_MODE_MON
561 && arm->core_type != ARM_MODE_MON)
562 continue;
563
564 /* REVISIT handle Cortex-M, which only shadows R13/SP */
565
566 arch_info[i].num = arm_core_regs[i].cookie;
567 arch_info[i].mode = arm_core_regs[i].mode;
568 arch_info[i].target = target;
569 arch_info[i].armv4_5_common = arm;
570
571 reg_list[i].name = (char *) arm_core_regs[i].name;
572 reg_list[i].size = 32;
573 reg_list[i].value = &arch_info[i].value;
574 reg_list[i].type = &arm_reg_type;
575 reg_list[i].arch_info = &arch_info[i];
576
577 cache->num_regs++;
578 }
579
580 arm->pc = reg_list + 15;
581 arm->cpsr = reg_list + ARMV4_5_CPSR;
582 arm->core_cache = cache;
583 return cache;
584 }
585
586 int arm_arch_state(struct target *target)
587 {
588 struct arm *armv4_5 = target_to_arm(target);
589
590 if (armv4_5->common_magic != ARM_COMMON_MAGIC)
591 {
592 LOG_ERROR("BUG: called for a non-ARM target");
593 return ERROR_FAIL;
594 }
595
596 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
597 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s",
598 arm_state_strings[armv4_5->core_state],
599 debug_reason_name(target),
600 arm_mode_name(armv4_5->core_mode),
601 buf_get_u32(armv4_5->cpsr->value, 0, 32),
602 buf_get_u32(armv4_5->pc->value, 0, 32),
603 armv4_5->is_semihosting ? ", semihosting" : "");
604
605 return ERROR_OK;
606 }
607
608 #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
609 cache->reg_list[armv4_5_core_reg_map[mode][num]]
610
611 COMMAND_HANDLER(handle_armv4_5_reg_command)
612 {
613 struct target *target = get_current_target(CMD_CTX);
614 struct arm *armv4_5 = target_to_arm(target);
615 unsigned num_regs;
616 struct reg *regs;
617
618 if (!is_arm(armv4_5))
619 {
620 command_print(CMD_CTX, "current target isn't an ARM");
621 return ERROR_FAIL;
622 }
623
624 if (target->state != TARGET_HALTED)
625 {
626 command_print(CMD_CTX, "error: target must be halted for register accesses");
627 return ERROR_FAIL;
628 }
629
630 if (armv4_5->core_type != ARM_MODE_ANY)
631 {
632 command_print(CMD_CTX, "Microcontroller Profile not supported - use standard reg cmd");
633 return ERROR_OK;
634 }
635
636 if (!is_arm_mode(armv4_5->core_mode))
637 {
638 LOG_ERROR("not a valid arm core mode - communication failure?");
639 return ERROR_FAIL;
640 }
641
642 if (!armv4_5->full_context) {
643 command_print(CMD_CTX, "error: target doesn't support %s",
644 CMD_NAME);
645 return ERROR_FAIL;
646 }
647
648 num_regs = armv4_5->core_cache->num_regs;
649 regs = armv4_5->core_cache->reg_list;
650
651 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
652 const char *name;
653 char *sep = "\n";
654 char *shadow = "";
655
656 /* label this bank of registers (or shadows) */
657 switch (arm_mode_data[mode].psr) {
658 case ARM_MODE_SYS:
659 continue;
660 case ARM_MODE_USR:
661 name = "System and User";
662 sep = "";
663 break;
664 case ARM_MODE_MON:
665 if (armv4_5->core_type != ARM_MODE_MON)
666 continue;
667 /* FALLTHROUGH */
668 default:
669 name = arm_mode_data[mode].name;
670 shadow = "shadow ";
671 break;
672 }
673 command_print(CMD_CTX, "%s%s mode %sregisters",
674 sep, name, shadow);
675
676 /* display N rows of up to 4 registers each */
677 for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) {
678 char output[80];
679 int output_len = 0;
680
681 for (unsigned j = 0; j < 4; j++, i++) {
682 uint32_t value;
683 struct reg *reg = regs;
684
685 if (i >= arm_mode_data[mode].n_indices)
686 break;
687
688 reg += arm_mode_data[mode].indices[i];
689
690 /* REVISIT be smarter about faults... */
691 if (!reg->valid)
692 armv4_5->full_context(target);
693
694 value = buf_get_u32(reg->value, 0, 32);
695 output_len += snprintf(output + output_len,
696 sizeof(output) - output_len,
697 "%8s: %8.8" PRIx32 " ",
698 reg->name, value);
699 }
700 command_print(CMD_CTX, "%s", output);
701 }
702 }
703
704 return ERROR_OK;
705 }
706
707 COMMAND_HANDLER(handle_armv4_5_core_state_command)
708 {
709 struct target *target = get_current_target(CMD_CTX);
710 struct arm *armv4_5 = target_to_arm(target);
711
712 if (!is_arm(armv4_5))
713 {
714 command_print(CMD_CTX, "current target isn't an ARM");
715 return ERROR_FAIL;
716 }
717
718 if (armv4_5->core_type == ARM_MODE_THREAD)
719 {
720 /* armv7m not supported */
721 command_print(CMD_CTX, "Unsupported Command");
722 return ERROR_OK;
723 }
724
725 if (CMD_ARGC > 0)
726 {
727 if (strcmp(CMD_ARGV[0], "arm") == 0)
728 {
729 armv4_5->core_state = ARM_STATE_ARM;
730 }
731 if (strcmp(CMD_ARGV[0], "thumb") == 0)
732 {
733 armv4_5->core_state = ARM_STATE_THUMB;
734 }
735 }
736
737 command_print(CMD_CTX, "core state: %s", arm_state_strings[armv4_5->core_state]);
738
739 return ERROR_OK;
740 }
741
742 COMMAND_HANDLER(handle_arm_disassemble_command)
743 {
744 int retval = ERROR_OK;
745 struct target *target = get_current_target(CMD_CTX);
746 struct arm *arm = target ? target_to_arm(target) : NULL;
747 uint32_t address;
748 int count = 1;
749 int thumb = 0;
750
751 if (!is_arm(arm)) {
752 command_print(CMD_CTX, "current target isn't an ARM");
753 return ERROR_FAIL;
754 }
755
756 if (arm->core_type == ARM_MODE_THREAD)
757 {
758 /* armv7m is always thumb mode */
759 thumb = 1;
760 }
761
762 switch (CMD_ARGC) {
763 case 3:
764 if (strcmp(CMD_ARGV[2], "thumb") != 0)
765 goto usage;
766 thumb = 1;
767 /* FALL THROUGH */
768 case 2:
769 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
770 /* FALL THROUGH */
771 case 1:
772 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
773 if (address & 0x01) {
774 if (!thumb) {
775 command_print(CMD_CTX, "Disassemble as Thumb");
776 thumb = 1;
777 }
778 address &= ~1;
779 }
780 break;
781 default:
782 usage:
783 command_print(CMD_CTX,
784 "usage: arm disassemble <address> [<count> ['thumb']]");
785 count = 0;
786 retval = ERROR_FAIL;
787 }
788
789 while (count-- > 0) {
790 struct arm_instruction cur_instruction;
791
792 if (thumb) {
793 /* Always use Thumb2 disassembly for best handling
794 * of 32-bit BL/BLX, and to work with newer cores
795 * (some ARMv6, all ARMv7) that use Thumb2.
796 */
797 retval = thumb2_opcode(target, address,
798 &cur_instruction);
799 if (retval != ERROR_OK)
800 break;
801 } else {
802 uint32_t opcode;
803
804 retval = target_read_u32(target, address, &opcode);
805 if (retval != ERROR_OK)
806 break;
807 retval = arm_evaluate_opcode(opcode, address,
808 &cur_instruction) != ERROR_OK;
809 if (retval != ERROR_OK)
810 break;
811 }
812 command_print(CMD_CTX, "%s", cur_instruction.text);
813 address += cur_instruction.instruction_size;
814 }
815
816 return retval;
817 }
818
819 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
820 {
821 struct command_context *context;
822 struct target *target;
823 struct arm *arm;
824 int retval;
825
826 context = current_command_context(interp);
827 assert( context != NULL);
828
829 target = get_current_target(context);
830 if (target == NULL) {
831 LOG_ERROR("%s: no current target", __func__);
832 return JIM_ERR;
833 }
834 if (!target_was_examined(target)) {
835 LOG_ERROR("%s: not yet examined", target_name(target));
836 return JIM_ERR;
837 }
838 arm = target_to_arm(target);
839 if (!is_arm(arm)) {
840 LOG_ERROR("%s: not an ARM", target_name(target));
841 return JIM_ERR;
842 }
843
844 if ((argc < 6) || (argc > 7)) {
845 /* FIXME use the command name to verify # params... */
846 LOG_ERROR("%s: wrong number of arguments", __func__);
847 return JIM_ERR;
848 }
849
850 int cpnum;
851 uint32_t op1;
852 uint32_t op2;
853 uint32_t CRn;
854 uint32_t CRm;
855 uint32_t value;
856 long l;
857
858 /* NOTE: parameter sequence matches ARM instruction set usage:
859 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
860 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
861 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
862 */
863 retval = Jim_GetLong(interp, argv[1], &l);
864 if (retval != JIM_OK)
865 return retval;
866 if (l & ~0xf) {
867 LOG_ERROR("%s: %s %d out of range", __func__,
868 "coprocessor", (int) l);
869 return JIM_ERR;
870 }
871 cpnum = l;
872
873 retval = Jim_GetLong(interp, argv[2], &l);
874 if (retval != JIM_OK)
875 return retval;
876 if (l & ~0x7) {
877 LOG_ERROR("%s: %s %d out of range", __func__,
878 "op1", (int) l);
879 return JIM_ERR;
880 }
881 op1 = l;
882
883 retval = Jim_GetLong(interp, argv[3], &l);
884 if (retval != JIM_OK)
885 return retval;
886 if (l & ~0xf) {
887 LOG_ERROR("%s: %s %d out of range", __func__,
888 "CRn", (int) l);
889 return JIM_ERR;
890 }
891 CRn = l;
892
893 retval = Jim_GetLong(interp, argv[4], &l);
894 if (retval != JIM_OK)
895 return retval;
896 if (l & ~0xf) {
897 LOG_ERROR("%s: %s %d out of range", __func__,
898 "CRm", (int) l);
899 return JIM_ERR;
900 }
901 CRm = l;
902
903 retval = Jim_GetLong(interp, argv[5], &l);
904 if (retval != JIM_OK)
905 return retval;
906 if (l & ~0x7) {
907 LOG_ERROR("%s: %s %d out of range", __func__,
908 "op2", (int) l);
909 return JIM_ERR;
910 }
911 op2 = l;
912
913 value = 0;
914
915 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
916 * that could easily be a typo! Check both...
917 *
918 * FIXME change the call syntax here ... simplest to just pass
919 * the MRC() or MCR() instruction to be executed. That will also
920 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
921 * if that's ever needed.
922 */
923 if (argc == 7) {
924 retval = Jim_GetLong(interp, argv[6], &l);
925 if (retval != JIM_OK) {
926 return retval;
927 }
928 value = l;
929
930 /* NOTE: parameters reordered! */
931 // ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2)
932 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
933 if (retval != ERROR_OK)
934 return JIM_ERR;
935 } else {
936 /* NOTE: parameters reordered! */
937 // ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2)
938 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
939 if (retval != ERROR_OK)
940 return JIM_ERR;
941
942 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
943 }
944
945 return JIM_OK;
946 }
947
948 COMMAND_HANDLER(handle_arm_semihosting_command)
949 {
950 struct target *target = get_current_target(CMD_CTX);
951 struct arm *arm = target ? target_to_arm(target) : NULL;
952
953 if (!is_arm(arm)) {
954 command_print(CMD_CTX, "current target isn't an ARM");
955 return ERROR_FAIL;
956 }
957
958 if (!arm->setup_semihosting)
959 {
960 command_print(CMD_CTX, "semihosting not supported for current target");
961 }
962
963 if (CMD_ARGC > 0)
964 {
965 int semihosting;
966
967 COMMAND_PARSE_ENABLE(CMD_ARGV[0], semihosting);
968
969 if (!target_was_examined(target))
970 {
971 LOG_ERROR("Target not examined yet");
972 return ERROR_FAIL;
973 }
974
975 if (arm->setup_semihosting(target, semihosting) != ERROR_OK) {
976 LOG_ERROR("Failed to Configure semihosting");
977 return ERROR_FAIL;
978 }
979
980 /* FIXME never let that "catch" be dropped! */
981 arm->is_semihosting = semihosting;
982 }
983
984 command_print(CMD_CTX, "semihosting is %s",
985 arm->is_semihosting
986 ? "enabled" : "disabled");
987
988 return ERROR_OK;
989 }
990
991 static const struct command_registration arm_exec_command_handlers[] = {
992 {
993 .name = "reg",
994 .handler = handle_armv4_5_reg_command,
995 .mode = COMMAND_EXEC,
996 .help = "display ARM core registers",
997 },
998 {
999 .name = "core_state",
1000 .handler = handle_armv4_5_core_state_command,
1001 .mode = COMMAND_EXEC,
1002 .usage = "['arm'|'thumb']",
1003 .help = "display/change ARM core state",
1004 },
1005 {
1006 .name = "disassemble",
1007 .handler = handle_arm_disassemble_command,
1008 .mode = COMMAND_EXEC,
1009 .usage = "address [count ['thumb']]",
1010 .help = "disassemble instructions ",
1011 },
1012 {
1013 .name = "mcr",
1014 .mode = COMMAND_EXEC,
1015 .jim_handler = &jim_mcrmrc,
1016 .help = "write coprocessor register",
1017 .usage = "cpnum op1 CRn op2 CRm value",
1018 },
1019 {
1020 .name = "mrc",
1021 .jim_handler = &jim_mcrmrc,
1022 .help = "read coprocessor register",
1023 .usage = "cpnum op1 CRn op2 CRm",
1024 },
1025 {
1026 "semihosting",
1027 .handler = handle_arm_semihosting_command,
1028 .mode = COMMAND_EXEC,
1029 .usage = "['enable'|'disable']",
1030 .help = "activate support for semihosting operations",
1031 },
1032
1033 COMMAND_REGISTRATION_DONE
1034 };
1035 const struct command_registration arm_command_handlers[] = {
1036 {
1037 .name = "arm",
1038 .mode = COMMAND_ANY,
1039 .help = "ARM command group",
1040 .chain = arm_exec_command_handlers,
1041 },
1042 COMMAND_REGISTRATION_DONE
1043 };
1044
1045 int arm_get_gdb_reg_list(struct target *target,
1046 struct reg **reg_list[], int *reg_list_size)
1047 {
1048 struct arm *armv4_5 = target_to_arm(target);
1049 int i;
1050
1051 if (!is_arm_mode(armv4_5->core_mode))
1052 {
1053 LOG_ERROR("not a valid arm core mode - communication failure?");
1054 return ERROR_FAIL;
1055 }
1056
1057 *reg_list_size = 26;
1058 *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
1059
1060 for (i = 0; i < 16; i++)
1061 (*reg_list)[i] = arm_reg_current(armv4_5, i);
1062
1063 for (i = 16; i < 24; i++)
1064 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1065
1066 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1067 (*reg_list)[25] = armv4_5->cpsr;
1068
1069 return ERROR_OK;
1070 }
1071
1072 /* wait for execution to complete and check exit point */
1073 static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
1074 {
1075 int retval;
1076 struct arm *armv4_5 = target_to_arm(target);
1077
1078 if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK)
1079 {
1080 return retval;
1081 }
1082 if (target->state != TARGET_HALTED)
1083 {
1084 if ((retval = target_halt(target)) != ERROR_OK)
1085 return retval;
1086 if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
1087 {
1088 return retval;
1089 }
1090 return ERROR_TARGET_TIMEOUT;
1091 }
1092
1093 /* fast exit: ARMv5+ code can use BKPT */
1094 if (exit_point && buf_get_u32(armv4_5->pc->value, 0, 32) != exit_point)
1095 {
1096 LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1097 buf_get_u32(armv4_5->pc->value, 0, 32));
1098 return ERROR_TARGET_TIMEOUT;
1099 }
1100
1101 return ERROR_OK;
1102 }
1103
1104 int armv4_5_run_algorithm_inner(struct target *target,
1105 int num_mem_params, struct mem_param *mem_params,
1106 int num_reg_params, struct reg_param *reg_params,
1107 uint32_t entry_point, uint32_t exit_point,
1108 int timeout_ms, void *arch_info,
1109 int (*run_it)(struct target *target, uint32_t exit_point,
1110 int timeout_ms, void *arch_info))
1111 {
1112 struct arm *armv4_5 = target_to_arm(target);
1113 struct arm_algorithm *arm_algorithm_info = arch_info;
1114 enum arm_state core_state = armv4_5->core_state;
1115 uint32_t context[17];
1116 uint32_t cpsr;
1117 int exit_breakpoint_size = 0;
1118 int i;
1119 int retval = ERROR_OK;
1120
1121 LOG_DEBUG("Running algorithm");
1122
1123 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC)
1124 {
1125 LOG_ERROR("current target isn't an ARMV4/5 target");
1126 return ERROR_TARGET_INVALID;
1127 }
1128
1129 if (target->state != TARGET_HALTED)
1130 {
1131 LOG_WARNING("target not halted");
1132 return ERROR_TARGET_NOT_HALTED;
1133 }
1134
1135 if (!is_arm_mode(armv4_5->core_mode))
1136 {
1137 LOG_ERROR("not a valid arm core mode - communication failure?");
1138 return ERROR_FAIL;
1139 }
1140
1141 /* armv5 and later can terminate with BKPT instruction; less overhead */
1142 if (!exit_point && armv4_5->is_armv4)
1143 {
1144 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1145 return ERROR_FAIL;
1146 }
1147
1148 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1149 * they'll be restored later.
1150 */
1151 for (i = 0; i <= 16; i++)
1152 {
1153 struct reg *r;
1154
1155 r = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
1156 arm_algorithm_info->core_mode, i);
1157 if (!r->valid)
1158 armv4_5->read_core_reg(target, r, i,
1159 arm_algorithm_info->core_mode);
1160 context[i] = buf_get_u32(r->value, 0, 32);
1161 }
1162 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1163
1164 for (i = 0; i < num_mem_params; i++)
1165 {
1166 if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1167 {
1168 return retval;
1169 }
1170 }
1171
1172 for (i = 0; i < num_reg_params; i++)
1173 {
1174 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1175 if (!reg)
1176 {
1177 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1178 return ERROR_INVALID_ARGUMENTS;
1179 }
1180
1181 if (reg->size != reg_params[i].size)
1182 {
1183 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1184 return ERROR_INVALID_ARGUMENTS;
1185 }
1186
1187 if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK)
1188 {
1189 return retval;
1190 }
1191 }
1192
1193 armv4_5->core_state = arm_algorithm_info->core_state;
1194 if (armv4_5->core_state == ARM_STATE_ARM)
1195 exit_breakpoint_size = 4;
1196 else if (armv4_5->core_state == ARM_STATE_THUMB)
1197 exit_breakpoint_size = 2;
1198 else
1199 {
1200 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1201 return ERROR_INVALID_ARGUMENTS;
1202 }
1203
1204 if (arm_algorithm_info->core_mode != ARM_MODE_ANY)
1205 {
1206 LOG_DEBUG("setting core_mode: 0x%2.2x",
1207 arm_algorithm_info->core_mode);
1208 buf_set_u32(armv4_5->cpsr->value, 0, 5,
1209 arm_algorithm_info->core_mode);
1210 armv4_5->cpsr->dirty = 1;
1211 armv4_5->cpsr->valid = 1;
1212 }
1213
1214 /* terminate using a hardware or (ARMv5+) software breakpoint */
1215 if (exit_point && (retval = breakpoint_add(target, exit_point,
1216 exit_breakpoint_size, BKPT_HARD)) != ERROR_OK)
1217 {
1218 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1219 return ERROR_TARGET_FAILURE;
1220 }
1221
1222 if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
1223 {
1224 return retval;
1225 }
1226 int retvaltemp;
1227 retval = run_it(target, exit_point, timeout_ms, arch_info);
1228
1229 if (exit_point)
1230 breakpoint_remove(target, exit_point);
1231
1232 if (retval != ERROR_OK)
1233 return retval;
1234
1235 for (i = 0; i < num_mem_params; i++)
1236 {
1237 if (mem_params[i].direction != PARAM_OUT)
1238 if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1239 {
1240 retval = retvaltemp;
1241 }
1242 }
1243
1244 for (i = 0; i < num_reg_params; i++)
1245 {
1246 if (reg_params[i].direction != PARAM_OUT)
1247 {
1248
1249 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1250 if (!reg)
1251 {
1252 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1253 retval = ERROR_INVALID_ARGUMENTS;
1254 continue;
1255 }
1256
1257 if (reg->size != reg_params[i].size)
1258 {
1259 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1260 retval = ERROR_INVALID_ARGUMENTS;
1261 continue;
1262 }
1263
1264 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1265 }
1266 }
1267
1268 /* restore everything we saved before (17 or 18 registers) */
1269 for (i = 0; i <= 16; i++)
1270 {
1271 uint32_t regvalue;
1272 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32);
1273 if (regvalue != context[i])
1274 {
1275 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).name, context[i]);
1276 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1277 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).valid = 1;
1278 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).dirty = 1;
1279 }
1280 }
1281
1282 arm_set_cpsr(armv4_5, cpsr);
1283 armv4_5->cpsr->dirty = 1;
1284
1285 armv4_5->core_state = core_state;
1286
1287 return retval;
1288 }
1289
1290 int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
1291 {
1292 return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion);
1293 }
1294
1295 /**
1296 * Runs ARM code in the target to calculate a CRC32 checksum.
1297 *
1298 */
1299 int arm_checksum_memory(struct target *target,
1300 uint32_t address, uint32_t count, uint32_t *checksum)
1301 {
1302 struct working_area *crc_algorithm;
1303 struct arm_algorithm armv4_5_info;
1304 struct arm *armv4_5 = target_to_arm(target);
1305 struct reg_param reg_params[2];
1306 int retval;
1307 uint32_t i;
1308 uint32_t exit_var = 0;
1309
1310 static const uint32_t arm_crc_code[] = {
1311 0xE1A02000, /* mov r2, r0 */
1312 0xE3E00000, /* mov r0, #0xffffffff */
1313 0xE1A03001, /* mov r3, r1 */
1314 0xE3A04000, /* mov r4, #0 */
1315 0xEA00000B, /* b ncomp */
1316 /* nbyte: */
1317 0xE7D21004, /* ldrb r1, [r2, r4] */
1318 0xE59F7030, /* ldr r7, CRC32XOR */
1319 0xE0200C01, /* eor r0, r0, r1, asl 24 */
1320 0xE3A05000, /* mov r5, #0 */
1321 /* loop: */
1322 0xE3500000, /* cmp r0, #0 */
1323 0xE1A06080, /* mov r6, r0, asl #1 */
1324 0xE2855001, /* add r5, r5, #1 */
1325 0xE1A00006, /* mov r0, r6 */
1326 0xB0260007, /* eorlt r0, r6, r7 */
1327 0xE3550008, /* cmp r5, #8 */
1328 0x1AFFFFF8, /* bne loop */
1329 0xE2844001, /* add r4, r4, #1 */
1330 /* ncomp: */
1331 0xE1540003, /* cmp r4, r3 */
1332 0x1AFFFFF1, /* bne nbyte */
1333 /* end: */
1334 0xe1200070, /* bkpt #0 */
1335 /* CRC32XOR: */
1336 0x04C11DB7 /* .word 0x04C11DB7 */
1337 };
1338
1339 retval = target_alloc_working_area(target,
1340 sizeof(arm_crc_code), &crc_algorithm);
1341 if (retval != ERROR_OK)
1342 return retval;
1343
1344 /* convert code into a buffer in target endianness */
1345 for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) {
1346 retval = target_write_u32(target,
1347 crc_algorithm->address + i * sizeof(uint32_t),
1348 arm_crc_code[i]);
1349 if (retval != ERROR_OK)
1350 return retval;
1351 }
1352
1353 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1354 armv4_5_info.core_mode = ARM_MODE_SVC;
1355 armv4_5_info.core_state = ARM_STATE_ARM;
1356
1357 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1358 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1359
1360 buf_set_u32(reg_params[0].value, 0, 32, address);
1361 buf_set_u32(reg_params[1].value, 0, 32, count);
1362
1363 /* 20 second timeout/megabyte */
1364 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1365
1366 /* armv4 must exit using a hardware breakpoint */
1367 if (armv4_5->is_armv4)
1368 exit_var = crc_algorithm->address + sizeof(arm_crc_code) - 8;
1369
1370 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1371 crc_algorithm->address,
1372 exit_var,
1373 timeout, &armv4_5_info);
1374 if (retval != ERROR_OK) {
1375 LOG_ERROR("error executing ARM crc algorithm");
1376 destroy_reg_param(&reg_params[0]);
1377 destroy_reg_param(&reg_params[1]);
1378 target_free_working_area(target, crc_algorithm);
1379 return retval;
1380 }
1381
1382 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1383
1384 destroy_reg_param(&reg_params[0]);
1385 destroy_reg_param(&reg_params[1]);
1386
1387 target_free_working_area(target, crc_algorithm);
1388
1389 return ERROR_OK;
1390 }
1391
1392 /**
1393 * Runs ARM code in the target to check whether a memory block holds
1394 * all ones. NOR flash which has been erased, and thus may be written,
1395 * holds all ones.
1396 *
1397 */
1398 int arm_blank_check_memory(struct target *target,
1399 uint32_t address, uint32_t count, uint32_t *blank)
1400 {
1401 struct working_area *check_algorithm;
1402 struct reg_param reg_params[3];
1403 struct arm_algorithm armv4_5_info;
1404 struct arm *armv4_5 = target_to_arm(target);
1405 int retval;
1406 uint32_t i;
1407 uint32_t exit_var = 0;
1408
1409 static const uint32_t check_code[] = {
1410 /* loop: */
1411 0xe4d03001, /* ldrb r3, [r0], #1 */
1412 0xe0022003, /* and r2, r2, r3 */
1413 0xe2511001, /* subs r1, r1, #1 */
1414 0x1afffffb, /* bne loop */
1415 /* end: */
1416 0xe1200070, /* bkpt #0 */
1417 };
1418
1419 /* make sure we have a working area */
1420 retval = target_alloc_working_area(target,
1421 sizeof(check_code), &check_algorithm);
1422 if (retval != ERROR_OK)
1423 return retval;
1424
1425 /* convert code into a buffer in target endianness */
1426 for (i = 0; i < ARRAY_SIZE(check_code); i++) {
1427 retval = target_write_u32(target,
1428 check_algorithm->address
1429 + i * sizeof(uint32_t),
1430 check_code[i]);
1431 if (retval != ERROR_OK)
1432 return retval;
1433 }
1434
1435 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1436 armv4_5_info.core_mode = ARM_MODE_SVC;
1437 armv4_5_info.core_state = ARM_STATE_ARM;
1438
1439 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1440 buf_set_u32(reg_params[0].value, 0, 32, address);
1441
1442 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1443 buf_set_u32(reg_params[1].value, 0, 32, count);
1444
1445 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1446 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
1447
1448 /* armv4 must exit using a hardware breakpoint */
1449 if (armv4_5->is_armv4)
1450 exit_var = check_algorithm->address + sizeof(check_code) - 4;
1451
1452 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1453 check_algorithm->address,
1454 exit_var,
1455 10000, &armv4_5_info);
1456 if (retval != ERROR_OK) {
1457 destroy_reg_param(&reg_params[0]);
1458 destroy_reg_param(&reg_params[1]);
1459 destroy_reg_param(&reg_params[2]);
1460 target_free_working_area(target, check_algorithm);
1461 return retval;
1462 }
1463
1464 *blank = buf_get_u32(reg_params[2].value, 0, 32);
1465
1466 destroy_reg_param(&reg_params[0]);
1467 destroy_reg_param(&reg_params[1]);
1468 destroy_reg_param(&reg_params[2]);
1469
1470 target_free_working_area(target, check_algorithm);
1471
1472 return ERROR_OK;
1473 }
1474
1475 static int arm_full_context(struct target *target)
1476 {
1477 struct arm *armv4_5 = target_to_arm(target);
1478 unsigned num_regs = armv4_5->core_cache->num_regs;
1479 struct reg *reg = armv4_5->core_cache->reg_list;
1480 int retval = ERROR_OK;
1481
1482 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1483 if (reg->valid)
1484 continue;
1485 retval = armv4_5_get_core_reg(reg);
1486 }
1487 return retval;
1488 }
1489
1490 static int arm_default_mrc(struct target *target, int cpnum,
1491 uint32_t op1, uint32_t op2,
1492 uint32_t CRn, uint32_t CRm,
1493 uint32_t *value)
1494 {
1495 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1496 return ERROR_FAIL;
1497 }
1498
1499 static int arm_default_mcr(struct target *target, int cpnum,
1500 uint32_t op1, uint32_t op2,
1501 uint32_t CRn, uint32_t CRm,
1502 uint32_t value)
1503 {
1504 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1505 return ERROR_FAIL;
1506 }
1507
1508 int arm_init_arch_info(struct target *target, struct arm *armv4_5)
1509 {
1510 target->arch_info = armv4_5;
1511 armv4_5->target = target;
1512
1513 armv4_5->common_magic = ARM_COMMON_MAGIC;
1514
1515 /* core_type may be overridden by subtype logic */
1516 if (armv4_5->core_type != ARM_MODE_THREAD) {
1517 armv4_5->core_type = ARM_MODE_ANY;
1518 arm_set_cpsr(armv4_5, ARM_MODE_USR);
1519 }
1520
1521 /* default full_context() has no core-specific optimizations */
1522 if (!armv4_5->full_context && armv4_5->read_core_reg)
1523 armv4_5->full_context = arm_full_context;
1524
1525 if (!armv4_5->mrc)
1526 armv4_5->mrc = arm_default_mrc;
1527 if (!armv4_5->mcr)
1528 armv4_5->mcr = arm_default_mcr;
1529
1530 return ERROR_OK;
1531 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)