arm_adi_v5: add/move apsel member in struct adiv5_dap
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
104 {
105 uint32_t new_ap = (ap << 24) & 0xFF000000;
106
107 if (new_ap != dap->ap_current)
108 {
109 dap->ap_current = new_ap;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
315
316 for (writecount = 0; writecount < blocksize; writecount++)
317 {
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
322 }
323
324 if ((retval = dap_run(dap)) == ERROR_OK)
325 {
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
329 }
330 else
331 {
332 errorcount++;
333 }
334
335 if (errorcount > 1)
336 {
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
339 }
340 }
341
342 return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 uint8_t *buffer, int count, uint32_t address)
347 {
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
350
351 wcount = count >> 1;
352
353 while (wcount > 0)
354 {
355 int nbytes;
356
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360 if (wcount < blocksize)
361 blocksize = wcount;
362
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
366
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
371
372 do
373 {
374 nbytes = MIN((writecount << 1), 4);
375
376 if (nbytes < 4)
377 {
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
381 {
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
386 }
387
388 address += nbytes >> 1;
389 }
390 else
391 {
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395 for (i = 0; i < nbytes; i++)
396 {
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
400 }
401
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
407
408 if ((retval = dap_run(dap)) != ERROR_OK)
409 {
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
414 }
415 }
416
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
419
420 } while (writecount);
421 wcount -= blocksize;
422 }
423
424 return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
428 {
429 int retval = ERROR_OK;
430
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434 while (count > 0)
435 {
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
445
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
449
450 count -= 2;
451 address += 2;
452 buffer += 2;
453 }
454
455 return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 uint8_t *buffer, int count, uint32_t address)
460 {
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
463
464 wcount = count;
465
466 while (wcount > 0)
467 {
468 int nbytes;
469
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473 if (wcount < blocksize)
474 blocksize = wcount;
475
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
480
481 do
482 {
483 nbytes = MIN(writecount, 4);
484
485 if (nbytes < 4)
486 {
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
489 {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
494 }
495
496 address += nbytes;
497 }
498 else
499 {
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503 for (i = 0; i < nbytes; i++)
504 {
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
508 }
509
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
515
516 if ((retval = dap_run(dap)) != ERROR_OK)
517 {
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
522 }
523 }
524
525 buffer += nbytes;
526 writecount -= nbytes;
527
528 } while (writecount);
529 wcount -= blocksize;
530 }
531
532 return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
536 {
537 int retval = ERROR_OK;
538
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542 while (count > 0)
543 {
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
551
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
555
556 count--;
557 address++;
558 buffer++;
559 }
560
561 return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566 */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
578 */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
581 {
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
585
586 count >>= 2;
587 wcount = count;
588
589 while (wcount > 0)
590 {
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
594 */
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
599
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
603
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
608
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
614 */
615
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
622 {
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
626 */
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
632 }
633
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636 */
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
642
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
645 {
646 errorcount++;
647 if (errorcount <= 1)
648 {
649 /* try again */
650 continue;
651 }
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
654 }
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
658 }
659
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
662 {
663 for (readcount = 0; readcount < count; readcount++)
664 {
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
668
669 for (i = 0; i < 4; i++)
670 {
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
675 }
676 }
677 }
678
679 return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
684 {
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
688
689 wcount = count >> 1;
690
691 while (wcount > 0)
692 {
693 int nbytes;
694
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
699
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
703
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
708
709 do
710 {
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
715 {
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
718 }
719
720 nbytes = MIN((readcount << 1), 4);
721
722 for (i = 0; i < nbytes; i++)
723 {
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
727 }
728
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
732 }
733
734 return retval;
735 }
736
737 /**
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
744 */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
747 {
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
750
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754 while (count > 0)
755 {
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
762
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
766
767 if (address & 0x1)
768 {
769 for (i = 0; i < 2; i++)
770 {
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
774 }
775 }
776 else
777 {
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
782 }
783 count -= 2;
784 }
785
786 return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791 *
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
794 */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
797 {
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
801
802 wcount = count;
803
804 while (wcount > 0)
805 {
806 int nbytes;
807
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811 if (wcount < blocksize)
812 blocksize = wcount;
813
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
818
819 do
820 {
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
825 {
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
828 }
829
830 nbytes = MIN(readcount, 4);
831
832 for (i = 0; i < nbytes; i++)
833 {
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
837 }
838
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
842 }
843
844 return retval;
845 }
846
847 /**
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
854 */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
857 {
858 uint32_t invalue;
859 int retval = ERROR_OK;
860
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864 while (count > 0)
865 {
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
875
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
880 }
881
882 return retval;
883 }
884
885 /*--------------------------------------------------------------------*/
886 /* Wrapping function with selection of AP */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889 uint32_t address, uint32_t *value)
890 {
891 dap_ap_select(swjdp, ap);
892 return mem_ap_read_u32(swjdp, address, value);
893 }
894
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896 uint32_t address, uint32_t value)
897 {
898 dap_ap_select(swjdp, ap);
899 return mem_ap_write_u32(swjdp, address, value);
900 }
901
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903 uint32_t address, uint32_t *value)
904 {
905 dap_ap_select(swjdp, ap);
906 return mem_ap_read_atomic_u32(swjdp, address, value);
907 }
908
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910 uint32_t address, uint32_t value)
911 {
912 dap_ap_select(swjdp, ap);
913 return mem_ap_write_atomic_u32(swjdp, address, value);
914 }
915
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917 uint8_t *buffer, int count, uint32_t address)
918 {
919 dap_ap_select(swjdp, ap);
920 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
921 }
922
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924 uint8_t *buffer, int count, uint32_t address)
925 {
926 dap_ap_select(swjdp, ap);
927 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
928 }
929
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931 uint8_t *buffer, int count, uint32_t address)
932 {
933 dap_ap_select(swjdp, ap);
934 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
935 }
936
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938 uint8_t *buffer, int count, uint32_t address)
939 {
940 dap_ap_select(swjdp, ap);
941 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
942 }
943
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945 uint8_t *buffer, int count, uint32_t address)
946 {
947 dap_ap_select(swjdp, ap);
948 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
949 }
950
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952 uint8_t *buffer, int count, uint32_t address)
953 {
954 dap_ap_select(swjdp, ap);
955 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
956 }
957
958
959 /*--------------------------------------------------------------------------*/
960
961
962 /* FIXME don't import ... just initialize as
963 * part of DAP transport setup
964 */
965 extern const struct dap_ops jtag_dp_ops;
966
967 /*--------------------------------------------------------------------------*/
968
969 /**
970 * Initialize a DAP. This sets up the power domains, prepares the DP
971 * for further use, and arranges to use AP #0 for all AP operations
972 * until dap_ap-select() changes that policy.
973 *
974 * @param dap The DAP being initialized.
975 *
976 * @todo Rename this. We also need an initialization scheme which account
977 * for SWD transports not just JTAG; that will need to address differences
978 * in layering. (JTAG is useful without any debug target; but not SWD.)
979 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
980 */
981 int ahbap_debugport_init(struct adiv5_dap *dap)
982 {
983 uint32_t ctrlstat;
984 int cnt = 0;
985 int retval;
986
987 LOG_DEBUG(" ");
988
989 /* JTAG-DP or SWJ-DP, in JTAG mode
990 * ... for SWD mode this is patched as part
991 * of link switchover
992 */
993 if (!dap->ops)
994 dap->ops = &jtag_dp_ops;
995
996 /* Default MEM-AP setup.
997 *
998 * REVISIT AP #0 may be an inappropriate default for this.
999 * Should we probe, or take a hint from the caller?
1000 * Presumably we can ignore the possibility of multiple APs.
1001 */
1002 dap->ap_current = !0;
1003 dap_ap_select(dap, 0);
1004
1005 /* DP initialization */
1006
1007 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008 if (retval != ERROR_OK)
1009 return retval;
1010
1011 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012 if (retval != ERROR_OK)
1013 return retval;
1014
1015 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016 if (retval != ERROR_OK)
1017 return retval;
1018
1019 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021 if (retval != ERROR_OK)
1022 return retval;
1023
1024 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 if ((retval = dap_run(dap)) != ERROR_OK)
1028 return retval;
1029
1030 /* Check that we have debug power domains activated */
1031 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1032 {
1033 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035 if (retval != ERROR_OK)
1036 return retval;
1037 if ((retval = dap_run(dap)) != ERROR_OK)
1038 return retval;
1039 alive_sleep(10);
1040 }
1041
1042 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1043 {
1044 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046 if (retval != ERROR_OK)
1047 return retval;
1048 if ((retval = dap_run(dap)) != ERROR_OK)
1049 return retval;
1050 alive_sleep(10);
1051 }
1052
1053 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 /* With debug power on we can activate OVERRUN checking */
1057 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 return ERROR_OK;
1066 }
1067
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069 * and ARM IHI 0031A table 13-3.
1070 */
1071 static const char *class_description[16] ={
1072 "Reserved", "ROM table", "Reserved", "Reserved",
1073 "Reserved", "Reserved", "Reserved", "Reserved",
1074 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075 "Reserved", "OptimoDE DESS",
1076 "Generic IP component", "PrimeCell or System component"
1077 };
1078
1079 static bool
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1081 {
1082 return cid3 == 0xb1 && cid2 == 0x05
1083 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1084 }
1085
1086 struct broken_cpu {
1087 uint32_t dbgbase;
1088 uint32_t apid;
1089 uint32_t idcode;
1090 uint32_t correct_dbgbase;
1091 char *model;
1092 } broken_cpus[] = {
1093 { 0x80000000, 0x04770002, 0x1ba00477, 0x60000000, "imx51" },
1094 };
1095
1096 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1097 uint32_t *out_dbgbase, uint32_t *out_apid)
1098 {
1099 uint32_t ap_old;
1100 int retval;
1101 unsigned int i;
1102 uint32_t dbgbase, apid, idcode;
1103
1104 /* AP address is in bits 31:24 of DP_SELECT */
1105 if (ap >= 256)
1106 return ERROR_INVALID_ARGUMENTS;
1107
1108 ap_old = dap->ap_current;
1109 dap_ap_select(dap, ap);
1110
1111 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1112 if (retval != ERROR_OK)
1113 return retval;
1114 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1115 if (retval != ERROR_OK)
1116 return retval;
1117 retval = dap_run(dap);
1118 if (retval != ERROR_OK)
1119 return retval;
1120
1121 /* Excavate the device ID code */
1122 struct jtag_tap *tap = dap->jtag_info->tap;
1123 while (tap != NULL) {
1124 if (tap->hasidcode) {
1125 idcode = tap->idcode;
1126 break;
1127 }
1128 tap = tap->next_tap;
1129 }
1130 if (tap == NULL || !tap->hasidcode)
1131 return ERROR_OK;
1132
1133 /* Some CPUs are messed up, so fixup if needed. */
1134 for (i = 0; i < sizeof(broken_cpus)/sizeof(struct broken_cpu); i++)
1135 if (broken_cpus[i].dbgbase == dbgbase &&
1136 broken_cpus[i].apid == apid &&
1137 broken_cpus[i].idcode == idcode) {
1138 LOG_WARNING("Found broken CPU (%s), trying to fixup "
1139 "ROM Table location from 0x%08x to 0x%08x",
1140 broken_cpus[i].model, dbgbase,
1141 broken_cpus[i].correct_dbgbase);
1142 dbgbase = broken_cpus[i].correct_dbgbase;
1143 break;
1144 }
1145
1146 dap_ap_select(dap, ap_old);
1147
1148 /* The asignment happens only here to prevent modification of these
1149 * values before they are certain. */
1150 *out_dbgbase = dbgbase;
1151 *out_apid = apid;
1152
1153 return ERROR_OK;
1154 }
1155
1156 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1157 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1158 {
1159 uint32_t ap_old;
1160 uint32_t romentry, entry_offset = 0, component_base, devtype;
1161 int retval = ERROR_FAIL;
1162
1163 if (ap >= 256)
1164 return ERROR_INVALID_ARGUMENTS;
1165
1166 ap_old = dap->ap_current;
1167 dap_ap_select(dap, ap);
1168
1169 do
1170 {
1171 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1172 entry_offset, &romentry);
1173 if (retval != ERROR_OK)
1174 return retval;
1175
1176 component_base = (dbgbase & 0xFFFFF000)
1177 + (romentry & 0xFFFFF000);
1178
1179 if (romentry & 0x1) {
1180 retval = mem_ap_read_atomic_u32(dap,
1181 (component_base & 0xfffff000) | 0xfcc,
1182 &devtype);
1183 if ((devtype & 0xff) == type) {
1184 *addr = component_base;
1185 retval = ERROR_OK;
1186 break;
1187 }
1188 }
1189 entry_offset += 4;
1190 } while (romentry > 0);
1191
1192 dap_ap_select(dap, ap_old);
1193
1194 return retval;
1195 }
1196
1197 static int dap_info_command(struct command_context *cmd_ctx,
1198 struct adiv5_dap *dap, int ap)
1199 {
1200 int retval;
1201 uint32_t dbgbase, apid;
1202 int romtable_present = 0;
1203 uint8_t mem_ap;
1204 uint32_t ap_old;
1205
1206 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1207 if (retval != ERROR_OK)
1208 return retval;
1209
1210 ap_old = dap->ap_current;
1211 dap_ap_select(dap, ap);
1212
1213 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1214 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1215 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1216 if (apid)
1217 {
1218 switch (apid&0x0F)
1219 {
1220 case 0:
1221 command_print(cmd_ctx, "\tType is JTAG-AP");
1222 break;
1223 case 1:
1224 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1225 break;
1226 case 2:
1227 command_print(cmd_ctx, "\tType is MEM-AP APB");
1228 break;
1229 default:
1230 command_print(cmd_ctx, "\tUnknown AP type");
1231 break;
1232 }
1233
1234 /* NOTE: a MEM-AP may have a single CoreSight component that's
1235 * not a ROM table ... or have no such components at all.
1236 */
1237 if (mem_ap)
1238 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1239 dbgbase);
1240 }
1241 else
1242 {
1243 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1244 }
1245
1246 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1247 if (romtable_present)
1248 {
1249 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1250 uint16_t entry_offset;
1251
1252 /* bit 16 of apid indicates a memory access port */
1253 if (dbgbase & 0x02)
1254 command_print(cmd_ctx, "\tValid ROM table present");
1255 else
1256 command_print(cmd_ctx, "\tROM table in legacy format");
1257
1258 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1259 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1260 if (retval != ERROR_OK)
1261 return retval;
1262 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1263 if (retval != ERROR_OK)
1264 return retval;
1265 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1266 if (retval != ERROR_OK)
1267 return retval;
1268 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1269 if (retval != ERROR_OK)
1270 return retval;
1271 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1272 if (retval != ERROR_OK)
1273 return retval;
1274 retval = dap_run(dap);
1275 if (retval != ERROR_OK)
1276 return retval;
1277
1278 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1279 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1280 ", CID2 0x%2.2x"
1281 ", CID1 0x%2.2x"
1282 ", CID0 0x%2.2x",
1283 (unsigned) cid3, (unsigned)cid2,
1284 (unsigned) cid1, (unsigned) cid0);
1285 if (memtype & 0x01)
1286 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1287 else
1288 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1289 "Dedicated debug bus.");
1290
1291 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1292 entry_offset = 0;
1293 do
1294 {
1295 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1296 if (retval != ERROR_OK)
1297 return retval;
1298 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1299 if (romentry&0x01)
1300 {
1301 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1302 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1303 uint32_t component_base;
1304 unsigned part_num;
1305 char *type, *full;
1306
1307 component_base = (dbgbase & 0xFFFFF000)
1308 + (romentry & 0xFFFFF000);
1309
1310 /* IDs are in last 4K section */
1311
1312
1313 retval = mem_ap_read_atomic_u32(dap,
1314 component_base + 0xFE0, &c_pid0);
1315 if (retval != ERROR_OK)
1316 return retval;
1317 c_pid0 &= 0xff;
1318 retval = mem_ap_read_atomic_u32(dap,
1319 component_base + 0xFE4, &c_pid1);
1320 if (retval != ERROR_OK)
1321 return retval;
1322 c_pid1 &= 0xff;
1323 retval = mem_ap_read_atomic_u32(dap,
1324 component_base + 0xFE8, &c_pid2);
1325 if (retval != ERROR_OK)
1326 return retval;
1327 c_pid2 &= 0xff;
1328 retval = mem_ap_read_atomic_u32(dap,
1329 component_base + 0xFEC, &c_pid3);
1330 if (retval != ERROR_OK)
1331 return retval;
1332 c_pid3 &= 0xff;
1333 retval = mem_ap_read_atomic_u32(dap,
1334 component_base + 0xFD0, &c_pid4);
1335 if (retval != ERROR_OK)
1336 return retval;
1337 c_pid4 &= 0xff;
1338
1339 retval = mem_ap_read_atomic_u32(dap,
1340 component_base + 0xFF0, &c_cid0);
1341 if (retval != ERROR_OK)
1342 return retval;
1343 c_cid0 &= 0xff;
1344 retval = mem_ap_read_atomic_u32(dap,
1345 component_base + 0xFF4, &c_cid1);
1346 if (retval != ERROR_OK)
1347 return retval;
1348 c_cid1 &= 0xff;
1349 retval = mem_ap_read_atomic_u32(dap,
1350 component_base + 0xFF8, &c_cid2);
1351 if (retval != ERROR_OK)
1352 return retval;
1353 c_cid2 &= 0xff;
1354 retval = mem_ap_read_atomic_u32(dap,
1355 component_base + 0xFFC, &c_cid3);
1356 if (retval != ERROR_OK)
1357 return retval;
1358 c_cid3 &= 0xff;
1359
1360
1361 command_print(cmd_ctx,
1362 "\t\tComponent base address 0x%" PRIx32
1363 ", start address 0x%" PRIx32,
1364 component_base,
1365 /* component may take multiple 4K pages */
1366 component_base - 0x1000*(c_pid4 >> 4));
1367 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1368 (int) (c_cid1 >> 4) & 0xf,
1369 /* See ARM IHI 0029B Table 3-3 */
1370 class_description[(c_cid1 >> 4) & 0xf]);
1371
1372 /* CoreSight component? */
1373 if (((c_cid1 >> 4) & 0x0f) == 9) {
1374 uint32_t devtype;
1375 unsigned minor;
1376 char *major = "Reserved", *subtype = "Reserved";
1377
1378 retval = mem_ap_read_atomic_u32(dap,
1379 (component_base & 0xfffff000) | 0xfcc,
1380 &devtype);
1381 if (retval != ERROR_OK)
1382 return retval;
1383 minor = (devtype >> 4) & 0x0f;
1384 switch (devtype & 0x0f) {
1385 case 0:
1386 major = "Miscellaneous";
1387 switch (minor) {
1388 case 0:
1389 subtype = "other";
1390 break;
1391 case 4:
1392 subtype = "Validation component";
1393 break;
1394 }
1395 break;
1396 case 1:
1397 major = "Trace Sink";
1398 switch (minor) {
1399 case 0:
1400 subtype = "other";
1401 break;
1402 case 1:
1403 subtype = "Port";
1404 break;
1405 case 2:
1406 subtype = "Buffer";
1407 break;
1408 }
1409 break;
1410 case 2:
1411 major = "Trace Link";
1412 switch (minor) {
1413 case 0:
1414 subtype = "other";
1415 break;
1416 case 1:
1417 subtype = "Funnel, router";
1418 break;
1419 case 2:
1420 subtype = "Filter";
1421 break;
1422 case 3:
1423 subtype = "FIFO, buffer";
1424 break;
1425 }
1426 break;
1427 case 3:
1428 major = "Trace Source";
1429 switch (minor) {
1430 case 0:
1431 subtype = "other";
1432 break;
1433 case 1:
1434 subtype = "Processor";
1435 break;
1436 case 2:
1437 subtype = "DSP";
1438 break;
1439 case 3:
1440 subtype = "Engine/Coprocessor";
1441 break;
1442 case 4:
1443 subtype = "Bus";
1444 break;
1445 }
1446 break;
1447 case 4:
1448 major = "Debug Control";
1449 switch (minor) {
1450 case 0:
1451 subtype = "other";
1452 break;
1453 case 1:
1454 subtype = "Trigger Matrix";
1455 break;
1456 case 2:
1457 subtype = "Debug Auth";
1458 break;
1459 }
1460 break;
1461 case 5:
1462 major = "Debug Logic";
1463 switch (minor) {
1464 case 0:
1465 subtype = "other";
1466 break;
1467 case 1:
1468 subtype = "Processor";
1469 break;
1470 case 2:
1471 subtype = "DSP";
1472 break;
1473 case 3:
1474 subtype = "Engine/Coprocessor";
1475 break;
1476 }
1477 break;
1478 }
1479 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1480 (unsigned) (devtype & 0xff),
1481 major, subtype);
1482 /* REVISIT also show 0xfc8 DevId */
1483 }
1484
1485 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1486 command_print(cmd_ctx,
1487 "\t\tCID3 0%2.2x"
1488 ", CID2 0%2.2x"
1489 ", CID1 0%2.2x"
1490 ", CID0 0%2.2x",
1491 (int) c_cid3,
1492 (int) c_cid2,
1493 (int)c_cid1,
1494 (int)c_cid0);
1495 command_print(cmd_ctx,
1496 "\t\tPeripheral ID[4..0] = hex "
1497 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1498 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1499 (int) c_pid1, (int) c_pid0);
1500
1501 /* Part number interpretations are from Cortex
1502 * core specs, the CoreSight components TRM
1503 * (ARM DDI 0314H), CoreSight System Design
1504 * Guide (ARM DGI 0012D) and ETM specs; also
1505 * from chip observation (e.g. TI SDTI).
1506 */
1507 part_num = (c_pid0 & 0xff);
1508 part_num |= (c_pid1 & 0x0f) << 8;
1509 switch (part_num) {
1510 case 0x000:
1511 type = "Cortex-M3 NVIC";
1512 full = "(Interrupt Controller)";
1513 break;
1514 case 0x001:
1515 type = "Cortex-M3 ITM";
1516 full = "(Instrumentation Trace Module)";
1517 break;
1518 case 0x002:
1519 type = "Cortex-M3 DWT";
1520 full = "(Data Watchpoint and Trace)";
1521 break;
1522 case 0x003:
1523 type = "Cortex-M3 FBP";
1524 full = "(Flash Patch and Breakpoint)";
1525 break;
1526 case 0x00d:
1527 type = "CoreSight ETM11";
1528 full = "(Embedded Trace)";
1529 break;
1530 // case 0x113: what?
1531 case 0x120: /* from OMAP3 memmap */
1532 type = "TI SDTI";
1533 full = "(System Debug Trace Interface)";
1534 break;
1535 case 0x343: /* from OMAP3 memmap */
1536 type = "TI DAPCTL";
1537 full = "";
1538 break;
1539 case 0x906:
1540 type = "Coresight CTI";
1541 full = "(Cross Trigger)";
1542 break;
1543 case 0x907:
1544 type = "Coresight ETB";
1545 full = "(Trace Buffer)";
1546 break;
1547 case 0x908:
1548 type = "Coresight CSTF";
1549 full = "(Trace Funnel)";
1550 break;
1551 case 0x910:
1552 type = "CoreSight ETM9";
1553 full = "(Embedded Trace)";
1554 break;
1555 case 0x912:
1556 type = "Coresight TPIU";
1557 full = "(Trace Port Interface Unit)";
1558 break;
1559 case 0x921:
1560 type = "Cortex-A8 ETM";
1561 full = "(Embedded Trace)";
1562 break;
1563 case 0x922:
1564 type = "Cortex-A8 CTI";
1565 full = "(Cross Trigger)";
1566 break;
1567 case 0x923:
1568 type = "Cortex-M3 TPIU";
1569 full = "(Trace Port Interface Unit)";
1570 break;
1571 case 0x924:
1572 type = "Cortex-M3 ETM";
1573 full = "(Embedded Trace)";
1574 break;
1575 case 0x930:
1576 type = "Cortex-R4 ETM";
1577 full = "(Embedded Trace)";
1578 break;
1579 case 0xc08:
1580 type = "Cortex-A8 Debug";
1581 full = "(Debug Unit)";
1582 break;
1583 default:
1584 type = "-*- unrecognized -*-";
1585 full = "";
1586 break;
1587 }
1588 command_print(cmd_ctx, "\t\tPart is %s %s",
1589 type, full);
1590 }
1591 else
1592 {
1593 if (romentry)
1594 command_print(cmd_ctx, "\t\tComponent not present");
1595 else
1596 command_print(cmd_ctx, "\t\tEnd of ROM table");
1597 }
1598 entry_offset += 4;
1599 } while (romentry > 0);
1600 }
1601 else
1602 {
1603 command_print(cmd_ctx, "\tNo ROM table present");
1604 }
1605 dap_ap_select(dap, ap_old);
1606
1607 return ERROR_OK;
1608 }
1609
1610 COMMAND_HANDLER(handle_dap_info_command)
1611 {
1612 struct target *target = get_current_target(CMD_CTX);
1613 struct arm *arm = target_to_arm(target);
1614 struct adiv5_dap *dap = arm->dap;
1615 uint32_t apsel;
1616
1617 switch (CMD_ARGC) {
1618 case 0:
1619 apsel = dap->apsel;
1620 break;
1621 case 1:
1622 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1623 break;
1624 default:
1625 return ERROR_COMMAND_SYNTAX_ERROR;
1626 }
1627
1628 return dap_info_command(CMD_CTX, dap, apsel);
1629 }
1630
1631 COMMAND_HANDLER(dap_baseaddr_command)
1632 {
1633 struct target *target = get_current_target(CMD_CTX);
1634 struct arm *arm = target_to_arm(target);
1635 struct adiv5_dap *dap = arm->dap;
1636
1637 uint32_t apsel, baseaddr;
1638 int retval;
1639
1640 switch (CMD_ARGC) {
1641 case 0:
1642 apsel = dap->apsel;
1643 break;
1644 case 1:
1645 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1646 /* AP address is in bits 31:24 of DP_SELECT */
1647 if (apsel >= 256)
1648 return ERROR_INVALID_ARGUMENTS;
1649 break;
1650 default:
1651 return ERROR_COMMAND_SYNTAX_ERROR;
1652 }
1653
1654 dap_ap_select(dap, apsel);
1655
1656 /* NOTE: assumes we're talking to a MEM-AP, which
1657 * has a base address. There are other kinds of AP,
1658 * though they're not common for now. This should
1659 * use the ID register to verify it's a MEM-AP.
1660 */
1661 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1662 if (retval != ERROR_OK)
1663 return retval;
1664 retval = dap_run(dap);
1665 if (retval != ERROR_OK)
1666 return retval;
1667
1668 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1669
1670 return retval;
1671 }
1672
1673 COMMAND_HANDLER(dap_memaccess_command)
1674 {
1675 struct target *target = get_current_target(CMD_CTX);
1676 struct arm *arm = target_to_arm(target);
1677 struct adiv5_dap *dap = arm->dap;
1678
1679 uint32_t memaccess_tck;
1680
1681 switch (CMD_ARGC) {
1682 case 0:
1683 memaccess_tck = dap->memaccess_tck;
1684 break;
1685 case 1:
1686 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1687 break;
1688 default:
1689 return ERROR_COMMAND_SYNTAX_ERROR;
1690 }
1691 dap->memaccess_tck = memaccess_tck;
1692
1693 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1694 dap->memaccess_tck);
1695
1696 return ERROR_OK;
1697 }
1698
1699 COMMAND_HANDLER(dap_apsel_command)
1700 {
1701 struct target *target = get_current_target(CMD_CTX);
1702 struct arm *arm = target_to_arm(target);
1703 struct adiv5_dap *dap = arm->dap;
1704
1705 uint32_t apsel, apid;
1706 int retval;
1707
1708 switch (CMD_ARGC) {
1709 case 0:
1710 apsel = 0;
1711 break;
1712 case 1:
1713 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1714 /* AP address is in bits 31:24 of DP_SELECT */
1715 if (apsel >= 256)
1716 return ERROR_INVALID_ARGUMENTS;
1717 break;
1718 default:
1719 return ERROR_COMMAND_SYNTAX_ERROR;
1720 }
1721
1722 dap->apsel = apsel;
1723 dap_ap_select(dap, apsel);
1724
1725 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1726 if (retval != ERROR_OK)
1727 return retval;
1728 retval = dap_run(dap);
1729 if (retval != ERROR_OK)
1730 return retval;
1731
1732 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1733 apsel, apid);
1734
1735 return retval;
1736 }
1737
1738 COMMAND_HANDLER(dap_apid_command)
1739 {
1740 struct target *target = get_current_target(CMD_CTX);
1741 struct arm *arm = target_to_arm(target);
1742 struct adiv5_dap *dap = arm->dap;
1743
1744 uint32_t apsel, apid;
1745 int retval;
1746
1747 switch (CMD_ARGC) {
1748 case 0:
1749 apsel = dap->apsel;
1750 break;
1751 case 1:
1752 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1753 /* AP address is in bits 31:24 of DP_SELECT */
1754 if (apsel >= 256)
1755 return ERROR_INVALID_ARGUMENTS;
1756 break;
1757 default:
1758 return ERROR_COMMAND_SYNTAX_ERROR;
1759 }
1760
1761 dap_ap_select(dap, apsel);
1762
1763 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1764 if (retval != ERROR_OK)
1765 return retval;
1766 retval = dap_run(dap);
1767 if (retval != ERROR_OK)
1768 return retval;
1769
1770 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1771
1772 return retval;
1773 }
1774
1775 static const struct command_registration dap_commands[] = {
1776 {
1777 .name = "info",
1778 .handler = handle_dap_info_command,
1779 .mode = COMMAND_EXEC,
1780 .help = "display ROM table for MEM-AP "
1781 "(default currently selected AP)",
1782 .usage = "[ap_num]",
1783 },
1784 {
1785 .name = "apsel",
1786 .handler = dap_apsel_command,
1787 .mode = COMMAND_EXEC,
1788 .help = "Set the currently selected AP (default 0) "
1789 "and display the result",
1790 .usage = "[ap_num]",
1791 },
1792 {
1793 .name = "apid",
1794 .handler = dap_apid_command,
1795 .mode = COMMAND_EXEC,
1796 .help = "return ID register from AP "
1797 "(default currently selected AP)",
1798 .usage = "[ap_num]",
1799 },
1800 {
1801 .name = "baseaddr",
1802 .handler = dap_baseaddr_command,
1803 .mode = COMMAND_EXEC,
1804 .help = "return debug base address from MEM-AP "
1805 "(default currently selected AP)",
1806 .usage = "[ap_num]",
1807 },
1808 {
1809 .name = "memaccess",
1810 .handler = dap_memaccess_command,
1811 .mode = COMMAND_EXEC,
1812 .help = "set/get number of extra tck for MEM-AP memory "
1813 "bus access [0-255]",
1814 .usage = "[cycles]",
1815 },
1816 COMMAND_REGISTRATION_DONE
1817 };
1818
1819 const struct command_registration dap_command_handlers[] = {
1820 {
1821 .name = "dap",
1822 .mode = COMMAND_EXEC,
1823 .help = "DAP command group",
1824 .chain = dap_commands,
1825 },
1826 COMMAND_REGISTRATION_DONE
1827 };
1828
1829

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)