arm_adi_v5: add error propagation for dap_setup_accessport
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105 uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107 if (select_apsel != dap->apsel)
108 {
109 dap->apsel = select_apsel;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
315
316 for (writecount = 0; writecount < blocksize; writecount++)
317 {
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) (buffer + 4 * writecount));
320 if (retval != ERROR_OK)
321 break;
322 }
323
324 if (dap_run(dap) == ERROR_OK)
325 {
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
329 }
330 else
331 {
332 errorcount++;
333 }
334
335 if (errorcount > 1)
336 {
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 /* REVISIT return the *actual* fault code */
339 return ERROR_JTAG_DEVICE_ERROR;
340 }
341 }
342
343 return retval;
344 }
345
346 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
347 uint8_t *buffer, int count, uint32_t address)
348 {
349 int retval = ERROR_OK;
350 int wcount, blocksize, writecount, i;
351
352 wcount = count >> 1;
353
354 while (wcount > 0)
355 {
356 int nbytes;
357
358 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
359 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
360
361 if (wcount < blocksize)
362 blocksize = wcount;
363
364 /* handle unaligned data at 4k boundary */
365 if (blocksize == 0)
366 blocksize = 1;
367
368 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
369 if (retval != ERROR_OK)
370 return retval;
371 writecount = blocksize;
372
373 do
374 {
375 nbytes = MIN((writecount << 1), 4);
376
377 if (nbytes < 4)
378 {
379 if (mem_ap_write_buf_u16(dap, buffer,
380 nbytes, address) != ERROR_OK)
381 {
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return ERROR_JTAG_DEVICE_ERROR;
386 }
387
388 address += nbytes >> 1;
389 }
390 else
391 {
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395 for (i = 0; i < nbytes; i++)
396 {
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
400 }
401
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
407
408 if (dap_run(dap) != ERROR_OK)
409 {
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 /* REVISIT return *actual* fault code */
414 return ERROR_JTAG_DEVICE_ERROR;
415 }
416 }
417
418 buffer += nbytes >> 1;
419 writecount -= nbytes >> 1;
420
421 } while (writecount);
422 wcount -= blocksize;
423 }
424
425 return retval;
426 }
427
428 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
429 {
430 int retval = ERROR_OK;
431
432 if (count >= 4)
433 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
434
435 while (count > 0)
436 {
437 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
438 if (retval != ERROR_OK)
439 return retval;
440 uint16_t svalue;
441 memcpy(&svalue, buffer, sizeof(uint16_t));
442 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
443 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
444 if (retval != ERROR_OK)
445 break;
446
447 retval = dap_run(dap);
448 if (retval != ERROR_OK)
449 break;
450
451 count -= 2;
452 address += 2;
453 buffer += 2;
454 }
455
456 return retval;
457 }
458
459 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
460 uint8_t *buffer, int count, uint32_t address)
461 {
462 int retval = ERROR_OK;
463 int wcount, blocksize, writecount, i;
464
465 wcount = count;
466
467 while (wcount > 0)
468 {
469 int nbytes;
470
471 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
472 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
473
474 if (wcount < blocksize)
475 blocksize = wcount;
476
477 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
478 if (retval != ERROR_OK)
479 return retval;
480 writecount = blocksize;
481
482 do
483 {
484 nbytes = MIN(writecount, 4);
485
486 if (nbytes < 4)
487 {
488 if (mem_ap_write_buf_u8(dap, buffer, nbytes, address) != ERROR_OK)
489 {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return ERROR_JTAG_DEVICE_ERROR;
494 }
495
496 address += nbytes;
497 }
498 else
499 {
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503 for (i = 0; i < nbytes; i++)
504 {
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
508 }
509
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
515
516 if (dap_run(dap) != ERROR_OK)
517 {
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 /* REVISIT return *actual* fault code */
522 return ERROR_JTAG_DEVICE_ERROR;
523 }
524 }
525
526 buffer += nbytes;
527 writecount -= nbytes;
528
529 } while (writecount);
530 wcount -= blocksize;
531 }
532
533 return retval;
534 }
535
536 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
537 {
538 int retval = ERROR_OK;
539
540 if (count >= 4)
541 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
542
543 while (count > 0)
544 {
545 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
546 if (retval != ERROR_OK)
547 return retval;
548 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
549 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
550 if (retval != ERROR_OK)
551 break;
552
553 retval = dap_run(dap);
554 if (retval != ERROR_OK)
555 break;
556
557 count--;
558 address++;
559 buffer++;
560 }
561
562 return retval;
563 }
564
565 /* FIXME don't import ... this is a temporary workaround for the
566 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
567 */
568 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
569 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
570 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
571
572 /**
573 * Synchronously read a block of 32-bit words into a buffer
574 * @param dap The DAP connected to the MEM-AP.
575 * @param buffer where the words will be stored (in host byte order).
576 * @param count How many words to read.
577 * @param address Memory address from which to read words; all the
578 * words must be readable by the currently selected MEM-AP.
579 */
580 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
581 int count, uint32_t address)
582 {
583 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
584 uint32_t adr = address;
585 uint8_t* pBuffer = buffer;
586
587 count >>= 2;
588 wcount = count;
589
590 while (wcount > 0)
591 {
592 /* Adjust to read blocks within boundaries aligned to the
593 * TAR autoincrement size (at least 2^10). Autoincrement
594 * mode avoids an extra per-word roundtrip to update TAR.
595 */
596 blocksize = max_tar_block_size(dap->tar_autoincr_block,
597 address);
598 if (wcount < blocksize)
599 blocksize = wcount;
600
601 /* handle unaligned data at 4k boundary */
602 if (blocksize == 0)
603 blocksize = 1;
604
605 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
606 address);
607 if (retval != ERROR_OK)
608 return retval;
609
610 /* FIXME remove these three calls to adi_jtag_dp_scan(),
611 * so this routine becomes transport-neutral. Be careful
612 * not to cause performance problems with JTAG; would it
613 * suffice to loop over dap_queue_ap_read(), or would that
614 * be slower when JTAG is the chosen transport?
615 */
616
617 /* Scan out first read */
618 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
619 DPAP_READ, 0, NULL, NULL);
620 if (retval != ERROR_OK)
621 return retval;
622 for (readcount = 0; readcount < blocksize - 1; readcount++)
623 {
624 /* Scan out next read; scan in posted value for the
625 * previous one. Assumes read is acked "OK/FAULT",
626 * and CTRL_STAT says that meant "OK".
627 */
628 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
629 DPAP_READ, 0, buffer + 4 * readcount,
630 &dap->ack);
631 if (retval != ERROR_OK)
632 return retval;
633 }
634
635 /* Scan in last posted value; RDBUFF has no other effect,
636 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
637 */
638 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
639 DPAP_READ, 0, buffer + 4 * readcount,
640 &dap->ack);
641 if (retval != ERROR_OK)
642 return retval;
643
644 retval = dap_run(dap);
645 if (retval != ERROR_OK)
646 {
647 errorcount++;
648 if (errorcount <= 1)
649 {
650 /* try again */
651 continue;
652 }
653 LOG_WARNING("Block read error address 0x%" PRIx32, address);
654 return retval;
655 }
656 wcount = wcount - blocksize;
657 address += 4 * blocksize;
658 buffer += 4 * blocksize;
659 }
660
661 /* if we have an unaligned access - reorder data */
662 if (adr & 0x3u)
663 {
664 for (readcount = 0; readcount < count; readcount++)
665 {
666 int i;
667 uint32_t data;
668 memcpy(&data, pBuffer, sizeof(uint32_t));
669
670 for (i = 0; i < 4; i++)
671 {
672 *((uint8_t*)pBuffer) =
673 (data >> 8 * (adr & 0x3));
674 pBuffer++;
675 adr++;
676 }
677 }
678 }
679
680 return retval;
681 }
682
683 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
684 uint8_t *buffer, int count, uint32_t address)
685 {
686 uint32_t invalue;
687 int retval = ERROR_OK;
688 int wcount, blocksize, readcount, i;
689
690 wcount = count >> 1;
691
692 while (wcount > 0)
693 {
694 int nbytes;
695
696 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
697 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
698 if (wcount < blocksize)
699 blocksize = wcount;
700
701 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
702 if (retval != ERROR_OK)
703 return retval;
704
705 /* handle unaligned data at 4k boundary */
706 if (blocksize == 0)
707 blocksize = 1;
708 readcount = blocksize;
709
710 do
711 {
712 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
713 if (dap_run(dap) != ERROR_OK)
714 {
715 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
716 /* REVISIT return the *actual* fault code */
717 return ERROR_JTAG_DEVICE_ERROR;
718 }
719
720 nbytes = MIN((readcount << 1), 4);
721
722 for (i = 0; i < nbytes; i++)
723 {
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
727 }
728
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
732 }
733
734 return retval;
735 }
736
737 /**
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
744 */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
747 {
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
750
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754 while (count > 0)
755 {
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
762
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
766
767 if (address & 0x1)
768 {
769 for (i = 0; i < 2; i++)
770 {
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
774 }
775 }
776 else
777 {
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
782 }
783 count -= 2;
784 }
785
786 return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791 *
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
794 */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
797 {
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
801
802 wcount = count;
803
804 while (wcount > 0)
805 {
806 int nbytes;
807
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811 if (wcount < blocksize)
812 blocksize = wcount;
813
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
818
819 do
820 {
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (dap_run(dap) != ERROR_OK)
823 {
824 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
825 /* REVISIT return the *actual* fault code */
826 return ERROR_JTAG_DEVICE_ERROR;
827 }
828
829 nbytes = MIN(readcount, 4);
830
831 for (i = 0; i < nbytes; i++)
832 {
833 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
834 buffer++;
835 address++;
836 }
837
838 readcount -= nbytes;
839 } while (readcount);
840 wcount -= blocksize;
841 }
842
843 return retval;
844 }
845
846 /**
847 * Synchronously read a block of bytes into a buffer
848 * @param dap The DAP connected to the MEM-AP.
849 * @param buffer where the bytes will be stored.
850 * @param count How many bytes to read.
851 * @param address Memory address from which to read data; all the
852 * data must be readable by the currently selected MEM-AP.
853 */
854 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
855 int count, uint32_t address)
856 {
857 uint32_t invalue;
858 int retval = ERROR_OK;
859
860 if (count >= 4)
861 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
862
863 while (count > 0)
864 {
865 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
866 if (retval != ERROR_OK)
867 return retval;
868 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
869 if (retval != ERROR_OK)
870 return retval;
871 retval = dap_run(dap);
872 if (retval != ERROR_OK)
873 break;
874
875 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
876 count--;
877 address++;
878 buffer++;
879 }
880
881 return retval;
882 }
883
884 /*--------------------------------------------------------------------------*/
885
886
887 /* FIXME don't import ... just initialize as
888 * part of DAP transport setup
889 */
890 extern const struct dap_ops jtag_dp_ops;
891
892 /*--------------------------------------------------------------------------*/
893
894 /**
895 * Initialize a DAP. This sets up the power domains, prepares the DP
896 * for further use, and arranges to use AP #0 for all AP operations
897 * until dap_ap-select() changes that policy.
898 *
899 * @param dap The DAP being initialized.
900 *
901 * @todo Rename this. We also need an initialization scheme which account
902 * for SWD transports not just JTAG; that will need to address differences
903 * in layering. (JTAG is useful without any debug target; but not SWD.)
904 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
905 */
906 int ahbap_debugport_init(struct adiv5_dap *dap)
907 {
908 uint32_t idreg, romaddr, dummy;
909 uint32_t ctrlstat;
910 int cnt = 0;
911 int retval;
912
913 LOG_DEBUG(" ");
914
915 /* JTAG-DP or SWJ-DP, in JTAG mode */
916 dap->ops = &jtag_dp_ops;
917
918 /* Default MEM-AP setup.
919 *
920 * REVISIT AP #0 may be an inappropriate default for this.
921 * Should we probe, or take a hint from the caller?
922 * Presumably we can ignore the possibility of multiple APs.
923 */
924 dap->apsel = !0;
925 dap_ap_select(dap, 0);
926
927 /* DP initialization */
928
929 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
930 if (retval != ERROR_OK)
931 return retval;
932
933 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
934 if (retval != ERROR_OK)
935 return retval;
936
937 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
938 if (retval != ERROR_OK)
939 return retval;
940
941 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
942 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
943 if (retval != ERROR_OK)
944 return retval;
945
946 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
947 if (retval != ERROR_OK)
948 return retval;
949 if ((retval = dap_run(dap)) != ERROR_OK)
950 return retval;
951
952 /* Check that we have debug power domains activated */
953 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
954 {
955 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
956 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
957 if (retval != ERROR_OK)
958 return retval;
959 if ((retval = dap_run(dap)) != ERROR_OK)
960 return retval;
961 alive_sleep(10);
962 }
963
964 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
965 {
966 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
967 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
968 if (retval != ERROR_OK)
969 return retval;
970 if ((retval = dap_run(dap)) != ERROR_OK)
971 return retval;
972 alive_sleep(10);
973 }
974
975 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
976 if (retval != ERROR_OK)
977 return retval;
978 /* With debug power on we can activate OVERRUN checking */
979 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
980 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
981 if (retval != ERROR_OK)
982 return retval;
983 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
984 if (retval != ERROR_OK)
985 return retval;
986
987 /*
988 * REVISIT this isn't actually *initializing* anything in an AP,
989 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
990 * Should it? If the ROM address is valid, is this the right
991 * place to scan the table and do any topology detection?
992 */
993 retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
994 retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
995
996 if ((retval = dap_run(dap)) != ERROR_OK)
997 return retval;
998
999 LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
1000 ", Debug ROM Address 0x%" PRIx32,
1001 dap->apsel, idreg, romaddr);
1002
1003 return ERROR_OK;
1004 }
1005
1006 /* CID interpretation -- see ARM IHI 0029B section 3
1007 * and ARM IHI 0031A table 13-3.
1008 */
1009 static const char *class_description[16] ={
1010 "Reserved", "ROM table", "Reserved", "Reserved",
1011 "Reserved", "Reserved", "Reserved", "Reserved",
1012 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1013 "Reserved", "OptimoDE DESS",
1014 "Generic IP component", "PrimeCell or System component"
1015 };
1016
1017 static bool
1018 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1019 {
1020 return cid3 == 0xb1 && cid2 == 0x05
1021 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1022 }
1023
1024 static int dap_info_command(struct command_context *cmd_ctx,
1025 struct adiv5_dap *dap, int apsel)
1026 {
1027 int retval;
1028 uint32_t dbgbase, apid;
1029 int romtable_present = 0;
1030 uint8_t mem_ap;
1031 uint32_t apselold;
1032
1033 /* AP address is in bits 31:24 of DP_SELECT */
1034 if (apsel >= 256)
1035 return ERROR_INVALID_ARGUMENTS;
1036
1037 apselold = dap->apsel;
1038 dap_ap_select(dap, apsel);
1039 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1040 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1041 retval = dap_run(dap);
1042 if (retval != ERROR_OK)
1043 return retval;
1044
1045 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1046 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1047 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1048 if (apid)
1049 {
1050 switch (apid&0x0F)
1051 {
1052 case 0:
1053 command_print(cmd_ctx, "\tType is JTAG-AP");
1054 break;
1055 case 1:
1056 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1057 break;
1058 case 2:
1059 command_print(cmd_ctx, "\tType is MEM-AP APB");
1060 break;
1061 default:
1062 command_print(cmd_ctx, "\tUnknown AP type");
1063 break;
1064 }
1065
1066 /* NOTE: a MEM-AP may have a single CoreSight component that's
1067 * not a ROM table ... or have no such components at all.
1068 */
1069 if (mem_ap)
1070 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1071 dbgbase);
1072 }
1073 else
1074 {
1075 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1076 }
1077
1078 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1079 if (romtable_present)
1080 {
1081 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1082 uint16_t entry_offset;
1083
1084 /* bit 16 of apid indicates a memory access port */
1085 if (dbgbase & 0x02)
1086 command_print(cmd_ctx, "\tValid ROM table present");
1087 else
1088 command_print(cmd_ctx, "\tROM table in legacy format");
1089
1090 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1091 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1092 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1093 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1094 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1095 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1096 retval = dap_run(dap);
1097 if (retval != ERROR_OK)
1098 return retval;
1099
1100 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1101 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1102 ", CID2 0x%2.2x"
1103 ", CID1 0x%2.2x"
1104 ", CID0 0x%2.2x",
1105 (unsigned) cid3, (unsigned)cid2,
1106 (unsigned) cid1, (unsigned) cid0);
1107 if (memtype & 0x01)
1108 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1109 else
1110 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1111 "Dedicated debug bus.");
1112
1113 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1114 entry_offset = 0;
1115 do
1116 {
1117 mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1118 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1119 if (romentry&0x01)
1120 {
1121 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1122 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1123 uint32_t component_base;
1124 unsigned part_num;
1125 char *type, *full;
1126
1127 component_base = (dbgbase & 0xFFFFF000)
1128 + (romentry & 0xFFFFF000);
1129
1130 /* IDs are in last 4K section */
1131
1132
1133 mem_ap_read_atomic_u32(dap,
1134 component_base + 0xFE0, &c_pid0);
1135 c_pid0 &= 0xff;
1136 mem_ap_read_atomic_u32(dap,
1137 component_base + 0xFE4, &c_pid1);
1138 c_pid1 &= 0xff;
1139 mem_ap_read_atomic_u32(dap,
1140 component_base + 0xFE8, &c_pid2);
1141 c_pid2 &= 0xff;
1142 mem_ap_read_atomic_u32(dap,
1143 component_base + 0xFEC, &c_pid3);
1144 c_pid3 &= 0xff;
1145 mem_ap_read_atomic_u32(dap,
1146 component_base + 0xFD0, &c_pid4);
1147 c_pid4 &= 0xff;
1148
1149 mem_ap_read_atomic_u32(dap,
1150 component_base + 0xFF0, &c_cid0);
1151 c_cid0 &= 0xff;
1152 mem_ap_read_atomic_u32(dap,
1153 component_base + 0xFF4, &c_cid1);
1154 c_cid1 &= 0xff;
1155 mem_ap_read_atomic_u32(dap,
1156 component_base + 0xFF8, &c_cid2);
1157 c_cid2 &= 0xff;
1158 mem_ap_read_atomic_u32(dap,
1159 component_base + 0xFFC, &c_cid3);
1160 c_cid3 &= 0xff;
1161
1162
1163 command_print(cmd_ctx,
1164 "\t\tComponent base address 0x%" PRIx32
1165 ", start address 0x%" PRIx32,
1166 component_base,
1167 /* component may take multiple 4K pages */
1168 component_base - 0x1000*(c_pid4 >> 4));
1169 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1170 (int) (c_cid1 >> 4) & 0xf,
1171 /* See ARM IHI 0029B Table 3-3 */
1172 class_description[(c_cid1 >> 4) & 0xf]);
1173
1174 /* CoreSight component? */
1175 if (((c_cid1 >> 4) & 0x0f) == 9) {
1176 uint32_t devtype;
1177 unsigned minor;
1178 char *major = "Reserved", *subtype = "Reserved";
1179
1180 mem_ap_read_atomic_u32(dap,
1181 (component_base & 0xfffff000) | 0xfcc,
1182 &devtype);
1183 minor = (devtype >> 4) & 0x0f;
1184 switch (devtype & 0x0f) {
1185 case 0:
1186 major = "Miscellaneous";
1187 switch (minor) {
1188 case 0:
1189 subtype = "other";
1190 break;
1191 case 4:
1192 subtype = "Validation component";
1193 break;
1194 }
1195 break;
1196 case 1:
1197 major = "Trace Sink";
1198 switch (minor) {
1199 case 0:
1200 subtype = "other";
1201 break;
1202 case 1:
1203 subtype = "Port";
1204 break;
1205 case 2:
1206 subtype = "Buffer";
1207 break;
1208 }
1209 break;
1210 case 2:
1211 major = "Trace Link";
1212 switch (minor) {
1213 case 0:
1214 subtype = "other";
1215 break;
1216 case 1:
1217 subtype = "Funnel, router";
1218 break;
1219 case 2:
1220 subtype = "Filter";
1221 break;
1222 case 3:
1223 subtype = "FIFO, buffer";
1224 break;
1225 }
1226 break;
1227 case 3:
1228 major = "Trace Source";
1229 switch (minor) {
1230 case 0:
1231 subtype = "other";
1232 break;
1233 case 1:
1234 subtype = "Processor";
1235 break;
1236 case 2:
1237 subtype = "DSP";
1238 break;
1239 case 3:
1240 subtype = "Engine/Coprocessor";
1241 break;
1242 case 4:
1243 subtype = "Bus";
1244 break;
1245 }
1246 break;
1247 case 4:
1248 major = "Debug Control";
1249 switch (minor) {
1250 case 0:
1251 subtype = "other";
1252 break;
1253 case 1:
1254 subtype = "Trigger Matrix";
1255 break;
1256 case 2:
1257 subtype = "Debug Auth";
1258 break;
1259 }
1260 break;
1261 case 5:
1262 major = "Debug Logic";
1263 switch (minor) {
1264 case 0:
1265 subtype = "other";
1266 break;
1267 case 1:
1268 subtype = "Processor";
1269 break;
1270 case 2:
1271 subtype = "DSP";
1272 break;
1273 case 3:
1274 subtype = "Engine/Coprocessor";
1275 break;
1276 }
1277 break;
1278 }
1279 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1280 (unsigned) (devtype & 0xff),
1281 major, subtype);
1282 /* REVISIT also show 0xfc8 DevId */
1283 }
1284
1285 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1286 command_print(cmd_ctx,
1287 "\t\tCID3 0%2.2x"
1288 ", CID2 0%2.2x"
1289 ", CID1 0%2.2x"
1290 ", CID0 0%2.2x",
1291 (int) c_cid3,
1292 (int) c_cid2,
1293 (int)c_cid1,
1294 (int)c_cid0);
1295 command_print(cmd_ctx,
1296 "\t\tPeripheral ID[4..0] = hex "
1297 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1298 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1299 (int) c_pid1, (int) c_pid0);
1300
1301 /* Part number interpretations are from Cortex
1302 * core specs, the CoreSight components TRM
1303 * (ARM DDI 0314H), and ETM specs; also from
1304 * chip observation (e.g. TI SDTI).
1305 */
1306 part_num = (c_pid0 & 0xff);
1307 part_num |= (c_pid1 & 0x0f) << 8;
1308 switch (part_num) {
1309 case 0x000:
1310 type = "Cortex-M3 NVIC";
1311 full = "(Interrupt Controller)";
1312 break;
1313 case 0x001:
1314 type = "Cortex-M3 ITM";
1315 full = "(Instrumentation Trace Module)";
1316 break;
1317 case 0x002:
1318 type = "Cortex-M3 DWT";
1319 full = "(Data Watchpoint and Trace)";
1320 break;
1321 case 0x003:
1322 type = "Cortex-M3 FBP";
1323 full = "(Flash Patch and Breakpoint)";
1324 break;
1325 case 0x00d:
1326 type = "CoreSight ETM11";
1327 full = "(Embedded Trace)";
1328 break;
1329 // case 0x113: what?
1330 case 0x120: /* from OMAP3 memmap */
1331 type = "TI SDTI";
1332 full = "(System Debug Trace Interface)";
1333 break;
1334 case 0x343: /* from OMAP3 memmap */
1335 type = "TI DAPCTL";
1336 full = "";
1337 break;
1338 case 0x906:
1339 type = "Coresight CTI";
1340 full = "(Cross Trigger)";
1341 break;
1342 case 0x907:
1343 type = "Coresight ETB";
1344 full = "(Trace Buffer)";
1345 break;
1346 case 0x908:
1347 type = "Coresight CSTF";
1348 full = "(Trace Funnel)";
1349 break;
1350 case 0x910:
1351 type = "CoreSight ETM9";
1352 full = "(Embedded Trace)";
1353 break;
1354 case 0x912:
1355 type = "Coresight TPIU";
1356 full = "(Trace Port Interface Unit)";
1357 break;
1358 case 0x921:
1359 type = "Cortex-A8 ETM";
1360 full = "(Embedded Trace)";
1361 break;
1362 case 0x922:
1363 type = "Cortex-A8 CTI";
1364 full = "(Cross Trigger)";
1365 break;
1366 case 0x923:
1367 type = "Cortex-M3 TPIU";
1368 full = "(Trace Port Interface Unit)";
1369 break;
1370 case 0x924:
1371 type = "Cortex-M3 ETM";
1372 full = "(Embedded Trace)";
1373 break;
1374 case 0xc08:
1375 type = "Cortex-A8 Debug";
1376 full = "(Debug Unit)";
1377 break;
1378 default:
1379 type = "-*- unrecognized -*-";
1380 full = "";
1381 break;
1382 }
1383 command_print(cmd_ctx, "\t\tPart is %s %s",
1384 type, full);
1385 }
1386 else
1387 {
1388 if (romentry)
1389 command_print(cmd_ctx, "\t\tComponent not present");
1390 else
1391 command_print(cmd_ctx, "\t\tEnd of ROM table");
1392 }
1393 entry_offset += 4;
1394 } while (romentry > 0);
1395 }
1396 else
1397 {
1398 command_print(cmd_ctx, "\tNo ROM table present");
1399 }
1400 dap_ap_select(dap, apselold);
1401
1402 return ERROR_OK;
1403 }
1404
1405 COMMAND_HANDLER(handle_dap_info_command)
1406 {
1407 struct target *target = get_current_target(CMD_CTX);
1408 struct arm *arm = target_to_arm(target);
1409 struct adiv5_dap *dap = arm->dap;
1410 uint32_t apsel;
1411
1412 switch (CMD_ARGC) {
1413 case 0:
1414 apsel = dap->apsel;
1415 break;
1416 case 1:
1417 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1418 break;
1419 default:
1420 return ERROR_COMMAND_SYNTAX_ERROR;
1421 }
1422
1423 return dap_info_command(CMD_CTX, dap, apsel);
1424 }
1425
1426 COMMAND_HANDLER(dap_baseaddr_command)
1427 {
1428 struct target *target = get_current_target(CMD_CTX);
1429 struct arm *arm = target_to_arm(target);
1430 struct adiv5_dap *dap = arm->dap;
1431
1432 uint32_t apsel, apselsave, baseaddr;
1433 int retval;
1434
1435 apselsave = dap->apsel;
1436 switch (CMD_ARGC) {
1437 case 0:
1438 apsel = dap->apsel;
1439 break;
1440 case 1:
1441 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1442 /* AP address is in bits 31:24 of DP_SELECT */
1443 if (apsel >= 256)
1444 return ERROR_INVALID_ARGUMENTS;
1445 break;
1446 default:
1447 return ERROR_COMMAND_SYNTAX_ERROR;
1448 }
1449
1450 if (apselsave != apsel)
1451 dap_ap_select(dap, apsel);
1452
1453 /* NOTE: assumes we're talking to a MEM-AP, which
1454 * has a base address. There are other kinds of AP,
1455 * though they're not common for now. This should
1456 * use the ID register to verify it's a MEM-AP.
1457 */
1458 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1459 retval = dap_run(dap);
1460 if (retval != ERROR_OK)
1461 return retval;
1462
1463 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1464
1465 if (apselsave != apsel)
1466 dap_ap_select(dap, apselsave);
1467
1468 return retval;
1469 }
1470
1471 COMMAND_HANDLER(dap_memaccess_command)
1472 {
1473 struct target *target = get_current_target(CMD_CTX);
1474 struct arm *arm = target_to_arm(target);
1475 struct adiv5_dap *dap = arm->dap;
1476
1477 uint32_t memaccess_tck;
1478
1479 switch (CMD_ARGC) {
1480 case 0:
1481 memaccess_tck = dap->memaccess_tck;
1482 break;
1483 case 1:
1484 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1485 break;
1486 default:
1487 return ERROR_COMMAND_SYNTAX_ERROR;
1488 }
1489 dap->memaccess_tck = memaccess_tck;
1490
1491 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1492 dap->memaccess_tck);
1493
1494 return ERROR_OK;
1495 }
1496
1497 COMMAND_HANDLER(dap_apsel_command)
1498 {
1499 struct target *target = get_current_target(CMD_CTX);
1500 struct arm *arm = target_to_arm(target);
1501 struct adiv5_dap *dap = arm->dap;
1502
1503 uint32_t apsel, apid;
1504 int retval;
1505
1506 switch (CMD_ARGC) {
1507 case 0:
1508 apsel = 0;
1509 break;
1510 case 1:
1511 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1512 /* AP address is in bits 31:24 of DP_SELECT */
1513 if (apsel >= 256)
1514 return ERROR_INVALID_ARGUMENTS;
1515 break;
1516 default:
1517 return ERROR_COMMAND_SYNTAX_ERROR;
1518 }
1519
1520 dap_ap_select(dap, apsel);
1521 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1522 retval = dap_run(dap);
1523 if (retval != ERROR_OK)
1524 return retval;
1525
1526 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1527 apsel, apid);
1528
1529 return retval;
1530 }
1531
1532 COMMAND_HANDLER(dap_apid_command)
1533 {
1534 struct target *target = get_current_target(CMD_CTX);
1535 struct arm *arm = target_to_arm(target);
1536 struct adiv5_dap *dap = arm->dap;
1537
1538 uint32_t apsel, apselsave, apid;
1539 int retval;
1540
1541 apselsave = dap->apsel;
1542 switch (CMD_ARGC) {
1543 case 0:
1544 apsel = dap->apsel;
1545 break;
1546 case 1:
1547 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1548 /* AP address is in bits 31:24 of DP_SELECT */
1549 if (apsel >= 256)
1550 return ERROR_INVALID_ARGUMENTS;
1551 break;
1552 default:
1553 return ERROR_COMMAND_SYNTAX_ERROR;
1554 }
1555
1556 if (apselsave != apsel)
1557 dap_ap_select(dap, apsel);
1558
1559 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1560 retval = dap_run(dap);
1561 if (retval != ERROR_OK)
1562 return retval;
1563
1564 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1565 if (apselsave != apsel)
1566 dap_ap_select(dap, apselsave);
1567
1568 return retval;
1569 }
1570
1571 static const struct command_registration dap_commands[] = {
1572 {
1573 .name = "info",
1574 .handler = handle_dap_info_command,
1575 .mode = COMMAND_EXEC,
1576 .help = "display ROM table for MEM-AP "
1577 "(default currently selected AP)",
1578 .usage = "[ap_num]",
1579 },
1580 {
1581 .name = "apsel",
1582 .handler = dap_apsel_command,
1583 .mode = COMMAND_EXEC,
1584 .help = "Set the currently selected AP (default 0) "
1585 "and display the result",
1586 .usage = "[ap_num]",
1587 },
1588 {
1589 .name = "apid",
1590 .handler = dap_apid_command,
1591 .mode = COMMAND_EXEC,
1592 .help = "return ID register from AP "
1593 "(default currently selected AP)",
1594 .usage = "[ap_num]",
1595 },
1596 {
1597 .name = "baseaddr",
1598 .handler = dap_baseaddr_command,
1599 .mode = COMMAND_EXEC,
1600 .help = "return debug base address from MEM-AP "
1601 "(default currently selected AP)",
1602 .usage = "[ap_num]",
1603 },
1604 {
1605 .name = "memaccess",
1606 .handler = dap_memaccess_command,
1607 .mode = COMMAND_EXEC,
1608 .help = "set/get number of extra tck for MEM-AP memory "
1609 "bus access [0-255]",
1610 .usage = "[cycles]",
1611 },
1612 COMMAND_REGISTRATION_DONE
1613 };
1614
1615 const struct command_registration dap_command_handlers[] = {
1616 {
1617 .name = "dap",
1618 .mode = COMMAND_EXEC,
1619 .help = "DAP command group",
1620 .chain = dap_commands,
1621 },
1622 COMMAND_REGISTRATION_DONE
1623 };
1624
1625

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)