ADIv5 share DAP command support
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DPACC and APACC scanchain access through JTAG-DP *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Scan DPACC or APACC using target ordered uint8_t buffers. No endianness
96 * conversions are performed. See section 4.4.3 of the ADIv5 spec, which
97 * discusses operations which access these registers.
98 *
99 * Note that only one scan is performed. If RnW is set, a separate scan
100 * will be needed to collect the data which was read; the "invalue" collects
101 * the posted result of a preceding operation, not the current one.
102 *
103 * @param swjdp the DAP
104 * @param instr JTAG_DP_APACC (AP access) or JTAG_DP_DPACC (DP access)
105 * @param reg_addr two significant bits; A[3:2]; for APACC access, the
106 * SELECT register has more addressing bits.
107 * @param RnW false iff outvalue will be written to the DP or AP
108 * @param outvalue points to a 32-bit (little-endian) integer
109 * @param invalue NULL, or points to a 32-bit (little-endian) integer
110 * @param ack points to where the three bit JTAG_ACK_* code will be stored
111 */
112 static int adi_jtag_dp_scan(struct adiv5_dap *swjdp,
113 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
114 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack)
115 {
116 struct arm_jtag *jtag_info = swjdp->jtag_info;
117 struct scan_field fields[2];
118 uint8_t out_addr_buf;
119
120 jtag_set_end_state(TAP_IDLE);
121 arm_jtag_set_instr(jtag_info, instr, NULL);
122
123 /* Scan out a read or write operation using some DP or AP register.
124 * For APACC access with any sticky error flag set, this is discarded.
125 */
126 fields[0].tap = jtag_info->tap;
127 fields[0].num_bits = 3;
128 buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1));
129 fields[0].out_value = &out_addr_buf;
130 fields[0].in_value = ack;
131
132 /* NOTE: if we receive JTAG_ACK_WAIT, the previous operation did not
133 * complete; data we write is discarded, data we read is unpredictable.
134 * When overrun detect is active, STICKYORUN is set.
135 */
136
137 fields[1].tap = jtag_info->tap;
138 fields[1].num_bits = 32;
139 fields[1].out_value = outvalue;
140 fields[1].in_value = invalue;
141
142 jtag_add_dr_scan(2, fields, jtag_get_end_state());
143
144 /* Add specified number of tck clocks after starting memory bus
145 * access, giving the hardware time to complete the access.
146 * They provide more time for the (MEM) AP to complete the read ...
147 * See "Minimum Response Time" for JTAG-DP, in the ADIv5 spec.
148 */
149 if ((instr == JTAG_DP_APACC)
150 && ((reg_addr == AP_REG_DRW)
151 || ((reg_addr & 0xF0) == AP_REG_BD0))
152 && (swjdp->memaccess_tck != 0))
153 jtag_add_runtest(swjdp->memaccess_tck,
154 jtag_set_end_state(TAP_IDLE));
155
156 return jtag_get_error();
157 }
158
159 /**
160 * Scan DPACC or APACC out and in from host ordered uint32_t buffers.
161 * This is exactly like adi_jtag_dp_scan(), except that endianness
162 * conversions are performed (so the types of invalue and outvalue
163 * must be different).
164 */
165 static int adi_jtag_dp_scan_u32(struct adiv5_dap *swjdp,
166 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
167 uint32_t outvalue, uint32_t *invalue, uint8_t *ack)
168 {
169 uint8_t out_value_buf[4];
170 int retval;
171
172 buf_set_u32(out_value_buf, 0, 32, outvalue);
173
174 retval = adi_jtag_dp_scan(swjdp, instr, reg_addr, RnW,
175 out_value_buf, (uint8_t *)invalue, ack);
176 if (retval != ERROR_OK)
177 return retval;
178
179 if (invalue)
180 jtag_add_callback(arm_le_to_h_u32,
181 (jtag_callback_data_t) invalue);
182
183 return retval;
184 }
185
186 /**
187 * Utility to write AP registers.
188 */
189 static inline int adi_jtag_ap_write_check(struct adiv5_dap *dap,
190 uint8_t reg_addr, uint8_t *outvalue)
191 {
192 return adi_jtag_dp_scan(dap, JTAG_DP_APACC, reg_addr, DPAP_WRITE,
193 outvalue, NULL, NULL);
194 }
195
196 static int adi_jtag_scan_inout_check_u32(struct adiv5_dap *swjdp,
197 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
198 uint32_t outvalue, uint32_t *invalue)
199 {
200 int retval;
201
202 /* Issue the read or write */
203 retval = adi_jtag_dp_scan_u32(swjdp, instr, reg_addr,
204 RnW, outvalue, NULL, NULL);
205 if (retval != ERROR_OK)
206 return retval;
207
208 /* For reads, collect posted value; RDBUFF has no other effect.
209 * Assumes read gets acked with OK/FAULT, and CTRL_STAT says "OK".
210 */
211 if ((RnW == DPAP_READ) && (invalue != NULL))
212 retval = adi_jtag_dp_scan_u32(swjdp, JTAG_DP_DPACC,
213 DP_RDBUFF, DPAP_READ, 0, invalue, &swjdp->ack);
214 return retval;
215 }
216
217 static int jtagdp_transaction_endcheck(struct adiv5_dap *swjdp)
218 {
219 int retval;
220 uint32_t ctrlstat;
221
222 /* too expensive to call keep_alive() here */
223
224 #if 0
225 /* Danger!!!! BROKEN!!!! */
226 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
227 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
228 /* Danger!!!! BROKEN!!!! Why will jtag_execute_queue() fail here????
229 R956 introduced the check on return value here and now Michael Schwingen reports
230 that this code no longer works....
231
232 https://lists.berlios.de/pipermail/openocd-development/2008-September/003107.html
233 */
234 if ((retval = jtag_execute_queue()) != ERROR_OK)
235 {
236 LOG_ERROR("BUG: Why does this fail the first time????");
237 }
238 /* Why??? second time it works??? */
239 #endif
240
241 /* Post CTRL/STAT read; discard any previous posted read value
242 * but collect its ACK status.
243 */
244 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
245 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
246 if ((retval = jtag_execute_queue()) != ERROR_OK)
247 return retval;
248
249 swjdp->ack = swjdp->ack & 0x7;
250
251 /* common code path avoids calling timeval_ms() */
252 if (swjdp->ack != JTAG_ACK_OK_FAULT)
253 {
254 long long then = timeval_ms();
255
256 while (swjdp->ack != JTAG_ACK_OK_FAULT)
257 {
258 if (swjdp->ack == JTAG_ACK_WAIT)
259 {
260 if ((timeval_ms()-then) > 1000)
261 {
262 /* NOTE: this would be a good spot
263 * to use JTAG_DP_ABORT.
264 */
265 LOG_WARNING("Timeout (1000ms) waiting "
266 "for ACK=OK/FAULT "
267 "in JTAG-DP transaction");
268 return ERROR_JTAG_DEVICE_ERROR;
269 }
270 }
271 else
272 {
273 LOG_WARNING("Invalid ACK %#x "
274 "in JTAG-DP transaction",
275 swjdp->ack);
276 return ERROR_JTAG_DEVICE_ERROR;
277 }
278
279 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
280 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
281 if ((retval = dap_run(swjdp)) != ERROR_OK)
282 return retval;
283 swjdp->ack = swjdp->ack & 0x7;
284 }
285 }
286
287 /* REVISIT also STICKYCMP, for pushed comparisons (nyet used) */
288
289 /* Check for STICKYERR and STICKYORUN */
290 if (ctrlstat & (SSTICKYORUN | SSTICKYERR))
291 {
292 LOG_DEBUG("jtag-dp: CTRL/STAT error, 0x%" PRIx32, ctrlstat);
293 /* Check power to debug regions */
294 if ((ctrlstat & 0xf0000000) != 0xf0000000)
295 ahbap_debugport_init(swjdp);
296 else
297 {
298 uint32_t mem_ap_csw, mem_ap_tar;
299
300 /* Maybe print information about last intended
301 * MEM-AP access; but not if autoincrementing.
302 * *Real* CSW and TAR values are always shown.
303 */
304 if (swjdp->ap_tar_value != (uint32_t) -1)
305 LOG_DEBUG("MEM-AP Cached values: "
306 "ap_bank 0x%" PRIx32
307 ", ap_csw 0x%" PRIx32
308 ", ap_tar 0x%" PRIx32,
309 swjdp->ap_bank_value,
310 swjdp->ap_csw_value,
311 swjdp->ap_tar_value);
312
313 if (ctrlstat & SSTICKYORUN)
314 LOG_ERROR("JTAG-DP OVERRUN - check clock, "
315 "memaccess, or reduce jtag speed");
316
317 if (ctrlstat & SSTICKYERR)
318 LOG_ERROR("JTAG-DP STICKY ERROR");
319
320 /* Clear Sticky Error Bits */
321 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
322 DP_CTRL_STAT, DPAP_WRITE,
323 swjdp->dp_ctrl_stat | SSTICKYORUN
324 | SSTICKYERR, NULL);
325 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
326 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
327 if ((retval = dap_run(swjdp)) != ERROR_OK)
328 return retval;
329
330 LOG_DEBUG("jtag-dp: CTRL/STAT 0x%" PRIx32, ctrlstat);
331
332 retval = dap_queue_ap_read(swjdp,
333 AP_REG_CSW, &mem_ap_csw);
334 if (retval != ERROR_OK)
335 return retval;
336
337 retval = dap_queue_ap_read(swjdp,
338 AP_REG_TAR, &mem_ap_tar);
339 if (retval != ERROR_OK)
340 return retval;
341
342 if ((retval = dap_run(swjdp)) != ERROR_OK)
343 return retval;
344 LOG_ERROR("MEM_AP_CSW 0x%" PRIx32 ", MEM_AP_TAR 0x%"
345 PRIx32, mem_ap_csw, mem_ap_tar);
346
347 }
348 if ((retval = dap_run(swjdp)) != ERROR_OK)
349 return retval;
350 return ERROR_JTAG_DEVICE_ERROR;
351 }
352
353 return ERROR_OK;
354 }
355
356 /***************************************************************************
357 * *
358 * DP and MEM-AP register access through APACC and DPACC *
359 * *
360 ***************************************************************************/
361
362 /**
363 * Select one of the APs connected to the specified DAP. The
364 * selection is implicitly used with future AP transactions.
365 * This is a NOP if the specified AP is already selected.
366 *
367 * @param swjdp The DAP
368 * @param apsel Number of the AP to (implicitly) use with further
369 * transactions. This normally identifies a MEM-AP.
370 */
371 void dap_ap_select(struct adiv5_dap *swjdp,uint8_t apsel)
372 {
373 uint32_t select = (apsel << 24) & 0xFF000000;
374
375 if (select != swjdp->apsel)
376 {
377 swjdp->apsel = select;
378 /* Switching AP invalidates cached values.
379 * Values MUST BE UPDATED BEFORE AP ACCESS.
380 */
381 swjdp->ap_bank_value = -1;
382 swjdp->ap_csw_value = -1;
383 swjdp->ap_tar_value = -1;
384 }
385 }
386
387 /**
388 * Queue transactions setting up transfer parameters for the
389 * currently selected MEM-AP.
390 *
391 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
392 * initiate data reads or writes using memory or peripheral addresses.
393 * If the CSW is configured for it, the TAR may be automatically
394 * incremented after each transfer.
395 *
396 * @todo Rename to reflect it being specifically a MEM-AP function.
397 *
398 * @param swjdp The DAP connected to the MEM-AP.
399 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
400 * matches the cached value, the register is not changed.
401 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
402 * matches the cached address, the register is not changed.
403 *
404 * @return ERROR_OK if the transaction was properly queued, else a fault code.
405 */
406 int dap_setup_accessport(struct adiv5_dap *swjdp, uint32_t csw, uint32_t tar)
407 {
408 int retval;
409
410 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
411 if (csw != swjdp->ap_csw_value)
412 {
413 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
414 retval = dap_queue_ap_write(swjdp, AP_REG_CSW, csw);
415 if (retval != ERROR_OK)
416 return retval;
417 swjdp->ap_csw_value = csw;
418 }
419 if (tar != swjdp->ap_tar_value)
420 {
421 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
422 retval = dap_queue_ap_write(swjdp, AP_REG_TAR, tar);
423 if (retval != ERROR_OK)
424 return retval;
425 swjdp->ap_tar_value = tar;
426 }
427 /* Disable TAR cache when autoincrementing */
428 if (csw & CSW_ADDRINC_MASK)
429 swjdp->ap_tar_value = -1;
430 return ERROR_OK;
431 }
432
433 /**
434 * Asynchronous (queued) read of a word from memory or a system register.
435 *
436 * @param swjdp The DAP connected to the MEM-AP performing the read.
437 * @param address Address of the 32-bit word to read; it must be
438 * readable by the currently selected MEM-AP.
439 * @param value points to where the word will be stored when the
440 * transaction queue is flushed (assuming no errors).
441 *
442 * @return ERROR_OK for success. Otherwise a fault code.
443 */
444 int mem_ap_read_u32(struct adiv5_dap *swjdp, uint32_t address,
445 uint32_t *value)
446 {
447 int retval;
448
449 /* Use banked addressing (REG_BDx) to avoid some link traffic
450 * (updating TAR) when reading several consecutive addresses.
451 */
452 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF,
453 address & 0xFFFFFFF0);
454 if (retval != ERROR_OK)
455 return retval;
456
457 return dap_queue_ap_read(swjdp, AP_REG_BD0 | (address & 0xC), value);
458 }
459
460 /**
461 * Synchronous read of a word from memory or a system register.
462 * As a side effect, this flushes any queued transactions.
463 *
464 * @param swjdp The DAP connected to the MEM-AP performing the read.
465 * @param address Address of the 32-bit word to read; it must be
466 * readable by the currently selected MEM-AP.
467 * @param value points to where the result will be stored.
468 *
469 * @return ERROR_OK for success; *value holds the result.
470 * Otherwise a fault code.
471 */
472 int mem_ap_read_atomic_u32(struct adiv5_dap *swjdp, uint32_t address,
473 uint32_t *value)
474 {
475 int retval;
476
477 retval = mem_ap_read_u32(swjdp, address, value);
478 if (retval != ERROR_OK)
479 return retval;
480
481 return dap_run(swjdp);
482 }
483
484 /**
485 * Asynchronous (queued) write of a word to memory or a system register.
486 *
487 * @param swjdp The DAP connected to the MEM-AP.
488 * @param address Address to be written; it must be writable by
489 * the currently selected MEM-AP.
490 * @param value Word that will be written to the address when transaction
491 * queue is flushed (assuming no errors).
492 *
493 * @return ERROR_OK for success. Otherwise a fault code.
494 */
495 int mem_ap_write_u32(struct adiv5_dap *swjdp, uint32_t address,
496 uint32_t value)
497 {
498 int retval;
499
500 /* Use banked addressing (REG_BDx) to avoid some link traffic
501 * (updating TAR) when writing several consecutive addresses.
502 */
503 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF,
504 address & 0xFFFFFFF0);
505 if (retval != ERROR_OK)
506 return retval;
507
508 return dap_queue_ap_write(swjdp, AP_REG_BD0 | (address & 0xC),
509 value);
510 }
511
512 /**
513 * Synchronous write of a word to memory or a system register.
514 * As a side effect, this flushes any queued transactions.
515 *
516 * @param swjdp The DAP connected to the MEM-AP.
517 * @param address Address to be written; it must be writable by
518 * the currently selected MEM-AP.
519 * @param value Word that will be written.
520 *
521 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
522 */
523 int mem_ap_write_atomic_u32(struct adiv5_dap *swjdp, uint32_t address,
524 uint32_t value)
525 {
526 int retval = mem_ap_write_u32(swjdp, address, value);
527
528 if (retval != ERROR_OK)
529 return retval;
530
531 return dap_run(swjdp);
532 }
533
534 /*****************************************************************************
535 * *
536 * mem_ap_write_buf(struct adiv5_dap *swjdp, uint8_t *buffer, int count, uint32_t address) *
537 * *
538 * Write a buffer in target order (little endian) *
539 * *
540 *****************************************************************************/
541 int mem_ap_write_buf_u32(struct adiv5_dap *swjdp, uint8_t *buffer, int count, uint32_t address)
542 {
543 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
544 uint32_t adr = address;
545 uint8_t* pBuffer = buffer;
546
547 count >>= 2;
548 wcount = count;
549
550 /* if we have an unaligned access - reorder data */
551 if (adr & 0x3u)
552 {
553 for (writecount = 0; writecount < count; writecount++)
554 {
555 int i;
556 uint32_t outvalue;
557 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
558
559 for (i = 0; i < 4; i++)
560 {
561 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
562 outvalue >>= 8;
563 adr++;
564 }
565 pBuffer += sizeof(uint32_t);
566 }
567 }
568
569 while (wcount > 0)
570 {
571 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
572 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
573 if (wcount < blocksize)
574 blocksize = wcount;
575
576 /* handle unaligned data at 4k boundary */
577 if (blocksize == 0)
578 blocksize = 1;
579
580 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
581
582 for (writecount = 0; writecount < blocksize; writecount++)
583 {
584 retval = dap_queue_ap_write(swjdp, AP_REG_DRW,
585 *(uint32_t *) (buffer + 4 * writecount));
586 if (retval != ERROR_OK)
587 break;
588 }
589
590 if (dap_run(swjdp) == ERROR_OK)
591 {
592 wcount = wcount - blocksize;
593 address = address + 4 * blocksize;
594 buffer = buffer + 4 * blocksize;
595 }
596 else
597 {
598 errorcount++;
599 }
600
601 if (errorcount > 1)
602 {
603 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
604 /* REVISIT return the *actual* fault code */
605 return ERROR_JTAG_DEVICE_ERROR;
606 }
607 }
608
609 return retval;
610 }
611
612 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *swjdp,
613 uint8_t *buffer, int count, uint32_t address)
614 {
615 int retval = ERROR_OK;
616 int wcount, blocksize, writecount, i;
617
618 wcount = count >> 1;
619
620 while (wcount > 0)
621 {
622 int nbytes;
623
624 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
625 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
626
627 if (wcount < blocksize)
628 blocksize = wcount;
629
630 /* handle unaligned data at 4k boundary */
631 if (blocksize == 0)
632 blocksize = 1;
633
634 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address);
635 writecount = blocksize;
636
637 do
638 {
639 nbytes = MIN((writecount << 1), 4);
640
641 if (nbytes < 4)
642 {
643 if (mem_ap_write_buf_u16(swjdp, buffer,
644 nbytes, address) != ERROR_OK)
645 {
646 LOG_WARNING("Block write error address "
647 "0x%" PRIx32 ", count 0x%x",
648 address, count);
649 return ERROR_JTAG_DEVICE_ERROR;
650 }
651
652 address += nbytes >> 1;
653 }
654 else
655 {
656 uint32_t outvalue;
657 memcpy(&outvalue, buffer, sizeof(uint32_t));
658
659 for (i = 0; i < nbytes; i++)
660 {
661 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
662 outvalue >>= 8;
663 address++;
664 }
665
666 memcpy(&outvalue, buffer, sizeof(uint32_t));
667 retval = dap_queue_ap_write(swjdp,
668 AP_REG_DRW, outvalue);
669 if (retval != ERROR_OK)
670 break;
671
672 if (dap_run(swjdp) != ERROR_OK)
673 {
674 LOG_WARNING("Block write error address "
675 "0x%" PRIx32 ", count 0x%x",
676 address, count);
677 /* REVISIT return *actual* fault code */
678 return ERROR_JTAG_DEVICE_ERROR;
679 }
680 }
681
682 buffer += nbytes >> 1;
683 writecount -= nbytes >> 1;
684
685 } while (writecount);
686 wcount -= blocksize;
687 }
688
689 return retval;
690 }
691
692 int mem_ap_write_buf_u16(struct adiv5_dap *swjdp, uint8_t *buffer, int count, uint32_t address)
693 {
694 int retval = ERROR_OK;
695
696 if (count >= 4)
697 return mem_ap_write_buf_packed_u16(swjdp, buffer, count, address);
698
699 while (count > 0)
700 {
701 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
702 uint16_t svalue;
703 memcpy(&svalue, buffer, sizeof(uint16_t));
704 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
705 retval = dap_queue_ap_write(swjdp, AP_REG_DRW, outvalue);
706 if (retval != ERROR_OK)
707 break;
708
709 retval = dap_run(swjdp);
710 if (retval != ERROR_OK)
711 break;
712
713 count -= 2;
714 address += 2;
715 buffer += 2;
716 }
717
718 return retval;
719 }
720
721 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *swjdp,
722 uint8_t *buffer, int count, uint32_t address)
723 {
724 int retval = ERROR_OK;
725 int wcount, blocksize, writecount, i;
726
727 wcount = count;
728
729 while (wcount > 0)
730 {
731 int nbytes;
732
733 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
734 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
735
736 if (wcount < blocksize)
737 blocksize = wcount;
738
739 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address);
740 writecount = blocksize;
741
742 do
743 {
744 nbytes = MIN(writecount, 4);
745
746 if (nbytes < 4)
747 {
748 if (mem_ap_write_buf_u8(swjdp, buffer, nbytes, address) != ERROR_OK)
749 {
750 LOG_WARNING("Block write error address "
751 "0x%" PRIx32 ", count 0x%x",
752 address, count);
753 return ERROR_JTAG_DEVICE_ERROR;
754 }
755
756 address += nbytes;
757 }
758 else
759 {
760 uint32_t outvalue;
761 memcpy(&outvalue, buffer, sizeof(uint32_t));
762
763 for (i = 0; i < nbytes; i++)
764 {
765 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
766 outvalue >>= 8;
767 address++;
768 }
769
770 memcpy(&outvalue, buffer, sizeof(uint32_t));
771 retval = dap_queue_ap_write(swjdp,
772 AP_REG_DRW, outvalue);
773 if (retval != ERROR_OK)
774 break;
775
776 if (dap_run(swjdp) != ERROR_OK)
777 {
778 LOG_WARNING("Block write error address "
779 "0x%" PRIx32 ", count 0x%x",
780 address, count);
781 /* REVISIT return *actual* fault code */
782 return ERROR_JTAG_DEVICE_ERROR;
783 }
784 }
785
786 buffer += nbytes;
787 writecount -= nbytes;
788
789 } while (writecount);
790 wcount -= blocksize;
791 }
792
793 return retval;
794 }
795
796 int mem_ap_write_buf_u8(struct adiv5_dap *swjdp, uint8_t *buffer, int count, uint32_t address)
797 {
798 int retval = ERROR_OK;
799
800 if (count >= 4)
801 return mem_ap_write_buf_packed_u8(swjdp, buffer, count, address);
802
803 while (count > 0)
804 {
805 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
806 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
807 retval = dap_queue_ap_write(swjdp, AP_REG_DRW, outvalue);
808 if (retval != ERROR_OK)
809 break;
810
811 retval = dap_run(swjdp);
812 if (retval != ERROR_OK)
813 break;
814
815 count--;
816 address++;
817 buffer++;
818 }
819
820 return retval;
821 }
822
823 /**
824 * Synchronously read a block of 32-bit words into a buffer
825 * @param swjdp The DAP connected to the MEM-AP.
826 * @param buffer where the words will be stored (in host byte order).
827 * @param count How many words to read.
828 * @param address Memory address from which to read words; all the
829 * words must be readable by the currently selected MEM-AP.
830 */
831 int mem_ap_read_buf_u32(struct adiv5_dap *swjdp, uint8_t *buffer,
832 int count, uint32_t address)
833 {
834 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
835 uint32_t adr = address;
836 uint8_t* pBuffer = buffer;
837
838 count >>= 2;
839 wcount = count;
840
841 while (wcount > 0)
842 {
843 /* Adjust to read blocks within boundaries aligned to the
844 * TAR autoincrement size (at least 2^10). Autoincrement
845 * mode avoids an extra per-word roundtrip to update TAR.
846 */
847 blocksize = max_tar_block_size(swjdp->tar_autoincr_block,
848 address);
849 if (wcount < blocksize)
850 blocksize = wcount;
851
852 /* handle unaligned data at 4k boundary */
853 if (blocksize == 0)
854 blocksize = 1;
855
856 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE,
857 address);
858
859 /* FIXME remove these three calls to adi_jtag_dp_scan(),
860 * so this routine becomes transport-neutral. Be careful
861 * not to cause performance problems with JTAG; would it
862 * suffice to loop over dap_queue_ap_read(), or would that
863 * be slower when JTAG is the chosen transport?
864 */
865
866 /* Scan out first read */
867 adi_jtag_dp_scan(swjdp, JTAG_DP_APACC, AP_REG_DRW,
868 DPAP_READ, 0, NULL, NULL);
869 for (readcount = 0; readcount < blocksize - 1; readcount++)
870 {
871 /* Scan out next read; scan in posted value for the
872 * previous one. Assumes read is acked "OK/FAULT",
873 * and CTRL_STAT says that meant "OK".
874 */
875 adi_jtag_dp_scan(swjdp, JTAG_DP_APACC, AP_REG_DRW,
876 DPAP_READ, 0, buffer + 4 * readcount,
877 &swjdp->ack);
878 }
879
880 /* Scan in last posted value; RDBUFF has no other effect,
881 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
882 */
883 adi_jtag_dp_scan(swjdp, JTAG_DP_DPACC, DP_RDBUFF,
884 DPAP_READ, 0, buffer + 4 * readcount,
885 &swjdp->ack);
886 if (dap_run(swjdp) == ERROR_OK)
887 {
888 wcount = wcount - blocksize;
889 address += 4 * blocksize;
890 buffer += 4 * blocksize;
891 }
892 else
893 {
894 errorcount++;
895 }
896
897 if (errorcount > 1)
898 {
899 LOG_WARNING("Block read error address 0x%" PRIx32
900 ", count 0x%x", address, count);
901 /* REVISIT return the *actual* fault code */
902 return ERROR_JTAG_DEVICE_ERROR;
903 }
904 }
905
906 /* if we have an unaligned access - reorder data */
907 if (adr & 0x3u)
908 {
909 for (readcount = 0; readcount < count; readcount++)
910 {
911 int i;
912 uint32_t data;
913 memcpy(&data, pBuffer, sizeof(uint32_t));
914
915 for (i = 0; i < 4; i++)
916 {
917 *((uint8_t*)pBuffer) =
918 (data >> 8 * (adr & 0x3));
919 pBuffer++;
920 adr++;
921 }
922 }
923 }
924
925 return retval;
926 }
927
928 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *swjdp,
929 uint8_t *buffer, int count, uint32_t address)
930 {
931 uint32_t invalue;
932 int retval = ERROR_OK;
933 int wcount, blocksize, readcount, i;
934
935 wcount = count >> 1;
936
937 while (wcount > 0)
938 {
939 int nbytes;
940
941 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
942 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
943 if (wcount < blocksize)
944 blocksize = wcount;
945
946 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address);
947
948 /* handle unaligned data at 4k boundary */
949 if (blocksize == 0)
950 blocksize = 1;
951 readcount = blocksize;
952
953 do
954 {
955 retval = dap_queue_ap_read(swjdp, AP_REG_DRW, &invalue);
956 if (dap_run(swjdp) != ERROR_OK)
957 {
958 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
959 /* REVISIT return the *actual* fault code */
960 return ERROR_JTAG_DEVICE_ERROR;
961 }
962
963 nbytes = MIN((readcount << 1), 4);
964
965 for (i = 0; i < nbytes; i++)
966 {
967 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
968 buffer++;
969 address++;
970 }
971
972 readcount -= (nbytes >> 1);
973 } while (readcount);
974 wcount -= blocksize;
975 }
976
977 return retval;
978 }
979
980 /**
981 * Synchronously read a block of 16-bit halfwords into a buffer
982 * @param swjdp The DAP connected to the MEM-AP.
983 * @param buffer where the halfwords will be stored (in host byte order).
984 * @param count How many halfwords to read.
985 * @param address Memory address from which to read words; all the
986 * words must be readable by the currently selected MEM-AP.
987 */
988 int mem_ap_read_buf_u16(struct adiv5_dap *swjdp, uint8_t *buffer,
989 int count, uint32_t address)
990 {
991 uint32_t invalue, i;
992 int retval = ERROR_OK;
993
994 if (count >= 4)
995 return mem_ap_read_buf_packed_u16(swjdp, buffer, count, address);
996
997 while (count > 0)
998 {
999 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
1000 retval = dap_queue_ap_read(swjdp, AP_REG_DRW, &invalue);
1001 if (retval != ERROR_OK)
1002 break;
1003
1004 retval = dap_run(swjdp);
1005 if (retval != ERROR_OK)
1006 break;
1007
1008 if (address & 0x1)
1009 {
1010 for (i = 0; i < 2; i++)
1011 {
1012 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1013 buffer++;
1014 address++;
1015 }
1016 }
1017 else
1018 {
1019 uint16_t svalue = (invalue >> 8 * (address & 0x3));
1020 memcpy(buffer, &svalue, sizeof(uint16_t));
1021 address += 2;
1022 buffer += 2;
1023 }
1024 count -= 2;
1025 }
1026
1027 return retval;
1028 }
1029
1030 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
1031 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
1032 *
1033 * The solution is to arrange for a large out/in scan in this loop and
1034 * and convert data afterwards.
1035 */
1036 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *swjdp,
1037 uint8_t *buffer, int count, uint32_t address)
1038 {
1039 uint32_t invalue;
1040 int retval = ERROR_OK;
1041 int wcount, blocksize, readcount, i;
1042
1043 wcount = count;
1044
1045 while (wcount > 0)
1046 {
1047 int nbytes;
1048
1049 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
1050 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
1051
1052 if (wcount < blocksize)
1053 blocksize = wcount;
1054
1055 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address);
1056 readcount = blocksize;
1057
1058 do
1059 {
1060 retval = dap_queue_ap_read(swjdp, AP_REG_DRW, &invalue);
1061 if (dap_run(swjdp) != ERROR_OK)
1062 {
1063 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
1064 /* REVISIT return the *actual* fault code */
1065 return ERROR_JTAG_DEVICE_ERROR;
1066 }
1067
1068 nbytes = MIN(readcount, 4);
1069
1070 for (i = 0; i < nbytes; i++)
1071 {
1072 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1073 buffer++;
1074 address++;
1075 }
1076
1077 readcount -= nbytes;
1078 } while (readcount);
1079 wcount -= blocksize;
1080 }
1081
1082 return retval;
1083 }
1084
1085 /**
1086 * Synchronously read a block of bytes into a buffer
1087 * @param swjdp The DAP connected to the MEM-AP.
1088 * @param buffer where the bytes will be stored.
1089 * @param count How many bytes to read.
1090 * @param address Memory address from which to read data; all the
1091 * data must be readable by the currently selected MEM-AP.
1092 */
1093 int mem_ap_read_buf_u8(struct adiv5_dap *swjdp, uint8_t *buffer,
1094 int count, uint32_t address)
1095 {
1096 uint32_t invalue;
1097 int retval = ERROR_OK;
1098
1099 if (count >= 4)
1100 return mem_ap_read_buf_packed_u8(swjdp, buffer, count, address);
1101
1102 while (count > 0)
1103 {
1104 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
1105 retval = dap_queue_ap_read(swjdp, AP_REG_DRW, &invalue);
1106 retval = dap_run(swjdp);
1107 if (retval != ERROR_OK)
1108 break;
1109
1110 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1111 count--;
1112 address++;
1113 buffer++;
1114 }
1115
1116 return retval;
1117 }
1118
1119 /*--------------------------------------------------------------------------*/
1120
1121 static int jtag_idcode_q_read(struct adiv5_dap *dap,
1122 uint8_t *ack, uint32_t *data)
1123 {
1124 struct arm_jtag *jtag_info = dap->jtag_info;
1125 int retval;
1126 struct scan_field fields[1];
1127
1128 jtag_set_end_state(TAP_IDLE);
1129
1130 /* This is a standard JTAG operation -- no DAP tweakage */
1131 retval = arm_jtag_set_instr(jtag_info, JTAG_DP_IDCODE, NULL);
1132 if (retval != ERROR_OK)
1133 return retval;
1134
1135 fields[0].tap = jtag_info->tap;
1136 fields[0].num_bits = 32;
1137 fields[0].out_value = NULL;
1138 fields[0].in_value = (void *) data;
1139
1140 jtag_add_dr_scan(1, fields, jtag_get_end_state());
1141 retval = jtag_get_error();
1142 if (retval != ERROR_OK)
1143 return retval;
1144
1145 jtag_add_callback(arm_le_to_h_u32,
1146 (jtag_callback_data_t) data);
1147
1148 return retval;
1149 }
1150
1151 static int jtag_dp_q_read(struct adiv5_dap *dap, unsigned reg,
1152 uint32_t *data)
1153 {
1154 return adi_jtag_scan_inout_check_u32(dap, JTAG_DP_DPACC,
1155 reg, DPAP_READ, 0, data);
1156 }
1157
1158 static int jtag_dp_q_write(struct adiv5_dap *dap, unsigned reg,
1159 uint32_t data)
1160 {
1161 return adi_jtag_scan_inout_check_u32(dap, JTAG_DP_DPACC,
1162 reg, DPAP_WRITE, data, NULL);
1163 }
1164
1165 /** Select the AP register bank matching bits 7:4 of reg. */
1166 static int jtag_ap_q_bankselect(struct adiv5_dap *dap, unsigned reg)
1167 {
1168 uint32_t select = reg & 0x000000F0;
1169
1170 if (select == dap->ap_bank_value)
1171 return ERROR_OK;
1172 dap->ap_bank_value = select;
1173
1174 select |= dap->apsel;
1175
1176 return jtag_dp_q_write(dap, DP_SELECT, select);
1177 }
1178
1179 static int jtag_ap_q_read(struct adiv5_dap *dap, unsigned reg,
1180 uint32_t *data)
1181 {
1182 int retval = jtag_ap_q_bankselect(dap, reg);
1183
1184 if (retval != ERROR_OK)
1185 return retval;
1186
1187 return adi_jtag_scan_inout_check_u32(dap, JTAG_DP_APACC, reg,
1188 DPAP_READ, 0, data);
1189 }
1190
1191 static int jtag_ap_q_write(struct adiv5_dap *dap, unsigned reg,
1192 uint32_t data)
1193 {
1194 uint8_t out_value_buf[4];
1195
1196 int retval = jtag_ap_q_bankselect(dap, reg);
1197 if (retval != ERROR_OK)
1198 return retval;
1199
1200 buf_set_u32(out_value_buf, 0, 32, data);
1201
1202 return adi_jtag_ap_write_check(dap, reg, out_value_buf);
1203 }
1204
1205 static int jtag_ap_q_abort(struct adiv5_dap *dap, uint8_t *ack)
1206 {
1207 /* for JTAG, this is the only valid ABORT register operation */
1208 return adi_jtag_dp_scan_u32(dap, JTAG_DP_ABORT,
1209 0, DPAP_WRITE, 1, NULL, ack);
1210 }
1211
1212 static int jtag_dp_run(struct adiv5_dap *dap)
1213 {
1214 return jtagdp_transaction_endcheck(dap);
1215 }
1216
1217 static const struct dap_ops jtag_dp_ops = {
1218 .queue_idcode_read = jtag_idcode_q_read,
1219 .queue_dp_read = jtag_dp_q_read,
1220 .queue_dp_write = jtag_dp_q_write,
1221 .queue_ap_read = jtag_ap_q_read,
1222 .queue_ap_write = jtag_ap_q_write,
1223 .queue_ap_abort = jtag_ap_q_abort,
1224 .run = jtag_dp_run,
1225 };
1226
1227 /*--------------------------------------------------------------------------*/
1228
1229 /**
1230 * Initialize a DAP. This sets up the power domains, prepares the DP
1231 * for further use, and arranges to use AP #0 for all AP operations
1232 * until dap_ap-select() changes that policy.
1233 *
1234 * @param swjdp The DAP being initialized.
1235 *
1236 * @todo Rename this. We also need an initialization scheme which account
1237 * for SWD transports not just JTAG; that will need to address differences
1238 * in layering. (JTAG is useful without any debug target; but not SWD.)
1239 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1240 */
1241 int ahbap_debugport_init(struct adiv5_dap *swjdp)
1242 {
1243 uint32_t idreg, romaddr, dummy;
1244 uint32_t ctrlstat;
1245 int cnt = 0;
1246 int retval;
1247
1248 LOG_DEBUG(" ");
1249
1250 /* JTAG-DP or SWJ-DP, in JTAG mode */
1251 swjdp->ops = &jtag_dp_ops;
1252
1253 /* Default MEM-AP setup.
1254 *
1255 * REVISIT AP #0 may be an inappropriate default for this.
1256 * Should we probe, or take a hint from the caller?
1257 * Presumably we can ignore the possibility of multiple APs.
1258 */
1259 swjdp->apsel = !0;
1260 dap_ap_select(swjdp, 0);
1261
1262 /* DP initialization */
1263
1264 retval = dap_queue_dp_read(swjdp, DP_CTRL_STAT, &dummy);
1265 if (retval != ERROR_OK)
1266 return retval;
1267
1268 retval = dap_queue_dp_write(swjdp, DP_CTRL_STAT, SSTICKYERR);
1269 if (retval != ERROR_OK)
1270 return retval;
1271
1272 retval = dap_queue_dp_read(swjdp, DP_CTRL_STAT, &dummy);
1273 if (retval != ERROR_OK)
1274 return retval;
1275
1276 swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1277 retval = dap_queue_dp_write(swjdp, DP_CTRL_STAT, swjdp->dp_ctrl_stat);
1278 if (retval != ERROR_OK)
1279 return retval;
1280
1281 retval = dap_queue_dp_read(swjdp, DP_CTRL_STAT, &ctrlstat);
1282 if (retval != ERROR_OK)
1283 return retval;
1284 if ((retval = dap_run(swjdp)) != ERROR_OK)
1285 return retval;
1286
1287 /* Check that we have debug power domains activated */
1288 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1289 {
1290 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1291 retval = dap_queue_dp_read(swjdp, DP_CTRL_STAT, &ctrlstat);
1292 if (retval != ERROR_OK)
1293 return retval;
1294 if ((retval = dap_run(swjdp)) != ERROR_OK)
1295 return retval;
1296 alive_sleep(10);
1297 }
1298
1299 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1300 {
1301 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1302 retval = dap_queue_dp_read(swjdp, DP_CTRL_STAT, &ctrlstat);
1303 if (retval != ERROR_OK)
1304 return retval;
1305 if ((retval = dap_run(swjdp)) != ERROR_OK)
1306 return retval;
1307 alive_sleep(10);
1308 }
1309
1310 retval = dap_queue_dp_read(swjdp, DP_CTRL_STAT, &dummy);
1311 if (retval != ERROR_OK)
1312 return retval;
1313 /* With debug power on we can activate OVERRUN checking */
1314 swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1315 retval = dap_queue_dp_write(swjdp, DP_CTRL_STAT, swjdp->dp_ctrl_stat);
1316 if (retval != ERROR_OK)
1317 return retval;
1318 retval = dap_queue_dp_read(swjdp, DP_CTRL_STAT, &dummy);
1319 if (retval != ERROR_OK)
1320 return retval;
1321
1322 /*
1323 * REVISIT this isn't actually *initializing* anything in an AP,
1324 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
1325 * Should it? If the ROM address is valid, is this the right
1326 * place to scan the table and do any topology detection?
1327 */
1328 retval = dap_queue_ap_read(swjdp, AP_REG_IDR, &idreg);
1329 retval = dap_queue_ap_read(swjdp, AP_REG_BASE, &romaddr);
1330
1331 LOG_DEBUG("MEM-AP #%d ID Register 0x%" PRIx32
1332 ", Debug ROM Address 0x%" PRIx32,
1333 swjdp->apsel, idreg, romaddr);
1334
1335 return ERROR_OK;
1336 }
1337
1338 /* CID interpretation -- see ARM IHI 0029B section 3
1339 * and ARM IHI 0031A table 13-3.
1340 */
1341 static const char *class_description[16] ={
1342 "Reserved", "ROM table", "Reserved", "Reserved",
1343 "Reserved", "Reserved", "Reserved", "Reserved",
1344 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1345 "Reserved", "OptimoDE DESS",
1346 "Generic IP component", "PrimeCell or System component"
1347 };
1348
1349 static bool
1350 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1351 {
1352 return cid3 == 0xb1 && cid2 == 0x05
1353 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1354 }
1355
1356 static int dap_info_command(struct command_context *cmd_ctx,
1357 struct adiv5_dap *swjdp, int apsel)
1358 {
1359 int retval;
1360 uint32_t dbgbase, apid;
1361 int romtable_present = 0;
1362 uint8_t mem_ap;
1363 uint32_t apselold;
1364
1365 /* AP address is in bits 31:24 of DP_SELECT */
1366 if (apsel >= 256)
1367 return ERROR_INVALID_ARGUMENTS;
1368
1369 apselold = swjdp->apsel;
1370 dap_ap_select(swjdp, apsel);
1371 retval = dap_queue_ap_read(swjdp, AP_REG_BASE, &dbgbase);
1372 retval = dap_queue_ap_read(swjdp, AP_REG_IDR, &apid);
1373 retval = dap_run(swjdp);
1374 if (retval != ERROR_OK)
1375 return retval;
1376
1377 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1378 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1379 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1380 if (apid)
1381 {
1382 switch (apid&0x0F)
1383 {
1384 case 0:
1385 command_print(cmd_ctx, "\tType is JTAG-AP");
1386 break;
1387 case 1:
1388 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1389 break;
1390 case 2:
1391 command_print(cmd_ctx, "\tType is MEM-AP APB");
1392 break;
1393 default:
1394 command_print(cmd_ctx, "\tUnknown AP type");
1395 break;
1396 }
1397
1398 /* NOTE: a MEM-AP may have a single CoreSight component that's
1399 * not a ROM table ... or have no such components at all.
1400 */
1401 if (mem_ap)
1402 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1403 dbgbase);
1404 }
1405 else
1406 {
1407 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1408 }
1409
1410 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1411 if (romtable_present)
1412 {
1413 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1414 uint16_t entry_offset;
1415
1416 /* bit 16 of apid indicates a memory access port */
1417 if (dbgbase & 0x02)
1418 command_print(cmd_ctx, "\tValid ROM table present");
1419 else
1420 command_print(cmd_ctx, "\tROM table in legacy format");
1421
1422 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1423 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1424 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1425 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1426 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1427 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1428 retval = dap_run(swjdp);
1429 if (retval != ERROR_OK)
1430 return retval;
1431
1432 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1433 command_print(cmd_ctx, "\tCID3 0x%2.2" PRIx32
1434 ", CID2 0x%2.2" PRIx32
1435 ", CID1 0x%2.2" PRIx32
1436 ", CID0 0x%2.2" PRIx32,
1437 cid3, cid2, cid1, cid0);
1438 if (memtype & 0x01)
1439 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1440 else
1441 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1442 "Dedicated debug bus.");
1443
1444 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1445 entry_offset = 0;
1446 do
1447 {
1448 mem_ap_read_atomic_u32(swjdp, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1449 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1450 if (romentry&0x01)
1451 {
1452 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1453 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1454 uint32_t component_start, component_base;
1455 unsigned part_num;
1456 char *type, *full;
1457
1458 component_base = (uint32_t)((dbgbase & 0xFFFFF000)
1459 + (int)(romentry & 0xFFFFF000));
1460 mem_ap_read_atomic_u32(swjdp,
1461 (component_base & 0xFFFFF000) | 0xFE0, &c_pid0);
1462 mem_ap_read_atomic_u32(swjdp,
1463 (component_base & 0xFFFFF000) | 0xFE4, &c_pid1);
1464 mem_ap_read_atomic_u32(swjdp,
1465 (component_base & 0xFFFFF000) | 0xFE8, &c_pid2);
1466 mem_ap_read_atomic_u32(swjdp,
1467 (component_base & 0xFFFFF000) | 0xFEC, &c_pid3);
1468 mem_ap_read_atomic_u32(swjdp,
1469 (component_base & 0xFFFFF000) | 0xFD0, &c_pid4);
1470 mem_ap_read_atomic_u32(swjdp,
1471 (component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
1472 mem_ap_read_atomic_u32(swjdp,
1473 (component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
1474 mem_ap_read_atomic_u32(swjdp,
1475 (component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
1476 mem_ap_read_atomic_u32(swjdp,
1477 (component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
1478 component_start = component_base - 0x1000*(c_pid4 >> 4);
1479
1480 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
1481 ", start address 0x%" PRIx32,
1482 component_base, component_start);
1483 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1484 (int) (c_cid1 >> 4) & 0xf,
1485 /* See ARM IHI 0029B Table 3-3 */
1486 class_description[(c_cid1 >> 4) & 0xf]);
1487
1488 /* CoreSight component? */
1489 if (((c_cid1 >> 4) & 0x0f) == 9) {
1490 uint32_t devtype;
1491 unsigned minor;
1492 char *major = "Reserved", *subtype = "Reserved";
1493
1494 mem_ap_read_atomic_u32(swjdp,
1495 (component_base & 0xfffff000) | 0xfcc,
1496 &devtype);
1497 minor = (devtype >> 4) & 0x0f;
1498 switch (devtype & 0x0f) {
1499 case 0:
1500 major = "Miscellaneous";
1501 switch (minor) {
1502 case 0:
1503 subtype = "other";
1504 break;
1505 case 4:
1506 subtype = "Validation component";
1507 break;
1508 }
1509 break;
1510 case 1:
1511 major = "Trace Sink";
1512 switch (minor) {
1513 case 0:
1514 subtype = "other";
1515 break;
1516 case 1:
1517 subtype = "Port";
1518 break;
1519 case 2:
1520 subtype = "Buffer";
1521 break;
1522 }
1523 break;
1524 case 2:
1525 major = "Trace Link";
1526 switch (minor) {
1527 case 0:
1528 subtype = "other";
1529 break;
1530 case 1:
1531 subtype = "Funnel, router";
1532 break;
1533 case 2:
1534 subtype = "Filter";
1535 break;
1536 case 3:
1537 subtype = "FIFO, buffer";
1538 break;
1539 }
1540 break;
1541 case 3:
1542 major = "Trace Source";
1543 switch (minor) {
1544 case 0:
1545 subtype = "other";
1546 break;
1547 case 1:
1548 subtype = "Processor";
1549 break;
1550 case 2:
1551 subtype = "DSP";
1552 break;
1553 case 3:
1554 subtype = "Engine/Coprocessor";
1555 break;
1556 case 4:
1557 subtype = "Bus";
1558 break;
1559 }
1560 break;
1561 case 4:
1562 major = "Debug Control";
1563 switch (minor) {
1564 case 0:
1565 subtype = "other";
1566 break;
1567 case 1:
1568 subtype = "Trigger Matrix";
1569 break;
1570 case 2:
1571 subtype = "Debug Auth";
1572 break;
1573 }
1574 break;
1575 case 5:
1576 major = "Debug Logic";
1577 switch (minor) {
1578 case 0:
1579 subtype = "other";
1580 break;
1581 case 1:
1582 subtype = "Processor";
1583 break;
1584 case 2:
1585 subtype = "DSP";
1586 break;
1587 case 3:
1588 subtype = "Engine/Coprocessor";
1589 break;
1590 }
1591 break;
1592 }
1593 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1594 (unsigned) (devtype & 0xff),
1595 major, subtype);
1596 /* REVISIT also show 0xfc8 DevId */
1597 }
1598
1599 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1600 command_print(cmd_ctx, "\t\tCID3 0x%2.2" PRIx32
1601 ", CID2 0x%2.2" PRIx32
1602 ", CID1 0x%2.2" PRIx32
1603 ", CID0 0x%2.2" PRIx32,
1604 c_cid3, c_cid2, c_cid1, c_cid0);
1605 command_print(cmd_ctx, "\t\tPeripheral ID[4..0] = hex "
1606 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1607 (int) c_pid4,
1608 (int) c_pid3, (int) c_pid2,
1609 (int) c_pid1, (int) c_pid0);
1610
1611 /* Part number interpretations are from Cortex
1612 * core specs, the CoreSight components TRM
1613 * (ARM DDI 0314H), and ETM specs; also from
1614 * chip observation (e.g. TI SDTI).
1615 */
1616 part_num = c_pid0 & 0xff;
1617 part_num |= (c_pid1 & 0x0f) << 8;
1618 switch (part_num) {
1619 case 0x000:
1620 type = "Cortex-M3 NVIC";
1621 full = "(Interrupt Controller)";
1622 break;
1623 case 0x001:
1624 type = "Cortex-M3 ITM";
1625 full = "(Instrumentation Trace Module)";
1626 break;
1627 case 0x002:
1628 type = "Cortex-M3 DWT";
1629 full = "(Data Watchpoint and Trace)";
1630 break;
1631 case 0x003:
1632 type = "Cortex-M3 FBP";
1633 full = "(Flash Patch and Breakpoint)";
1634 break;
1635 case 0x00d:
1636 type = "CoreSight ETM11";
1637 full = "(Embedded Trace)";
1638 break;
1639 // case 0x113: what?
1640 case 0x120: /* from OMAP3 memmap */
1641 type = "TI SDTI";
1642 full = "(System Debug Trace Interface)";
1643 break;
1644 case 0x343: /* from OMAP3 memmap */
1645 type = "TI DAPCTL";
1646 full = "";
1647 break;
1648 case 0x906:
1649 type = "Coresight CTI";
1650 full = "(Cross Trigger)";
1651 break;
1652 case 0x907:
1653 type = "Coresight ETB";
1654 full = "(Trace Buffer)";
1655 break;
1656 case 0x908:
1657 type = "Coresight CSTF";
1658 full = "(Trace Funnel)";
1659 break;
1660 case 0x910:
1661 type = "CoreSight ETM9";
1662 full = "(Embedded Trace)";
1663 break;
1664 case 0x912:
1665 type = "Coresight TPIU";
1666 full = "(Trace Port Interface Unit)";
1667 break;
1668 case 0x921:
1669 type = "Cortex-A8 ETM";
1670 full = "(Embedded Trace)";
1671 break;
1672 case 0x922:
1673 type = "Cortex-A8 CTI";
1674 full = "(Cross Trigger)";
1675 break;
1676 case 0x923:
1677 type = "Cortex-M3 TPIU";
1678 full = "(Trace Port Interface Unit)";
1679 break;
1680 case 0x924:
1681 type = "Cortex-M3 ETM";
1682 full = "(Embedded Trace)";
1683 break;
1684 case 0xc08:
1685 type = "Cortex-A8 Debug";
1686 full = "(Debug Unit)";
1687 break;
1688 default:
1689 type = "-*- unrecognized -*-";
1690 full = "";
1691 break;
1692 }
1693 command_print(cmd_ctx, "\t\tPart is %s %s",
1694 type, full);
1695 }
1696 else
1697 {
1698 if (romentry)
1699 command_print(cmd_ctx, "\t\tComponent not present");
1700 else
1701 command_print(cmd_ctx, "\t\tEnd of ROM table");
1702 }
1703 entry_offset += 4;
1704 } while (romentry > 0);
1705 }
1706 else
1707 {
1708 command_print(cmd_ctx, "\tNo ROM table present");
1709 }
1710 dap_ap_select(swjdp, apselold);
1711
1712 return ERROR_OK;
1713 }
1714
1715 COMMAND_HANDLER(handle_dap_info_command)
1716 {
1717 struct target *target = get_current_target(CMD_CTX);
1718 struct arm *arm = target_to_arm(target);
1719 struct adiv5_dap *dap = arm->dap;
1720 uint32_t apsel;
1721
1722 switch (CMD_ARGC) {
1723 case 0:
1724 apsel = dap->apsel;
1725 break;
1726 case 1:
1727 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1728 break;
1729 default:
1730 return ERROR_COMMAND_SYNTAX_ERROR;
1731 }
1732
1733 return dap_info_command(CMD_CTX, dap, apsel);
1734 }
1735
1736 COMMAND_HANDLER(dap_baseaddr_command)
1737 {
1738 struct target *target = get_current_target(CMD_CTX);
1739 struct arm *arm = target_to_arm(target);
1740 struct adiv5_dap *dap = arm->dap;
1741
1742 uint32_t apsel, apselsave, baseaddr;
1743 int retval;
1744
1745 apselsave = dap->apsel;
1746 switch (CMD_ARGC) {
1747 case 0:
1748 apsel = dap->apsel;
1749 break;
1750 case 1:
1751 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1752 /* AP address is in bits 31:24 of DP_SELECT */
1753 if (apsel >= 256)
1754 return ERROR_INVALID_ARGUMENTS;
1755 break;
1756 default:
1757 return ERROR_COMMAND_SYNTAX_ERROR;
1758 }
1759
1760 if (apselsave != apsel)
1761 dap_ap_select(dap, apsel);
1762
1763 /* NOTE: assumes we're talking to a MEM-AP, which
1764 * has a base address. There are other kinds of AP,
1765 * though they're not common for now. This should
1766 * use the ID register to verify it's a MEM-AP.
1767 */
1768 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1769 retval = dap_run(dap);
1770 if (retval != ERROR_OK)
1771 return retval;
1772
1773 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1774
1775 if (apselsave != apsel)
1776 dap_ap_select(dap, apselsave);
1777
1778 return retval;
1779 }
1780
1781 COMMAND_HANDLER(dap_memaccess_command)
1782 {
1783 struct target *target = get_current_target(CMD_CTX);
1784 struct arm *arm = target_to_arm(target);
1785 struct adiv5_dap *dap = arm->dap;
1786
1787 uint32_t memaccess_tck;
1788
1789 switch (CMD_ARGC) {
1790 case 0:
1791 memaccess_tck = dap->memaccess_tck;
1792 break;
1793 case 1:
1794 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1795 break;
1796 default:
1797 return ERROR_COMMAND_SYNTAX_ERROR;
1798 }
1799 dap->memaccess_tck = memaccess_tck;
1800
1801 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1802 dap->memaccess_tck);
1803
1804 return ERROR_OK;
1805 }
1806
1807 COMMAND_HANDLER(dap_apsel_command)
1808 {
1809 struct target *target = get_current_target(CMD_CTX);
1810 struct arm *arm = target_to_arm(target);
1811 struct adiv5_dap *dap = arm->dap;
1812
1813 uint32_t apsel, apid;
1814 int retval;
1815
1816 switch (CMD_ARGC) {
1817 case 0:
1818 apsel = 0;
1819 break;
1820 case 1:
1821 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1822 /* AP address is in bits 31:24 of DP_SELECT */
1823 if (apsel >= 256)
1824 return ERROR_INVALID_ARGUMENTS;
1825 break;
1826 default:
1827 return ERROR_COMMAND_SYNTAX_ERROR;
1828 }
1829
1830 dap_ap_select(dap, apsel);
1831 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1832 retval = dap_run(dap);
1833 if (retval != ERROR_OK)
1834 return retval;
1835
1836 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1837 apsel, apid);
1838
1839 return retval;
1840 }
1841
1842 COMMAND_HANDLER(dap_apid_command)
1843 {
1844 struct target *target = get_current_target(CMD_CTX);
1845 struct arm *arm = target_to_arm(target);
1846 struct adiv5_dap *dap = arm->dap;
1847
1848 uint32_t apsel, apselsave, apid;
1849 int retval;
1850
1851 apselsave = dap->apsel;
1852 switch (CMD_ARGC) {
1853 case 0:
1854 apsel = dap->apsel;
1855 break;
1856 case 1:
1857 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1858 /* AP address is in bits 31:24 of DP_SELECT */
1859 if (apsel >= 256)
1860 return ERROR_INVALID_ARGUMENTS;
1861 break;
1862 default:
1863 return ERROR_COMMAND_SYNTAX_ERROR;
1864 }
1865
1866 if (apselsave != apsel)
1867 dap_ap_select(dap, apsel);
1868
1869 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1870 retval = dap_run(dap);
1871 if (retval != ERROR_OK)
1872 return retval;
1873
1874 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1875 if (apselsave != apsel)
1876 dap_ap_select(dap, apselsave);
1877
1878 return retval;
1879 }
1880
1881 static const struct command_registration dap_commands[] = {
1882 {
1883 .name = "info",
1884 .handler = handle_dap_info_command,
1885 .mode = COMMAND_EXEC,
1886 .help = "display ROM table for MEM-AP "
1887 "(default currently selected AP)",
1888 .usage = "[ap_num]",
1889 },
1890 {
1891 .name = "apsel",
1892 .handler = dap_apsel_command,
1893 .mode = COMMAND_EXEC,
1894 .help = "Set the currently selected AP (default 0) "
1895 "and display the result",
1896 .usage = "[ap_num]",
1897 },
1898 {
1899 .name = "apid",
1900 .handler = dap_apid_command,
1901 .mode = COMMAND_EXEC,
1902 .help = "return ID register from AP "
1903 "(default currently selected AP)",
1904 .usage = "[ap_num]",
1905 },
1906 {
1907 .name = "baseaddr",
1908 .handler = dap_baseaddr_command,
1909 .mode = COMMAND_EXEC,
1910 .help = "return debug base address from MEM-AP "
1911 "(default currently selected AP)",
1912 .usage = "[ap_num]",
1913 },
1914 {
1915 .name = "memaccess",
1916 .handler = dap_memaccess_command,
1917 .mode = COMMAND_EXEC,
1918 .help = "set/get number of extra tck for MEM-AP memory "
1919 "bus access [0-255]",
1920 .usage = "[cycles]",
1921 },
1922 COMMAND_REGISTRATION_DONE
1923 };
1924
1925 const struct command_registration dap_command_handlers[] = {
1926 {
1927 .name = "dap",
1928 .mode = COMMAND_EXEC,
1929 .help = "DAP command group",
1930 .chain = dap_commands,
1931 },
1932 COMMAND_REGISTRATION_DONE
1933 };
1934
1935
1936 /*
1937 * This represents the bits which must be sent out on TMS/SWDIO to
1938 * switch a DAP implemented using an SWJ-DP module into SWD mode.
1939 * These bits are stored (and transmitted) LSB-first.
1940 *
1941 * See the DAP-Lite specification, section 2.2.5 for information
1942 * about making the debug link select SWD or JTAG. (Similar info
1943 * is in a few other ARM documents.)
1944 */
1945 static const uint8_t jtag2swd_bitseq[] = {
1946 /* More than 50 TCK/SWCLK cycles with TMS/SWDIO high,
1947 * putting both JTAG and SWD logic into reset state.
1948 */
1949 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
1950 /* Switching sequence enables SWD and disables JTAG
1951 * NOTE: bits in the DP's IDCODE may expose the need for
1952 * an old/deprecated sequence (0xb6 0xed).
1953 */
1954 0x9e, 0xe7,
1955 /* More than 50 TCK/SWCLK cycles with TMS/SWDIO high,
1956 * putting both JTAG and SWD logic into reset state.
1957 */
1958 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
1959 };
1960
1961 /**
1962 * Put the debug link into SWD mode, if the target supports it.
1963 * The link's initial mode may be either JTAG (for example,
1964 * with SWJ-DP after reset) or SWD.
1965 *
1966 * @param target Enters SWD mode (if possible).
1967 *
1968 * Note that targets using the JTAG-DP do not support SWD, and that
1969 * some targets which could otherwise support it may have have been
1970 * configured to disable SWD signaling
1971 *
1972 * @return ERROR_OK or else a fault code.
1973 */
1974 int dap_to_swd(struct target *target)
1975 {
1976 int retval;
1977
1978 LOG_DEBUG("Enter SWD mode");
1979
1980 /* REVISIT it's nasty to need to make calls to a "jtag"
1981 * subsystem if the link isn't in JTAG mode...
1982 */
1983
1984 retval = jtag_add_tms_seq(8 * sizeof(jtag2swd_bitseq),
1985 jtag2swd_bitseq, TAP_INVALID);
1986 if (retval == ERROR_OK)
1987 retval = jtag_execute_queue();
1988
1989 /* REVISIT set up the DAP's ops vector for SWD mode. */
1990
1991 return retval;
1992 }
1993
1994 /**
1995 * This represents the bits which must be sent out on TMS/SWDIO to
1996 * switch a DAP implemented using an SWJ-DP module into JTAG mode.
1997 * These bits are stored (and transmitted) LSB-first.
1998 *
1999 * These bits are stored (and transmitted) LSB-first.
2000 */
2001 static const uint8_t swd2jtag_bitseq[] = {
2002 /* More than 50 TCK/SWCLK cycles with TMS/SWDIO high,
2003 * putting both JTAG and SWD logic into reset state.
2004 */
2005 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2006 /* Switching equence disables SWD and enables JTAG
2007 * NOTE: bits in the DP's IDCODE can expose the need for
2008 * the old/deprecated sequence (0xae 0xde).
2009 */
2010 0x3c, 0xe7,
2011 /* At least 50 TCK/SWCLK cycles with TMS/SWDIO high,
2012 * putting both JTAG and SWD logic into reset state.
2013 * NOTE: some docs say "at least 5".
2014 */
2015 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2016 };
2017
2018 /** Put the debug link into JTAG mode, if the target supports it.
2019 * The link's initial mode may be either SWD or JTAG.
2020 *
2021 * @param target Enters JTAG mode (if possible).
2022 *
2023 * Note that targets implemented with SW-DP do not support JTAG, and
2024 * that some targets which could otherwise support it may have been
2025 * configured to disable JTAG signaling
2026 *
2027 * @return ERROR_OK or else a fault code.
2028 */
2029 int dap_to_jtag(struct target *target)
2030 {
2031 int retval;
2032
2033 LOG_DEBUG("Enter JTAG mode");
2034
2035 /* REVISIT it's nasty to need to make calls to a "jtag"
2036 * subsystem if the link isn't in JTAG mode...
2037 */
2038
2039 retval = jtag_add_tms_seq(8 * sizeof(swd2jtag_bitseq),
2040 swd2jtag_bitseq, TAP_RESET);
2041 if (retval == ERROR_OK)
2042 retval = jtag_execute_queue();
2043
2044 /* REVISIT set up the DAP's ops vector for JTAG mode. */
2045
2046 return retval;
2047 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)