Fix some C99 format specifiers
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focusses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction piplining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
81
82 /*
83 uint32_t tar_block_size(uint32_t address)
84 Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92 * *
93 * DP and MEM-AP register access through APACC and DPACC *
94 * *
95 ***************************************************************************/
96
97 /**
98 * Select one of the APs connected to the specified DAP. The
99 * selection is implicitly used with future AP transactions.
100 * This is a NOP if the specified AP is already selected.
101 *
102 * @param dap The DAP
103 * @param apsel Number of the AP to (implicitly) use with further
104 * transactions. This normally identifies a MEM-AP.
105 */
106 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
107 {
108 uint32_t new_ap = (ap << 24) & 0xFF000000;
109
110 if (new_ap != dap->ap_current) {
111 dap->ap_current = new_ap;
112 /* Switching AP invalidates cached values.
113 * Values MUST BE UPDATED BEFORE AP ACCESS.
114 */
115 dap->ap_bank_value = -1;
116 dap->ap_csw_value = -1;
117 dap->ap_tar_value = -1;
118 }
119 }
120
121 static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
122 {
123 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
124 dap->apcsw[dap->ap_current >> 24];
125
126 if (csw != dap->ap_csw_value) {
127 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
128 int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
129 if (retval != ERROR_OK)
130 return retval;
131 dap->ap_csw_value = csw;
132 }
133 return ERROR_OK;
134 }
135
136 static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
137 {
138 if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
139 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
140 int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
141 if (retval != ERROR_OK)
142 return retval;
143 dap->ap_tar_value = tar;
144 }
145 return ERROR_OK;
146 }
147
148 /**
149 * Queue transactions setting up transfer parameters for the
150 * currently selected MEM-AP.
151 *
152 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
153 * initiate data reads or writes using memory or peripheral addresses.
154 * If the CSW is configured for it, the TAR may be automatically
155 * incremented after each transfer.
156 *
157 * @todo Rename to reflect it being specifically a MEM-AP function.
158 *
159 * @param dap The DAP connected to the MEM-AP.
160 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
161 * matches the cached value, the register is not changed.
162 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
163 * matches the cached address, the register is not changed.
164 *
165 * @return ERROR_OK if the transaction was properly queued, else a fault code.
166 */
167 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
168 {
169 int retval;
170 retval = dap_setup_accessport_csw(dap, csw);
171 if (retval != ERROR_OK)
172 return retval;
173 retval = dap_setup_accessport_tar(dap, tar);
174 if (retval != ERROR_OK)
175 return retval;
176 return ERROR_OK;
177 }
178
179 /**
180 * Asynchronous (queued) read of a word from memory or a system register.
181 *
182 * @param dap The DAP connected to the MEM-AP performing the read.
183 * @param address Address of the 32-bit word to read; it must be
184 * readable by the currently selected MEM-AP.
185 * @param value points to where the word will be stored when the
186 * transaction queue is flushed (assuming no errors).
187 *
188 * @return ERROR_OK for success. Otherwise a fault code.
189 */
190 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
191 uint32_t *value)
192 {
193 int retval;
194
195 /* Use banked addressing (REG_BDx) to avoid some link traffic
196 * (updating TAR) when reading several consecutive addresses.
197 */
198 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
199 address & 0xFFFFFFF0);
200 if (retval != ERROR_OK)
201 return retval;
202
203 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
204 }
205
206 /**
207 * Synchronous read of a word from memory or a system register.
208 * As a side effect, this flushes any queued transactions.
209 *
210 * @param dap The DAP connected to the MEM-AP performing the read.
211 * @param address Address of the 32-bit word to read; it must be
212 * readable by the currently selected MEM-AP.
213 * @param value points to where the result will be stored.
214 *
215 * @return ERROR_OK for success; *value holds the result.
216 * Otherwise a fault code.
217 */
218 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
219 uint32_t *value)
220 {
221 int retval;
222
223 retval = mem_ap_read_u32(dap, address, value);
224 if (retval != ERROR_OK)
225 return retval;
226
227 return dap_run(dap);
228 }
229
230 /**
231 * Asynchronous (queued) write of a word to memory or a system register.
232 *
233 * @param dap The DAP connected to the MEM-AP.
234 * @param address Address to be written; it must be writable by
235 * the currently selected MEM-AP.
236 * @param value Word that will be written to the address when transaction
237 * queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
242 uint32_t value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when writing several consecutive addresses.
248 */
249 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
250 address & 0xFFFFFFF0);
251 if (retval != ERROR_OK)
252 return retval;
253
254 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
255 value);
256 }
257
258 /**
259 * Synchronous write of a word to memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param dap The DAP connected to the MEM-AP.
263 * @param address Address to be written; it must be writable by
264 * the currently selected MEM-AP.
265 * @param value Word that will be written.
266 *
267 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
268 */
269 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
270 uint32_t value)
271 {
272 int retval = mem_ap_write_u32(dap, address, value);
273
274 if (retval != ERROR_OK)
275 return retval;
276
277 return dap_run(dap);
278 }
279
280 /**
281 * Synchronous write of a block of memory, using a specific access size.
282 *
283 * @param dap The DAP connected to the MEM-AP.
284 * @param buffer The data buffer to write. No particular alignment is assumed.
285 * @param size Which access size to use, in bytes. 1, 2 or 4.
286 * @param count The number of writes to do (in size units, not bytes).
287 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
288 * @param addrinc Whether the target address should be increased for each write or not. This
289 * should normally be true, except when writing to e.g. a FIFO.
290 * @return ERROR_OK on success, otherwise an error code.
291 */
292 int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
293 uint32_t address, bool addrinc)
294 {
295 size_t nbytes = size * count;
296 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
297 uint32_t csw_size;
298 uint32_t addr_xor;
299 int retval;
300
301 /* TI BE-32 Quirks mode:
302 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
303 * size write address bytes written in order
304 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
305 * 2 TAR ^ 2 (val >> 8), (val)
306 * 1 TAR ^ 3 (val)
307 * For example, if you attempt to write a single byte to address 0, the processor
308 * will actually write a byte to address 3.
309 *
310 * To make writes of size < 4 work as expected, we xor a value with the address before
311 * setting the TAP, and we set the TAP after every transfer rather then relying on
312 * address increment. */
313
314 if (size == 4) {
315 csw_size = CSW_32BIT;
316 addr_xor = 0;
317 } else if (size == 2) {
318 csw_size = CSW_16BIT;
319 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
320 } else if (size == 1) {
321 csw_size = CSW_8BIT;
322 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
323 } else {
324 return ERROR_TARGET_UNALIGNED_ACCESS;
325 }
326
327 if (dap->unaligned_access_bad && (address % size != 0))
328 return ERROR_TARGET_UNALIGNED_ACCESS;
329
330 retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
331 if (retval != ERROR_OK)
332 return retval;
333
334 while (nbytes > 0) {
335 uint32_t this_size = size;
336
337 /* Select packed transfer if possible */
338 if (addrinc && dap->packed_transfers && nbytes >= 4
339 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
340 this_size = 4;
341 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
342 } else {
343 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
344 }
345
346 if (retval != ERROR_OK)
347 break;
348
349 /* How many source bytes each transfer will consume, and their location in the DRW,
350 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
351 uint32_t outvalue = 0;
352 if (dap->ti_be_32_quirks) {
353 switch (this_size) {
354 case 4:
355 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
356 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
357 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
358 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
359 break;
360 case 2:
361 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
362 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
363 break;
364 case 1:
365 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor);
366 break;
367 }
368 } else {
369 switch (this_size) {
370 case 4:
371 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
372 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
373 case 2:
374 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
375 case 1:
376 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
377 }
378 }
379
380 nbytes -= this_size;
381
382 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
383 if (retval != ERROR_OK)
384 break;
385
386 /* Rewrite TAR if it wrapped or we're xoring addresses */
387 if (addrinc && (addr_xor || (address % dap->tar_autoincr_block < size && nbytes > 0))) {
388 retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
389 if (retval != ERROR_OK)
390 break;
391 }
392 }
393
394 /* REVISIT: Might want to have a queued version of this function that does not run. */
395 if (retval == ERROR_OK)
396 retval = dap_run(dap);
397
398 if (retval != ERROR_OK) {
399 uint32_t tar;
400 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
401 && dap_run(dap) == ERROR_OK)
402 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
403 else
404 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
405 }
406
407 return retval;
408 }
409
410 /**
411 * Synchronous read of a block of memory, using a specific access size.
412 *
413 * @param dap The DAP connected to the MEM-AP.
414 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
415 * @param size Which access size to use, in bytes. 1, 2 or 4.
416 * @param count The number of reads to do (in size units, not bytes).
417 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
418 * @param addrinc Whether the target address should be increased after each read or not. This
419 * should normally be true, except when reading from e.g. a FIFO.
420 * @return ERROR_OK on success, otherwise an error code.
421 */
422 int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
423 uint32_t adr, bool addrinc)
424 {
425 size_t nbytes = size * count;
426 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
427 uint32_t csw_size;
428 uint32_t address = adr;
429 int retval;
430
431 /* TI BE-32 Quirks mode:
432 * Reads on big-endian TMS570 behave strangely differently than writes.
433 * They read from the physical address requested, but with DRW byte-reversed.
434 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
435 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
436 * so avoid them. */
437
438 if (size == 4)
439 csw_size = CSW_32BIT;
440 else if (size == 2)
441 csw_size = CSW_16BIT;
442 else if (size == 1)
443 csw_size = CSW_8BIT;
444 else
445 return ERROR_TARGET_UNALIGNED_ACCESS;
446
447 if (dap->unaligned_access_bad && (adr % size != 0))
448 return ERROR_TARGET_UNALIGNED_ACCESS;
449
450 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
451 * over-allocation if packed transfers are going to be used, but determining the real need at
452 * this point would be messy. */
453 uint32_t *read_buf = malloc(count * sizeof(uint32_t));
454 uint32_t *read_ptr = read_buf;
455 if (read_buf == NULL) {
456 LOG_ERROR("Failed to allocate read buffer");
457 return ERROR_FAIL;
458 }
459
460 retval = dap_setup_accessport_tar(dap, address);
461 if (retval != ERROR_OK) {
462 free(read_buf);
463 return retval;
464 }
465
466 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
467 * useful bytes it contains, and their location in the word, depends on the type of transfer
468 * and alignment. */
469 while (nbytes > 0) {
470 uint32_t this_size = size;
471
472 /* Select packed transfer if possible */
473 if (addrinc && dap->packed_transfers && nbytes >= 4
474 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
475 this_size = 4;
476 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
477 } else {
478 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
479 }
480 if (retval != ERROR_OK)
481 break;
482
483 retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
484 if (retval != ERROR_OK)
485 break;
486
487 nbytes -= this_size;
488 address += this_size;
489
490 /* Rewrite TAR if it wrapped */
491 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
492 retval = dap_setup_accessport_tar(dap, address);
493 if (retval != ERROR_OK)
494 break;
495 }
496 }
497
498 if (retval == ERROR_OK)
499 retval = dap_run(dap);
500
501 /* Restore state */
502 address = adr;
503 nbytes = size * count;
504 read_ptr = read_buf;
505
506 /* If something failed, read TAR to find out how much data was successfully read, so we can
507 * at least give the caller what we have. */
508 if (retval != ERROR_OK) {
509 uint32_t tar;
510 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
511 && dap_run(dap) == ERROR_OK) {
512 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
513 if (nbytes > tar - address)
514 nbytes = tar - address;
515 } else {
516 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
517 nbytes = 0;
518 }
519 }
520
521 /* Replay loop to populate caller's buffer from the correct word and byte lane */
522 while (nbytes > 0) {
523 uint32_t this_size = size;
524
525 if (addrinc && dap->packed_transfers && nbytes >= 4
526 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
527 this_size = 4;
528 }
529
530 if (dap->ti_be_32_quirks) {
531 switch (this_size) {
532 case 4:
533 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
534 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
535 case 2:
536 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
537 case 1:
538 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
539 }
540 } else {
541 switch (this_size) {
542 case 4:
543 *buffer++ = *read_ptr >> 8 * (address++ & 3);
544 *buffer++ = *read_ptr >> 8 * (address++ & 3);
545 case 2:
546 *buffer++ = *read_ptr >> 8 * (address++ & 3);
547 case 1:
548 *buffer++ = *read_ptr >> 8 * (address++ & 3);
549 }
550 }
551
552 read_ptr++;
553 nbytes -= this_size;
554 }
555
556 free(read_buf);
557 return retval;
558 }
559
560 /*--------------------------------------------------------------------*/
561 /* Wrapping function with selection of AP */
562 /*--------------------------------------------------------------------*/
563 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
564 uint32_t address, uint32_t *value)
565 {
566 dap_ap_select(swjdp, ap);
567 return mem_ap_read_u32(swjdp, address, value);
568 }
569
570 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
571 uint32_t address, uint32_t value)
572 {
573 dap_ap_select(swjdp, ap);
574 return mem_ap_write_u32(swjdp, address, value);
575 }
576
577 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
578 uint32_t address, uint32_t *value)
579 {
580 dap_ap_select(swjdp, ap);
581 return mem_ap_read_atomic_u32(swjdp, address, value);
582 }
583
584 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
585 uint32_t address, uint32_t value)
586 {
587 dap_ap_select(swjdp, ap);
588 return mem_ap_write_atomic_u32(swjdp, address, value);
589 }
590
591 int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap,
592 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
593 {
594 dap_ap_select(swjdp, ap);
595 return mem_ap_read(swjdp, buffer, size, count, address, true);
596 }
597
598 int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap,
599 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
600 {
601 dap_ap_select(swjdp, ap);
602 return mem_ap_write(swjdp, buffer, size, count, address, true);
603 }
604
605 int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
606 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
607 {
608 dap_ap_select(swjdp, ap);
609 return mem_ap_read(swjdp, buffer, size, count, address, false);
610 }
611
612 int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
613 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
614 {
615 dap_ap_select(swjdp, ap);
616 return mem_ap_write(swjdp, buffer, size, count, address, false);
617 }
618
619 #define MDM_REG_STAT 0x00
620 #define MDM_REG_CTRL 0x04
621 #define MDM_REG_ID 0xfc
622
623 #define MDM_STAT_FMEACK (1<<0)
624 #define MDM_STAT_FREADY (1<<1)
625 #define MDM_STAT_SYSSEC (1<<2)
626 #define MDM_STAT_SYSRES (1<<3)
627 #define MDM_STAT_FMEEN (1<<5)
628 #define MDM_STAT_BACKDOOREN (1<<6)
629 #define MDM_STAT_LPEN (1<<7)
630 #define MDM_STAT_VLPEN (1<<8)
631 #define MDM_STAT_LLSMODEXIT (1<<9)
632 #define MDM_STAT_VLLSXMODEXIT (1<<10)
633 #define MDM_STAT_CORE_HALTED (1<<16)
634 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
635 #define MDM_STAT_CORESLEEPING (1<<18)
636
637 #define MEM_CTRL_FMEIP (1<<0)
638 #define MEM_CTRL_DBG_DIS (1<<1)
639 #define MEM_CTRL_DBG_REQ (1<<2)
640 #define MEM_CTRL_SYS_RES_REQ (1<<3)
641 #define MEM_CTRL_CORE_HOLD_RES (1<<4)
642 #define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
643 #define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
644 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
645
646 #define MDM_ACCESS_TIMEOUT 3000 /* ms */
647
648 /**
649 *
650 */
651 int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
652 {
653 uint32_t val;
654 int retval;
655 int timeout = 0;
656 enum reset_types jtag_reset_config = jtag_get_reset_config();
657
658 dap_ap_select(dap, 1);
659
660 /* first check mdm-ap id register */
661 retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
662 if (retval != ERROR_OK)
663 return retval;
664 dap_run(dap);
665
666 if (val != 0x001C0000) {
667 LOG_DEBUG("id doesn't match %08" PRIX32 " != 0x001C0000", val);
668 dap_ap_select(dap, 0);
669 return ERROR_FAIL;
670 }
671
672 /* read and parse status register
673 * it's important that the device is out of
674 * reset here
675 */
676 while (1) {
677 if (timeout++ > MDM_ACCESS_TIMEOUT) {
678 LOG_DEBUG("MDMAP : flash ready timeout");
679 return ERROR_FAIL;
680 }
681 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
682 if (retval != ERROR_OK)
683 return retval;
684 dap_run(dap);
685
686 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
687 if (val & MDM_STAT_FREADY)
688 break;
689 alive_sleep(1);
690 }
691
692 if ((val & MDM_STAT_SYSSEC)) {
693 LOG_DEBUG("MDMAP: system is secured, masserase needed");
694
695 if (!(val & MDM_STAT_FMEEN))
696 LOG_DEBUG("MDMAP: masserase is disabled");
697 else {
698 /* we need to assert reset */
699 if (jtag_reset_config & RESET_HAS_SRST) {
700 /* default to asserting srst */
701 adapter_assert_reset();
702 } else {
703 LOG_DEBUG("SRST not configured");
704 dap_ap_select(dap, 0);
705 return ERROR_FAIL;
706 }
707 timeout = 0;
708 while (1) {
709 if (timeout++ > MDM_ACCESS_TIMEOUT) {
710 LOG_DEBUG("MDMAP : flash ready timeout");
711 return ERROR_FAIL;
712 }
713 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
714 if (retval != ERROR_OK)
715 return retval;
716 dap_run(dap);
717 /* read status register and wait for ready */
718 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
719 if (retval != ERROR_OK)
720 return retval;
721 dap_run(dap);
722 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
723
724 if ((val & 1))
725 break;
726 alive_sleep(1);
727 }
728 timeout = 0;
729 while (1) {
730 if (timeout++ > MDM_ACCESS_TIMEOUT) {
731 LOG_DEBUG("MDMAP : flash ready timeout");
732 return ERROR_FAIL;
733 }
734 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
735 if (retval != ERROR_OK)
736 return retval;
737 dap_run(dap);
738 /* read status register */
739 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
740 if (retval != ERROR_OK)
741 return retval;
742 dap_run(dap);
743 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
744 /* read control register and wait for ready */
745 retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
746 if (retval != ERROR_OK)
747 return retval;
748 dap_run(dap);
749 LOG_DEBUG("MDM_REG_CTRL %08" PRIX32, val);
750
751 if (val == 0x00)
752 break;
753 alive_sleep(1);
754 }
755 }
756 }
757
758 dap_ap_select(dap, 0);
759
760 return ERROR_OK;
761 }
762
763 /** */
764 struct dap_syssec_filter {
765 /** */
766 uint32_t idcode;
767 /** */
768 int (*dap_init)(struct adiv5_dap *dap);
769 };
770
771 /** */
772 static struct dap_syssec_filter dap_syssec_filter_data[] = {
773 { 0x4BA00477, dap_syssec_kinetis_mdmap }
774 };
775
776 /**
777 *
778 */
779 int dap_syssec(struct adiv5_dap *dap)
780 {
781 unsigned int i;
782 struct jtag_tap *tap;
783
784 for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
785 tap = dap->jtag_info->tap;
786
787 while (tap != NULL) {
788 if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
789 LOG_DEBUG("DAP: mdmap_init for idcode: %08" PRIx32, tap->idcode);
790 dap_syssec_filter_data[i].dap_init(dap);
791 }
792 tap = tap->next_tap;
793 }
794 }
795
796 return ERROR_OK;
797 }
798
799 /*--------------------------------------------------------------------------*/
800
801
802 /* FIXME don't import ... just initialize as
803 * part of DAP transport setup
804 */
805 extern const struct dap_ops jtag_dp_ops;
806
807 /*--------------------------------------------------------------------------*/
808
809 /**
810 * Initialize a DAP. This sets up the power domains, prepares the DP
811 * for further use, and arranges to use AP #0 for all AP operations
812 * until dap_ap-select() changes that policy.
813 *
814 * @param dap The DAP being initialized.
815 *
816 * @todo Rename this. We also need an initialization scheme which account
817 * for SWD transports not just JTAG; that will need to address differences
818 * in layering. (JTAG is useful without any debug target; but not SWD.)
819 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
820 */
821 int ahbap_debugport_init(struct adiv5_dap *dap)
822 {
823 uint32_t ctrlstat;
824 int cnt = 0;
825 int retval;
826
827 LOG_DEBUG(" ");
828
829 /* JTAG-DP or SWJ-DP, in JTAG mode
830 * ... for SWD mode this is patched as part
831 * of link switchover
832 */
833 if (!dap->ops)
834 dap->ops = &jtag_dp_ops;
835
836 /* Default MEM-AP setup.
837 *
838 * REVISIT AP #0 may be an inappropriate default for this.
839 * Should we probe, or take a hint from the caller?
840 * Presumably we can ignore the possibility of multiple APs.
841 */
842 dap->ap_current = !0;
843 dap_ap_select(dap, 0);
844
845 /* DP initialization */
846
847 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
848 if (retval != ERROR_OK)
849 return retval;
850
851 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
852 if (retval != ERROR_OK)
853 return retval;
854
855 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
856 if (retval != ERROR_OK)
857 return retval;
858
859 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
860 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
861 if (retval != ERROR_OK)
862 return retval;
863
864 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
865 if (retval != ERROR_OK)
866 return retval;
867 retval = dap_run(dap);
868 if (retval != ERROR_OK)
869 return retval;
870
871 /* Check that we have debug power domains activated */
872 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
873 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
874 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
875 if (retval != ERROR_OK)
876 return retval;
877 retval = dap_run(dap);
878 if (retval != ERROR_OK)
879 return retval;
880 alive_sleep(10);
881 }
882
883 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
884 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
885 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
886 if (retval != ERROR_OK)
887 return retval;
888 retval = dap_run(dap);
889 if (retval != ERROR_OK)
890 return retval;
891 alive_sleep(10);
892 }
893
894 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
895 if (retval != ERROR_OK)
896 return retval;
897 /* With debug power on we can activate OVERRUN checking */
898 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
899 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
900 if (retval != ERROR_OK)
901 return retval;
902 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
903 if (retval != ERROR_OK)
904 return retval;
905
906 dap_syssec(dap);
907
908 /* check that we support packed transfers */
909 uint32_t csw, cfg;
910
911 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
912 if (retval != ERROR_OK)
913 return retval;
914
915 retval = dap_queue_ap_read(dap, AP_REG_CSW, &csw);
916 if (retval != ERROR_OK)
917 return retval;
918
919 retval = dap_queue_ap_read(dap, AP_REG_CFG, &cfg);
920 if (retval != ERROR_OK)
921 return retval;
922
923 retval = dap_run(dap);
924 if (retval != ERROR_OK)
925 return retval;
926
927 if (csw & CSW_ADDRINC_PACKED)
928 dap->packed_transfers = true;
929 else
930 dap->packed_transfers = false;
931
932 /* Packed transfers on TI BE-32 processors do not work correctly in
933 * many cases. */
934 if (dap->ti_be_32_quirks)
935 dap->packed_transfers = false;
936
937 LOG_DEBUG("MEM_AP Packed Transfers: %s",
938 dap->packed_transfers ? "enabled" : "disabled");
939
940 /* The ARM ADI spec leaves implementation-defined whether unaligned
941 * memory accesses work, only work partially, or cause a sticky error.
942 * On TI BE-32 processors, reads seem to return garbage in some bytes
943 * and unaligned writes seem to cause a sticky error.
944 * TODO: it would be nice to have a way to detect whether unaligned
945 * operations are supported on other processors. */
946 dap->unaligned_access_bad = dap->ti_be_32_quirks;
947
948 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
949 !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
950
951 return ERROR_OK;
952 }
953
954 /* CID interpretation -- see ARM IHI 0029B section 3
955 * and ARM IHI 0031A table 13-3.
956 */
957 static const char *class_description[16] = {
958 "Reserved", "ROM table", "Reserved", "Reserved",
959 "Reserved", "Reserved", "Reserved", "Reserved",
960 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
961 "Reserved", "OptimoDE DESS",
962 "Generic IP component", "PrimeCell or System component"
963 };
964
965 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
966 {
967 return cid3 == 0xb1 && cid2 == 0x05
968 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
969 }
970
971 /*
972 * This function checks the ID for each access port to find the requested Access Port type
973 */
974 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
975 {
976 int ap;
977
978 /* Maximum AP number is 255 since the SELECT register is 8 bits */
979 for (ap = 0; ap <= 255; ap++) {
980
981 /* read the IDR register of the Access Port */
982 uint32_t id_val = 0;
983 dap_ap_select(dap, ap);
984
985 int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
986 if (retval != ERROR_OK)
987 return retval;
988
989 retval = dap_run(dap);
990
991 /* IDR bits:
992 * 31-28 : Revision
993 * 27-24 : JEDEC bank (0x4 for ARM)
994 * 23-17 : JEDEC code (0x3B for ARM)
995 * 16 : Mem-AP
996 * 15-8 : Reserved
997 * 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
998 */
999
1000 /* Reading register for a non-existant AP should not cause an error,
1001 * but just to be sure, try to continue searching if an error does happen.
1002 */
1003 if ((retval == ERROR_OK) && /* Register read success */
1004 ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
1005 ((id_val & 0xFF) == type_to_find)) { /* type matches*/
1006
1007 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
1008 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
1009 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
1010 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
1011 ap, id_val);
1012
1013 *ap_num_out = ap;
1014 return ERROR_OK;
1015 }
1016 }
1017
1018 LOG_DEBUG("No %s found",
1019 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
1020 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
1021 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
1022 return ERROR_FAIL;
1023 }
1024
1025 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1026 uint32_t *out_dbgbase, uint32_t *out_apid)
1027 {
1028 uint32_t ap_old;
1029 int retval;
1030 uint32_t dbgbase, apid;
1031
1032 /* AP address is in bits 31:24 of DP_SELECT */
1033 if (ap >= 256)
1034 return ERROR_COMMAND_SYNTAX_ERROR;
1035
1036 ap_old = dap->ap_current;
1037 dap_ap_select(dap, ap);
1038
1039 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1040 if (retval != ERROR_OK)
1041 return retval;
1042 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1043 if (retval != ERROR_OK)
1044 return retval;
1045 retval = dap_run(dap);
1046 if (retval != ERROR_OK)
1047 return retval;
1048
1049 /* Excavate the device ID code */
1050 struct jtag_tap *tap = dap->jtag_info->tap;
1051 while (tap != NULL) {
1052 if (tap->hasidcode)
1053 break;
1054 tap = tap->next_tap;
1055 }
1056 if (tap == NULL || !tap->hasidcode)
1057 return ERROR_OK;
1058
1059 dap_ap_select(dap, ap_old);
1060
1061 /* The asignment happens only here to prevent modification of these
1062 * values before they are certain. */
1063 *out_dbgbase = dbgbase;
1064 *out_apid = apid;
1065
1066 return ERROR_OK;
1067 }
1068
1069 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1070 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1071 {
1072 uint32_t ap_old;
1073 uint32_t romentry, entry_offset = 0, component_base, devtype;
1074 int retval = ERROR_FAIL;
1075
1076 if (ap >= 256)
1077 return ERROR_COMMAND_SYNTAX_ERROR;
1078
1079 ap_old = dap->ap_current;
1080 dap_ap_select(dap, ap);
1081
1082 do {
1083 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1084 entry_offset, &romentry);
1085 if (retval != ERROR_OK)
1086 return retval;
1087
1088 component_base = (dbgbase & 0xFFFFF000)
1089 + (romentry & 0xFFFFF000);
1090
1091 if (romentry & 0x1) {
1092 retval = mem_ap_read_atomic_u32(dap,
1093 (component_base & 0xfffff000) | 0xfcc,
1094 &devtype);
1095 if (retval != ERROR_OK)
1096 return retval;
1097 if ((devtype & 0xff) == type) {
1098 *addr = component_base;
1099 retval = ERROR_OK;
1100 break;
1101 }
1102 }
1103 entry_offset += 4;
1104 } while (romentry > 0);
1105
1106 dap_ap_select(dap, ap_old);
1107
1108 return retval;
1109 }
1110
1111 static int dap_rom_display(struct command_context *cmd_ctx,
1112 struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth)
1113 {
1114 int retval;
1115 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
1116 uint16_t entry_offset;
1117 char tabs[7] = "";
1118
1119 if (depth > 16) {
1120 command_print(cmd_ctx, "\tTables too deep");
1121 return ERROR_FAIL;
1122 }
1123
1124 if (depth)
1125 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1126
1127 /* bit 16 of apid indicates a memory access port */
1128 if (dbgbase & 0x02)
1129 command_print(cmd_ctx, "\t%sValid ROM table present", tabs);
1130 else
1131 command_print(cmd_ctx, "\t%sROM table in legacy format", tabs);
1132
1133 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1134 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1135 if (retval != ERROR_OK)
1136 return retval;
1137 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1138 if (retval != ERROR_OK)
1139 return retval;
1140 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1141 if (retval != ERROR_OK)
1142 return retval;
1143 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1144 if (retval != ERROR_OK)
1145 return retval;
1146 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1147 if (retval != ERROR_OK)
1148 return retval;
1149 retval = dap_run(dap);
1150 if (retval != ERROR_OK)
1151 return retval;
1152
1153 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1154 command_print(cmd_ctx, "\t%sCID3 0x%02x"
1155 ", CID2 0x%02x"
1156 ", CID1 0x%02x"
1157 ", CID0 0x%02x",
1158 tabs,
1159 (unsigned)cid3, (unsigned)cid2,
1160 (unsigned)cid1, (unsigned)cid0);
1161 if (memtype & 0x01)
1162 command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs);
1163 else
1164 command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs);
1165
1166 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1167 for (entry_offset = 0; ; entry_offset += 4) {
1168 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1169 if (retval != ERROR_OK)
1170 return retval;
1171 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1172 tabs, entry_offset, romentry);
1173 if (romentry & 0x01) {
1174 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1175 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1176 uint32_t component_base;
1177 unsigned part_num;
1178 char *type, *full;
1179
1180 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
1181
1182 /* IDs are in last 4K section */
1183 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1184 if (retval != ERROR_OK) {
1185 command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32
1186 ", the corresponding core might be turned off", tabs, component_base);
1187 continue;
1188 }
1189 c_pid0 &= 0xff;
1190 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1191 if (retval != ERROR_OK)
1192 return retval;
1193 c_pid1 &= 0xff;
1194 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1195 if (retval != ERROR_OK)
1196 return retval;
1197 c_pid2 &= 0xff;
1198 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1199 if (retval != ERROR_OK)
1200 return retval;
1201 c_pid3 &= 0xff;
1202 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1203 if (retval != ERROR_OK)
1204 return retval;
1205 c_pid4 &= 0xff;
1206
1207 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1208 if (retval != ERROR_OK)
1209 return retval;
1210 c_cid0 &= 0xff;
1211 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1212 if (retval != ERROR_OK)
1213 return retval;
1214 c_cid1 &= 0xff;
1215 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1216 if (retval != ERROR_OK)
1217 return retval;
1218 c_cid2 &= 0xff;
1219 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1220 if (retval != ERROR_OK)
1221 return retval;
1222 c_cid3 &= 0xff;
1223
1224 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", "
1225 "start address 0x%" PRIx32, component_base,
1226 /* component may take multiple 4K pages */
1227 (uint32_t)(component_base - 0x1000*(c_pid4 >> 4)));
1228 command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s",
1229 (uint8_t)((c_cid1 >> 4) & 0xf),
1230 /* See ARM IHI 0029B Table 3-3 */
1231 class_description[(c_cid1 >> 4) & 0xf]);
1232
1233 /* CoreSight component? */
1234 if (((c_cid1 >> 4) & 0x0f) == 9) {
1235 uint32_t devtype;
1236 unsigned minor;
1237 char *major = "Reserved", *subtype = "Reserved";
1238
1239 retval = mem_ap_read_atomic_u32(dap,
1240 (component_base & 0xfffff000) | 0xfcc,
1241 &devtype);
1242 if (retval != ERROR_OK)
1243 return retval;
1244 minor = (devtype >> 4) & 0x0f;
1245 switch (devtype & 0x0f) {
1246 case 0:
1247 major = "Miscellaneous";
1248 switch (minor) {
1249 case 0:
1250 subtype = "other";
1251 break;
1252 case 4:
1253 subtype = "Validation component";
1254 break;
1255 }
1256 break;
1257 case 1:
1258 major = "Trace Sink";
1259 switch (minor) {
1260 case 0:
1261 subtype = "other";
1262 break;
1263 case 1:
1264 subtype = "Port";
1265 break;
1266 case 2:
1267 subtype = "Buffer";
1268 break;
1269 }
1270 break;
1271 case 2:
1272 major = "Trace Link";
1273 switch (minor) {
1274 case 0:
1275 subtype = "other";
1276 break;
1277 case 1:
1278 subtype = "Funnel, router";
1279 break;
1280 case 2:
1281 subtype = "Filter";
1282 break;
1283 case 3:
1284 subtype = "FIFO, buffer";
1285 break;
1286 }
1287 break;
1288 case 3:
1289 major = "Trace Source";
1290 switch (minor) {
1291 case 0:
1292 subtype = "other";
1293 break;
1294 case 1:
1295 subtype = "Processor";
1296 break;
1297 case 2:
1298 subtype = "DSP";
1299 break;
1300 case 3:
1301 subtype = "Engine/Coprocessor";
1302 break;
1303 case 4:
1304 subtype = "Bus";
1305 break;
1306 }
1307 break;
1308 case 4:
1309 major = "Debug Control";
1310 switch (minor) {
1311 case 0:
1312 subtype = "other";
1313 break;
1314 case 1:
1315 subtype = "Trigger Matrix";
1316 break;
1317 case 2:
1318 subtype = "Debug Auth";
1319 break;
1320 }
1321 break;
1322 case 5:
1323 major = "Debug Logic";
1324 switch (minor) {
1325 case 0:
1326 subtype = "other";
1327 break;
1328 case 1:
1329 subtype = "Processor";
1330 break;
1331 case 2:
1332 subtype = "DSP";
1333 break;
1334 case 3:
1335 subtype = "Engine/Coprocessor";
1336 break;
1337 }
1338 break;
1339 }
1340 command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1341 (uint8_t)(devtype & 0xff),
1342 major, subtype);
1343 /* REVISIT also show 0xfc8 DevId */
1344 }
1345
1346 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1347 command_print(cmd_ctx,
1348 "\t\tCID3 0%02x"
1349 ", CID2 0%02x"
1350 ", CID1 0%02x"
1351 ", CID0 0%02x",
1352 (int)c_cid3,
1353 (int)c_cid2,
1354 (int)c_cid1,
1355 (int)c_cid0);
1356 command_print(cmd_ctx,
1357 "\t\tPeripheral ID[4..0] = hex "
1358 "%02x %02x %02x %02x %02x",
1359 (int)c_pid4, (int)c_pid3, (int)c_pid2,
1360 (int)c_pid1, (int)c_pid0);
1361
1362 /* Part number interpretations are from Cortex
1363 * core specs, the CoreSight components TRM
1364 * (ARM DDI 0314H), CoreSight System Design
1365 * Guide (ARM DGI 0012D) and ETM specs; also
1366 * from chip observation (e.g. TI SDTI).
1367 */
1368 part_num = (c_pid0 & 0xff);
1369 part_num |= (c_pid1 & 0x0f) << 8;
1370 switch (part_num) {
1371 case 0x000:
1372 type = "Cortex-M3 NVIC";
1373 full = "(Interrupt Controller)";
1374 break;
1375 case 0x001:
1376 type = "Cortex-M3 ITM";
1377 full = "(Instrumentation Trace Module)";
1378 break;
1379 case 0x002:
1380 type = "Cortex-M3 DWT";
1381 full = "(Data Watchpoint and Trace)";
1382 break;
1383 case 0x003:
1384 type = "Cortex-M3 FBP";
1385 full = "(Flash Patch and Breakpoint)";
1386 break;
1387 case 0x00c:
1388 type = "Cortex-M4 SCS";
1389 full = "(System Control Space)";
1390 break;
1391 case 0x00d:
1392 type = "CoreSight ETM11";
1393 full = "(Embedded Trace)";
1394 break;
1395 /* case 0x113: what? */
1396 case 0x120: /* from OMAP3 memmap */
1397 type = "TI SDTI";
1398 full = "(System Debug Trace Interface)";
1399 break;
1400 case 0x343: /* from OMAP3 memmap */
1401 type = "TI DAPCTL";
1402 full = "";
1403 break;
1404 case 0x906:
1405 type = "Coresight CTI";
1406 full = "(Cross Trigger)";
1407 break;
1408 case 0x907:
1409 type = "Coresight ETB";
1410 full = "(Trace Buffer)";
1411 break;
1412 case 0x908:
1413 type = "Coresight CSTF";
1414 full = "(Trace Funnel)";
1415 break;
1416 case 0x910:
1417 type = "CoreSight ETM9";
1418 full = "(Embedded Trace)";
1419 break;
1420 case 0x912:
1421 type = "Coresight TPIU";
1422 full = "(Trace Port Interface Unit)";
1423 break;
1424 case 0x913:
1425 type = "Coresight ITM";
1426 full = "(Instrumentation Trace Macrocell)";
1427 break;
1428 case 0x921:
1429 type = "Cortex-A8 ETM";
1430 full = "(Embedded Trace)";
1431 break;
1432 case 0x922:
1433 type = "Cortex-A8 CTI";
1434 full = "(Cross Trigger)";
1435 break;
1436 case 0x923:
1437 type = "Cortex-M3 TPIU";
1438 full = "(Trace Port Interface Unit)";
1439 break;
1440 case 0x924:
1441 type = "Cortex-M3 ETM";
1442 full = "(Embedded Trace)";
1443 break;
1444 case 0x925:
1445 type = "Cortex-M4 ETM";
1446 full = "(Embedded Trace)";
1447 break;
1448 case 0x930:
1449 type = "Cortex-R4 ETM";
1450 full = "(Embedded Trace)";
1451 break;
1452 case 0x950:
1453 type = "CoreSight Component";
1454 full = "(unidentified Cortex-A9 component)";
1455 break;
1456 case 0x9a0:
1457 type = "CoreSight PMU";
1458 full = "(Performance Monitoring Unit)";
1459 break;
1460 case 0x9a1:
1461 type = "Cortex-M4 TPUI";
1462 full = "(Trace Port Interface Unit)";
1463 break;
1464 case 0xc08:
1465 type = "Cortex-A8 Debug";
1466 full = "(Debug Unit)";
1467 break;
1468 case 0xc09:
1469 type = "Cortex-A9 Debug";
1470 full = "(Debug Unit)";
1471 break;
1472 default:
1473 type = "-*- unrecognized -*-";
1474 full = "";
1475 break;
1476 }
1477 command_print(cmd_ctx, "\t\tPart is %s %s",
1478 type, full);
1479
1480 /* ROM Table? */
1481 if (((c_cid1 >> 4) & 0x0f) == 1) {
1482 retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1);
1483 if (retval != ERROR_OK)
1484 return retval;
1485 }
1486 } else {
1487 if (romentry)
1488 command_print(cmd_ctx, "\t\tComponent not present");
1489 else
1490 break;
1491 }
1492 }
1493 command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1494 return ERROR_OK;
1495 }
1496
1497 static int dap_info_command(struct command_context *cmd_ctx,
1498 struct adiv5_dap *dap, int ap)
1499 {
1500 int retval;
1501 uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1502 int romtable_present = 0;
1503 uint8_t mem_ap;
1504 uint32_t ap_old;
1505
1506 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1507 if (retval != ERROR_OK)
1508 return retval;
1509
1510 ap_old = dap->ap_current;
1511 dap_ap_select(dap, ap);
1512
1513 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1514 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1515 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1516 if (apid) {
1517 switch (apid&0x0F) {
1518 case 0:
1519 command_print(cmd_ctx, "\tType is JTAG-AP");
1520 break;
1521 case 1:
1522 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1523 break;
1524 case 2:
1525 command_print(cmd_ctx, "\tType is MEM-AP APB");
1526 break;
1527 default:
1528 command_print(cmd_ctx, "\tUnknown AP type");
1529 break;
1530 }
1531
1532 /* NOTE: a MEM-AP may have a single CoreSight component that's
1533 * not a ROM table ... or have no such components at all.
1534 */
1535 if (mem_ap)
1536 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1537 } else
1538 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1539
1540 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1541 if (romtable_present) {
1542 dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0);
1543 } else
1544 command_print(cmd_ctx, "\tNo ROM table present");
1545 dap_ap_select(dap, ap_old);
1546
1547 return ERROR_OK;
1548 }
1549
1550 COMMAND_HANDLER(handle_dap_info_command)
1551 {
1552 struct target *target = get_current_target(CMD_CTX);
1553 struct arm *arm = target_to_arm(target);
1554 struct adiv5_dap *dap = arm->dap;
1555 uint32_t apsel;
1556
1557 switch (CMD_ARGC) {
1558 case 0:
1559 apsel = dap->apsel;
1560 break;
1561 case 1:
1562 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1563 break;
1564 default:
1565 return ERROR_COMMAND_SYNTAX_ERROR;
1566 }
1567
1568 return dap_info_command(CMD_CTX, dap, apsel);
1569 }
1570
1571 COMMAND_HANDLER(dap_baseaddr_command)
1572 {
1573 struct target *target = get_current_target(CMD_CTX);
1574 struct arm *arm = target_to_arm(target);
1575 struct adiv5_dap *dap = arm->dap;
1576
1577 uint32_t apsel, baseaddr;
1578 int retval;
1579
1580 switch (CMD_ARGC) {
1581 case 0:
1582 apsel = dap->apsel;
1583 break;
1584 case 1:
1585 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1586 /* AP address is in bits 31:24 of DP_SELECT */
1587 if (apsel >= 256)
1588 return ERROR_COMMAND_SYNTAX_ERROR;
1589 break;
1590 default:
1591 return ERROR_COMMAND_SYNTAX_ERROR;
1592 }
1593
1594 dap_ap_select(dap, apsel);
1595
1596 /* NOTE: assumes we're talking to a MEM-AP, which
1597 * has a base address. There are other kinds of AP,
1598 * though they're not common for now. This should
1599 * use the ID register to verify it's a MEM-AP.
1600 */
1601 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1602 if (retval != ERROR_OK)
1603 return retval;
1604 retval = dap_run(dap);
1605 if (retval != ERROR_OK)
1606 return retval;
1607
1608 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1609
1610 return retval;
1611 }
1612
1613 COMMAND_HANDLER(dap_memaccess_command)
1614 {
1615 struct target *target = get_current_target(CMD_CTX);
1616 struct arm *arm = target_to_arm(target);
1617 struct adiv5_dap *dap = arm->dap;
1618
1619 uint32_t memaccess_tck;
1620
1621 switch (CMD_ARGC) {
1622 case 0:
1623 memaccess_tck = dap->memaccess_tck;
1624 break;
1625 case 1:
1626 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1627 break;
1628 default:
1629 return ERROR_COMMAND_SYNTAX_ERROR;
1630 }
1631 dap->memaccess_tck = memaccess_tck;
1632
1633 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1634 dap->memaccess_tck);
1635
1636 return ERROR_OK;
1637 }
1638
1639 COMMAND_HANDLER(dap_apsel_command)
1640 {
1641 struct target *target = get_current_target(CMD_CTX);
1642 struct arm *arm = target_to_arm(target);
1643 struct adiv5_dap *dap = arm->dap;
1644
1645 uint32_t apsel, apid;
1646 int retval;
1647
1648 switch (CMD_ARGC) {
1649 case 0:
1650 apsel = 0;
1651 break;
1652 case 1:
1653 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1654 /* AP address is in bits 31:24 of DP_SELECT */
1655 if (apsel >= 256)
1656 return ERROR_COMMAND_SYNTAX_ERROR;
1657 break;
1658 default:
1659 return ERROR_COMMAND_SYNTAX_ERROR;
1660 }
1661
1662 dap->apsel = apsel;
1663 dap_ap_select(dap, apsel);
1664
1665 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1666 if (retval != ERROR_OK)
1667 return retval;
1668 retval = dap_run(dap);
1669 if (retval != ERROR_OK)
1670 return retval;
1671
1672 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1673 apsel, apid);
1674
1675 return retval;
1676 }
1677
1678 COMMAND_HANDLER(dap_apcsw_command)
1679 {
1680 struct target *target = get_current_target(CMD_CTX);
1681 struct arm *arm = target_to_arm(target);
1682 struct adiv5_dap *dap = arm->dap;
1683
1684 uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0;
1685
1686 switch (CMD_ARGC) {
1687 case 0:
1688 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1689 (dap->apsel), apcsw);
1690 break;
1691 case 1:
1692 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1693 /* AP address is in bits 31:24 of DP_SELECT */
1694 if (sprot > 1)
1695 return ERROR_COMMAND_SYNTAX_ERROR;
1696 if (sprot)
1697 apcsw |= CSW_SPROT;
1698 else
1699 apcsw &= ~CSW_SPROT;
1700 break;
1701 default:
1702 return ERROR_COMMAND_SYNTAX_ERROR;
1703 }
1704 dap->apcsw[dap->apsel] = apcsw;
1705
1706 return 0;
1707 }
1708
1709
1710
1711 COMMAND_HANDLER(dap_apid_command)
1712 {
1713 struct target *target = get_current_target(CMD_CTX);
1714 struct arm *arm = target_to_arm(target);
1715 struct adiv5_dap *dap = arm->dap;
1716
1717 uint32_t apsel, apid;
1718 int retval;
1719
1720 switch (CMD_ARGC) {
1721 case 0:
1722 apsel = dap->apsel;
1723 break;
1724 case 1:
1725 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1726 /* AP address is in bits 31:24 of DP_SELECT */
1727 if (apsel >= 256)
1728 return ERROR_COMMAND_SYNTAX_ERROR;
1729 break;
1730 default:
1731 return ERROR_COMMAND_SYNTAX_ERROR;
1732 }
1733
1734 dap_ap_select(dap, apsel);
1735
1736 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1737 if (retval != ERROR_OK)
1738 return retval;
1739 retval = dap_run(dap);
1740 if (retval != ERROR_OK)
1741 return retval;
1742
1743 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1744
1745 return retval;
1746 }
1747
1748 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1749 {
1750 struct target *target = get_current_target(CMD_CTX);
1751 struct arm *arm = target_to_arm(target);
1752 struct adiv5_dap *dap = arm->dap;
1753
1754 uint32_t enable = dap->ti_be_32_quirks;
1755
1756 switch (CMD_ARGC) {
1757 case 0:
1758 break;
1759 case 1:
1760 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1761 if (enable > 1)
1762 return ERROR_COMMAND_SYNTAX_ERROR;
1763 break;
1764 default:
1765 return ERROR_COMMAND_SYNTAX_ERROR;
1766 }
1767 dap->ti_be_32_quirks = enable;
1768 command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1769 enable ? "enabled" : "disabled");
1770
1771 return 0;
1772 }
1773
1774 static const struct command_registration dap_commands[] = {
1775 {
1776 .name = "info",
1777 .handler = handle_dap_info_command,
1778 .mode = COMMAND_EXEC,
1779 .help = "display ROM table for MEM-AP "
1780 "(default currently selected AP)",
1781 .usage = "[ap_num]",
1782 },
1783 {
1784 .name = "apsel",
1785 .handler = dap_apsel_command,
1786 .mode = COMMAND_EXEC,
1787 .help = "Set the currently selected AP (default 0) "
1788 "and display the result",
1789 .usage = "[ap_num]",
1790 },
1791 {
1792 .name = "apcsw",
1793 .handler = dap_apcsw_command,
1794 .mode = COMMAND_EXEC,
1795 .help = "Set csw access bit ",
1796 .usage = "[sprot]",
1797 },
1798
1799 {
1800 .name = "apid",
1801 .handler = dap_apid_command,
1802 .mode = COMMAND_EXEC,
1803 .help = "return ID register from AP "
1804 "(default currently selected AP)",
1805 .usage = "[ap_num]",
1806 },
1807 {
1808 .name = "baseaddr",
1809 .handler = dap_baseaddr_command,
1810 .mode = COMMAND_EXEC,
1811 .help = "return debug base address from MEM-AP "
1812 "(default currently selected AP)",
1813 .usage = "[ap_num]",
1814 },
1815 {
1816 .name = "memaccess",
1817 .handler = dap_memaccess_command,
1818 .mode = COMMAND_EXEC,
1819 .help = "set/get number of extra tck for MEM-AP memory "
1820 "bus access [0-255]",
1821 .usage = "[cycles]",
1822 },
1823 {
1824 .name = "ti_be_32_quirks",
1825 .handler = dap_ti_be_32_quirks_command,
1826 .mode = COMMAND_CONFIG,
1827 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1828 .usage = "[enable]",
1829 },
1830 COMMAND_REGISTRATION_DONE
1831 };
1832
1833 const struct command_registration dap_command_handlers[] = {
1834 {
1835 .name = "dap",
1836 .mode = COMMAND_EXEC,
1837 .help = "DAP command group",
1838 .usage = "",
1839 .chain = dap_commands,
1840 },
1841 COMMAND_REGISTRATION_DONE
1842 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)